WorldWideScience

Sample records for wastewater pollutants 2-ethylhexylthioglycolic

  1. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  2. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Pollutant removal in subsurface wastewater infiltration systems with/without intermittent ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... wastewater infiltration systems (SWISs) with and without intermittent aeration, ...

  3. Wastewater Pollution from Cruise Ships in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Tina Perić

    2016-08-01

    Full Text Available The global growth of cruise tourism has brought increasing concern for the pollution of the marine environment. Marine pollution from sanitary wastewater is a problem especially pronounced on large cruise ships where the number of people on board may exceed 8,000. To evaluate future marine pollution in any selected period of time it is necessary to know the movement of ships in the Adriatic Sea. This paper presents the problem of marine pollution by sanitary wastewater from cruise ships, wastewater treatment technology and a model of cruise ship traffic in the Adriatic Sea considering MARPOL Annex IV areas of limited wastewater discharge. Using the model, it is possible to know in advance the routes of the cruisers and retention time in certain geographic areas. The data obtained by this model can be used as input parameters for evaluation model of wastewater pollution or for evaluation of other types of pollution from cruise ships.

  4. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Ninety-five per cent of decentralized wastewater around the ... Organic pollutant and nitrogen removal performance of SWISs ... a rubber hose with flow rate control valves. .... the limitation of oxygen became more obvious, and resulted in. 4. 3.

  5. Pollution loads in urban runoff and sanitary wastewater.

    Science.gov (United States)

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  6. Pollution loads in urban runoff and sanitary wastewater

    International Nuclear Information System (INIS)

    Taebi, Amir; Droste, Ronald L.

    2004-01-01

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha·year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control

  7. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  8. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  9. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  10. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  11. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  12. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  13. Pollutants Characterization of Car Wash Wastewater

    Directory of Open Access Journals (Sweden)

    Hashim Nor Haslina

    2016-01-01

    Full Text Available The huge quantity of water consumed per car during washing cars yields the untreated effluents discharged to the stormwater system. Wastewater samples from snow car wash and two full hand service car wash station were analyzed for pH and the presence of PO43-,TP, O&G, alkalinity, TSS, NO3-, NO2-, COD and surfactant in accordance Standard Method of Water and Wastewater 2012. Two full hand wash service stations and one station of snow foam service were investigated in this study. Amongst the stations, snow foam car wash station indicates the highest concentration of PO43-, TP, O&G, TSS, COD and surfactant with the average value of 10.18 ± 0.87 mg/L, 30.93 ± 0.31 mg/L , 85.00 ± 0.64 mg/L 325.0 ± 0.6 mg/L, 485.0 ± 0.3 mg/L and 54.00 ± 2.50 mg/L as MBAS, respectively. Whereas, in parameters characterization in different stages throughout the car wash process, O&G was found to be the highest in pre soak stage, PO43-, TP, TSS and COD in washing stage and NO3- and NO2- in rinse stage. All parameters were compared to Environmental Quality (Industrial Effluent Regulations, 2009. There is a strong need to study on the characterization of car wash water in order to suggest the suitable treatment need for this type of wastewater.

  14. Control of Sewer systems and Wastewater treatment plants using pollutant concentration profiles

    DEFF Research Database (Denmark)

    Bechmann, Henrik; Nielsen, Marinus K.; Madsen, Henrik

    1998-01-01

    On-line measurements of pollutants in the wastewater combined with grey-box modelling are used to estimate the amount of deposits in the sewer system. The pollutant mass flow at the wastewater treatment plant is found to consist of a diurnal profile minus the deposited amount of pollutants...

  15. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investigation of Wastewater Pollution at Clan Jetty, Penang

    Directory of Open Access Journals (Sweden)

    Razak Fazilah Md

    2014-01-01

    Full Text Available This study aims to determine the level of wastewater pollution at Clan Jetty, Penang. 20 locations were chosen for water sampling around the jetties. Experiments were conducted to investigate the parameters, namely, temperature at each point, Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD, pH, Dissolved Oxygen (DO, the presence of Coliform and E. coli, Nitrate Nitrogen, Ammonical Nitrogen, Suspended Solids, Oil and Grease as well as Total Phosphorus (TP. Laboratory results showed that Point 1A was the most polluted location compared to other sampling points. The highest COD recording was 5824 mg/L at Point 1A and the lowest amount of 103 mg/L was recorded at Point 4. This study demonstrates that the absence of a sewerage system contributes to marine pollution around the jetties. Thus, a sewerage system is the best solution to improve water quality around the jetties in the future.

  17. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J L [University of Maine, Orano, ME (United States). Dept. of Civil Engineering

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  18. Reduction of Wastewater Pollutants of Mandalay City Slaughterhouse

    International Nuclear Information System (INIS)

    May Thant Zin; Sint Soe

    2010-12-01

    Slaughterhouse (Meat Production Factor)under Mandaly City Development Committee (MCDC) in Myanmar has been discharging raw wastewater directly into Tat Thay Pont which is located at the back side of the slaughterhouse.It can cause some water pollutants in water source and need to prevent environmental impact. This paper was studied on the treatment of slaughterhouse wastewater using appropriate technique available in local area. Sample collection of slaughterhouse waste, analysing of waste quality on current situation,different ways of pre-treating and anaerobically digestion without recycling were done. Screening, coagulation, sedimentation and charcoal filtration were included as pre-treating steps before major anaerobic digestion. Ferric chloride and aluminum sulphate chemicals of both commercial and analytical grades were used as coagulants. Laboratory-scaled anaerobic reactor constructed with polyvinyl chloride (PVC) material was 15 cm diameter and 90 cm heigh. MCDC slaughterhouse wastewater containing 98.56% of total coarse particles was removed via minimum size of 1500 micron screen. Aluminium sulphate gave the best removal of fine solid particles. It was observed that pre-treating steps can reduce 56.72% of initial biological oxygen demand (BOD), 51.482% of initial chemical oxygen demand (COD) and 45.18% of inital total suspended solid (TSS) and anaerobic digester after 30 days can reduce 77.4% of influent BOD,81.5% of influent COD and 87.3% of influent TSS.

  19. Efficiency of WWTP to remove emerging pollutants in wastewater

    Science.gov (United States)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    of Economy and Competitiveness through the project CGL2011-29703-C02-02. References 1. Shraim, A., et al., Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arabian Journal of Chemistry, (0). 2. Andrés-Costa, M.J., et al., Occurrence and removal of drugs of abuse in Wastewater Treatment Plants of Valencia (Spain). Environmental Pollution, 2014. 194(0): p. 152-162.

  20. The protection of urban areas from surface wastewater pollutions

    Directory of Open Access Journals (Sweden)

    Vialkova Elena

    2017-01-01

    Full Text Available In this paper it considered the problem of collection, treatment and discharge into waters of rain and melted wastewater. To reduce the load on the combined sewer system, there are engineering solutions collect rain and melt water for use in the irrigation of lawns and green spaces. Research carried out at the department “Water supply and sanitation”, (Russia, confirm the high pollution concentrations of meltwater and rainfall in urban arias. Series of measurements of heavy metal in rainwater runoff carried out in Hungary demonstrates clearly the differences in concentrations in the function of distance from the edge of the road. Also differences are introduced between pollution concentrations in runoff water from within and outside urban traffic roads. The quality of snow cover, forming meltwater is observed to be changing in dependence on roadway location. Quality characteristics of surface runoff and its sediments can be effectively improved with super-high frequency radiation (SHF treatment which is presented in this paper.

  1. Experimental and numerical study of wastewater pollution in Yuhui channel, Jiashan city

    Science.gov (United States)

    Fu, Lei; Peng, Zhenhua; You, Aiju

    2018-02-01

    Due to the development of economics and society in China, the huge amount of wastewater becomes a serious problem in most of the Chinese cities. Therefore, the construction of wastewater treatment plant draws much more attentions than before. The discharge from the wastewater treatment plant is then considered as a point source in most of the important rivers and channels in China. In this study, a typical wastewater treatment plant extension project is introduced as a case study, a filed monitoring experiment is designed and executed to observe required data, then, a two-dimensional model is estabilished to simulate the water quality downsteam of the wastewater treatment plant, CODCr is considered as a typical pollutant during the simulation. The simulation results indicate that different discharge conditions will lead to different CODCr concentration downstream of the wastewater treatment plant, and an emergency plan should be prepared to minimize the risk of the pollution in the channel under unusual and accident conditions.

  2. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)

    2005-10-01

    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  3. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    Science.gov (United States)

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  4. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  5. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-01-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater

  6. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  7. Nitrogen and Phosphorus Pollutants in Cosmetics Wastewater and Its Treatment Process of a Certain Brand

    Science.gov (United States)

    Ma, Guosheng; Chen, Juan

    2018-02-01

    Cosmetics wastewater is one of the sources of nitrogen and phosphorus pollutants that cause eutrophication of water bodies. This paper is to test the cosmetics wastewater in the production process with American Hach method, and the pH and other indicators would be detected during a whole production cycle. The results show that the pH value in wastewater is 8.6~8.7 (average 8.67), SS 880~1090 mg. L-1 (average 968.57), TN 65.2~100.4 mg.m-3 (average 80.50), TP 6.6~11.4 mg.m-3 (average 9.84), NH3-N 44.2~77.0 mg.m-3 (average 55.61), COD 4650~5900 mg.m-3 (average 5490). After pollutant treatment, the nitrogen and phosphorus pollutants in wastewater can reach the standard discharge.

  8. Analysis of pollution removal from wastewater by Ceratophyllum ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... The treatments included raw municipal wastewater (RMW) and treated ... municipal wastewater (from 1.34 to 0.95 ds/m) and the EC of raw ... wastes are generated daily from highly populated cities ... plants is an integral part of the biogeochemical cycle of .... Waste Management and Treatment, 2nd ed.

  9. Characterization and study of correlations among major pollution parameters in textile wastewater

    International Nuclear Information System (INIS)

    Hyder, S.; Bari, A.

    2011-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a textile mill in Lahore, Punjab. The results of this study demonstrated that the composition of textile wastewater could change continuously due to inherent nature of textile operations. In general, textile wastewater was high in temperature and alkaline in nature. It was highly polluted in terms of solids and organic content. Most of the portion of solids and organic load was in the soluble form. On the basis of mean values, temperature, pH, TDS (Total Dissolved Solids), BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) were above the limits set by NEQS (National Environmental Quality Standards) while chlorides and sulfates were below the limits set by NEQS. Prior neutralization of wastewater with an acid and addition of phosphorus and nitrogen is imperative for its effective treatment. (author)

  10. Application of heterogeneous fenton oxidation for the removal of pollutants from wastewater

    OpenAIRE

    Rodríguez Rey, Daniel

    2014-01-01

    During the last century there has been a growing concern about water pollution throughout the developed countries. Water has a major impact on the environment as it is used by all living being. This leads to leave the wastewater used with an acceptable quality for its next destination. Fortunately, national and international water quality agreements and laws have pushed development of wastewater treatment technology that nowadays allows us to return the used water to the environment in goo...

  11. Radiation-induced degradation of organic pollutants in wastewater

    International Nuclear Information System (INIS)

    Bagyo, A.N.M.; Lindu, W.A.; Sadjirun, S.; Winarno, E.K.; Widayat, E.; Aryanti; Winarno, H.

    2001-01-01

    The degradation and decolouration of organic pollutants, i.e. dye stuffs and phenolic compounds, by gamma irradiation have been studied. First, samples from effluent of textile industry were taken to be irradiated at a certain condition. Irradiation was done after dissolving the samples five times with distilled water in laboratory scale, followed by upscaling those samples into 5 litre in volume. Irradiation was done at a dose of 0- 25 kGy, aerated and a dose rate of 5 kGy/h. The parameters examined were the change of absorption spectra. COD (Chemical Oxygen Demand), the percentage of the degradation, the change of pH and degradation product using HPLC. It was demonstrated that the dilution of sample enhanced the degradation and decreased the COD values. The degradation product of textile wastewater is mainly oxalic acid. Second, the effects of radiation on aerated phenolic compounds mixture, i.e. resorcinol, o-cresol and m- cresol were done. Individual phenol was studied followed by mixture of the phenolic compounds. Irradiation was done in aerated condition with doses of 0-10 kGy, dose rate of 5 kGy/h and pH range from 3 to 12. The initial concentration of resorcinol, o-cresol and w-cresol were 50 ppm and 60 ppm for phenolic compounds mixture, respectively. Parameters examined were absorption spectrum, pH, and degradation products. The uv-vis absorption of the solution were observed before and after irradiation. HPLC was used to determine the products of degradation. Degradation of resorcinol, w-cresol and o-cresol could be achieved at dose of 6 kGy at pH 9, while o-cresol in acid condition (pH 3). The degree of degradation for resorcinol, w-cresol and o-cresol at above conditions were 90%, 88% and 45%, respectively. Degradation of phenolic compound mixture occurred at a dose of 7.5 kGy and pH 9', at this condition almost 99% of phenolic compounds degraded. Oxalic acid was the main degradation product. (author)

  12. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, A.; Taguchi, M. [Japan Atomic Energy Agency (Japan); Maruyama, A. [Gunma Prefectural Sewerage Manegement General Office (Japan)

    2012-07-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D{sub 1ng}, were estimated to be 100, 200 and 150 Gy (J kg{sup -1}), respectively. Since the D{sub 1ng} of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m{sup -3}. (author)

  13. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Maruyama, A.

    2012-01-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D 1ng , were estimated to be 100, 200 and 150 Gy (J kg -1 ), respectively. Since the D 1ng of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3 . (author)

  14. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  15. Role of fly ash in the removal of organic pollutants from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    M. Ahmaruzzaman [National Institute of Technology, Silchar (India). Department of Chemistry

    2009-03-15

    Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

  16. Municipal wastewater characteristics in Thailand and effects of soft intervention measures in households on pollutant discharge reduction.

    Science.gov (United States)

    Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S

    2010-01-01

    In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.

  17. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  18. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  19. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash.

    Science.gov (United States)

    Sun, Wei-ling; Qu, Yan-zhi; Yu, Qing; Ni, Jin-ren

    2008-06-15

    Bottom ash, a power plant waste, was used to remove the organic pollutants in coking wastewater and papermaking wastewater. Particular attention was paid on the effect of bottom ash particle size and dosage on the removal of chemical oxygen demand (COD). UV-vis spectra, fluorescence excitation-emission matrix (FEEM) spectra, Fourier transform infrared (FTIR) spectra, and scanning electron microscopic (SEM) photographs were investigated to characterize the wastewaters and bottom ash. The results show that the COD removal efficiencies increase with decreasing particle sizes of bottom ash, and the COD removal efficiency for coking wastewater is much higher than that for papermaking wastewater due to its high percentage of particle organic carbon (POC). Different trends of COD removal efficiency with bottom ash dosage are also observed for coking and papermaking wastewaters because of their various POC concentrations. Significant variations are observed in the FEEM spectra of wastewaters after treatment by bottom ash. New excitation-emission peaks are found in FEEM spectra, and the fluorescence intensities of the peaks decrease. A new transmittance band in the region of 1400-1420 cm(-1) is observed in FTIR spectra of bottom ash after adsorption. The SEM photographs reveal that the surface of bottom ash particles varies evidently after adsorption.

  20. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash

    International Nuclear Information System (INIS)

    Sun Weiling; Qu Yanzhi; Yu Qing; Ni Jinren

    2008-01-01

    Bottom ash, a power plant waste, was used to remove the organic pollutants in coking wastewater and papermaking wastewater. Particular attention was paid on the effect of bottom ash particle size and dosage on the removal of chemical oxygen demand (COD). UV-vis spectra, fluorescence excitation-emission matrix (FEEM) spectra, Fourier transform infrared (FTIR) spectra, and scanning electron microscopic (SEM) photographs were investigated to characterize the wastewaters and bottom ash. The results show that the COD removal efficiencies increase with decreasing particle sizes of bottom ash, and the COD removal efficiency for coking wastewater is much higher than that for papermaking wastewater due to its high percentage of particle organic carbon (POC). Different trends of COD removal efficiency with bottom ash dosage are also observed for coking and papermaking wastewaters because of their various POC concentrations. Significant variations are observed in the FEEM spectra of wastewaters after treatment by bottom ash. New excitation-emission peaks are found in FEEM spectra, and the fluorescence intensities of the peaks decrease. A new transmittance band in the region of 1400-1420 cm -1 is observed in FTIR spectra of bottom ash after adsorption. The SEM photographs reveal that the surface of bottom ash particles varies evidently after adsorption

  1. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  2. Analysis of pollution removal from wastewater by Ceratophyllum ...

    African Journals Online (AJOL)

    Water is one of the most stable and abundant complexes on nature that can be polluted with natural and human factors. Polluted water is harmful to human health and need to purify. One of the economic and rapid methods for elements removal is displacement of metals by biosorption. Two treatments in four replications for ...

  3. Generation of synthetic influent data for performing (micro) pollutant wastewater treatment modelling studies

    DEFF Research Database (Denmark)

    Snip, L. J. P.; Aymerich, I.; Flores-Alsina, X.

    2015-01-01

    The use of Activated Sludge Models (ASM) (Henze et al., 2000) is constantly growing and both industry and academia are increasingly applying these tools when performing wastewater treatment plant (WWTP) engineering studies. Besides describing the behaviour of traditional pollutants such as organic...... carbon (C), nitrogen(N) and phosphorus(P), ASM models have been successfully upgraded to predict the fate of different types of micro-pollutants (Benedetti et al., 2013). Indeed, the potential adverse effects of micro-pollutants in aquatic environments have been an object of intensive research during...... (Gernaey et al., 2011). This is an important point since realistic data representing the influent wastewater dynamics are crucial to accomplish any WWTP modelling project (Rieger et al., 2012). For this reason, model-based influent generators/synthetic data are an alternative that has recently gained...

  4. Satellite Remote Sensing Detection of Coastal Pollution in Southern California: Stormwater Runoff and Wastewater Plumes

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-02-01

    Coastal pollution poses a major health and environmental hazard, not only for beach goers and coastal communities but for marine organisms as well. Stormwater runoff is the largest source of environmental pollution in coastal waters of the Southern California Bight (SCB) and is of great concern in increasingly urbanized areas. Buoyant wastewater plumes also pose a marine environmental risk. In this study we provide a comprehensive overview of satellite remote sensing capabilities in detecting buoyant coastal pollutants in the form of stormwater runoff and wastewater effluent. The SCB is the final destination of four major urban rivers that act as channels for runoff and pollution during and after rainstorms. We analyzed and compared sea surface roughness data from various Synthetic Aperture Radar (SAR) instruments to ocean color data from the Moderate Imaging System (MODIS) sensor on board the Aqua satellite and correlated the results with existing environmental data in order to create a climatology of naturally occurring stormwater plumes in coastal waters after rain events, from 1992 to 2014 from four major rivers in the area. Heat maps of the primary extent of stormwater plumes were constructed to specify areas that may be subject to the greatest risk of coastal contamination. In conjunction with our efforts to monitor coastal pollution and validate the abilities of satellite remote sensing, a recent Fall 2015 wastewater diversion from the City of Los Angeles Hyperion Treatment Plant (HTP) provided the opportunity to apply these remote sensing methodologies of plume detection to wastewater. During maintenance of their 5-mile long outfall pipe, wastewater is diverted to a shorter outfall pipe that terminates 1-mile offshore and in shallower waters. Sea surface temperature (SST), chlorophyll-a (chl-a) fluorescence, remote sensing reflectance and particulate backscatter signatures were analyzed from MODIS. Terra-ASTER and Landsat-8 thermal infrared data were also

  5. Removal of mineral oil and wastewater pollutants using hard coal

    Directory of Open Access Journals (Sweden)

    BRANISLAV R. SIMONOVIĆ

    2009-05-01

    Full Text Available This study investigates the use of hard coal as an adsorbent for removal of mineral oil from wastewater. In order to determine the efficiency of hard coal as an adsorbent of mineral oil, process parameters such as sorption capacity (in static and dynamic conditions, temperature, pH, contact time, flow rate, and chemical pretreatment were evaluated in a series of batch and continuous flow experiments. There were significant differences in the mineral oil removal for various pH values examined. The adsorption of mineral oil increased as pH values diverged from 7 (neutral. At lower temperatures, the adsorption was notably higher. The wastewater flow rate was adjusted to achieve optimal water purification. Equilibrium was reached after 10 h in static conditions. At that time, more than 99% of mineral oil had been removed. At the beginning of the filtering process, the adsorption rate increased rapidly, only to show a minor decrease afterwards. Equilibrium data were fitted to Freundlich models to determine the water-hard coal partitioning coefficient. Physical adsorption caused by properties of the compounds was the predominant mechanism in the removal process.

  6. Removal of Oil and Grease as Emerging Pollutants of Concern (EPC in Wastewater Stream

    Directory of Open Access Journals (Sweden)

    Alade Abass O

    2011-12-01

    Full Text Available Wastewater characteristics, which depend on wastewater source, are increasingly becoming more toxic in recent times. The concentrations of oil and grease in wastewater streams have been observed to increase in wastewater stream with increasing adverse effects on the ecology. This results from the increasing use of oil and grease in high-demanded oil-processed foods, establishment and expansion of oil mills and refineries worldwide, as well as indiscriminate discharge of oil and grease into the water drains, domestically and industrially. This study reports the applications, efficiencies and challenges of the wastewater treatment techniques currently employed in the removal of oil and grease from the industrial wastewater and municipal water stream. The results shows that the concentrations of oil and grease injected into the ecosystem are of higher environmental impact and this needs to be given the desired attention. The desired development for effective removal of oil and grease as emerging pollutants of concern (EPC in wastewater stream are thus proposed. ABSTRAK: Ciri-ciri air sisa, bergantung kepada punca air sisa tersebut, menjadi semakin toksik akhir-akhir ini. Kepekatan minyak dan gris dalam air sisa anak sungai dilihat makin bertambah dalam air sisa anak sungai dengan bertambahnya kesan negatif ke atas ekologi. Ini disebabkan oleh peningkatan penggunaan minyak dan gris dalam makanan berproses yang tinggi permintaannya, penubuhan dan perkembangan kilang pertroleum dan loji penapisan di seluruh dunia. Minyak dan gris juga dibuang sewenang-wenangnya ke dalam parit air, dari kalangan domestik dan industry. Kajian ini membentangkan tentang aplikasi, keberkesanan dan teknik cabaran rawatan air buangan yang kini digunakan dalam pembuangan minyak dan gris dari air sisa industry dan air sungai perbandaran. Keputusan menunjukkan kepekatan minyak dan gris yang wujud dibuang ke dalam ekosistem mempunyai impak yang lebih tinggi terhadap persekitaran

  7. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  8. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. T. Amin

    2014-01-01

    Full Text Available The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. Nanotechnology-based multifunctional and highly efficient processes are providing affordable solutions to water/wastewater treatments that do not rely on large infrastructures or centralized systems. The aim of the present study is to review the possible applications of the nanoparticles/fibers for the removal of pollutants from water/wastewater. The paper will briefly overview the availability and practice of different nanomaterials (particles or fibers for removal of viruses, inorganic solutes, heavy metals, metal ions, complex organic compounds, natural organic matter, nitrate, and other pollutants present in surface water, ground water, and/or industrial water. Finally, recommendations are made based on the current practices of nanotechnology applications in water industry for a stand-alone water purification unit for removing all types of contaminants from wastewater.

  9. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    Science.gov (United States)

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  10. Biodegradation of Pollutants from Winery wastewater by Using Fungi Aspergillus fumigatus and Bacterium Bacillus subtilis

    OpenAIRE

    , C.S. Mahajan; , D.V. Patil; , D.B. Sarode; , R.N. Jadhav; , S.B. Attarde

    2012-01-01

    Aspergillus fumigatus was used as fungal strain and Bacillus subtilis was used as bacterial species for the biodegradation of winery wastewater pollutants. The fungal strain and bacterial species was allowed to grow on PDA and NA slant. Loop full of both fungal and bacterial culture was inoculated and incubated at room temperature for 7 days. After the incubation the sample was filtered and analyzed for the chemical characteristics to verify the degradation capacity of both species,after trea...

  11. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    Science.gov (United States)

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  12. The supply and demand for pollution control: Evidence from wastewater treatment

    Science.gov (United States)

    McConnell, V.D.; Schwarz, G.E.

    1992-01-01

    This paper analyzes the determination of pollution control from wastewater treatment plants as an economic decision facing local or regional regulators. Pollution control is measured by plant design effluent concentration levels and is fully endogenous in a supply- and-demand model of treatment choice. On the supply side, plant costs are a function of the design treatment level of the plant, and on the demand side, treatment level is a function of both the costs of control and the regional or regulatory preferences for control. We find evidence that the economic model of effluent choice by local regulators has a good deal of explanatory power. We find evidence that wastewater treatment plant removal of biological oxygen demand (BOD) is sensitive to many local factors including the size of the treatment plant, the flow rate of the receiving water, the population density of the surrounding area, regional growth, state sensitivity to environmental issues, state income, and the extent to which the damages from pollution fall on other states. We find strong evidence that regulators are sensitive to capital costs in determining the design level of BOD effluent reduction at a plant. Thus, proposed reductions in federal subsidies for wastewater treatment plant construction are likely to have significant adverse effects on water quality. ?? 1992.

  13. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    International Nuclear Information System (INIS)

    Saien, J.; Nejati, H.

    2007-01-01

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO 2 added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L -1 , 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C 10 ) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants

  14. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saien, J. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)], E-mail: saien@basu.ac.ir; Nejati, H. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)

    2007-09-05

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO{sub 2} added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L{sup -1}, 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C{sub 10}) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants.

  15. Shadow prices of emerging pollutants in wastewater treatment plants: Quantification of environmental externalities.

    Science.gov (United States)

    Bellver-Domingo, A; Fuentes, R; Hernández-Sancho, F

    2017-12-01

    Conventional wastewater treatment plants (WWTPs) are designed to remove mainly the organic matter, nitrogen and phosphorus compounds and suspended solids from wastewater but are not capable of removing chemicals of human origin, such as pharmaceutical and personal care products (PPCPs). The presence of PPCPs in wastewater has environmental effects on the water bodies receiving the WWTP effluents and renders the effluent as unsuitable as a nonconventional water source. Considering PPCPs as non-desirable outputs, the shadow prices methodology has been implemented using the output distance function to measure the environmental benefits of removing five PPCPs (acetaminophen, ibuprofen, naproxen, carbamazepine and trimethoprim) from WWTP effluents discharged to three different ecosystems (wetland, river and sea). Acetaminophen and ibuprofen show the highest shadow prices of the sample for wetland areas. Their values are 128.2 and 11.0 €/mg respectively. These results represent a proxy in monetary terms of the environmental benefit achieved from avoiding the discharge of these PPCPs in wetlands. These results suggest which PPCPs are urgent to remove from wastewater and which ecosystems are most vulnerable to their presence. The findings of this study will be useful for the plant managers in order to make decisions about prioritization in the removal of different pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  17. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  18. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    International Nuclear Information System (INIS)

    Marincas, O; Avram, V; Moldovan, Z; Petrov, P; Ternes, T

    2009-01-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  19. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    OpenAIRE

    Ebrahiem E. Ebrahiem; Mohammednoor N. Al-Maghrabi; Ahmed R. Mobarki

    2017-01-01

    The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process) for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2) dose, ferrous sulfate (FeSO4·7H2O) dose, Initial dye concentration, an...

  20. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    Energy Technology Data Exchange (ETDEWEB)

    Marincas, O; Avram, V; Moldovan, Z [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Petrov, P [Water Treatment Station Siluet B, 21 Pencho Slaveikov Street, Varna 9000 (Bulgaria); Ternes, T, E-mail: olivian.marincas@itim-cj.r [Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  1. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    Science.gov (United States)

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  2. Control and Prevention of Wastewater Pollution From Amerya Petroleum Refining Company

    International Nuclear Information System (INIS)

    Bakry, A.A.

    2004-01-01

    An oil refinery normally uses large quantities of water, for cooling and other process purpose. This water is treated from contaminants and finally returned to a lake or sea, outside the refinery. Amerya Petroleum Refining Company (APRC) uses conventional and special treatment methods for wastewater to remove all pollutants and to reduce the oil content in refinery final effluent water to a limit of 10 ppm , as the maximum permissible limit for environmental protection as designated by the Egyptian Act No.4 for the year 1994 . About 80% of oil in wastewater is separated by API (American Petroleum Institute) separator method and returned to refinery. Small oil droplets, emulsion and suspended matter escaped from API separator but were removed successfully in the dissolved air flotation (DAF) with chemical additives as the secondary treatment stage for wastewater. The flotation method with chemical additives and filtration were used to reduce the suspended solids and oil content to permissible levels (10 ppm) Furthermore, biological treatment unit was constructed to remove the dissolved oxygen consuming contaminates, e.g. phenolic compounds and traces of hydrocarbon derivatives. It was found that the BOD and COD of the effluent were reduced, and 100% removal of the trace amount of phenol was achieved in effluent

  3. The role of wastewater treatment in reducing pollution of surface waters with zearalenone.

    Science.gov (United States)

    Gromadzka, Karolina; Waśkiewicz, Agnieszka; Świetlik, Joanna; Bocianowski, Jan; Goliński, Piotr

    2015-06-01

    Zearalenone (ZEA) is a mycotoxin produced by some Fusarium species in food and feed. The toxicity of ZEA and its metabolites is related to the chemical structure of the mycotoxin, which is similar to naturally occurring oestrogens. Currently, there is increasing awareness of the presence of fungi and their toxic metabolites in the aquatic environment. One of the sources of these compounds are the effluents from wastewater treatment plants. The average annual efficiency of zearalenone reduction in the Łęczyca plant in our three-year study was in the range from 51.35 to 69.70 %. The threeway analysis of variance (year, month, and kind of wastewater) shows that the main effects of all factors and all interactions between them were significant for zearalenone and dissolved organic carbon content. Our findings suggest that wastewater is not the main source of surface water pollution with zearalenone. Future research should investigate the means to reduce ZEA and its migration from the fields through prevention strategies such as breeding for crops, plant debris management (crop rotation, tillage), and/or chemical and biological control.

  4. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Chronic shortages of water in arid and semi-arid regions of the world and environmental policy regulations have stimulated the search for appropriate technologies capable of treating wastewater for reuse or safe discharge. Industrial effluents often carry chemical contaminants such as organics, petrochemicals, pesticides, dyes and heavy metal ions. The standard biological treatment processes commonly used for wastewater treatment are not capable of treating some of these complex organic chemicals that are found in varying quantities in the wastewaters. Another emerging problem is the increasing presence of pharmaceuticals and endocrine disruptor compounds in municipal wastewater entering into the receiving stream, for which new treatment techniques and procedures are needed to remove excreted drugs before releasing the effluent into public waterways or reuse. Radiation-initiated degradation of organics helps to transform various pollutants into less harmful substances or reduced to the levels below the permissible concentrations. Studies in several Member States (MS) have demonstrated the usefulness and efficiency of radiation technology for treatment of different organic pollutants. The lack of comparative data in pilot scale studies using radiation technique (alone or in combination with other methods) has been a major issue in further utilization of this method for wastewater treatment. There is a need to study further the radiation effects, evaluate reliability and cost of treating specific group of organic pollutants in cooperation with other stakeholders who are involved in using other technologies. The Co-ordinated Research Project (CRP) on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” has been launched with the objective to study the effectiveness, reliability and economics of radiation processing technology to treat wastewater contaminated with low and high concentration of organic

  5. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    Chronic shortages of water in arid and semi-arid regions of the world and environmental policy regulations have stimulated the search for appropriate technologies capable of treating wastewater for reuse or safe discharge. Industrial effluents often carry chemical contaminants such as organics, petrochemicals, pesticides, dyes and heavy metal ions. The standard biological treatment processes commonly used for wastewater treatment are not capable of treating some of these complex organic chemicals that are found in varying quantities in the wastewaters. Another emerging problem is the increasing presence of pharmaceuticals and endocrine disruptor compounds in municipal wastewater entering into the receiving stream, for which new treatment techniques and procedures are needed to remove excreted drugs before releasing the effluent into public waterways or reuse. Radiation-initiated degradation of organics helps to transform various pollutants into less harmful substances or reduced to the levels below the permissible concentrations. Studies in several Member States (MS) have demonstrated the usefulness and efficiency of radiation technology for treatment of different organic pollutants. The lack of comparative data in pilot scale studies using radiation technique (alone or in combination with other methods) has been a major issue in further utilization of this method for wastewater treatment. There is a need to study further the radiation effects, evaluate reliability and cost of treating specific group of organic pollutants in cooperation with other stakeholders who are involved in using other technologies. The Co-ordinated Research Project (CRP) on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” has been launched with the objective to study the effectiveness, reliability and economics of radiation processing technology to treat wastewater contaminated with low and high concentration of organic

  6. Wastewater Treatment

    Science.gov (United States)

    ... day before releasing it back to the environment. Treatment plants reduce pollutants in wastewater to a level nature can handle. Wastewater is used water. It includes substances such as human waste, food ...

  7. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  9. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  10. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  12. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes

    2008-01-01

    Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further ...

  13. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes

    2007-01-01

    Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further ...

  14. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    Science.gov (United States)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  15. Interrelationships of metal transfer factor under wastewater reuse and soil pollution.

    Science.gov (United States)

    Papaioannou, D; Kalavrouziotis, I K; Koukoulakis, P H; Papadopoulos, F; Psoma, P

    2018-06-15

    The transfer of heavy metals under soil pollution wastewater reuse was studied in a Greenhouse experiment using a randomized block design, including 6 treatments of heavy metals mixtures composed of Zn, Mn, Cd, Co, Cu, Cr, Ni, and Pb, where each metal was taking part in the mixture with 0, 10, 20, 30, 40, 50 mg/kg respectively, in four replications. The Beta vulgaris L (beet) was used as a test plant. It was found that the metal transfer factors were statistically significantly related to the: (i) DTPA extractable soil metals, (ii) the soil pollution level as assessed by the pollution indices, (iii) the soil pH, (iv) the beet dry matter yield and (v) the interactions between the heavy metals in the soil. It was concluded that the Transfer Factor is subjected to multifactor effects and its real nature is complex, and there is a strong need for further study for the understanding of its role in metal-plant relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.

    Science.gov (United States)

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-01-01

    This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.

  17. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment.

    Science.gov (United States)

    Shuval, Hillel

    2003-06-01

    This paper presents a preliminary attempt at obtaining an order-of-magnitude estimate of the global burden of disease (GBD) of human infectious diseases associated with swimming/bathing in coastal waters polluted by wastewater, and eating raw or lightly steamed filter-feeding shellfish harvested from such waters. Such diseases will be termed thalassogenic--caused by the sea. Until recently these human health effects have been viewed primarily as local phenomena, not generally included in the world agenda of marine scientists dealing with global marine pollution problems. The massive global scale of the problem can be visualized when one considers that the wastewater and human body wastes of a significant portion of the world's population who reside along the coastline or in the vicinity of the sea are discharged daily, directly or indirectly, into the marine coastal waters, much of it with little or no treatment. Every cubic metre of raw domestic wastewater discharged into the sea can carry millions of infectious doses of pathogenic microorganisms. It is estimated that globally, foreign and local tourists together spend some 2 billion man-days annually at coastal recreational resorts and many are often exposed there to coastal waters polluted by wastewater. Annually some 800 million meals of potentially contaminated filter-feeding shellfish/bivalves and other sea foods, harvested in polluted waters are consumed, much of it raw or lightly steamed. A number of scientific studies have shown that swimmers swallow significant amounts of polluted seawater and can become ill with gastrointestinal and respiratory diseases from the pathogens they ingest. Based on risk assessments from the World Health Organization (WHO) and academic research sources the present study has made an estimate that globally, each year, there are in excess of 120 million cases of gastrointestinal disease and in excess of 50 million cases of more severe respiratory diseases caused by swimming and

  18. [The Influence of Runoff Pollution to DOM Features in an Urban Wastewater Treatment Plant].

    Science.gov (United States)

    He, Li; Ji, Fang-ying; Lai, Ming-sheng; Xu, Xuan; Zhou, Wei-wei; Mao, Bo-lin; Yang, Ming-jia

    2015-03-01

    Combined with wastewater treatment process, the sewage in sunny and rainy day was collected from a wastewater treatment plant in Chongqing. Three-dimensional fluorescence spectra was used to investigate the characteristic fluorescence of dissolved organic matter (DOM). DOM dissolved organic carbon (DOC), chemical oxygen demand (COD), fluorescence index (ƒ450/500) and fluorescence intensity ratio γ (A, C) of fulvic acid in ultraviolet and visible region were used to analyze the impact of rain runoff pollution on sewage DOM. According to the experimental data, the DOM fluorescence fingerprints of this wastewater treatment plant were quite different from typical municipal sewage, and the main component was tryptophan with low excitation wavelength (Peak S), then the tryptophan with long wavelength excitation (Peak T) followed. A2/O process had an approximative degradation of the protein-like both in sunny day and rainy day, but had a better degradation of fulvic-like, DOC and COD in rainy day than that in sunny day. Morever, the fluorescence peaks got red-shifted after the biological treatment. The differences of DOM fluorescence fingerprint between sunny and rainy day were significant, the fluorescence center of UV fulvic (Peak A) in rainy day getting blue-shifted obviously, shifting from 240 - 248/390 - 440 to 240 - 250/370 - 400 nm. Although the DOM types in sunny and rainy day were the same, the source of fulvic got more complex by runoff and the component ratio of DOM also changed. Compared with the sunny day, the proportion of Peak S in DOM dereased by 10%, and the proportion of Peak A increased by 7% in rainy day.

  19. Case study of the application of Fenton process to highly polluted wastewater from power plant.

    Science.gov (United States)

    Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J

    2013-05-15

    This work investigates the application of Fenton process to the treatment of a highly polluted industrial wastewater resulting from the pipeline cleaning in a power plant. This effluent is characterized by a high chemical oxygen demand (COD>40 g/L), low biodegradability and quite a high iron concentration (around 3g/L) this coming from pipeline corrosion. The effect of the initial reaction temperature (between 50 and 90 °C) and the way of feeding H2O2 on the mineralization percentage and the efficiency of H2O2 consumption has been analyzed. With the stoichiometric amount of H2O2 relative to initial COD, fed in continuous mode, more than 90% COD reduction was achieved at 90 °C. That was accompanied by a dramatic improvement of the biodegradability. Thus, a combined treatment based on semicontinuous high-temperature Fenton oxidation (SHTF) and conventional aerobic biological treatment would allow fulfilling the COD and ecotoxicity regional limits for industrial wastewaters into de municipal sewer system. For the sake of comparison, catalytic wet air oxidation was also tested with poor results (less than 30% COD removal at 140 °C and 8 atm oxygen pressure). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  1. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, C. E-mail: cbarrera@uaemex.mx; Urena-Nunez, F. E-mail: fun@nuclear.inin.mx; Campos, E.; Palomar-Pardave, M. E-mail: mepp@correo.azc.uam.mx; Romero-Romo, M

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus {gamma}-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a {gamma}-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC {gamma}-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  2. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    International Nuclear Information System (INIS)

    Barrera-Diaz, C.; Urena-Nunez, F.; Campos, E.; Palomar-Pardave, M.; Romero-Romo, M.

    2003-01-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms

  3. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Science.gov (United States)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  4. Degradation Of Aggregate Pollutant In Textiles Wastewater By Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Zulkafli Ghazali; Siti Aiasah Hashim; Selambakkannu, S.; Ming, T.T.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2016-01-01

    Aggregate pollutant were refer to the mixture of the excess material that is used in the manufacturing proses of textiles, present in wastewater. This paper studies the effect of the beam energy, beam current and absorbed dose on degradation of aggregate pollutant in textiles effluent which was indicate by COD, pH and UV-Vis spectrum. The impact of beam energy was conducted when sample were exposed to the irradiation at various beam energy (1 to 3 MeV) at 20 mA and 17 kGy. The COD reduced from 495 mg/l to the range 398.00 -358 mg/l at beam energy 1 MeV to 3 MeV. The irradiated sample also slightly become more acidic at higher beam energy. While 1 MeV beam energy was sufficient to eliminate the exposed peak at wavelength of 425 nm, 550 nm and 650 nm in the UV spectrum. In the case effect of current, the COD effluent tested at constant beam energy of 1 MeV and 3 MeV at various beam current (3 mA, 5 mA, 10 mA, 15 mA and 20 mA) decreased with higher beam current. While interested peak in UV spectrum of irradiated samples was varnish at 3 mA beam current and 1 MeV energy applied. Considering to the 19.66 % COD removal and electric power used, 1 MeV beam energy and 20 mA beam current was the optimum irradiation parameter selected for this study. At 1 MeV:20 mA textiles wastewater irradiated at various dose of 17, 20, 25, 30, 35, 100 and 200 kGy shows removal of COD, were in the range 4.42 % - 30.09 %. (author)

  5. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  6. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment: Correspondence of performance to microbial community functional structure.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Gao, Yinxin; Liu, Yuan; Yang, Min

    2017-09-15

    Although coking wastewater is generally considered to contain high concentration of nitrogen- and sulfur-containing pollutants, the biotransformation processes of these compounds have not been well understood. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina MiSeq sequencing of the 16S rRNA gene were used to identify microbial functional traits and their role in biotransformation of nitrogen- and sulfur-containing compounds in a bench-scale aerobic coking wastewater treatment system operated for 488 days. Biotransformation of nitrogen and sulfur-containing pollutants deteriorated when pH of the bioreactor was increased to >8.0, and the microbial community functional structure was significantly associated with pH (Mantels test, P functional microbial community structure (P functional genes for biotransformation of nitrogen- and sulfur-containing pollutants. Functional characterization of taxa and network analysis suggested that Burkholderiales, Actinomycetales, Rhizobiales, Pseudomonadales, and Hydrogenophiliales (Thiobacillus) were key functional taxa. Variance partitioning analysis showed that pH and influent ammonia nitrogen jointly explained 25.9% and 35.5% of variation in organic pollutant degrading genes and microbial community structure, respectively. This study revealed a linkage between microbial community functional structure and the likely biotransformation of nitrogen- and sulfur-containing pollutants, along with a suitable range of pH (7.0-7.5) for stability of the biological system treating coking wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    Science.gov (United States)

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  9. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review.

    Science.gov (United States)

    Chowdhary, Pankaj; Raj, Abhay; Bharagava, Ram Naresh

    2018-03-01

    Distillery industries are the key contributor to the world's economy, but these are also one of the major sources of environmental pollution due to the discharge of a huge volume of dark colored wastewater. This dark colored wastewater contains very high biological oxygen demand, chemical oxygen demand, total solids, sulfate, phosphate, phenolics and various toxic metals. Distillery wastewater also contains a mixture of organic and inorganic pollutants such as melanoidins, di-n-octyl phthalate, di-butyl phthalate, benzenepropanoic acid and 2-hydroxysocaproic acid and toxic metals, which are well reported as genotoxic, carcinogenic, mutagenic and endocrine disrupting in nature. In aquatic resources, it causes serious environmental problems by reducing the penetration power of sunlight, photosynthetic activities and dissolved oxygen content. On other hand, in agricultural land, it causes inhibition of seed germination and depletion of vegetation by reducing the soil alkalinity and manganese availability, if discharged without adequate treatment. Thus, this review article provides a comprehensive knowledge on the distillery wastewater pollutants, various techniques used for their analysis as well as its toxicological effects on environments, human and animal health. In addition, various physico-chemicals, biological as well as emerging treatment methods have been also discussed for the protection of environment, human and animal health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Performance of the constructed wetland systems in pollutants removal from hog wastewater

    Directory of Open Access Journals (Sweden)

    Wallison da Silva Freitas

    2010-08-01

    Full Text Available The main objective of this work was to evaluate the efficiency of a constructed wetland systems (CWS for pollutants removal, in mono crop and multi crop with three different species of plants, originated from hog wastewater treatment (HW. Therefore, 5 CWS of 24.0 m x 1.1 m x 0.7 m were constructed, sealed with a membrane of polyvinyl chloride (PVC and filled with 0.4 m of small gravel. In CWS1, CWS2 and CWS3 grown to cattail (Typha latifolia L., Alternanthera philoxeroides (Mart. Griseb. and Tifton 85 grass (Cynodon dactylon Pers., respectively. In the bed of CWS4 was planted at 1st third Alternanthera, cattail, in the 2nd third and tifton-85 grass and in the 3rd third of. The CWS5 was not planted and it was used as control. After passing through a filter filled with crushed bagasse of sugar cane, the HW was applied to the CWS in a flow of 0.8 m3 d-1, which corresponded to a hydraulic detention time of 4.8 days. According to the results it was shown that the five CWS(s had statistically nearly the same removal of pollutants, and the average removal efficiency of TSS, COD, BOD and Zn, were 91, 89, 86 and 94%, respectively. Also high removals were obtained concerning the ST, N-total, NH4+ and P-total, with average values of 62, 59, 52 and 50%, respectively. The plants in all planted CWS worked in a similar way maintaining the system efficiency and the non cultivated CWS presented analogous capacity of pollutants removal when compared to the cultivated CWS(s.

  11. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DOpigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Meguenni, H.; Mahlous, M.; Mansouri, B. [Centre de Recherche Nucléaire d' Alger, 2Bd Frantz Fanon BP-399 Alger (Algeria); Bouchfer, S. [ONA Office National de l’Assainissement, Alger (Algeria)

    2012-07-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  13. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    International Nuclear Information System (INIS)

    Meguenni, H.; Mahlous, M.; Mansouri, B.; Bouchfer, S.

    2012-01-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  14. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    Science.gov (United States)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  15. Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles.

    Science.gov (United States)

    Reemtsma, Thorsten; Miehe, Ulf; Duennbier, Uwe; Jekel, Martin

    2010-01-01

    1H-benzo-1,2,3-triazole (BTri) and its methylated analogues (tolyltriazole, TTri) are corrosion inhibitors used in many industrial applications, but also in households in dishwashing agents and in deicing fluids at airports and elsewhere. BTri and one of the TTri-isomers (4-TTri) are typical examples of polar and poorly degradable trace pollutants. Benzotriazole elimination in four wastewater treatment plants (WWTP) in Berlin ranged from 20 to 70% for 5-TTRi over 30 to 55% for BTri to insignificant for 4-TTri. WWTP effluent concentrations were in the range of 7-18 microg/L of BTri, 1-5 microg/L of 4-TTri and 0.8-1.2 microg/L of 5-TTri. BTri and 4-TTri proved to be omnipresent in surface waters of the rivers Rhine and Elbe with concentrations increasing from water for drinking water production from surface waters. Even after residence times of several months BTri and 4-TTri were determined in concentrations of a few hundred ng/L in bank filtration water. Isotherm data from batch experiments indicate that activated carbon filtration should be suitable to avoid intrusion of TTri into drinking water in partially closed water cycles. For BTri, however, sorption to activated carbon appears to be too weak and ozonation may be mandatory to remove it from raw waters. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Pollutant exposure at wastewater treatment works affects the detoxification organs of an urban adapter, the Banana Bat

    International Nuclear Information System (INIS)

    Naidoo, Samantha; Vosloo, Dalene; Schoeman, M. Corrie

    2016-01-01

    The Banana Bat, Neoromicia nana, exploits pollution-tolerant chironomids at wastewater treatment works (WWTWs). We investigated how pollutant exposure impacts the detoxification organs, namely the liver and kidney of N. nana. (i) We performed SEM-EDS to quantify metal content and mineral nutrients, and found significant differences in essential metal (Fe and Zn) content in the liver, and significant differences in Cu and one mineral nutrient (K) in the kidneys. (ii) We performed histological analysis and found more histopathological lesions in detoxification organs of WWTW bats. (iii) We calculated hepatosomatic/renalsomatic indices (HSI/RSI) to investigate whole organ effects, and found significant increases in organ size at WWTWs. (iv) We quantified metallothionein 1E (MT1E), using Western Blot immunodetection. Contrary to predictions, we found no significant upregulation of MT1E in bats at WWTWs. Ultimately, N. nana exploiting WWTWs may suffer chronic health problems from sub-lethal damage to organs responsible for detoxifying pollutants. - Highlights: • We measured pollutant exposure effects on detoxification organs in bats. • Iron, zinc, copper and potassium levels were altered in pollutant-exposed bats. • There was no significant upregulation of metallothionein in liver or kidney. • Pollutant-exposed bats had increased organ indices and histopathological lesions. • These organ effects suggest health risks and increased mortality in the long-term. - Wastewater treatment plants provide a short-term benefit of abundant pollution-tolerant prey, but cause long-term physiological damage to the liver and kidneys in urban bats.

  17. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-05-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it

  18. Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: Method development and application in the Danube River

    International Nuclear Information System (INIS)

    Inostroza, Pedro A.; Wicht, Anna-Jorina; Huber, Thomas; Nagy, Claudia; Brack, Werner; Krauss, Martin

    2016-01-01

    While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g −1 (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g −1 (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River. - Highlights: • A method based on pulverised liquid extraction/QuEChERS for organic micropollutants in invertebrates was developed. • The method is applicable in assessing target environmental pollutants in invertebrates by LC-MS/MS. • The method allows for a nontarget screening of extracts by LC-HRMS. • First body burden analysis of pesticides and wastewater-derived pollutants in invertebrates in the Danube River is reported. - Capsule: A multi

  19. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues

    NARCIS (Netherlands)

    Zhao, X.; Yang, Jixian; Ma, Fang

    2018-01-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water

  20. Determination of the efficiency of sawdust and coco fiber used as Biofilter for pollutant removal for the treatment of wastewater

    Directory of Open Access Journals (Sweden)

    Jimmy Vicente Reyes

    2016-09-01

    Full Text Available Water is a resource used by mankind for industrial and domestic needs, which once used, is discharged into the public sewer system or septic tanks. This project proposes an ecological alternative for the treatment of wastewater from domestic use named Biofilter, which is built of living material (worms and inert material (chip and gravel, which filters the wastewater; the biological filter has shown high efficiency in the removal of organic matter and pathogens. The field work was carried out with experimental biological filters, to ascertain the best composition of inert material, different variants were used. Two experimental Biofilters, one using sawdust and the other coco fiber were used in the treatment of domestic wastewater; treated samples from each reactor were subjected to laboratory analysis. The analysis and interpretation of results showed that the Biofilter using sawdust removed 53.53 % of pollutants and is outside the required norm for wastewater treatment and the Biofilter using coco fiber removed 82.37 % of contaminants and is within the Environmental Quality Norm and Effluent Discharge: Water Resource.

  1. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    Science.gov (United States)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  2. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  3. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  4. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuping [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Wei, Junjun; Xing, Xuan; Li, Hongna [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China)

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L{sup -1} (<100 mg L{sup -1}, the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  5. Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: Method development and application in the Danube River.

    Science.gov (United States)

    Inostroza, Pedro A; Wicht, Anna-Jorina; Huber, Thomas; Nagy, Claudia; Brack, Werner; Krauss, Martin

    2016-07-01

    While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g(-1) (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g(-1) (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    Science.gov (United States)

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright

  7. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  8. Photodynamic Action against Wastewater Microorganisms and Chemical Pollutants: An Effective Approach with Low Environmental Impact

    Directory of Open Access Journals (Sweden)

    Maria Bartolomeu

    2017-08-01

    Full Text Available Wastewater (WW from urban and industrial activities is often contaminated with microorganisms and chemical pollutants. To reduce the concentration of microorganisms in WW to levels comparable to those found in natural waters, the sewage effluent is usually subjected to disinfection with chlorine, ozone, or ultraviolet light, which may lead to the formation of toxic products and contribute to the selection of resistant genes. Moreover, the changing patterns of infectious diseases and the emerging of multidrug resistant microbial strains entail the development of new technologies for WW decontamination. Microbial photodynamic inactivation (PDI with photosensitizers, oxygen, and visible light has demonstrated to be effective in the inactivation of microorganisms via photogeneration of reactive oxygen species able to induce microbial damage at the external structures level. The promising results of PDI suggest that this principle can be applied to WW treatment to inactivate microorganisms but also to photodegrade chemical pollutants. The aim of this study was to assess the applicability of PDI for the microbial and chemical decontamination of secondarily treated WW. To evaluate the efficiency of bacterial inactivation in WW, experiments were done in both phosphate buffer saline (PBS and filtered WW with the bioluminescent Escherichia coli, using small and large volumes of WW. The potential of PDI to inactivate the native bacteria (E. coli and Enterococcus present in WW was tested and assays without the adding of bacteria to the WW were performed. It was also tested if the same PDI protocol was able to induce phototransformation of phenol. The cationic porphyrin 5,10,15,20-tetrakis(1-methylpyridinium-4-ylporphyrin tetra-iodide (Tetra-Py+-Me was shown to be effective against both bacterial groups representing both Gram-negative and Gram-positive bacteria used as microbiological parameters to instigate water quality and even showing the power to

  9. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    Science.gov (United States)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  10. Multifunctional gold coated rare-earth hydroxide fluoride nanotubes for simultaneous wastewater purification and quantitative pollutant determination

    International Nuclear Information System (INIS)

    Zhang, Da-Quan; Sun, Tian-Ying; Yu, Xue-Feng; Jia, Yue; Chen, Ming; Wang, Jia-Hong; Huang, Hao; Chu, Paul K.

    2014-01-01

    Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties. They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring

  11. Multifunctional gold coated rare-earth hydroxide fluoride nanotubes for simultaneous wastewater purification and quantitative pollutant determination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Quan; Sun, Tian-Ying [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yu, Xue-Feng, E-mail: yxf@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Jia, Yue; Chen, Ming; Wang, Jia-Hong [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Huang, Hao [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties. They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring.

  12. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.

    Science.gov (United States)

    Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G

    2010-12-01

    An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer

  13. Wastewater reuse

    OpenAIRE

    Milan R. Radosavljević; Vanja M. Šušteršič

    2013-01-01

    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  14. Wastewater treatment technologies to satisfy 1990's energy conservation/pollution prevention goals

    International Nuclear Information System (INIS)

    Keith, L.W.; Beers, A.R.

    1993-01-01

    Anheuser-Busch, like most other companies, relied through the mid-1970's on end-of-pipe, energy-intensive aerobic treatment systems for its wastewater. Little if any attention was placed on source reduction. There are several factors that help explain why industry had adopted this approach. Energy was relatively cheap, sludge disposal was not a major problem and many municipalities provided wastewater treatment capacity to industry as an inducement for industry to locate there. The saying for A-B was open-quotes We know how to make beer - municipalities know how to treat our wastewater - let's not mix the two.close quotes The 1973 oil embargo and the resulting mid-1970's energy crisis changed Anheuser-Busch's wastewater treatment philosophy. The days of cheap energy and wastewater treatment were gone. This was only exaggerated by the more stringent treatment requirements resulting from the passage of PL92-500 (Clean Water Act). Increasing sludge disposal problems with associated increased disposal costs also occurred. From the mid-1970's to the mid-1980's Anheuser-Busch performed significant developmental work on land application of wastewater. This technology, which requires only about 10% of the energy of aerobic activated sludge treatment systems and produces no sludge for disposal, was installed at six Anheuser-Busch locations. During this time period considerable improvement was made in the area of waste load reduction. However, the main driving force was economics; that is, it was done if cheaper than wastewater treatment. Anheuser-Busch still had a basic end-of-pipe treatment philosophy

  15. Contribution of domestic wastewater to the total pollutant loading influent to a municipal wastewater treatment plant; Contribuciond e las aguas residuales domesticas a la carga total que accede a una EDAr municipal

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Perez de Siles, L. A.; Rojas Moreno, F. J.; Gonzalez Jimenez, M. M.

    2004-07-01

    A study on the purely domestic wastewater from Cordoba city (Abril to july 2003) has found a pollutant loading very high on these domestic wastewaters, by showing mean values of suspended solid, BOD{sub 5} and COD equal to respectively 452 mg/l, 505 mg/1 and 793 mg/l. This pollutants power probably emanates from the products for domestic cleaning used in our homes and must be associated to chemicals as citrates, oxalates, surfactants, polialcohols, organics complexing, ammonium compounds..., which show high value of pollutant loading up to 200 mg/l of BOD{sub 5} per ml of product have been measured on a commercial domestic dishwasher, and 9.000 mg/l of DQO for a domestic smoothing. Furthermore, the increasing use of pre-cooked foods can add to domestic wastewater fats, oils, and flours which can also increase the BOD:5 and COD values of these effluents. On the other hand, the measured pollutant loading or domestic wastewater from monofamily homes has been lower than those from multifamily buildings. Finally, due to the fact that the Golondrina's WWTP (Cordoba, 1991) was designed for treat values of suspended solids, BOD, and COD lower than those actually detected, its treatment processes should be probably modified in a near future. (Author) 24 refs.

  16. Electrolysis of polluting wastes: I - Wastewater from a seasoning freeze-drying industry

    OpenAIRE

    Angelis, Dejanira F. de; Corso, Carlos R.; Bidoia, Ederio D.; Moraes, Peterson B.; Domingos, Roberto N.; Rocha-Filho, Romeu C.

    1998-01-01

    Wastewater from a seasoning freeze-drying industry was electrolysed to increase its biodegradability. Stainless-steel electrodes were used at 9.09 A/m², for up to 80 min. Conductivity, pH, biochemical (BOD) and chemical (COD) oxygen demands, Daphnia similis acute toxicity bioassays, and bacteria counting through the plate count agar method were determined after different times of electrolysis. The results (e.g. higher BOD and lower COD) showed that the biodegradability of the wastewater was s...

  17. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    International Nuclear Information System (INIS)

    Hampshire, Lyle H.; Potts, Michael E.

    1992-01-01

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear '4', a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge. (author)

  18. Modelling micro-pollutant fate in wastewater collection and treatment systems: status and challenges

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Benedetti, L.; Daigger, G. T.

    2013-01-01

    of such models. In brief, we conclude that, in order to predict the contaminant removal in centralised treatment works, considering the dramatic improvement in monitoring and detecting MPs in wastewater, more mechanistic approaches should be used to complement conventional, heuristic and other fate models...

  19. Innovative reactor technology for selective oxidation of toxic organic pollutants in wastewater by ozone

    NARCIS (Netherlands)

    Boncz, M.A.; Bruning, H.; Rulkens, W.H.

    2003-01-01

    Ozonation can be a suitable technique for the pre-treatment of wastewater containing low concentrations of toxic or non-biodegradable compounds that cannot be treated with satisfactory results when only the traditional, less expensive biological techniques are applied. In this case, the oxidation

  20. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  1. Temporal changes in the benthos along a pollution gradient: Discriminating the effects of natural phenomena from sewage-industrial wastewater effects

    International Nuclear Information System (INIS)

    Ferraro, S.P.; Swartz, R.C.; Cole, F.A.; Shults, D.W.

    1991-01-01

    As pollution from the Los Angeles County Sanitation Districts (LACSD) outfalls decreased between 1980 and 1983, the macrobenthic community partially recovered and surficial (0-2 cm deep) sediment contamination and toxicity decreased at 60 m water depth along a pollution gradient from the outfalls. Pollution from the LACSD outfalls continued to decrease but macrobenthic conditions and surficial sediment quality deteriorated 1 km, was unchanged 3 km, and improved 5-15 km from the LACSD outfalls between 1983 and 1986. The net effect of natural phenomena is indicated when ecosystem changes occur in the opposite direction from that expected under prevailing pollution conditions. The authors data suggest that the net effect of natural phenomena (e.g. winter storms, El Nino) on the benthos was greater than LACSD wastewater effects 1 km, about equal to LACSD wastewater effects 3 km, and less than the LACSD wastewater effects 5-15 km from the outfalls at the LACSD 1983-86 mass emission rate. Since natural phenomena may have an effect on the benthos = or > 3 years of LACSD wastewater effects, short-term benthic changes must be interpreted cautiously at the study site

  2. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    Science.gov (United States)

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  3. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    Science.gov (United States)

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants.

    NARCIS (Netherlands)

    Sierra-Alvarez, R.; Field, J.A.; Kortekaas, S.; Lettinga, G.

    1994-01-01

    Numerous types of organic environmental pollutants are encountered in forest industry effluents which potentially could inhibit consortia of anaerobic bacteria. The purpose of this study was to collect anaerobic bioassay data from the literature to better estimate the impact of these pollutants on

  5. Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans

    Directory of Open Access Journals (Sweden)

    B. Lekshmi

    2015-12-01

    Full Text Available The aim of this study was to identify the potential for cultivation of Chlorella pyrenoidosa and Scenedesmus abundans in raw and autoclaved domestic wastewater (sewage for nutrient removal, in a batch process. The growth was observed by measuring chlorophyll content. The inoculum size of 10% and 20% was used and the growth of microalgae and nutrient removal was monitored on daily basis. The maximum removal of ammonium nitrogen, phosphate and nitrates by Chlorella pyrenoidosa in raw samples was observed as 99%, 96% and 80%, respectively, whereas the maximum removal of ammonium nitrogen, phosphate and nitrates by Scenedesmus abundans in raw samples was observed as 98%, 95% and 83%, respectively. The maximum chlorophyll content was observed as 11.33 mg/l and 7.23 mg/l for C. pyrenoidosa and S. abundans, respectively, in raw samples. The experimental results reveal that both the microalgae are capable to grow and remove the nutrients from domestic wastewater.

  6. Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution

    Science.gov (United States)

    Bhatti, Zulfiqar Ahmad; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Khan, Muhammad Suleman; Wu, Donglei

    Car wash wastewater (CWW) contains petroleum, hydrofluoric acid, ammonium bifluoride products, paint residues, rubber, phosphates, oil, grease and volatile organic compounds (VOCs). The present study dealt with various investigations conducted for the treatment of CWW. A treatment system of 5 L capacity was designed in the laboratory. Due to high load of oil and grease, CWW was aerated and scum was removed. Alum was used as coagulant in primary treatment which resulted 93% and 97% reduction in COD and turbidity. During secondary treatment CWW was further treated with waste hydrogen peroxide which resulted in further 71% and 83% reduction in COD and turbidity, respectively. Other desirable changes were also observed in pH, total dissolved solids (TDS), conductivity and dissolved oxygen contents. It was concluded that designed system could be effectively used to treat carwash wastewater that could be reused in the same station.

  7. Use of AOP's to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Dpto. de Ingenieria Textil y Papelera, EPSA-UPV, Univ. Politecnica de Valencia, Alcoy (Spain); Garcia, C.; Lopez, F. [Dpto. de Ingenieria Quimica y Nuclear, Univ. Politecnica de Valencia, Alcoy (Spain)

    2003-07-01

    Ozone and UV radiation are aggressive advanced oxidation processes that have been tested to degrade paper mill effluents. Eugenol and guaiacol, models of the lignin fraction of these wastewaters are easily oxidisable by ozone even at low dosages (0.8 g/h). On the other hand, glucose and fatty acids are more difficult to degrade, although the combination O{sub 3}/UV improves the process and important decrease in COD and BOD values were observed. Solar photocatalysis is a milder alternative to O{sub 3}/UV; photo-Fenton reaction and titanium dioxide have been tested. Both methods have been able to degrade the phenolic components of paper wastewaters, but they were not able to oxidise glucose or volatile fatty acids. (orig.)

  8. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    OpenAIRE

    Amin, M. T.; Alazba, A. A.; Manzoor, U.

    2014-01-01

    The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water co...

  9. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  10. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  11. Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009 Using the LMDI I Method

    Directory of Open Access Journals (Sweden)

    Beidou Xi

    2012-06-01

    Full Text Available China’s industry accounts for 46.8% of the national Gross Domestic Product (GDP and plays an important strategic role in its economic growth. On the other hand, industrial wastewater is also the major source of water pollution. In order to examine the relationship between the underlying driving forces and various environmental indicators, values of two critical industrial wastewater pollutant discharge parameters (Chemical Oxygen Demand (COD and ammonia nitrogen (NH4-N, between 2001 and 2009, were decomposed into three factors: i.e., production effects (caused by change in the scale of economic activity, structure effects (caused by change in economic structure and intensity effects (caused by change in technological level of each sector, using additive version of the Logarithmic Mean Divisia Index (LMDI I decomposition method. Results showed that: (1 the average annual effect of COD discharges in China was −2.99%, whereas the production effect, the structure effect, and the intensity effect were 14.64%, −1.39%, and −16.24%, respectively. Similarly, the average effect of NH4-N discharges was −4.03%, while the production effect, the structure effect, and the intensity effect were 16.18%, −2.88%, and −17.33%, respectively; (2 the production effect was the major factor responsible for the increase in COD and NH4-N discharges, accounting for 45% and 44% of the total contribution, respectively; (3 the intensity effect, which accounted for 50% and 48% of the total contribution, respectively, exerted a dominant decremental effect on COD and NH4-N discharges; intensity effect was further decomposed into cleaner production effect and pollution abatement effect with the cleaner production effect accounting for 60% and 55% of the reduction of COD and NH4-N, respectively; (4 the major contributors to incremental COD and NH4-N discharges were divided among industrial sub

  12. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  13. Evolution of industrial wastewater pollution in the Barcelona Metropolitan Area; Evolucion de la contaminacion industrial en las aguas residuales del area metropolitana de Barcelona

    Energy Technology Data Exchange (ETDEWEB)

    Mantecon Pascual, R.

    2005-07-01

    The Environmental Agency of the Barcelona Metropolitan Area has full powers regarding sewerage. Industrial wastewater emptied into the public sewer system has been monitored and analysed since 1988. the data showing the evolution of the pollution in industrial wastewater are presented, broken down by activities and parameters. These data are based on the analysis of 14,528 samples taken during 19,555 inspections of 5,655 factories. It was found that there has been a gradual improvement in the quality of the effluents. Failure to meet the requirements concerning one or more of the physico-chemical parameters fell from 71% to 39% of the samples analysed. (Author)

  14. THE USE OF HALLOYSITE TO REDUCE POLLUTIONS CONCENTRATION IN MUNICIPAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Alicja Machnicka

    2016-12-01

    Full Text Available One of the methods of municipal wastewater treatment allows the use of biofilters. The study used a bed filled halloysite. In operation of the bed, depending on the hydraulic load, the concentration of phosphate, ammonium and organic matter was reduced. Highest reduction of the concentration PO43- (89% and N – NH4+ (81% in the waste water of the hydraulic load – 0,04 m3/m2h was obtained. The concentration of the organic substrate was reduced by approximately 86%.

  15. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  16. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues.

    Science.gov (United States)

    Zhao, Xinyue; Yang, Jixian; Ma, Fang

    2018-02-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water pollution, has not been given much consideration in current LCA systems. This paper investigates the necessity of setting a regionalized impact category to reflect the local impact of organic pollution. A case study is conducted concerning an upgraded wastewater treatment plant (WWTP) in China, which is assumed to meet different sewage control strategies. Chemical oxygen demand (COD) is selected to represent the organic pollution and treated as an individual impact category. CML 2002 is used to quantify the environmental impacts of different strategies. Results show that abnormal LCA results are generated with the traditional eutrophication impact category, and after the introduction of COD, more reasonable LCA results are obtained, making the entire comparison of different control strategies more meaningful and compelling. Moreover, BEES, Ecovalue 08, and Chinese factors are adopted here as different weighting methods. Different weighting results exhibited various trade-offs for the increasingly strict control strategies; the results of BEES and Ecovalue08 underlined the potential environmental burden, but the results of Chinese factors only emphasized the local environmental improvement. It is concluded that setting regionalized impact category for organic pollution can make LCA results more reasonable in wastewater treatment, especially in evaluating Chinese cases because of the serious water pollution caused by large quantities of COD emission.

  17. Changes of Benthic Macroinvertebrates in Thi Vai River and Cai Mep Estuaries Under Polluted Conditions with Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Huong Nguyen Thi Thanh

    2017-06-01

    Full Text Available The pollution on the Thi Vai River has been spreading out rapidly over the two lasted decades caused by the wastewater from the industrial parks in the left bank of Thi Vai River and Cai Mep Estuaries. The evaluation of the benthic macroinvertebrate changes was very necessary to identify the consequences of the industrial wastewater on water quality and aquatic ecosystem of Thi Vai River and Cai Mep Estuaries. In this study, the variables of benthic macroinvertebrates and water quality were investigated in Thi Vai River and Cai Mep Estuaries, Southern Vietnam. The monitoring data of benthic macroinvertebrates and water quality parameters covered the period from 1989 to 2015 at 6 sampling sites in Thi Vai River and Cai Mep Estuaries. The basic water quality parameters were also tested including pH, dissolved oxygen (DO, total nitrogen, and total phosphorus. The biodiversity indices of benthic macroinvertebrates were applied for water quality assessment. The results showed that pH ranged from 6.4 – 7.6 during the monitoring. The DO concentrations were in between 0.20 - 6.70 mg/L. The concentrations of total nitrogen and total phosphorous ranged from 0.03 - 5.70 mg/L 0.024 - 1.380 mg/L respectively. Macroinvertebrate community in the study area consisted of 36 species of polychaeta, gastropoda, bivalvia, and crustacea, of which, species of polychaeta were dominant in species number. The benthic macroinvertebartes density ranged from 0 - 2.746 individuals/m−1 with the main dominant species of Neanthes caudata, Prionospio malmgreni, Paraprionospio pinnata, Trichochaeta carica, Maldane sarsi, Capitella capitata, Terebellides stroemi, Euditylia polymorpha, Grandidierella lignorum, Apseudes vietnamensis. The biodiversity index values during the monitoring characterized for aquatic environmental conditions of mesotrophic to polytrophic. Besides, species richness positively correlated with DO, total nitrogen, and total phosphorus. The results

  18. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenzhen [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Zuo, Yanan; Guo, Zhi; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Song, Zhongxian [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Niu, Qiuya [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-05-30

    Graphical abstract: Schematic diagram of polyvinyl alcohol-immobilized Phanerochaete chrysosporium beads (PPBs) for Cd(II) removal and 2,4-DCP degradation. - Highlights: • PVA-immobilized P. chrysosporium beads (PPBs) were fit for wastewater treatment. • Removal rates of Cd(II) and 2,4-DCP at optimum conditions were up to 78% and 95.4%. • 2,4-DCP removal rates were beyond 90% with varying initial 2,4-DCP concentrations. • PVA was vital to Cd(II) removal besides the function groups in P. chrysosporium. • Maximum recovery of the Cd(II)-laden PPBs after reuse three times was 98.9%. - Abstract: A novel biosorbent, polyvinyl alcohol (PVA)-immobilized Phanerochaete chrysosporium, was applied to the bioremediation of composite-polluted wastewater, containing both cadmium and 2,4-dichlorophenol (2,4-DCP). The optimum removal efficiency achieved was 78% for Cd(II) and 95.4% for 2,4-DCP at initial concentrations of 20 mg/L Cd(II) and 40 mg/L 2,4-DCP. PPBs had significantly enhanced the resistance of P. chrysosporium to 2,4-DCP, leading to the degradation rates of 2,4-DCP beyond 90% with varying initial 2,4-DCP concentrations. This research demonstrated that 2,4-DCP and secreted proteins might be used as carbon and nitrogen sources by PVA-immobilized P. chrysosporium beads (PPBs) for Cd(II) removal. Fourier transform infrared spectroscopy analysis showed that hydroxyl and carboxyl groups on the surface of PPBs were dominant in Cd(II) binding. The mechanism underlying the degradation of 2,4-DCP into fumaric acid and 1-hexanol was investigated. The adsorption–desorption studies indicated that PPBs kept up to 98.9% of desorption efficiency over three cycles.

  19. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater

    International Nuclear Information System (INIS)

    Huang, Zhenzhen; Chen, Guiqiu; Zeng, Guangming; Chen, Anwei; Zuo, Yanan; Guo, Zhi; Tan, Qiong; Song, Zhongxian; Niu, Qiuya

    2015-01-01

    Graphical abstract: Schematic diagram of polyvinyl alcohol-immobilized Phanerochaete chrysosporium beads (PPBs) for Cd(II) removal and 2,4-DCP degradation. - Highlights: • PVA-immobilized P. chrysosporium beads (PPBs) were fit for wastewater treatment. • Removal rates of Cd(II) and 2,4-DCP at optimum conditions were up to 78% and 95.4%. • 2,4-DCP removal rates were beyond 90% with varying initial 2,4-DCP concentrations. • PVA was vital to Cd(II) removal besides the function groups in P. chrysosporium. • Maximum recovery of the Cd(II)-laden PPBs after reuse three times was 98.9%. - Abstract: A novel biosorbent, polyvinyl alcohol (PVA)-immobilized Phanerochaete chrysosporium, was applied to the bioremediation of composite-polluted wastewater, containing both cadmium and 2,4-dichlorophenol (2,4-DCP). The optimum removal efficiency achieved was 78% for Cd(II) and 95.4% for 2,4-DCP at initial concentrations of 20 mg/L Cd(II) and 40 mg/L 2,4-DCP. PPBs had significantly enhanced the resistance of P. chrysosporium to 2,4-DCP, leading to the degradation rates of 2,4-DCP beyond 90% with varying initial 2,4-DCP concentrations. This research demonstrated that 2,4-DCP and secreted proteins might be used as carbon and nitrogen sources by PVA-immobilized P. chrysosporium beads (PPBs) for Cd(II) removal. Fourier transform infrared spectroscopy analysis showed that hydroxyl and carboxyl groups on the surface of PPBs were dominant in Cd(II) binding. The mechanism underlying the degradation of 2,4-DCP into fumaric acid and 1-hexanol was investigated. The adsorption–desorption studies indicated that PPBs kept up to 98.9% of desorption efficiency over three cycles

  20. Study of the pollution impact from wastewater reuse for irrigation on the groundwater of the quaternary aquifer, west cairo

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.; Ahmed, M.A.; Hassan, H.B.; Hamza, M.S.

    2005-01-01

    The hazards resulting from the extensive application of using sewage and drainage effluent in its form or mixing with fresh water from two sewerage stations(Zenin and Abu-Rawash) for agriculture irrigation were studied by means of chemical, isotopic and biological techniques. The hydrochemical results of major chemical constituents of surface water samples fall in the acceptable range for using this water for irrigation, while minor groups (NO 3 , PO 4 ) and heavy metals measurements showed higher values of Cd, Fe, Ni, Mn, and Pb in the mixed water more than the maximum permissible limits. The collected groundwater samples from the area of study showed high values of the total dissolved solids, minor groups and heavy metals in most wells around Zenin and abu Rawash sewerage stations. These values increase in the direction of the groundwater flow from south-east to north-west. The isotopic enrichment of delta 18 O, delta D enhanced with tritium values for surface and groundwater samples confirms the direct replenishment from surface and groundwater samples confirms the direct replenishment from surface water bodies by downward infiltration to the underlying aquifer, which permits the migration of wastewater contaminants through the soil layers to reach the groundwater level. The influence of wastewater infiltration was also detected from the high counting numbers of microbes obtained in all samples, which selected from some drains and wells close to the sewerage stations. From the previous results the real hazards for using this water not only depend on the quantitative estimates of total major ions, but the harmful pathogenic attack of micro and macro organisms as well as heavy metals will pose the greatest risk to the human health. On the long run the infiltration of the polluted water will threat the groundwater to different depths of the shallow layer of the quaternary aquifer that is the only source of potable water supply in some locations

  1. Impact of Optimized Flow Pattern on Pollutant Removal and Biogas Production Rate Using Wastewater Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Ruyi Huang

    2015-06-01

    Full Text Available This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD software for the simulation of the flow field form in the hydraulic mixing.

  2. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    International Nuclear Information System (INIS)

    Rizzo, L.; Fiorentino, A.; Anselmo, A.

    2012-01-01

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 μg/mL) and SMZ (MIC > 1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t 1/2 = 24 min) 1/2 = 99 min) 1/2 = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: ► Solar radiation did not affect E. coli strain resistance to AMX and SMZ. ► Solar radiation affected the resistance of one E. coli strain to CPX. ► MIC for CPX decreased by 33% after 180 min of solar irradiation.

  3. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, L., E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Fiorentino, A. [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Anselmo, A. [Pluriacque, via Alento, 84060 Prignano Cilento (Italy)

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 {mu}g/mL) and SMZ (MIC > 1024 {mu}g/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t{sub 1/2} = 24 min) < AMX (t{sub 1/2} = 99 min) < SMZ (t{sub 1/2} = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: Black-Right-Pointing-Pointer Solar radiation did not affect E. coli strain resistance to AMX and SMZ. Black-Right-Pointing-Pointer Solar radiation affected the resistance of one E. coli strain

  4. Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation.

    Science.gov (United States)

    Brahmi, Khaled; Bouguerra, Wided; Harbi, Soumaya; Elaloui, Elimame; Loungou, Mouna; Hamrouni, Béchir

    2018-02-15

    This laboratory study investigated the parameters efficiency of the new technology: ballasted electro-flocculation (BEF) using aluminum (Al) electrodes to remove cadmium and zinc from industrial mining wastewater (MWW). The principle of the BEF process is based on the use of micro-sand and polymer together to increase the weight of the flocs and the rate at which they settle is radically changing the electrocoagulation-electroflocculation settling methodology. Based on the examination of the operation parameters one by one, the best removal percentage was obtained at a current intensity of 2A, a the flow rate of 20L/h, a micro-sand dose of 6g/L, a polyéthylèneimine (PEI) polymer dose of 100mg, the contact times of 30min, a stirring speed of 50 RPM, a monopolar configuration of the electrodes, and an electrodes number of 10. The results showed that the flow rate and the current density have a preponderant effect on the variability of the quality of the settled water. In comparison, filterability was found to be more sensitive to number of electrodes, micro sand dosages and current density. It was dependent on the ratio of microsand to PEI polymer dosage, and improved when this ratio increased. Response surface methodology was applied to evaluate the main effects and interactions among stirring speed, polymer dose, current intensity, and electrodes number. The removal of Cd and Zn from industrial MWW was done for very low cost of 0.1TND/m 3 equivalent to 0.04€/m 3 . The investigation of BEF process proposes a highly cost-effective wastewater treatment method if compared to Actiflo TM and electrocoagulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    Science.gov (United States)

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  6. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  7. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    CERN Document Server

    Takriti, S

    2002-01-01

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradi...

  8. CHEMICAL INTERACTIONS TO CLEANUP HIGHLY POLLUTED AUTOMOBILE SERVICE STATION WASTEWATER BY BIOADSORPTION-COAGULATION-FLOCCULATION

    Directory of Open Access Journals (Sweden)

    Carlos Banchon

    2017-01-01

    Full Text Available The present study addresses an ecofriendly solution to treat automobile service stations effluents with high concentrations of oily substances, surfactants, organic matter and heavy metals. Bioadsorption using sawdust from pine trees, sugar cane bagasse and coconut coir without any chemical modification removed colloidal contamination up to 70%. Polyaluminium chloride, ferric chloride and polyacrylamide were applied to remove dissolved and colloidal pollutants under saline conditions without change of initial pH. Both bioadsorption and coagulation-flocculation removed up to 97.8% of BOD, COD, surfactants and heavy metals at a saline concentration of 1.5% NaCl. The increase of ionic strength promoted a high sludge index and a representative cost saving in chemicals consumption of almost 70%. High levels of pollution removal with the minimal use of chemicals is herein presented.

  9. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  10. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    International Nuclear Information System (INIS)

    Takriti, S.

    2002-12-01

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradiated solution composition was studied. The results showed that the benzene is very resistance against the radiation doses comparing to other chlorobenzene. However, the existence of oxidizing substances in the irradiation phase leads to increase the degradation rate of pollutants. The dechlorination of CB and 1,2 DCB that is a result of the hydrated electron reaction with studied compounds was observed. Chromatography (HPLC) and spectrophotometer (UV-VIS) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many species as a final radiation product. On the other, the irradiation phase containing scavengers such as methanol and ethanol requires large doses to decompose the pollutants, while the oxidizing phase accelerates the degradation. (author)

  11. A new approach for the extraction of pollutants from wastewaters handled by the graphic industry.

    Science.gov (United States)

    Monteiro, C; Ventura, C; Martins, F

    2013-06-15

    It is widely recognized that the Graphic Industry handles toxic products and produces, in its various operations, toxic wastes. These wastes can cause serious environmental damages and can lead to severe health problems. In this work we report an efficient, simple and cheap to run method for the removal of some of the most common pollutants involved in the various stages of the Graphic Industry production, using a Solid-Phase Extraction (SPE) methodology. We have determined equilibrium constants, K(eq), and adsorption (k(up)) and desorption (k(off)) rate constants for the extraction of benzene, xylene, toluene and ethylbenzene (BXTE) from water, using C18 disks. The removal of these compounds was monitored by UV-vis spectroscopy, at room temperature. Average extraction efficiencies were of 60% in a mixture of BXTEs and close to 80% when pollutants were assessed separately. Since the retention mechanism in the C18 disk is essentially governed by hydrophobic interactions between the compounds and the alkyl chains of the disk, we have also shown that these pollutants' lipophilicity plays an important role in the rationalization of their behavior during the extraction process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Behavior of the new composites obtained from fly ash and titanium dioxide in removing of the pollutants from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria; Andronic, Luminita; Enesca, Alexandru

    2016-12-01

    Graphical abstract: - Highlights: • A novel substrates FLY1, 2, 3 and FLY2NPt is obtained by hydrothermal synthesis. • The composite type structure has specific surface ten times higher than fly ash. • Simultaneous removal of three pollutants reaches efficiencies above 80%. • Kinetic investigations show fast adsorption of the dye on the new composite. - Abstract: The goal of this paper was to develop a low-temperature TiO{sub 2}-fly ash (TiO{sub 2}-FA) composite based on interaction in alkaline solution using hydrothermal methods, to obtain crystalline nanocomposite at low temperature. These composites are interesting to be applied in visible photocatalysis/adsorption simultaneous advanced wastewater processes. Combining fly ash with titanium dioxide has the following advantages: (1) the titanium oxide crystallites grow on the support (active fly ash); (2) pollutant molecules migrate to the surface of TiO{sub 2} can be degraded by photocatalysis; and (3) activated fly ash substrates are regenerated in situ. The composites were characterized by the scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphological characterization of the surface, X-ray diffraction (XRD) for phase and crystallinity analysis, UV–vis spectroscopy to calculate the energy band gap, surface analysis by determining the contact angle, porosity analysis (BET). The photocatalytic property of the composites was evaluated by dye (methylene blue), surfactant (dodecylbenzenesulfonate–SDBS) degradation under UV and Visible irradiation. The adsorption tests were made on heavy metal (Cu{sup 2+}) cation. Properties of composites were correlated with the adsorption/photocatalytic activity of the samples.

  13. Irrigation model of bleached Kraft mill wastewater through volcanic soil as a pollutants attenuation process.

    Science.gov (United States)

    Navia, R; Inostroza, X; Diez, M C; Lorber, K E

    2006-05-01

    An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.

  14. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    Science.gov (United States)

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  16. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available Water-soluble phenol and phenolic compounds were generally removed via advanced oxidation processes. A novel semiconductor catalyst, CT, was the first-time employed in the present study to degrade phenol and catechol. The phenolic compounds (initial concentration of 88 mg L−1 were completely mineralized by the CT catalytic nanoparticles (1% within 15 days, under acidic condition and with the presence of mild UV radiation (15 w, the emitted wavelength is 254 nm and the light intensity <26 μw/cm2. Under the same reaction condition, 1% TiO2 (mixture of rutile and anatase, nanopowder, <100 nm and H2O2 had lower removal efficiency (phenol: <42%; catechol: <60%, whereas the control (without addition of catalysts/H2O2 only showed <12% removal. The processes of phenol/catechol removal by CT followed pseudo-zero-order kinetics. The aromatic structures absorbed the UV energy and passed to an excited state, which the CT worked on. The pollutants were adsorbed on the CT’s surface and oxidized via charge-transfer and hydroxyl radical generation by CT. Given low initial concentrations, a circumstance encountered in wastewater polishing, the current set-up should be an efficient and less energy- and chemical-consumptive treatment method.

  17. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  18. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  19. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangeemerging pollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100%) and for assuring high quality of treated water. Copyright © 2016 Elsevier B

  20. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern

    Science.gov (United States)

    Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.

    2015-01-01

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.

  1. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern.

    Science.gov (United States)

    Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E

    2015-08-15

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.

  2. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    Science.gov (United States)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  3. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  4. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Directory of Open Access Journals (Sweden)

    Elisabetta eMartini

    2013-12-01

    Full Text Available Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  5. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries

    Directory of Open Access Journals (Sweden)

    Stefanos Giannakis

    2017-06-01

    Full Text Available In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia. For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries’ context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  6. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries.

    Science.gov (United States)

    Giannakis, Stefanos; Rtimi, Sami; Pulgarin, Cesar

    2017-06-26

    In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  7. The color removal and fate of organic pollutants in a pilot-scale MBR-NF combined process treating textile wastewater with high water recovery.

    Science.gov (United States)

    Li, Kun; Jiang, Chao; Wang, Jianxing; Wei, Yuansong

    2016-01-01

    A combination of membrane bioreactor (MBR) and nanofiltration (NF) was tested at pilot-scale treating textile wastewater from the wastewater treatment station of a textile mill in Wuqing District of Tianjin (China). The MBR-NF process showed a much better treatment efficiency on the removal of the chemical oxygen demand, total organic carbon, color and turbidity in comparison with the conventional processes. The water recovery rate was enhanced to over 90% through the recycling of NF concentrate to the MBR, while the MBR-NF showed a stable permeate water quality that met with standards and could be directly discharged or further reused. The recycled NF concentrate caused an accumulation of refractory compounds in the MBR, which significantly influenced the treatment efficiency of the MBR. However, the sludge characteristics showed that the activated sludge activity was not obviously inhibited. The results of fluorescence spectra and molecular weight distribution indicated that those recalcitrant pollutants were mostly protein-like substances and a small amount of humic acid-like substances (650-6,000 Da), which contributed to membrane fouling of NF. Although the penetrated protein-like substances caused the residual color in NF permeate, the MBR-NF process was suitable for the advanced treatment and reclamation of textile wastewater under high water yield.

  8. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  9. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Luis Carlos Sandoval-Herazo

    2018-05-01

    Full Text Available The high costs involved in treating wastewater are problems that developing countries confront, mainly in rural areas. Therefore, Constructed Wetlands (CWs, which are composed of substrate, vegetation, and microorganisms, are an economically and ecologically viable option for wastewater treatment in these places. There is a wide variety of possibilities for substrates and ornamental plants that have not yet been evaluated to be implemented in future CW designs. The goal of this study was to evaluate the process of adaptation and removal of wastewater pollutants in CW microcosms using different terrestrial ornamental plants (Lavandula sp., Spathiphyllum wallisii, and Zantedeschia aethiopica. Those plants were sown in two types of substrate: red volcanic gravel (RVG and polyethylene terephthalate (PET. CWs with vegetation reduced 5-day biochemical oxygen demand (BOD5 by 68% with RVG substrate and 63% with PET substrate, nitrates 50% in RVG substrate and 35% in PET substrate, phosphates 38% in RVG substrate and 35% in PET substrate, and fecal coliforms 64% in RVG and 59% in PET substrate. In control microcosms without vegetation, reductions were significantly lower than those in the presence of plants, with reduction of BOD5 by 61% in RVG substrate and 55% in PET substrate, nitrates 26% in RVG substrate and 22% in PET substrate, phosphates 27% in RVG substrate and 25% in PET substrate. Concerning fecal coliforms 62% were removed in RVG substrate and 59% in PET substrate. Regarding the production of flowers, Lavandula sp. did not manage to adapt and died 45 days after sowing and did not produce flowers. Spathiphyllum wallisii produced 12 flowers in RVG and nine flowers in PET, while Zantedeschia aethiopica produced 10 in RVG and 7 in PET. These results showed that the use of substrates made of RVG and PET is a viable alternative to be implemented in CWs. In addition, the reuse of PET is an option that decreases pollution by garbage. The plants

  10. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Bester, Kai

    2015-01-01

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m 3 m 2 h −1 the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds

  11. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  12. Removal of organic pollutants in tannery wastewater from wet-blue fur processing by integrated Anoxic/Oxic (A/O) and Fenton: Process optimization

    DEFF Research Database (Denmark)

    Wang, Yong; Li, Weiguang; Angelidaki, Irini

    2014-01-01

    Treatment of tannery wastewater has been a challenge in remediation of aquatic environment in developing countries. Removal of organic pollutants in tannery wastewater from wet-blue fur processing was studied using integrated processes of Anoxic/Oxic and Fenton. Analysis of COD composition based...... 80%. In the subsequent Fenton oxidation, effects of initial pH and H2O2 dose on COD removal were investigated, and response surface methodology was adopted to obtain the optimal conditions as initial pH of 4.0, H2O2 dose of 14.0mM, H2O2:Fe2+ molar ratio of 10.6, and reaction time of 3h to achieve...... the highest COD removal of 55.87%. GC-MS analysis was carried out to observe the change of organic composition during Fenton oxidation, and most of the residual organic pollutants resistant to Fenton treatment belonged to organosilanes and saturated alkanes. This study will provide useful information...

  13. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  14. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  15. Affects of wastewater discharge from mining on soil heavy metal pollution and enzyme activities in northern Hunan province, Central South China

    Science.gov (United States)

    Jiang, Ying; Hu, Xue-Feng; Shu, Ying; Yan, Xiao-Juan; Luo, Fan

    2013-04-01

    Hunan province, Central South China, is rich in mineral resources and also a well-known nonferrous metal base in China. Mining and ore processing there, however, are mostly conducted in indigenous methods, and thus causing heavy metal pollution of abundant farmland. Situated in northern Hunan province, Y county has antimony, manganese, vanadium, and pyrite mines, but still belongs to a region of rice cultivation, of which, paddy fields make up 84.5% of the total farmland. Our investigations found that irrigation water is threatened by the release of mining wastewater in the county. For example, a stream used for irrigation turns dark-red after long-term receiving wastewater discharged from a pyrite company at HS Town of the county. Concentrations of Cu, Zn, Cd, Fe and Mn in the stream water reach 0.03 mg kg-1, 2.14 mg kg-1, 0.02 mg kg-1, 96.0 mg kg-1 and 11.5 mg kg-1, respectively; these in the paddy soils nearby are 67.3 mg kg-1, 297 mg kg-1, 4.0 mg kg-1, 33.1 mg g-1 and 463 mg kg-1 on average, respectively, with a maximum of Cd reaching 16.8 mg kg-1. Microbial biomass and activities are significantly reduced by metal toxicity in the soils. The counts of fungal, actinomycin and bacterial colonies in the polluted soils are 8.8×103 /g (Fresh soil), 4.9×105 /g (Fresh soil) and 6.4×105 /g (Fresh soil), respectively, which are only 4.68%, 10.3% and 20.9% of these in non-polluted soils in Y county, respectively. Likewise, the microbial biomass (MB) - C and MB - N of the polluted soils are only 36.8% and 50.3% of these in the non-polluted, respectively. The activities of dehydrogenase, urease, catalase, acid and neutral phosphatase and sucrase in the polluted soils are only 41.2%, 49.8%, 56.8%, 69.9%, 80.7% and 81.0% of these in the non-polluted, respectively. There are significant negative correlations between Cu, Zn and Cd contents and the activities of dehydrogenase and catalase, suggesting that the two enzymes are the most sensitive to heavy metal toxicity in the

  16. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants.

    Science.gov (United States)

    Cano-Rodríguez, Claudia Teodora; Roa-Morales, Gabriela; Amaya-Chávez, Araceli; Valdés-Arias, Ricardo Antonio; Barrera-Díaz, Carlos Eduardo; Balderas-Hernández, Patricia

    2014-01-01

    The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

  17. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Points, Region 9, 2007, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  18. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Points, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  19. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  20. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  1. Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM)

    Science.gov (United States)

    Asaithambi, Perumal; Beyene, Dejene; Aziz, Abdul Raman Abdul; Alemayehu, Esayas

    2018-05-01

    Treatment of landfill leachate wastewater by electrocoagulation process using an aluminium electrode was investigated in a batch electrochemical cell reactor. Response surface methodology based on central composite design was used to optimize the operating parameters for the removal of % color and % total organic carbon (TOC) together with power consumption from landfill leachate. Effects of three important independent parameters such as current density ( X 1), inter-electrode distance ( X 2) and solution pH ( X 3) of the landfill leachate sample on the % color and % TOC removal with power consumption were investigated. A quadratic model was used to predict the % color and % TOC removal with power consumption in different experimental conditions. The significance of each independent variable was calculated by analysis of variance. In order to achieve the maximum % color and % TOC removal with minimum of power consumption, the optimum conditions were about current density ( X 1)—5.25 A/dm2, inter-electrode distance ( X 2)—1 cm and initial solution of effluent pH ( X 3)—7.83, with the yield of color removal of 74.57%, and TOC removal of 51.75% with the power consumption of 14.80 kWh/m3. Electrocoagulation process could be applied to remove pollutants from industrial effluents and wastewater.

  2. Occurrence of multi-class surfactants in urban wastewater: contribution of a healthcare facility to the pollution transported into the sewerage system.

    Science.gov (United States)

    Bergé, Alexandre; Wiest, Laure; Baudot, Robert; Giroud, Barbara; Vulliet, Emmanuelle

    2018-04-01

    Healthcare facility discharges, by their nature, are often considered as non-domestic effluent, which can provide significant pollution comparatively to other domestic sources. In this context, a total of 12 monthly sampling campaigns were collected from a healthcare facility as well as the output of a sewerage system of Site Pilote de Bellecombe (SIPIBEL) observatory. This study focuses more specifically on 12 surfactants and biocides: four anionics, four cationic, two non-ionic, one zwitterionic, and one dispersive agent, among the most commonly used commercial surfactants. Particular attention was also provided to routine wastewater quality parameters. Both effluents were heavily contaminated by most anionic surfactants; they displayed median concentrations up to 1 to 2 mg/L for linear alkylbenzene sulfonates and between 10 and 100 μg/L for other sodium sulfate congeners (lauryl and laureth). Overall, for the majority of surfactants, the healthcare facility contribution to the total flux reaching the wastewater treatment plant ranges between 5 and 9%.

  3. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  4. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  5. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.

    Science.gov (United States)

    Vendramel, S; Bassin, J P; Dezotti, M; Sant'Anna, G L

    2015-01-01

    Petroleum refineries produce large amount of wastewaters, which often contain a wide range of different compounds. Some of these constituents may be recalcitrant and therefore difficult to be treated biologically. This study evaluated the capability of an aerobic submerged fixed-bed reactor (ASFBR) containing a corrugated PVC support material for biofilm attachment to treat a complex and high-strength organic wastewater coming from a petroleum refinery. The reactor operation was divided into five experimental runs which lasted more than 250 days. During the reactor operation, the applied volumetric organic load was varied within the range of 0.5-2.4 kgCOD.m(-3).d(-1). Despite the inherent fluctuations on the characteristics of the complex wastewater and the slight decrease in the reactor performance when the influent organic load was increased, the ASFBR showed good stability and allowed to reach chemical oxygen demand, dissolved organic carbon and total suspended solids removals up to 91%, 90% and 92%, respectively. Appreciable ammonium removal was obtained (around 90%). Some challenging aspects of reactor operation such as biofilm quantification and important biofilm constituents (e.g. polysaccharides (PS) and proteins (PT)) were also addressed in this work. Average PS/volatile attached solids (VAS) and PT/VAS ratios were around 6% and 50%, respectively. The support material promoted biofilm attachment without appreciable loss of solids and allowed long-term operation without clogging. Microscopic observations of the microbial community revealed great diversity of higher organisms, such as protozoa and rotifers, suggesting that toxic compounds found in the wastewater were possibly removed in the biofilm.

  6. Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2017-11-01

    Full Text Available This study applied a multi-level contact oxidation process system in a pilot-scale experiment to treat automobile painting wastewater. The experimental wastewater had been pre-treated through a series of physicochemical methods, but the water still contained a high concentration of chemical oxygen demand (COD and had poor biodegradability. After the biological treatment, the COD concentration of effluent could stay below 300 mg/L. The study analyzed the effects of hydraulic residence time (HRT on COD, ammonia nitrogen (NH4+-N, and total nitrogen (TN. The optimal HRT was 8 h; at that time, removal efficiencies of COD, ammonia nitrogen, and total nitrogen were 83.8%, 86.3%, and 65%, respectively. The system also greatly reduced excess sludge production; the removal efficiency was 82.8% with a HRT of 8 h. The study applied high-throughput pyrosequencing technology to evaluate the microbial diversity and community structures in distinct stages of the biological reactor. The relevance between process performance and microbial community structure was analyzed at the phylum and class level. The abundant Firmicutes made a large contribution to improving the biodegradability of painting wastewater through hydrolysis acidification and reducing sludge production through fermentation in the biological reactor.

  7. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  8. Effects of pharmaceutical micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: case of continuous pollution by carbamazepine.

    Science.gov (United States)

    Li, Chengcheng; Cabassud, Corinne; Reboul, Bernard; Guigui, Christelle

    2015-02-01

    Membrane bioreactor (MBR) is increasingly used for municipal wastewater treatment and reuse and great concerns have been raised to some emerging trace pollutants found in aquatic environment in the last decade, notably the pharmaceuticals. As a consequence the removal of pharmaceutical micropollutants by MBRs has been extensively investigated. But there is still a lack of knowledge on the effects of the current presence of pharmaceutical micropollutants in domestic wastewaters on MBR fouling. Among the different pharmaceuticals, it was decided to focus on carbamazepine (CBZ), an anti-epileptic drug, because of its occurrence in domestic wastewaters and persistency in biological processes including MBRs. This paper focuses on the effects of continuous carbamazepine pollution on MBR fouling. A continuous introduction of CBZ into the MBR via the feed (about 90 μg L(-1) CBZ in the feed) provoked a TMP jump. It occurred just 1 day after the addition of CBZ in MBR and a significantly higher increase rate of TMP was also observed after 1 day after addition of CBZ in MBR, as compared to that before addition of CBZ. This indicates that the pharmaceutical stress induced by CBZ causes more severe membrane fouling. Addition of CBZ was shown to induce a significant increase of the concentration of proteins in the supernatant at the beginning several days then stabilized to original level whereas no significant change was found for polysaccharides. HPLC-SEC analysis showed that addition of CBZ induced a decrease of 100-1000 kDa protein-like SMPs and a more significant increase of 10-100 kDa protein-like SMPs in the supernatant. Moreover it was found that addition of CBZ in the MBR affected the sludge microbial activities, as a slight inhibition (about 20%) of the exogenous respiration rate was observed. The increased membrane fouling could be related to the change in biomass characteristics and supernatant quality after addition of CBZ in MBR. This study allows also

  9. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    Full Text Available Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food safety and the influence of the countries which import food are influencing policy makers and agriculturists to improve the standards of wastewater reuse in agriculture. The environmental awareness of consumers has been putting pressure on the producers (industries to opt for environmentally sound technologies including those which conserve water and reduce the level of pollution. It may be observed that we have to move forwards to implement strategies and plans for wastewater reuse. However, their success and sustainability will depend on political will, public awareness and active support from national and international agencies to create favorable    environment for the promotion of environmentally sustainable technologies. Wastewater treatment has a long history, especially in agriculture, but also in industry and households. Poor quality of wastewater can pose a significant risk to the health of farmers and users of agricultural products. The World Health Organization (WHO is working on a project for the reuse of wastewater in agriculture. To reduce effects of human activities to the minimum, it is necessary to provide such technical and technological solutions that would on the one hand ensure complying with  the existing regulations and legislation, and on the other hand provide economically viable systems as seen through investments and operating costs. The use of wastewater The practice of using wastewater varies from country to country. Its

  10. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  11. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting

  12. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  13. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  14. Automatic Regulation of Wastewater Discharge

    Directory of Open Access Journals (Sweden)

    Bolea Yolanda

    2017-01-01

    Full Text Available Wastewater plants, mainly with secondary treatments, discharge polluted water to environment that cannot be used in any human activity. When those dumps are in the sea it is expected that most of the biological pollutants die or almost disappear before water reaches human range. This natural withdrawal of bacteria, viruses and other pathogens is due to some conditions such as the salt water of the sea and the sun effect, and the dumps areas are calculated taking into account these conditions. However, under certain meteorological phenomena water arrives to the coast without the full disappearance of pollutant elements. In Mediterranean Sea there are some periods of adverse climatic conditions that pollute the coast near the wastewater dumping. In this paper, authors present an automatic control that prevents such pollution episodes using two mathematical models, one for the pollutant transportation and the other for the pollutant removal in wastewater spills.

  15. Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater.

    Science.gov (United States)

    Ding, Baojun; Wang, Jie; Tao, Shengyang; Ding, Yunzhe; Zhang, Lijing; Gao, Ning; Li, Guangtao; Shi, Haonan; Li, Weijun; Ge, Shuo

    2018-07-15

    Water pollution control has become significant challenges in recent years because of their extensive species diversity. It is critical to developing general-purpose materials for environmental rehabilitation. In this paper, a novel module-assembly method is developed to prepare multi-functional materials for treating pollutants in water. Building blocks are porous nanoparticles with a different function. Microspheres (MS) with a diameter of 90 μm are prepared and have a coefficient of variation of 6.8%. The modular fashion of self-assembly process in a microfluidic chip is the crucial factor in fabricating the multifunction material. The assembled microspheres with different building modules still have a specific surface area larger than 400 m 2 g -1 , and exhibit excellent performance in adsorbing various pollutants in water, such as heavy metal ions and organic dyes. The adsorption capacities of them to Hg 2+ and orange II reach 150 mg g -1 and 333 mg g -1 , respectively. The integrated fluorescence probes in microspheres can detect low concentration (9.8 ppb) of Hg 2+ . Microspheres integrated with Fe 3 O 4 nanoparticles have a magnetic susceptibility of 6.01 emu g -1 and can be easily removed from wastewater by applying an external magnetic. Due to the stability of inorganic building blocks, each function in the assembled system is well performed, and multi-functional "All-in-One" materials can be easily fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  17. A review of wastewater handling in the Arctic with special reference to Pharmaceuticals and Personal Care Products (PPCPs) and microbial pollution

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jenssen, Petter Deinboll; Jensen, Pernille Erland

    2013-01-01

    Treatment of wastewater is often inadequate or completely lacking in Arctic regions. Wastewater contains different kinds of substances that can be harmful for the environment and human health, including residues of pharmaceuticals and personal care products. Bioaccumulation and biomagnifications ...

  18. Characterization of sludges of La Golondrina WWTP: sludges as final containers of the domestic wastewater pollution; Caracterizacion de fangos de la EDAR La Golondrina (EMACSA-Cordoba): su funcion como receptores finales de la contaminacion del agua residual urbana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Alonso Perez de siles, L.; Rojas Moreno, F. J.

    2005-07-01

    Treatment of wastewater is to concentrate the original pollution in a by-product: the wastewater sludge or bio-solid. As example, La Golondrina WWTP (Cordoba-spain) promotes the production of 1,3 kg of sludge per m''3 of wastewater, yielding logically a treated water according to laws. Furthermore, the treatment process there applied reduces the levels of nine majority metals (Cu, Fe, Mn, Pb, Cd, Ni, Cr, Zn, Hg) from 2,72 mg/l to 1.42 mg/l in the treated water, generating almost, a sludge agrees with the spanish normative to sludge intended to agricultural use (its main fate). Summarizing, the treatment of wastewater supposes the concentration of the original biodegradable load into the sludge around 340 times, while metals exhibited a different concentration degree for each one (from 10.000 times for Fe, u pto 1-2 times for Cd and Hg). Finally, the concentration degree of a metal in the sludge is mainly led by the removed concentration of metal in the treatment process, and after, by the original concentration of metal in the influent wastewater. (Author) 24 refs.

  19. The water pollution representative. The specialist knowledge for the internal wastewater treatment; Der Gewaesserschutzbeauftragte. Das Fachwissen fuer die innerbetriebliche Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Frahne, D.; Graef, R.; Kratsch, D.

    1998-05-01

    The first chapter deals with the most important legal aspects, handles the regulations after which plants with waste water and water pollutants are to be operated as well as the duties and rights of the water pollution representative. In the second chapter, proved and common means are discussed as they are adopted for the processing of chemicals and waste waters on the point of origin. To this belong major handling of water polluting substances and the corresponding plants as well as examples of off waste water saving processes and plants for waste water processing. In the third chapter, the environment analytical measures are described. (orig./GL) [Deutsch] Das erste Kapitel geht auf die wichtigsten rechtlichen Aspekte ein, behandelt die Regelungen, nach denen Anlagen mit Abwasser und wassergefaehrdenden Stoffen zu betreiben sind, sowie die Pflichten und Rechte des Gewaesserschutzbeauftragten. Im zweiten Kapitel werden bewaehrte und verbreitete Methoden besprochen, wie sie fuer die Behandlung von Chemikalien und Abwaessern am Entstehungsort eingefuehrt sind. Dazu gehoeren vorrangig der Umgang mit wassergefaehrdenden Stoffen und den entsprechenden Anlagen sowie auch Beispiele abwassersparender Behandlungsverfahren und Anlagen zur Abwasserbehandlung. Im dritten Kapitel werden die umweltanalytischen Massnahmen erlaeutert. Dabei werden einfach durchzufuehrende Massnahmen der Vor-Ort-Analytik, wie sie sich im `Feldeinsatz` bewaehrt haben, in den Vordergrund gestellt. (orig./GL)

  20. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    Science.gov (United States)

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater.

    Science.gov (United States)

    Antwi, Philip; Li, Jianzheng; Meng, Jia; Deng, Kaiwen; Koblah Quashie, Frank; Li, Jiuling; Opoku Boadi, Portia

    2018-06-01

    In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH 4 + , VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R 2 ), the BPANN model demonstrated significant performance with R 2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pollution control activities for waste-water treatment plants: planning, integrated approach, functionality controls and small plants

    International Nuclear Information System (INIS)

    Serena, F.; Tomiato, L.; Ostoich, M.; Falletti, L.

    2009-01-01

    The work presents the problem of the Wastewater Treatment Plants' (WWTPs) controls and the organization of the consequential activities with reference to the priorities of the Environmental Agencies through a hierarchy assessment according to the environmental importance of the pressure sources. The European Recommendation 2001/331/EC bases the environmental controls of industrial sites and also of WWTPs on an integrated approach overtaking the simple analytic control; the integrated approach requires documentary, technical, management and analytic controls. The Veneto Regional Environmental Prevention and Protection Agency (ARPAV) has recently developed and applied a check-list for the implementation of the European Recommendation for WWTPs. The check-list includes the functionality assessment of the WWTP in case of discharge control delegation to the plant manager as consented with Annex 5 third part Italian Decree 3/04/2006 n. 152. In the paper the general framework of environmental controls on public WWTPs in the Veneto region is described. Particular importance for the numerousness and for the required control typology is referred to the small WWTP ( [it

  3. Effect of Soil Filtration and Ozonation in the Change of Baseline Toxicity in Wastewater Spiked with Organic Micro-pollutants

    KAUST Repository

    Gan, Alexander

    2012-07-01

    Bioassays for baseline toxicity, which measure toxicants’ non-specific effects, have been shown in previous studies to effectively correlate with the increased presence of pharmaceuticals, personal care products, endocrine-disrupting compounds, and other synthetic organics in treated sewage effluent. This study investigated how the baseline toxicity of anthropogenic compounds-spiked wastewater changed during the treatment of biofiltration and ozone oxidation, as measured by the bioluminescence inhibition of the Vibrio fischeri bacterium. The water quality parameters of dissolved organic carbon, seven common anions, and fluorescence spectroscopy were used to corroborate and collate with the toxicity results. Water quality was evaluated on two bench-scale soil filtration columns, which were configured for pre-ozonation and post-ozonation. Both systems’ soil aerobically removed similar amounts of dissolved organic carbon, and the reduction ranged between 57.7% and 62.1% for the post-ozonation and pre-ozonation systems, respectively. Biological removal of DOC, protein-like, humic-like, and soluble microbial product-like material was highest in the first 28.5 cm of each 114 cm-long system. While bioluminescence inhibition showed that ozonation was effective at lowering baseline toxicity, this study’s bioassay procedure was a very poor indicator of soil filtration treatment; both system’s effluents were significantly more toxic than their non-ozonated influents.

  4. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    Science.gov (United States)

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants.

    Science.gov (United States)

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the

  6. Sampling and sample handling procedures for priority pollutants in surface coal mining wastewaters. [Detailed list to be analyzed for

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, R. S.; Johnson, D. O.; Henricks, J. D.

    1979-03-01

    The report describes the procedures used by Argonne National Laboratory to sample surface coal mine effluents in order to obtain field and laboratory data on 110 organic compounds or classes of compounds and 14 metals and minerals that are known as priority pollutants, plus 5-day biochemical oxygen demand (BOD/sub 5/), total organic carbon (TOC), chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS). Included are directions for preparation of sampling containers and equipment, methods of sampling and sample preservation, and field and laboratory protocols, including chain-of-custody procedures. Actual analytical procedures are not described, but their sources are referenced.

  7. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants

    Directory of Open Access Journals (Sweden)

    Tamás Zoltán Agócs

    2016-12-01

    Full Text Available Advanced oxidation processes (AOPs are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2 applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP, was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure

  8. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  9. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    Science.gov (United States)

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-07-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.

  10. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant.

    Science.gov (United States)

    Liu, Ruiping; Liu, Huijuan; Zhao, Xu; Qu, Jiuhui; Zhang, Ran

    2010-04-15

    This study investigated the process of potassium permanganate (KMnO(4)) oxidation and in situ formed hydrous manganese dioxides (deltaMnO(2)) (i.e., KMnO(4) oxidation and deltaMnO(2) adsorption) for the treatment of dye wastewater. The effectiveness of decolorization, removing dissolved organic carbon (DOC), and increasing biodegradable oxygen demand (BOD) were compared among these processes of KMnO(4) oxidation, deltaMnO(2) adsorption, and KMnO(4) oxidation and deltaMnO(2) adsorption. DeltaMnO(2) adsorption contributed to the maximum DOC removal of 65.0%, but exhibited limited capabilities of decolorizing and increasing biodegradability. KMnO(4) oxidation alone at pH 0.5 showed satisfactory decrease of UV-vis absorption peaks, and the maximum BOD(5)/DOC value of 1.67 was achieved. Unfortunately, the DOC removal was as low as 27.4%. Additionally, the great amount of acid for pH adjustment and the much too low pH levels limited its application in practice. KMnO(4) oxidation and deltaMnO(2) adsorption at pH 2.0 was the best strategy prior to biological process, in balancing the objectives of decolorization, DOC removal, and BOD increase. The optimum ratio of KMnO(4) dosage to X-GRL concentration (R(KMnO(4)/X-GRL)) was determined to be 2.5, at which KMnO(4) oxidation and deltaMnO(2) adsorption contributed to the maximal DOC removal of 53.4%. Additionally, the optimum pH for X-GRL treatment was observed to be near 3.0. 2009 Elsevier B.V. All rights reserved.

  11. Physicochemically modified peat by thermal and oxidation processes as an active material for purification of wastewaters from certain hazardous pollutants

    Directory of Open Access Journals (Sweden)

    Purenović Jelena M.

    2017-01-01

    Full Text Available The physicochemical modification of peat through thermal and oxidation processes was carried out, in order to obtain new, inexpensive and active material for purification of different types of waters. During the modification, surface chemical compounds of Shilov type were formed. Batch adsorption properties and suitability of physicochemically modified peat (PCMP for odor removal were tested in aqueous solutions of H2S and colloidal sulphur. Additionally, PCMP was tested in the removal of As(V which is hazardous ingredient in contaminated waters. Possible mechanisms of pollutants binding include interactions, which lead to formation of adducts and clathrates. All these processes are elucidated in detail. The results showed that the obtained material can be used for the removal of sulphide, colloidal sulphur and As(V from different types of waters. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45012

  12. Survey of onsite wastewater treatment systems in Kristiansand municipality Norway : pollutants removal performance and solutions : performance analysis based on Web-GIS model

    OpenAIRE

    Abbas, Muhammad

    2017-01-01

    In Norway, 16% of the population lives in rural areas where centralized infrastructure for wastewater treatment is neither cost effective and nor sustainable due to topography and long distance to connect a treatment facility. There are 330,000 small decentralized wastewater treatment plants in Norway and out of those 1,500 plants are located in Kristiansand municipality. Eutrophication and fecal contamination in the recipients are the major cause of concern to wastewater disposal from such o...

  13. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs.

    Science.gov (United States)

    Cheng, Yunqin; Chen, Yunlu; Lu, Juncheng; Nie, Jianxin; Liu, Yan

    2018-04-01

    The Fenton process is used as a tertiary treatment to remove organic pollutants from the effluent of bio-treated pharmaceutical wastewater (EBPW). The optimal and most appropriate Fenton conditions were determined by an orthogonal array test and single-factor experiments. The removal of chemical oxygen demand (COD) was influenced by the following factors in a descending order: H 2 O 2 /Fe(II) molar ratio > H 2 O 2 dosage > reaction time. Under the most appropriate Fenton conditions (H 2 O 2 /Fe(II) molar ratio of 1:1, H 2 O 2 dosage of 120 mg L -1 and reaction time of 10 min), the COD and dissolved organic carbon (DOC) were removed with efficiencies of 62 and 53%, respectively, which met the national discharge standard (GB 21903-2008) for the Lake Tai Basin, China. However, the Fenton treatment was inadequate for removal of N compounds, and the removal of organic nitrogen led to an increment in N-NH 3 from 3.28 to 19.71 mg L -1 . Proteins and polysaccharides were completely removed, and humic acids (HAs) were partly removed with an efficiency of 55%. Three-dimensional excitation/emission matrix spectra (3DEEMs) indicated complete removal of fulvic acid-like substances and 90% reduction in the florescence intensity of humic acid-like substances. Organic pollutants with molecular weights (MW) > 10 kDa were completely removed, MW 5-10 kDa were degraded into smaller MW ones, and some low molecular weight acids (MW 0.1-1 kDa) were mineralized during the Fenton process. Some species, including pharmaceutical intermediates and solvents were detected by gas chromatography-mass spectrometry (GC-MS). The operational costs of the Fenton's treatment were estimated to be 0.58 yuan RMB/m 3 EBPW based on reagent usage and iron sludge treatment and disposal.

  14. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2011-01-01

    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  15. Interactions between industrial organic pollutants and rhizosphere components and documentation of material streams in plant-based wastewater treatment plants - laboratory experiments; Wechselwirkungen industrieller organischer Schadstoffe mit Rhizosphaerenkomponenten und Bilanzierung von Stoffstroemen in Pflanzenklaeranlagen - Laborversuche

    Energy Technology Data Exchange (ETDEWEB)

    Plugge, J.

    2001-07-01

    The purpose of the present study was to examine the suitability of plant/soil systems for cleaning organically polluted effluents and to assess the influence of plant growth and dissolved humic substances on processes leading to the elimination of organic pollutants. This involved an examination of sorption interactions between selected pollutants on the one hand and sand and root material on the other, use of vertically irrigated plant-bearing sand columns for simulating real plant-based wastewater treatment plants, assessment of the cleaning efficiency of these systems with respect to the employed model pollutants and determination of the contamination of the filter material and plants with pollutants. Radiotracer techniques were used to determine pollution paths of phenanthrene and its microbial degradation in the model system. [German] In der vorliegenden Arbeit wurde die Eignung von Pflanze/Boden-Systemen zur Reinigung carbochemisch belasteter Abwaesser untersucht und der Einfluss eines Pflanzenbewuchses sowie geloester Huminstoffe auf die Prozesse, die zur Entfernung organischer Schadstoffe fuehren, bewertet. Die Bearbeitung dieses Themas umfasste Untersuchungen zu Sorptionswechselwirkungen ausgewaehlter Schadstoffe mit Sand- und Wurzelmaterial, die Anwendung vertikal durchstroemter, bepflanzter Sandsaeulen zur Nachbildung realer Pflanzenklaeranlagen, die Erfassung der Reinigungseffizienz dieser Systeme fuer die Modellschadstoffe sowie die Bestimmung der Schadstoffkontamination des Filtermaterials und der Pflanzen. Unter Anwendung der Radiotracertechnik erfolgte darueber hinaus die Bestimmung der Schadstoffpfade von Phenanthren einschliesslich des mikrobiellen Abbaus im Modellsystem. (orig.)

  16. Sources of pollution

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Sources of pollution. Domestic wastewater (Sewage). Organic matter; Nitrogen & phosphorus; Pathogens, viruses, …. Agricultural runoff. Nitrogen & phosphorus; Pesticides; Industrial effluents; Organics (oil &grease, pigments, phenols, organic matter ….) Heavy ...

  17. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  18. Options for wastewater management in Harare, Zimbabwe

    NARCIS (Netherlands)

    Nhapi, I.

    2004-01-01

    The sustainable management of wastewater should aim at pollution prevention and reduction first, followed by resource recovery and reuse. This thesis shows that substantial water quality improvements could be achieved through a so-called 3-Step Strategic Approach to wastewater management. This

  19. Removal of organic pollutants from 2,2',5,5'-tetrachlorobenzidine (TCB) industrial wastewater by micro-electrochemical oxidation and air-stripping

    International Nuclear Information System (INIS)

    Xia Shibin; Xia Shuichun; Zhu Changqing

    2007-01-01

    A feasible method for treatment of the wastewater from the two-staged neutralization in 2,2',5,5'-tetrachlorobenzidine (TCB) manufacturing processes, a refractory dye intermediate effluents, based on combined micro-electrochemical oxidation or iron-chipping filtration (ICF) and air-stripping reactor (ASR), was developed. On conditions of HRT 1 h, pH 3.0 in ICF and HRT 38 h, gas-liquid ratio 15, pH 6.0-8.65, temperature 26 deg. C in ASR, the overall COD, color, TCB and NH 4 + -N removal were 96.8%, 91%, 87.61% and 62%, respectively, during the treatment of TCB wastewater from the two-staged neutralization dissolved by methanol. The averaged 18.3%, 81.7% of the total degraded COD, 35.2%, 64.8% of TCB were carried out in ICF and ASR, respectively. NH 4 + -N removal was finished mainly in ASR. The experimental results indicated that the combined micro-electrochemical oxidation and air-stripping process performed good treatment of COD, color, TCB and NH 4 + -N removal in TCB wastewater from the two-staged neutralization dissolved by ethanol or acetone, came up the discharge standard in China. But the TCB wastewater from the two-staged neutralization dissolved by methanol should be deeply treated before discharged

  20. Transfer of pollution from municipal wastewater to bio solids: their chemical characterization; Transferencia de contaminacion desde el agua residual urbana a los lodos de depuracion: caracterizacion de biosolidos

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2007-07-01

    Production of bio solids depends on the amount of wastewater treated according the expression y=ax''2,5575, being y the log of TM/year of bio solids produced, and X the log then m''3/year of wastewater treated. Quality of bio solids generated by three WWTP does not seem function either of the amount of treated water and neither of the treatment process applied (active sludges or bio discs). The bio solids exhibited values of 20-25% in dehidradation, and those of organic matter, nitrogen and phosp hour being equal to 60-75%, 7% and 4%, respectively. Moreover, the total of metals there present were 11-19 g/kg over dried matter, supposing Fe, Zn, Cu and Mn the 97% of all metals, and being Hg the minority metal. Bio solids can be used in agricultural practices (they agree with the Spanish normative here applied) and they concentrated the organic matter and metals found in wastewater up to 417 and 869 times, respectively. At the same time, we have estimated that each 4841 of wastewater produced 1 kg of bio solid. (Author)

  1. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  2. Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Robles-Molina, José; Lara-Ortega, Felipe J; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2014-07-11

    This article describes the development and validation of a liquid chromatography high-resolution mass spectrometry method for the simultaneous determination of over 400 multi-class priority and emerging pollutants with different physicochemical properties in environmental waters (surface water and wastewater). The proposed approach is based on the use of a database consisting of retention time/exact mass (of selected ions) pairs implemented with specific software for data analysis. The targeted list comprises 430 contaminants belonging to different compound categories, including 105 multiclass pharmaceuticals (analgesics/anti-inflammatories, antibiotics, lipid regulators, β-blockers, antiepileptic/psychiatrics ulcer healings, diuretics, hormones and bronchodilatadors), life-style products (caffeine, nicotine), 21 drugs of abuse and their metabolites, 279 pesticides and some of their more relevant metabolites, nitrosamines, flame retardants, plasticizers and perfluorinated compounds. The proposed approach included a simple offline solid phase extraction (SPE) step using polymeric cartridges (Oasis HLB) with 200mL of water sample loaded, followed by analysis by rapid resolution liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) in both positive and negative modes. The identification of the positive findings is accomplished with the data from accurate masses of the target ions along with retention time data and characteristic in-source fragment ions. The overall method performance was satisfactory with limits of quantification lower than 10ngL(-1) for the 44% of studied compounds. Recoveries between 50% and 130% were obtained for the 65% of the analytes (281 compounds). Matrix effects occurring with wastewater matrices were also assessed. The developed method was applied to the determination of target analytes in real surface water and wastewater samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  4. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  5. Green Systems for Wastewater Treatment

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  6. Retenção de poluentes em filtros orgânicos operando com águas residuárias da suinocultura Retention of pollutants in organic filters operating with swine confinement wastewater

    Directory of Open Access Journals (Sweden)

    Viviane dos S. Brandão

    2003-08-01

    wastewater. The filtering materials showing a higher retention capacity for the pollutants were the sugarcane bagasse and sawdust.

  7. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  8. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... or water saving toilets. This opens up for co-treatment of organic waste fractions. Freezing and thawing has also been recognised as being a cost-effective wastewater treatment method in cold regions. Thus it was chosen to concentrate on the effect of the mentioned processes, namely freezing, anaerobic...... spreading of nutrients, diseases and potential pollution issues. Due to the above mentioned challenges alternative treatment methods are needed, especially in small and remotely located communities. Decentralized solutions are well suited for Greenland. Ideal solutions should reduce the need for expensive...

  9. Wastewater Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Wastewater districts layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  10. Mining Upgrades to Reduce Pollution

    Science.gov (United States)

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  11. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  12. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin

    2016-01-01

    The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively. Both the GC-MS and fluorescence excitation-emission matrix analyses revealed significant variations of organic compositions in the effluent of different process. The results of high-throughput sequencing represented the EBA system composed 34 main bacteria which were affiliated to 7 phyla. In addition, the canonical correspondence analysis indicated high coherence among community composition, wastewater characteristics and environmental variables, in which the pH, mixed liquid suspended solids and total phenols loading were the most three significant variables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of fertigation with purified urban wastewater on soil and pepper plant (Capsicum annuum L.) production, fruit quality and pollutant contents

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Delgado, C.; Eymar, E.; Contreras, J. I.; Segura, M. L.

    2012-11-01

    The effects, in greenhouse conditions, of Purified Urban Wastewater (PW) from Almeria (Spain), in the fertigation of pepper (Capsicum annuum L.) on sandy mulch soil, were evaluated. Primary, secondary (active sludges) and tertiary (Chlorination + ozonation) purification treatments were applied to wastewater. Irrigation treatments applied were PW, natural Ground Water (GW), Fertilizer PW (FPW) and Fertilizer GW (FGW). The vegetal biomass, yield and fruit quality were controlled. Heavy metals (Cr, Cd, Pb, Ni, Mn, Cu and Zn), arsenic (As) and Polycyclic Aromatic Hydrocarbons (PAH) in water, soil, leaf, and fruit were analysed. The PW presented heavy metal, As and PAH contents acceptable for its use in drip irrigation. In the soil, fertigated with PW, the concentration of heavy metals and As did not increase, whilst the PAH concentration decreased. The PW treatment supplied enough nutrients to obtain yield and fruit quality equal to that of GW with fertilization. A significant saving on N, P and K fertilizers (37%, 66% and 12% respectively) was achieved by using PW. The Cd, Pb and As contents of the fruit did not show risk for human consumption. The total PAH concentrations in the fruit were low, the highest of which was phenathrene, with no carcinogenic signification. (Author) 39 refs.

  14. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  15. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Mailler, R., E-mail: romain.mailler@siaap.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Gasperi, J., E-mail: gasperi@u-pec.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Coquet, Y. [SAUR, Direction de la Recherche et du Développement, 1 rue Antoine Lavoisier, 78064 Guyancourt (France); Buleté, A.; Vulliet, E. [Université de Lyon, Institut des Sciences Analytiques, UMR5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne (France); Deshayes, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); LCPP (Laboratoire Central de la Préfecture de Police), 39 bis rue de Dantzig, 75015 Paris (France); Zedek, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); and others

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m{sup 3}/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO{sub 2}{sup −}. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22

  16. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    International Nuclear Information System (INIS)

    Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.

    2016-01-01

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m"3/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO_2"−. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22/32), i

  17. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    Directory of Open Access Journals (Sweden)

    Emmanuel Noumi

    2008-03-01

    Full Text Available Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon and Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources.

  18. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  19. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  20. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  1. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  2. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  3. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    OpenAIRE

    Pietro Rubino; Maurizia Catalano; Antonio Lonigro

    2007-01-01

    In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being coll...

  4. Efeito da taxa de carregamento sobre a remoção de poluentes de esgoto em sistemas alagados construídos Effect of loading rate on removal of pollutants from wastewater in constructed wetlands

    Directory of Open Access Journals (Sweden)

    Antonio T. de Matos

    2013-04-01

    Full Text Available Objetivou-se estudar o efeito da taxa de carregamento sobre a eficiência de sistemas alagados, construídos de escoamento horizontal subsuperficial (SAC-EHSS, em remover poluentes de esgoto sanitário. Os SAC-EHSS foram alimentados com efluente proveniente de tanque séptico, sob taxas de carregamento orgânico volumétrico (TCO V de 53 a 231 g m-3d-1 de demanda química de oxigênio (DQO total e as associadas taxas de carregamento (TC V de demanda química de oxigênio solúvel, sólidos suspensos totais (SST, nitrogênio total (N-Total e fósforo total (P-Total. Para avaliação de desempenho dos SAC-EHSS, as mesmas variáveis foram quantificadas em seu efluente. Relação linear e positiva foi obtida entre as taxas de remoção de DQO total, DQO solúvel e SST, e as TC V, nas faixas em que foram aplicadas, além de não terem sido observados efeitos negativos desta variável sobre a eficiência na remoção desses poluentes. As taxas de remoção de N-Total e P-Total não apresentaram, entretanto, tendência de aumento com a TC V aplicada nos SAC- EHSS, cultivados com taboa e utilizados no tratamento de efluente sanitário. As cargas aplicadas desses nutrientes devem ser consideradas referenciais no dimensionamento desses sistemas, caso se queira maximizar a remoção global de poluentes da água residuária.This research aimed to study the effect of loading rate on the efficiency of constructed wetlands with horizontal subsurface flow (CW-HSSF to remove pollutants from wastewater. The CW-HSSF were fed with effluent from septic tank under volumetric organic loading rate (OLR V of 53 to 231 g m-3d-1 of chemical oxygen demand (total-COD and associated loading rates (LR V of soluble chemical oxygen demand (soluble COD, total suspended solids (TSS, total nitrogen (total-N and total phosphorus (total-P. To evaluate the performance of CW-HSSF the same variables were quantified in its effluent. Linear and positive relationship was found between the

  5. Determination of total solutes in synfuel wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.R.; Bonomo, F.S.

    1984-03-01

    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  6. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  7. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  8. Disinfection of septic tank and cesspool wastewater with peracetic acid.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Savolainen, Ritva

    2003-08-01

    Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.

  9. Enhancing anaerobic treatment of wastewaters containing oleic acid

    NARCIS (Netherlands)

    Hwu, C.S.

    1997-01-01

    INTRODUCTION

    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater

  10. Physicochemical Characterization of Wastewaters from a Cluster of ...

    African Journals Online (AJOL)

    Myina O M

    chlorides – of the wastewaters from the various industries were investigated using standard protocols. The ranges of the ... water bodies of these wastewaters are at risk of being polluted. ... Most of it is in oceans, ice caps, underground aquifers ...

  11. Microaerobic biodegradation of high organic load wastewater by ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... concentration in the simulated wastewater as in the RCVBN medium. Optimization of wastewater composition and treatment conditions. SW with pollutants strength of 3600 mgl-1 COD was used to incubate the phototrophic bacteria microaerobically in the light (appro- ximately 2000 lx), the COD reduction ...

  12. Sustainable technologies for olive mill wastewater management (abstract)

    Science.gov (United States)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  13. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Treatment of wastewater from rubber industry in Malaysia. ... Discharge of untreated rubber effluent to waterways resulted in water pollution that affected the human health. ... Key words: Rubber industry, effluent, waste management, Malaysia.

  14. Environmental and public health implications of wastewater quality

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... metals are one of the most persistent pollutants in waste- water. Unlike organic ... nitrate levels that affect infants do not pose a direct threat to older children ...... Rybicki S (1997). Advanced Wastewater Treatment: Phosphorus.

  15. Review of Hosein Aabad Sugar Factory (HASF) Wastewater and ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    evaluate the quality and quantity of wastewater of the said factory and to estimate the pollution ... appropriate for artificial recharge use, discharge in rivers and lakes or utilization in agriculture ..... These problems have a negative impact on.

  16. Optimization of Dye Removal from Textile Wastewater using ...

    African Journals Online (AJOL)

    OLUWASOGO

    however, this often gets polluted through the activities of man ... study examines the treatment of effluent from a textile industry in Kano ... II. MATERIALS AND METHODS. A. Materials. The textile wastewater used in this research was collected.

  17. Highlighting of pollutants elements of atmospheric air and industrial wastewater in Antananarivo and Analysis of a forest plants of the east coast of Madagascar

    International Nuclear Information System (INIS)

    RASOAZANANY, E.O.

    2008-01-01

    The present work has for objectives to determine the polluting elements of air, of the industrial waste waters of the urban environment (Antananarivo) and in the leaves of a plant forest called Noronhia of the rural environment (East Coast of Madagascar) and to identify the sources of these pollutants. The method of analysis by total refection X-ray fluorescence at the Institut National des Sciences et Techniques Nucleaires (Madagascar-INSTN) have been used for the measures of the present elements in the samples, the pHmeter and the conductimeter for the measures of pH and the electric conductivity. In 2000, the average concentrations of lead in the aerosols collected in Andrefan'Ambohijanahary in Antananarivo are 137±4 ng.m -3 during the day and 51±2 ng-m -3 during the night. They are lower than the guideline values adopted by the World Health Organization (WHO) and by the United States Environmental Protection Agency (US EPA). The average PM10 concentrations diurnal and nocturnal (equal to 194 μg.m -3 and 145 μg.m -3 respectively) in the aerosols are extensively superior to the guideline values 70 μg.m -3 adopted by the WHO in Dakar (1999).Therefore, the site of Andrefan'Ambohijanahary is to be classified saturated zone according to canadian government rule. In 2002, the immobilization of nearly all cars in the capital show that the report of reduction of the concentration of lead in 2002 in relation to the period 2000 is equal to 38. The present work confirms the introduction of unleaded gasoline in Madagascar. Physico-chemical measures of the samples of waste waters in the different sites of Antananarivo are made. The chromium is a toxic metal for the environment associated to the tannery. Its concentration of 2712.1 μg.L -1 is superior to the national norm of 2000 μg.L -1 . The presence of the chromium in the downstream samples is also noted. Regarding to the textile factories, the higher value of the conductivity (equal to 4 670 μS.cm -1 ) of the

  18. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  19. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    Science.gov (United States)

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  20. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  1. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  2. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  3. Chemical phosphorus removal: A clean strategy for piggery wastewater management in Brazil

    Science.gov (United States)

    The intensive production of animal protein is known to be an environmental polluting activity, especially if the wastewater produced is not managed properly. Swine production in Brazil is growing and technologies to manage all pollutants present in the wastewater effluent are needed. This work prese...

  4. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    to analyze and quantify the effect of the Aeration Tank Settling (ATS) operating mode, which is used during rain events. Furthermore, the model is used to propose a control algorithm for the phase lengths during ATS operation. The models are mainly formulated as state space model in continuous time......In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...... at modelling the fluxes in terms of the multiple correlation coefficient R2. The model of the SS concentrations in the aeration tanks of an alternating WWTP as well as in the effluent from the aeration tanks is a mass balance model based on measurements of SS in one aeration tank and in the common outlet...

  5. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    Directory of Open Access Journals (Sweden)

    Alshabab Mary Shick

    2016-01-01

    Full Text Available Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times dosages of reagents (acidifier, coagulant, flocculant in several actual stages of treatment (acidification, separation, coagulation and sedimentation and add stage of dispersed air flotation before coagulation treatment. The modified wastewater treatment technology would reduce COD to the values allowed for irrigation waters by Syrian National Standard.

  6. Reducing Marine and Coastal Pollution

    OpenAIRE

    World Bank Group

    2016-01-01

    The West African coastline is home to major industries, mining activities, peri-urban and agro-industry, and tourism, as well as urban and seaside residences, all of which generate waste and cause pollution. Many areas along the coast also lack adequate wastewater and solid waste management systems. As a result, large volumes of untreated wastewater and solid waste are dumped into the open...

  7. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    International Nuclear Information System (INIS)

    Munoz, Ivan; Rodriguez, Antonio; Rosal, Roberto; Fernandez-Alba, Amadeo R.

    2009-01-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination

  8. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  9. Pollution prevention applications in batch manufacturing operations

    Science.gov (United States)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  10. 40 CFR 63.1433 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1433 Wastewater provisions... operation of the treatment process or control technique, the owner or operator shall instead comply with the... calibration gas for Method 25A, 40 CFR part 60, appendix A shall be the single organic HAP representing the...

  11. Environmental pollution and control, second edition

    International Nuclear Information System (INIS)

    Vesilind, P.A.; Peirce, J.J.

    1983-01-01

    Most of the problems, principles, and solutions are presented here in a non-biased, easy-to-read format. The language used is non-technical for the most part, and the inclusion of a complete glossary aids when some technical terms must be used. The text itself is supported by photographs, drawings, tables, and examples. Major Sections: Environmental Pollution, Water Pollution; Measurement of Water Quality; Water Supply; Water Treatment; Collection of Wastewater; Wastewater Treatment; Sludge Treatment and Disposal; Nonpoint Source Water Pollution; Water Pollution Law; Solid Waste; Solid Waste Disposal; Resource Recovery; Hazardous Waste; Radioactive Waste; Solid and Hazardous Waste Law; Air Pollution; Meteorology and Air Quality; Measurement of Air Quality; Air Pollution Control; Air Pollution Law; Noise Pollution; Noise Measurement and Control; Environmental Impact; The Environmental Ethic; Appendix: Conversion Factors; Glossary and Abbreviations; Index

  12. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  13. Foraging at wastewater treatment works increases the potential for ...

    African Journals Online (AJOL)

    Wastewater treatment works (WWTWs) are known to provide profitable foraging areas for insectivorous bats in Europe and the New World because of their association with high abundance of pollution-tolerant midges (Diptera). However, bats that feed on these insects may also accumulate metal pollutants such as cadmium ...

  14. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  15. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved

    OpenAIRE

    Forss, J?rgen; Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika

    2017-01-01

    Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% de...

  16. Operation and Maintenance of Water Pollution Control Facilities: A WPCF White Paper.

    Science.gov (United States)

    Hill, William R.; And Others

    1979-01-01

    Presented are the recommendations of the Water Pollution Control Federation for operation and maintenance consideration during the planning design, construction, and operation of wastewater treatment facilities. (CS)

  17. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  18. Wastewater Management Efficiency and Determinant Factors in the Chinese Industrial Sector from 2004 to 2014

    Directory of Open Access Journals (Sweden)

    Hidemichi Fujii

    2017-08-01

    Full Text Available This study analyzes industrial wastewater management efficiency using a Chinese provincial dataset from 2004 to 2014. The weighted Russell directional distance model is used to evaluate the efficiency of management practices. Determinants analysis was conducted based on governmental policy, pollution abatement, and market factors to identify the main drivers of industrial wastewater management efficiency in China. The results indicate that the wastewater management efficiency improved in the eastern and central regions. However, there is a significant efficiency gap between provinces in the western region. Moreover, the main determinants of wastewater management efficiency differ among regions and pollutants.

  19. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...

  20. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  1. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  2. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  3. General assessment of estuarine pollution

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General assessment of estuarine pollution. Contamination of estuaries by untreated domestic wastewater is widespread, however, in absence of time-series studies the responses of native flora and fauna to modified environment are unclear. Agricultural runoff ...

  4. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  5. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution

    Science.gov (United States)

    Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.

    2016-01-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if

  6. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  7. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  8. Anaerobic degradation of the various fractions of slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Zanden, J. van der; Wijffels, R.; Lettinga, G.

    1988-01-01

    The main objectives of the present investigations were to determine the maximum extent of anaerobic biological degradation of the soluble, colloidal and Coarse Suspended Solids fractions of slaughterhouse wastewater, in order to elucidate the mechanisms involved in the removal of these organic pollutant fractions and to determine the rate-limiting steps in the degradation of each fraction of the wastewater, and to assess the effects of the fractions on the methanogenic activity of the sludge.

  9. REUSE IN EXHAUST DYEING PROCESSES OF TEXTILE WASTEWATERS

    OpenAIRE

    P. Monllor; J.F. Sanz; R. Vicente; M. Bonet

    2013-01-01

    Textile dyeing and wet finishing wastewaters are considered a major concern because of the necessity of removing colour and pollutants before their discharge into the environment. Their chemical composition is diverse depending mainly on fashion, material and process. After the homogenization of all the wastewaters coming from the different textile processes, the generally used multi-stage technology for their treatment and purification combines physico-chemical and biological processes. Howe...

  10. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    OpenAIRE

    A. Almasi

    2005-01-01

    Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cr...

  11. TREATMENT OF BIODIESEL WASTEWATER USING YELLOW MUSTARD SEEDS

    OpenAIRE

    SAVCI, Serpil

    2017-01-01

    In thisstudy, removal of original biodiesel wastewater (BOD, COD, oil&greas) by yellow mustard seeds was examined bya batch system. The effect of the adsorption time 300 minutes, adsorbent dose(1.0 g/L) and mixing rate (120 rpm) on the adsorption capacity of pollutants.The applicability of the Langmuir and Freundlich isotherms were examined.According to the data obtained from experiments, biodiesel wastewater can betreated by adsorption using yellow mustard seeds.

  12. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  13. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  14. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  15. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  16. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  17. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  18. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  19. Eletrólise de resíduos poluidores: I - Efluente de uma indústria liofilizadora de condimentos Electrolysis of polluting wastes: I - Wastewater from a seasoning freeze-drying industry

    Directory of Open Access Journals (Sweden)

    Dejanira F. de Angelis

    1998-02-01

    Full Text Available Wastewater from a seasoning freeze-drying industry was electrolysed to increase its biodegradability. Stainless-steel electrodes were used at 9.09 A/m², for up to 80 min. Conductivity, pH, biochemical (BOD and chemical (COD oxygen demands, Daphnia similis acute toxicity bioassays, and bacteria counting through the plate count agar method were determined after different times of electrolysis. The results (e.g. higher BOD and lower COD showed that the biodegradability of the wastewater was significantly increased; furthermore, Fe2+ ions liberated by the electrodes cause microorganisms to die and, when oxidised to Fe3+, contribute for the flocculation and sedimentation of solid residues.

  20. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  1. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  2. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad

    2012-11-29

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  3. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad; Diab, Atef; Alsuhaimi, Awadh; Niazy, Esmail; Metwally, Mohammed; Amad, Maan H.; Sioud, Salim; Dawoud, Abdulilah

    2012-01-01

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  4. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    Directory of Open Access Journals (Sweden)

    Amjad Shraim

    2017-02-01

    Full Text Available The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides. The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city's sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1 in the influents were: acetaminophen (38.9, metformin (15.2, norfluoxetine (7.07, atenolol (2.04, and cephalexin (1.88. Meanwhile, the effluents contained slightly lower levels (in ng mL−1 than those of influents: acetaminophen (31.2, metformin (3.19, norfluoxetine (7.25, atenolol (0.545, and cephalexin (1.53. The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  5. Wastewater and sludge reuse in agriculture

    Science.gov (United States)

    Kalavrouziotis, Ioannis

    2016-04-01

    The reuse of Municipal wastewaters (TMWW) for irrigation of crops, and of sludge for the amendment of soils, is a multidimensional disposal practice aiming at: (i) minimizing the environmental problems by releasing the pressure exerted by these two inputs on the environment, (ii) providing the growing plants with water and nutrients and (ii) improving soil fertility and productivity, The research work conducted in our University in relation to accomplishing a safe reuse has been focused on the study of the following aspects of reuse: (i) heavy metal accumulation in soils and plants with emphasis on their edible part. This aspect has been studied by conducting a series of experiments aiming at the study of the accumulation of heavy metals in soils, and in plant roots, stalks, leaves and fruits. The conclusions drawn so far with regard to the order of accumulation of heavy metals are: Roots>leaves>stalks>fruits ( edible parts) (ii) interactions between heavy metals, plant nutrients and soil chemical and physical properties. After the examinations of hundreds of interactions, and the development of a quantification of the interactions contribution, it was found that considerable quantities of heavy metals and nutrients are contributed to the soil and to various plant parts , emphasizing the important role of the elemental interactions in plants.(iii) assessment of soil pollution with heavy metals based on pollution indices, Three pollution Indices have been established by our research team and were proposed internationally for application in actual practice for the prediction of soil pollution due to long term reuse of wastewater and sludge. These indices are as follows: (a) Elemental pollution Index (EPI), (b) Heavy Metal Load (HML), and (c) Total Concentration Factor (TCF) and (iv) construction of a computer program for the control of the reuse of TMWW and sludge, and forecasting soil pollution due to accumulation of heavy metal by means of pollution indices.

  6. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  7. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  8. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens

    2002-01-01

    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...

  9. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  10. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  11. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  12. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Treatability study of pesticide-based industrial wastewater.

    Science.gov (United States)

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.

  14. Phytoremediation of industrial mines wastewater using water hyacinth

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-01

    ABSTRACT The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved. PMID:27551860

  15. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  16. Segregation of metals-containing wastewater by pH

    International Nuclear Information System (INIS)

    Taylor, P.A.; McTaggart, D.R.

    1990-10-01

    A pH-based sampling system has shown that there is a high correlation between low pH and metals contamination for the wastewater from the 4500 area (manhole 190) and the 2000 area (pump station). Wastewater from the Radiochemical Engineering Development Center (REDC) and the High Flux Isotope Reactor (HFIR) has not shown any metals concentrations above the National Pollutant Discharge Elimination System (NPDES) permit limits for the Nonradiological Wastewater Treatment Plant (NRWTP). It is recommended that pH be used as the diversion criteria for wastewater from manhole 190 and the pump station to be sent to the metals tank of the NRWTP. Any wastewater with a pH less than 6.0 or greater than 10.0 should be sent to the metals tank. Based on the results of 29 weeks of sampling, it is expected that on the order of 36m 3 /wk (9500 gal/wk) of wastewater will be diverted to the metals tank of the NRWTP. Wastewater from REDC and HFIR can be sent to the nonmetals tank, but it should be sampled periodically and analyzed by Inductively Coupled Plasma (ICP) spectrophotometer to confirm that the metals concentration is not increasing. 1 ref., 2 figs., 9 tabs

  17. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  18. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  19. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  20. Physicochemical Characteristic of Municipal Wastewater in Tropical Area: Case Study of Surabaya City, Indonesia

    Science.gov (United States)

    Wijaya, I. M. W.; Soedjono, E. S.

    2018-03-01

    Municipal wastewater is the main contributor to diverse water pollution problems. In order to prevent the pollution risks, wastewater have to be treated before discharged to the main water. Selection of appropriated treatment process need the characteristic information of wastewater as design consideration. This study aims to analyse the physicochemical characteristic of municipal wastewater from inlet and outlet of ABR unit around Surabaya City. Medokan Semampir and Genteng Candi Rejo has been selected as wastewater sampling point. The samples were analysed in laboratory with parameters, such as pH, TSS, COD, BOD, NH4 +, NO3 -, NO2 -, P, and detergent. The results showed that all parameters in both locations are under the national standard of discharged water quality. In other words, the treated water is securely discharged to the river

  1. Qualitative monitoring of a treated wastewater reuse extensive ...

    African Journals Online (AJOL)

    2006-01-01

    Jan 1, 2006 ... limited and threatened by pollution from various human activi- ties. ... The problem with treated wastewater sampling, which will ... since any alternative solution (such as discharge into the sea) is not permitted, due to the extensive tour- ism. Hersonissos is famous for its crystal-clean sea and beaches.

  2. Removal efficiency of constructed wetland for treatment of agricultural wastewaters

    Czech Academy of Sciences Publication Activity Database

    Šereš, M.; Hnátková, T.; Vymazal, J.; Vaněk, Tomáš

    2017-01-01

    Roč. 12, č. 1 (2017), s. 45-52 ISSN 1857-1727 R&D Projects: GA TA ČR TA01020573 Institutional support: RVO:61389030 Keywords : Agriculture wastewater * Constructed wetland * Horizontal filter * Hybrid system s * Vertical filter Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management

  3. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  4. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  5. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  6. Diagnosis Report Gouda Wastewater Monitoring Network The Netherlands

    NARCIS (Netherlands)

    Vélez, C.; Popescu, I.; Lobbrecht, A.; Galvis, A.; Cardona, D.A.; Mosquera, P.A.

    2008-01-01

    Urban pollution managers are being forced to optimize the control of Urban Wastewater Systems (UWwS) in order to deal with more pressure and new criteria for performance. Furthermore, one of the main causes of the deficient control of the UWwSs is the lack of data in each subsystem and the lack of

  7. Review of Hosein Aabad Sugar Factory (HASF) Wastewater and ...

    African Journals Online (AJOL)

    Sugar industry is one of the largest industries in the world. Hosein Abad sugar factory (HASF) is located in Hamadan province of Iran. The aim of this research was to evaluate the quality and quantity of wastewater of the said factory and to estimate the pollution load and its emission factor as prerequisite of the management ...

  8. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  9. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  10. A Verhulst model for microalgae Botryococcus sp. growth and nutrient removal in wastewater

    Science.gov (United States)

    Jamaian, Siti Suhana; Bakeri, Noorhadila Mohd; Sunar, Norshuhaila Mohamed; Gani, Paran

    2017-08-01

    Microalgae Botryococcus sp. is a colonial green alga found in lakes and reservoirs in Malaysia. Previous studies reported that the potential of Botryococcus sp. photosynthesis as a source of fuel. The Botryococcus sp. contains hydrocarbon up to 75% of dry weight, which can be converted into petrol, diesel or turbine fuel or other liquid or gaseous hydrocarbons. Recently, an experimental study was conducted on phycoremediation technology for wastewater using Botryococcus sp. The phycoremediation technology is useful to remove the excess of nutrients such as nitrogen, phosphorus and also have the ability to remove various pollutants from wastewater. This research implements the Verhulst model to estimate the nutrient removal by microalgae Botryococcus sp. from the wastewater. This model has been validated with the experiments of microalgae Botryococcus sp. grown in domestic and palm oil wastewater. The results suggested that microalgae Botryococcus sp. could be cultured in domestic and palm oil wastewater while nutrients are reduced from these wastewaters.

  11. THE EFFECT OF WASTEWATER OF DOMESTIC AND MEAT PROCESSING PLANT ON THE RIVER OF KARASU

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    1996-01-01

    Full Text Available The wastewaters of the slaughterhouse and meat processing plant in Erzurum city, which don't have any wastewater treatment plant is discharged to the Karasu river. The wastewater, especially occured during slaughtering and processing of meat, contained high level of COD, BOD5, total suspended solid, fat and grease and total solid. Therefore these wastewaters cause some environmental problems in the city. This paper presents the effect of wastewaters from resident area slaughterhouse, and meat processing plants on the river of Karasu. For this purpose some samples taken from eight different points around the river were analysed in order to obtain values of dissolved oxygen, BOD5, COD, total phosphorus, total kjeldahl nitrojen, total suspended solid, total solid, total volatile suspended solid, fat and grease, chlorides and coliform. From the results obtained, it is found out that the wastewaters from the slaughterhouse has the biggest pollutant effect in the river.

  12. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  13. Treatment of wastewater by lemna minor

    International Nuclear Information System (INIS)

    Iram, S.; Zahra, A.

    2012-01-01

    The aim of the present study was to study the performance of bio-treatment ponds after one year of functioning at National Agricultural Research Center, Islamabad, Pakistan. The physical parameters (colour, pH, EC, TDS, turbidity) and chemical parameters (Zn, Cu, Cd, Ni, Mn, Fe and Pb) are with in the limits which are not sub-lethal for fish rearing. Lemna accumulates higher concentration of heavy metals as compared to wastewater and best for phyto remediation purpose. The treated wastewater is currently used for rearing of fish and irrigation of crops and plants. The plants around the bio-treatment ponds are healthy, green and showing enough production. The present investigation indicates that in future it would be possible to construct bio-treatment ponds in polluted areas of Pakistan. (author)

  14. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  15. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    wastewater-derived products, and to relate this to the availability from other P-containing waste products and mineral P fertiliser. This included aspects of development over time and soil accumulation, as well as effects of soil pH and the spatial distribution in soil. The P sources applied in this PhD work...... reserves. Wastewater represents the largest urban flow of P in waste. Hence, knowledge about plant P availability of products from the wastewater treatment system, and also comparison to other waste P sources and mineral P is essential to obtain an efficient recycling and to prioritise between different P...... recycling options. The work of this PhD focused on the plant P availability of sewage sludge, a P-rich residue from wastewater treatment which is commonly applied to agricultural soil in Denmark. The overall objective of the PhD work was to evaluate the plant availability of P in sewage sludge and other...

  16. Dynamic Membrane Technology for Printing Wastewater Reuse

    Science.gov (United States)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  17. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4

    OpenAIRE

    Ma, Chao; Wen, Hanquan; Xing, Defeng; Pei, Xuanyuan; Zhu, Jiani; Ren, Nanqi; Liu, Bingfeng

    2017-01-01

    Background Simultaneous wastewater treatment and lipid production by oleaginous microalgae show great potential to alleviate energy shortage and environmental pollution, because they exhibit tremendous advantages over traditional activated sludge. Currently, most research on wastewater treatment by microalgal are carried out at optimized temperature conditions (25?35??C), but no information about simultaneous wastewater treatment and lipid production by microalgae at low temperatures has been...

  18. Wastewater heat recovery apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  19. Characterization of Wastewaters obtained from Hatay Tanneries

    Directory of Open Access Journals (Sweden)

    Şana Sungur

    2017-06-01

    Full Text Available The leather tanning industry is one of the most significant pollutants in terms of both conventional and toxic parameters. On the other hand, leather industry has an important economic role both in Turkey and in the World. In this study, wastewater samples were taken from 15 different tanneries in the Hatay Region. Wastewaters obtained from liming process and chromium tanning process was analyzed. Sulfide, chromium (III, chromium (VI, oil and grease, total suspended solids (TSS, organic matters, biochemical oxygen demand (BOD, chemical oxygen demand (COD, pH and alkalinity were determined according to Turkish Standard Methods. The determined averages values belong to wastewaters obtained from liming process were as following: pH 11.71; COD 16821 mg L-1; BOD 4357 mg L-1; TSS 39023 mg L-1; oil and grease 364 mg L-1; S-2 concentration 802 mg L-1; alkalinity 2115 mg L-1. The determined averages values belong to wastewaters obtained from chromium tanning process were also as following: pH 4.23; COD 6740 mg L-1; BOD 377 mg L-1; Cr+3 concentrations 372 mg L-1; Cr+6 concentrations 127 mg L-1; TSS 14553 mg L-1; oil and grease 343 mg L-1. The results of all analyzes were higher than wastewater discharge standards. As a result, it’s necessary to use more effective treatments in order to reduce the negative impacts of leather tanning industry that affect environment, natural water resources and at last human health and welfare.

  20. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  1. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse.

    Science.gov (United States)

    Martínez-Alcalá, Isabel; Pellicer-Martínez, Francisco; Fernández-López, Carmen

    2018-05-15

    Emerging pollutants, including pharmaceutical compounds, are producing water pollution problems around the world. Some pharmaceutical pollutants, which mainly reach ecosystems within wastewater discharges, are persistent in the water cycle and can also reach the food chain. This work addresses this issue, accounting the grey component of the water footprint (GWF P ) for four of the most common pharmaceutical compounds (carbamazepine (CBZ), diclofenac (DCF), ketoprofen (KTP) and naproxen (NPX)). In addition, the GWF C for the main conventional pollutants is also accounted (nitrate, phosphates and organic matter). The case study is the Murcia Region of southeastern Spain, where wastewater treatment plants (WWTPs) purify 99.1% of the wastewater discharges and there is an important direct reuse of the treated wastewater in irrigation. Thus, the influence of WWTPs and reuse on the GWF is analysed. The results reveal that GWF P , only taking into account pharmaceutical pollutants, has a value of 301 m 3 inhabitant -1 year -1 ; considering only conventional pollutants (GWF C ), this value increases to 4718 m 3 inhabitant -1 year -1 . So, the difference between these values is such that in other areas with consumption habits similar to those of the Murcia Region, and without wastewater purification, conventional pollutants may well establish the value of the GWF. On average, the WWTPs reduce the GWF C by 90% and the GWF P by 26%. These different reductions of the pollutant concentrations in the treated effluents show that the GWF is not only due to conventional pollutants, and other contaminants can became critical, such as the pharmaceutical pollutants. The reuse further reduces the value of the GWF for the Murcia Region, by around 43.6%. However, the reuse of treated wastewater is controversial, considering the pharmaceutical contaminants and their possible consequences in the food chain. In these cases, the GWF of pharmaceutical pollutants can be used to provide a

  2. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  3. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  4. Environmental health research in the UK and European Union : research priorities in water and air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Ince, M; Wheatley, A [Loughborough Univ. of Technology (United Kingdom). Dept. of Civil Engineering

    1997-12-31

    The contents are involvement of the European community, integration of research and development programmes ; surface water quality and pollution incidents; surface water pollution in the UK ; eutrophication ; drinking water quality ; causes and current treatment for removal of pollutants ; future causes of water pollution ; and , water and wastewater research.

  5. Environmental health research in the UK and European Union : research priorities in water and air pollution control

    International Nuclear Information System (INIS)

    Ince, M.; Wheatley, A.

    1996-01-01

    The contents are involvement of the European community, integration of research and development programmes ; surface water quality and pollution incidents; surface water pollution in the UK ; eutrophication ; drinking water quality ; causes and current treatment for removal of pollutants ; future causes of water pollution ; and , water and wastewater research

  6. Environmental systems analysis of wastewater management

    International Nuclear Information System (INIS)

    Kaerrman, Erik

    2000-01-01

    relation to those from the society a whole. Further analysis of the four system structures described above gave the basis for formulation of four strategies for less environmental impact and less resource usage of wastewater management: 1) Handle nutrient-rich flows separately from other waste flows, 2) Recycle nutrients and use energy efficiently, 3) Avoid contamination of wastewater flows and 4) Put unavoidable pollution on landfill

  7. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  8. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  10. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB—Anoxic/Oxic(A/O process was employed in a wastewater treatment of starch and Vitamin B12 wastewater, which was 5 000 m3/d with highly concentrated organic pollutants and ammonia. The efficiency and reliability of the process has been proven. The results of the system operation show that the concentration of the effluent COD, ammonia and total nitrogen (TN were at 78.4 mg/L, 18.7 mg/L and 41.1 mg/L, and the treatment efficiencies of COD, ammonia and TN reached over 99%, 92.1%, 82.7%, respectively, when the influent COD and TN concentration were in the ranges of 8 544~9 720 mg/L and 240~250 mg/L. The quality of the treated wastewater met the first-class discharge standards in Integrated Wastewater Discharge Standard(GB 8978—1996.

  11. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  12. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  13. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge

    Directory of Open Access Journals (Sweden)

    Alexis Nzila

    2016-08-01

    Full Text Available A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.

  14. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  15. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    Science.gov (United States)

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Selected organic wastewater compounds (OWCs) such as household, industrial, and agricultural-use compounds, pharmaceuticals, antibiotics, and sterols and hormones were measured at 65 sites in Minnesota as part of a cooperative study among the Minnesota Department of Health, Minnesota Pollution Control Agency, and the U.S. Geological Survey. Samples were collected in Minnesota during October 2000 through November 2002 and analyzed for the presence and distribution of 91 OWCs at sites including wastewater treatment plant influent and effluent; landfill and feedlot lagoon leachate; surface water; ground water (underlying sewered and unsewered mixed urban land use, a waste dump, and feedlots); and the intake and finished drinking water from drinking water facilities.

  16. Basic Principles of Wastewater Treatment

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books...

  17. Separation and Molecular Identification of Resistant Bacteria to Lead from Behbahan Bidboland Gas Refinery Wastewater (Iran)

    OpenAIRE

    Azam Mehrbakhsh; Monir Doudi; Hossein Motamedi

    2016-01-01

    Heavy metals are one of the pollution sources in environment. The pollution due to these metals is the problem that could have negative impact on water. Human is faced with these poisons effects due to occupational reasons. The lead is regarded as heavy metal whose industrial applications cause environmental pollution in high rate.The aim of this project was Separation and Molecular Identification of Resistant Bacteria to Lead from Behbahan Bidboland Gas Refinery Wastewater (Iran). For thi...

  18. City, (from Point of Organic Pollutants and Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sajad Mazlomi

    2014-03-01

    Full Text Available Background: In this study quality and quantity characteristics wastewater of hospitals, clinics and health centers of Arak city and the potential impacts of them on Arak wastewater plant investigated. Methods: In this cross-sectional  study, which done during 2011-2012, the quantity and quality  of wastewater via point of COD,BOD5, pH, TKN, PO4and also heavy metals in the hospitals, clinics and health center of Arak were studied. Then, the effects of these pollutants as equal to person on wastewater convey system and wastewater treatment plant were assisted. Results: Monitoring of BOD5, TKN, and PO4 indicated that the daily disposal rate of these pollutants were equal 778.14, 102.7, and 53.6 kg/d, respectively, which equal to 15763, 51351, and 6700 person, respectively. The average water consumption of these centers was equal to 8.2l/s, and the estimated measure of produced wastewater was6.14 l/s. Also, after analysis the measure of heavy metals, Hg production (99.331 g/d was more than other heavy metals, and the next rank was related to Zn (41.96 g/d and Ag (41.96g/d, respectively. Conclusion: Although existence pretreatment process units can help to decrease the side effects of produced wastewater, this kind of wastewater needs complete treatment. Discharge of this kind wastewater to absorption trenches led to adverse health impacts in future. Therefore, a construction separate wastewater treatment plants and proper operation of these systems can reduce ecosystem impacts of wastewater discharges.

  19. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  20. Environmental impacts of polluted effluents on human health

    International Nuclear Information System (INIS)

    Ahmad, M.S.

    2005-01-01

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  1. Environmental impacts of polluted effluents on human health

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M S [NESPAK, Lahore (Pakistan). Geo-Environmental Engineering Div.

    2005-07-15

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  2. Toxicity removal from hard board wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Nawar, S.S.; El Kamah, H.

    1984-01-01

    The rapid growth of industry in Egypt in recent years has made industrial pollution an important issue. During the past decade fish production in some canals and lakes have virtually ceased due to the discharge of industrial and agricultural wastewater. The alternatives under study include effluent treatment before discharge to receiving water. Highly polluted waste from a hard board mill was treated using the activated sludge process. Factors affecting the efficiency of the treatment were detention time and organic loading rate. The results indicated that BOD and phenol reduction reached 82% and 94% respectively, when the organic loading rate was 0.1 (kg BOD/kg SS). The process proved to be successful in completely eliminating the toxicity effect of the waste on Nile fish (Tilapia nilotica). 14 references, 1 figure, 3 tables.

  3. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  4. Problems with textile wastewater discharge

    International Nuclear Information System (INIS)

    Rantala, Pentti

    1987-01-01

    The general character of textile industry wastewaters is briefly discussed. General guidelines and practice in Finland when discharging textile industry wastewaters to municipal sewer systems is described. A survey revealed that most municipalities experience some problems due to textile industry wastewaters. Pretreatment is not always practiced and in some cases pretreatment is not operated efficiently. (author)

  5. Acute pollution of recipients in urban areas

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, P.

    1997-01-01

    Oxygen and ammonia concentration are key parameters of acute water pollution in urban rivers. These two abiotic parameters are statistically assessed for a historical rain series by means of a simplified deterministic model of the integrated drainage system. Continuous simulation of the system...... performance indicates that acute water pollution is caused by intermittent discharges from both sewer system and wastewater treatment plant. Neglecting one of them in the evaluation of the environmental impact gives a wrong impression of total system behavior. Detention basins and alternative operational...... modes in the treatment plant under wet weather loading have a limited positive effect for minimizing acute water pollution. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  6. Water Pollution

    International Nuclear Information System (INIS)

    Goni, J.

    1984-01-01

    This work is about the water pollution. The air and the water interaction cycles is the main idea of the geochemical pollution conception. In the water surface as well as in the deep aquifers we can found cough metals or minerals from the athmosferic air. The activities of mercury fluor and nitrates are important to the pollution study

  7. Air Pollution.

    Science.gov (United States)

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  8. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  9. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact......The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...

  10. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  11. Polluted Runoff: Nonpoint Source Pollution

    Science.gov (United States)

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  12. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  13. Oil pollution

    International Nuclear Information System (INIS)

    Mankabady, Samir.

    1994-08-01

    Oil enters the marine environment when it is discharged, or has escaped, during transport, drilling, shipping, accidents, dumping and offshore operations. This book serves as a reference both on the various complex international operational and legal matters of oil pollution using examples such as the Exxon Valdez, the Braer and Lord Donaldson's report. The chapters include the development of international rules on the marine environment, the prevention of marine pollution from shipping activities, liability for oil pollution damage, the conflict of the 1990 Oil Pollution Act and the 1992 protocols and finally the cooperation and response to pollution incidents. (UK)

  14. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  15. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  16. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  18. Wastewater treatments and the impact on environment and agriculture: A case city of Annaba (north eastern of Algeria)

    Science.gov (United States)

    Abour, Fella; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The present study deals with wastewater treatment which represents a real challenge in the world especially for developing countries. Our investigation takes place in the Annaba (North Eastern of Algeria) which represents one of big cities in the country. The wastewater is treated collectively in the Allalik station which provides a global wastewater treatment to guarantee the sustainability of the ecosystem. The obtained results on treated wastewater show a contamination with Selenium (IS index for Selenium = 5.9). Whereas the other analysed parameters highlight values without exceeding standards excepting the nitrites. The microbiological analyses and Bourgeois index indicate the human origin for pollution (IB >1). In spite of the actual treatment, the pollution selenium and nitrites suggest the improvement of the process of wastewater treatment.

  19. Wastewater Treatment from Batik Industries Using TiO2 Nanoparticles

    Science.gov (United States)

    Arifan, Fahmi; Nugraheni, FS; Rama Devara, Hafiz; Lianandya, Niken Elsa

    2018-02-01

    Batik is cultural patterned fabric, and the this industries produce wastewater that can pollute the aquatic environment. Besides dyes, batik wastewater also contains synthetic compounds that are hard degraded, such as heavy metals, suspended solids, or organic compounds. In this study, photocatalitic membrane TiO2 coated plastic sheets have been used to degrade batik wastewater under solar exposure. A total of 8 pieces of catalyst sheets are added on 1000 ml of the waste, and managed to degrade 50.41% of the initial concentration during 5-days irradiation. In this study, several parameters of the water quality such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspensed solids (TSS) of the wastewater were observed to be decreasing during photodegradation process. The catalyst sheet also is stable to be used repeatedly in wastewater treatment.

  20. Qualitative and Quantitative Assessment of Wastewater of Pistachio Processing Terminals (Case Study: Kerman city

    Directory of Open Access Journals (Sweden)

    F Khademi

    2016-03-01

    Full Text Available Introduction: Wastewaters resulting from seasonal processing such as pistachio processing industry are one of the most important factors of environmental pollution. High concentration of pollutants are the qualitative characteristics of wastewaters that due high consumption of water and energy resources as well as high levels production of waste have a good potential to realization of projects to reduce the environmental impacts and optimizing the consumption of energy resources.The aim of this study was to determine the wastewater̛ s quality and quantity of pistachio processing terminals. Methods: this study is cross-sectional study that has been implemented from mid –September until late October (pistachio harvest season in each of the years 2012-2013-2014 in Kerman.Firstely according to field study, the characteristics and location of 20 pistachio processing terminals were determined by a GPS device. Then 8 pistachio processing terminals were selected in around of wastewater collection system. Composite sampling method with total of 72 samples was done in each year during pistachio operation. Samples were conducted from pistachio processing wastewater screen filter outlet. In each of samples BOD5, COD, TSS, pH and Total phenolic were determined. Sampling and tests were done according to water and wastewater standard methods book (20th edition. Concentration of Phenolic compounds was measured by folin ciocaltive method. The Data was analyzed by SPSS software. Results: the average of total produced wastewater in pistachio processing terminals in this study was 85.9m3/d. The average BOD5, COD, TSS, Total phenolic and PH were 6106, 21570, 682, 4154 (mg/L and 5.5 respectively. Conclusion: The obtained results from raw wastewater of pistachio processing terminals showed they have high BOD and COD. This is caused by presentation of priority pollutants (phenolic compounds which have high potential in pollution and toxicity for discharging any

  1. On the degradability of printing and dyeing wastewater by wet air oxidation.

    Science.gov (United States)

    Hu, X; Lei, L; Chen, G; Yue, P L

    2001-06-01

    A modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst.

  2. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  3. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    OpenAIRE

    Abou-Elela, Sohair I.; Ali, Mohammed Eid M.; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  4. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  5. River pollution caused by natural stone industry

    Science.gov (United States)

    Oktriani, Ani; Darmajanti, Linda; Soesilo, Tri Edhi Budhi

    2017-03-01

    The natural stone industry is classified as small industry. Current wastewater treatment still causes pollution in the river. This thesis aims to analyze the performance of wastewater treatment in natural stones industry. The data was collected from water quality test (parameters: temperature, pH, DO, and TSS). The wastewater treatment performance was in a slightly higher position compared to the 2nd class quality standards of Government Regulation No. 82/2001. The parameter that exceeded quality standards was the concentration of TSS, which was up to 240.8 mg/l. The high concentration of TSS was affected by the absence of sludge management schedule, which resulted in non-optimal precipitation. Besides that, the design of sedimentation basin was still not adapted with wastewater debit. Referring to the results, this study suggests the government of Cirebon District to provide wastewater treatment development through the village staff. Furthermore, the government also needs to give strict punishment to business owner who does not treat waste correctly and does not have a business license. Moreover, the sale value of sludge as byproduct of wastewater treatment needs to be increased.

  6. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)

    drinie

    1998). Research is directed on quantifying the C, N and P fractions in the secondary ... and prefermented wastewater, applicable for a basic in-line APT and other prefermenter ... representative composite samples, and from these samples the ... Constituents in true solution (dissolved) (particle size < 1 nm);. • not visible by ...

  7. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    organisms: These are small plants as well as animals and they are some of the most difficult ... It is measured by the oxygen consumption of a pre-inoculated sample at 20-250C in .... Organic wastewater components may be oxidised all the way to CO2.

  8. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  9. Characterization of wastewaters from vehicle washing companies and environmental impacts

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2011-12-01

    Full Text Available The car wash business has developed rapidly in recent years due to the increased number of cars, thus, it can cause serious environmental problems considering its potential source of pollution. The aim of this study was to characterize the wastewater from car washing companies in the city of Campina Grande, in Paraiba state, and to analyze the environmental impacts generated. A survey was conducted from November 2009 to July 2010. The first step we present a survey of car wash businesses in the city, and identified 20 licensed companies in which we evaluated the number of vehicles washed per week, the existence of a system of pre-treatment of wastewater generated and infrastructure that would allow the realization of the collection of samples of the effluent, the second step was carried out chemical and physical characterization of wastewater from five 20 companies surveyed in the previous step, and third stage were measured pollution loads of wastewater from washing of vehicles in the city, from the results obtained in previous steps. The characterization parameters were analyzed: oil and grease, COD, heavy metals, TS, TSS, turbidity, TKN, total P, pH and color. The results demonstrated that the wastewater from the car wash establishments shows high concentrations of organic matter, oils and grease, heavy metals and solids, and as such did not conform with the specific environmental legislation. Evaluation of pollutant loads demonstrated that if releases without proper treatment, it can cause serious environmental problems. It is therefore essential that these establishments are properly monitored.

  10. Upper Blackstone Water Pollution Abatement District Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Joseph Nowak, a resident of Ware Mass. and Chief Operator of the Upper Blackstone Water Pollution Abatement District (District) in Milbury, Mass., was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  11. Characterization and correlations of various pollution parameters in the tannery effluent

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a tannery in Sheikhupura, Punjab. The results of this study demonstrated that the composition of tannery wastewater could change continuously due to inherent nature of tannery operations. In general, tannery effluent was alkaline in nature and highly polluted in terms of organic, solids, sulfates, sulfides and chromium content. Basic ingredients of tannery effluent i.e. high alkalinity and substantial portions of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and other pollutants in particulate form rendered it suitable for enhanced pollutant removals at primary stage of treatment using suitable coagulants. Results of primary treatment of wastewater from this tannery suggested that primary treatment alone was not capable of reducing pollutant loads significantly. Hence post-primary biological treatment was required to meet local effluent quality standards. (author)

  12. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    Science.gov (United States)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  13. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  14. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  15. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  16. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  17. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  18. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  19. Heterogeneity of the environmental regulation of industrial wastewater: European wineries.

    Science.gov (United States)

    Román-Sánchez, Isabel M; Aznar-Sánchez, José A; Belmonte-Ureña, Luis J

    2015-01-01

    The European legislation of the pollution of industrial wastewater shows a high degree of heterogeneity. This fact implies that there is a market failure with relevant consequences. Within the European Union, each Member State performs a specific transposition of the Water Framework Directive 2000/60. The member states introduce different sanitation fees to correct water pollution. In this paper, the case of the European wine industry is analyzed. It studies the sanitation fees of the five major wine producing countries: France, Italy, Spain, Germany and Portugal. Results show significant differences among the wastewater fees and the study reveals how such heterogeneity leads to relevant market distortions. The research concludes that more homogeneous environmental regulation would promote more sustainable wine production processes with more efficient water management and purification systems, as well as the introduction of cutting edge technologies.

  20. Towards sustainable pollution management

    Science.gov (United States)

    Jern, N. G. W.

    2017-03-01

    It is often overlooked pollution control itself may not be entirely free from adverse impact on the environment if considered from a more holistic perspective. For example mechanised wastewater treatment is energy intensive and so has a carbon footprint because of the need to move air to supply oxygen to the aerobic treatment process. The aerobic treatment process then results in excess bio-sludge which requires disposal and if such is not appropriately performed, then there is risk of surface and groundwater contamination. This presentation explores the changes which have been investigated and are beginning to be implemented in wastewater, sludge, and agro-industrial wastes management which are more environmentally benign. Three examples shall be used to illustrate the discussion. The first example uses the conventional sewage treatment system with a unit process arrangement which converts carbonaceous pollutants from soluble and colloidal forms to particulate forms with an aerobic process before attempting energy recovery with an anaerobic process. Such an arrangement does, however, result in a negative energy balance. This is not withstanding the fact there is potentially more energy in sewage than is required to treat it if that energy can be effectively harvested. The latter can be achieved by removing the carbonaceous pollutants before the aerobic process and thereby using the aerobic process for polishing instead of treating. The carbonaceous pollutants so recovered then becomes the feed for the anaerobic process. Unfortunately conventional anaerobic sludge digestion only removes 35-45% of the organic material fed. Since biogas production (and hence energy recovery) is linked to the amount of organic material which can be degraded anaerobically, the effectiveness of the anaerobic digestion process needs to be improved. Contrary to a commonly held belief wherein methanogenesis is the “bottleneck” in anaerobic processes, hydrolysis is in sludge digestion

  1. Regulating industrial wastewater discharged to public wastewater treatment plants - A conceptual approach

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1997-01-01

    The paper describes some of the basic principles behind the DEPA Guidelines for discharge of industrial wastewater to public sewers set in operation in 1995 and evaluates some of the experiences with the implementation. It is described how such guidelines support the approach of pollution...... prevention and the implementation of cleaner technology by putting a stress on the industry. Further an approach for the balance between environmental and technological considerations is introduced. The need for easily understandable environmental priorities is stressed and a concept for this is presented...

  2. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  3. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  4. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.

    Science.gov (United States)

    Ajayan, Kayil Veedu; Selvaraju, Muthusamy; Unnikannan, Pachikaran; Sruthi, Palliyath

    2015-01-01

    A number of microalgae species are efficient in removing toxicants from wastewater. Many of these potential species are a promising, eco-friendly, and sustainable option for tertiary wastewater treatment with a possible advantage of improving the economics of microalgae cultivation for biofuel production. The present study deals with the phycoremediation of tannery wastewater (TWW) using Scenedesmus sp. isolated from a local habitat. The test species was grown in TWW under laboratory conditions and harvested on the 12th day. The results revealed that the algal biomass during the growth period not only reduced the pollution load of heavy metals (Cr-81.2-96%, Cu-73.2-98%, Pb-75-98% and Zn-65-98%) but also the nutrients (NO3 >44.3% and PO4 >95%). Fourier Transform Infrared (FTIR) spectrums of Scenedesmus sp. biomass revealed the involvement of hydroxyl amino, carboxylic and carbonyl groups. The scanning electron micrograph (SEM) and Energy Dispersive X-ray Spectroscopic analysis (EDS) revealed the surface texture, morphology and element distribution of the biosorbent. Furthermore, the wastewater generated during wet-blue tanning process can support dense population of Scenedesmus sp., making it a potential growth medium for biomass production of the test alga for phycoremediation of toxicants in tannery wastewaters.

  5. Maximizing recovery of energy and nutrients from urban wastewaters

    International Nuclear Information System (INIS)

    Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J.

    2016-01-01

    Historically, UWWs (urban wastewaters) that contain high levels of organic carbon, N (nitrogen), and P (phosphorous) have been considered an environmental burden and have been treated at the expense of significant energy input. With the advent of new pollution abatement technologies, UWWs are now being regarded as a renewable resource from which, useful chemicals and energy could be harvested. This study proposes an integrated, algal-based system that has the potential to treat UWWs to the desired discharge standards in a sustainable manner while recovering high fraction of its energy content as well as its N- and P-contents for use as fertilizers. Key embodiments of the system being proposed are: i) cultivation of an extremophile microalga, Galdieria sulphuraria, in UWW for removal of carbon, N, and P via single-step by mixotrophic metabolism; ii) extraction of energy-rich biocrude and biochar from the cultivated biomass via hydrothermal processing; and, iii) enhancement of biomass productivity via partial recycling of the nutrient-rich AP (aqueous product) from hydrothermal-processed biomass to the cultivation step to optimize productivity, and formulation of fertilizers from the remaining AP. This paper presents a process model to simulate this integrated system, identify the optimal process conditions, and establish ranges for operational parameters. - Highlights: • Developed model for algal system for wastewater treatment/energy production. • Evaluated energy efficiency in algal wastewater treatment/energy production. • Optimized algal wastewater treatment/energy production. • Demonstrated feasibility of energy-positive wastewater treatment.

  6. Soil Chemistry after Irrigation with Treated Wastewater in Semiarid Climate

    Directory of Open Access Journals (Sweden)

    Pedro Carlos Pacheco de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Soil irrigation using treated wastewater in the Brazilian semiarid region is a promising practice as this area currently faces water scarcity and pollution of water resources by domestic sewage. The aim of this study was to evaluate the use of treated wastewater in drip irrigation and its effect on the chemistry of soil cultivated with squash (Cucurbita maxima Duch. Coroa IAC and to verify whether there was an increase in soil salinity under a semiarid climate. The experiment was conducted for 123 days on a farm close to the sewage treatment plant, in a randomized block design with five treatments and four replications. The treatments consisted of two irrigation water depths (100 and 150 % of the evapotranspiration, two applications of gypsum to attenuate wastewater sodicity (0 and 5.51 g per plant, and a control treatment with no application of wastewater or gypsum. During the experiment, treated wastewater and soil gravitational water, at a depth of 0.40 m, were collected for measurement of Na+, K+, Ca2+, Mg2+, NO−3, NH4+, Cl− , alkalinity, electrical conductivity, pH and sodium adsorption ratio. At the end of the experiment, soil samples were collected at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m; and pH, total N, organic C, exchangeable cations and electrical conductivity of the saturation extract (CEs were analyzed. Besides an increase in pH and a reduction in total N, the irrigation with wastewater reduces soil salinity of the naturally salt-rich soils of the semiarid climate. It also led to soil sodification, in spite of the added gypsum, which indicates that irrigation with wastewater might require the addition of greater quantities of gypsum to prevent physical degradation of the soil.

  7. Environmental pollution

    International Nuclear Information System (INIS)

    Odzuck, W.

    1982-01-01

    The volume of the anthropogenic pollution of the environment (incl. radioactivity) is of great economical importance and has also a meaning to the health and happiness of people. The pocket book introduces into the whole problem by giving exact information and data. After a general survey, the pollutions of urban-industrial, and aquatic ecosystems are dealt with. The book closes with indications as to general principles, specific dangers, and the fature development of the environmental pollution. (orig.) [de

  8. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  9. Setting up measuring campaigns for integrated wastewater modelling

    DEFF Research Database (Denmark)

    Vanrolleghem, P.A.; Schilling, W.; Rauch, Wolfgang

    1999-01-01

    The steps of calibration/confirmation of models in a suggested Ii-step procedure far analysis, planning and implementation of integrated urban wastewater management systems is focused upon in this paper. Based on ample experience obtained in comprehensive investigations throughout Europe recommen...... problems related to suspended solids, specific contaminants, hygienic hazards and total pollutant loss illustrate the recommendations presented. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  10. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Klančnik, Maja

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  11. Modernizing sewers and wastewater systems with new technologies

    DEFF Research Database (Denmark)

    Henze, Mogens; Arnbjerg-Nielsen, Karsten

    2008-01-01

    After continuous problems and challenges with dead fish and oxygen depletion in the waters, Denmark initiated an action plan for Danish waters to reduce pollution in the late 1980s. The action plan puts focus on stricter criteria for wastewater treatment plants. Over the years, the plan has been ...... Danish technologies is one of the main contributions to this success. However, education of staff, improved legislation and good cooperation between several stakeholders played an important role as well....

  12. Wastewater control report for the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-06-01

    The 1995 National Pollutant Discharge Elimination System (NPDES) permit for the Y-12 Plant (Part III-F, page 41) requires the preparation of a report to describe procedures and criteria used in operating on-site treatment systems to maintain compliance with the NPDES permit. This report has been prepared to fulfill this requirement. Five wastewater treatment systems are currently in operation at the Y-12 Plant; they are operated by personal in the Waste Management and Facilities Management Organizations

  13. Ozonation for degradation of pharmaceutical in hospital wastewater

    DEFF Research Database (Denmark)

    Bester, Kai; Hansen, Kamilla S; Spiliotopoulou, Aikaterini

    -pollutants (Antoniou et al., 2013). In the present work, ozonation of biological treated hospital wastewater spiked with pharmaceuticals were performed to determine the required ozone dose for 90 % removal of the investigated pharmaceuticals. Effluents with different DOC level were used to investigate the effect...... of DOC on the removal of the pharmaceuticals. Furthermore, the effect of pH on ozone decomposition was investigated in relevant pH range....

  14. Application of agricultural fibers in pollution removal from aqueous solution

    International Nuclear Information System (INIS)

    Mahvi, A. H.

    2008-01-01

    Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage, Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as bio sorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed

  15. The use of moving bed bio-reactor to laundry wastewater treatment

    Science.gov (United States)

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni

    2017-11-01

    Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.

  16. Survey of Solid Waste and Wastewater Separate and Combined Management Strategies in Rural Areas of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2014-12-01

    Full Text Available Background and Purpose: Improper wastewater and solid waste management in rural areas could be a risk to human health and environment pollution. One percent of Iran’s rural area is connected to the wastewater collection network. Solid waste management in rural areas of Iran is mainly consisted uncontrolled dumping and open burning. The aim of this study is prioritization of wastewater and solid waste separate and combined management strategies in rural areas of Iran. Materials and Methods: This was a descriptive study. In this study, firstly were determined appropriate and conventional methods for wastewater and solid waste separate and combined management by using national and case studies. Then, using specified criteria and by applying a weighting system, prioritization was conducted and implementation strategies presented for wastewater and solid waste separate and combined management. Results: The first priority for the collection and treatment, wastewater in rural areas are smalldiameter gravity systems and preliminary treatment with complementary treatment by land, respectively. In order to the rural solid waste management, organic compost complementary systems were in first priority. In the wastewater and solid waste combined management, the first priority was compost and biogas production by combining anaerobic UASB reactor and Chinese biogas. Conclusion: Considering for influence of various factors in selecting an appropriate method is very important in order to wastewater and solid waste separate and the combined management of a rural. Therefore, the accordance of presenting strategy with local conditions and facilities should be taken into consideration.

  17. Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test

    Directory of Open Access Journals (Sweden)

    Ofman Piotr

    2017-01-01

    Full Text Available Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3–4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.

  18. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    The introduction of on-line sensors for monitoring of nutrient salts concentrations on wastewater treatment plants with nutrient removal, opens a wide new area of modelling wastewater processes. The subject of this thesis is the formulation of operational dynamic models based on time series...... of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very......-known theory of the processes with the significant effects found in data. These models are called grey box models, and they contain rate expressions for the processes of influent load of nutrients, transport of nutrients between the aeration tanks, hydrolysis and growth of biomass, nitrification...

  19. Biodenitrification of industrial wastewater

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Walker, J.F. Jr.; Helfrich, M.V.

    1987-01-01

    The Feed Materials Production Center (FMPC), a US Department of Energy facility at Fernald, Ohio, is constructing a fluidized-bed biodenitrification plant based on pilot work conducted at the Oak Ridge National Laboratory (ORNL) in the late 1970s and early 1980s. This plant is designed to treat approximately 600 to 800 L/min of wastewater having a nitrate concentration as high as 10 g/L. The effluent is to contain less than 0.1 g/L of nitrate. Since this new facility is an extrapolation of the ORNL work to significantly larger scale equipment and to actual rather than synthetic wastewater, design verification studies have been performed to reduce uncertainties in the scaleup. The results of these studies are summarized in this report. 7 refs., 1 fig

  20. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    Science.gov (United States)

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  2. Microplastic in Danish wastewater

    DEFF Research Database (Denmark)

    The objectives of the present study were to evaluate the role of Danish wastewater treatment plants (WWTPs) in the emission of microplastic to the environment in terms of amounts and types of plastic polymers emitted and if possible, to evaluate which sources these plastic polymers could originate...... investigations (Fourier Transformed Infrared Spectroscopy imaging applying a Focal Plane Array). This method allows both determination of the microplastic concentrations in the samples and identification of the type of plastic polymer of each microplastic particle....

  3. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    Science.gov (United States)

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  4. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  5. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  6. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  7. Environmental Pollution

    International Nuclear Information System (INIS)

    Won, Jong IK

    1990-03-01

    This book tells US that what nature is, which gives descriptions of the world of living things like the role of plant, order of the vegetable kingdom, the world of plant, destruction of the natural world, and the world of bugs, nature and human with man's survive and change of nature, environment and human, and in creasing population and environment, philosophy of conservation of nature on meaning, destroy and management, and direction, air pollution spot, water pollution, soil pollution conservation of nature and industry case of foreign country and view of environment and environmental assimilating capacity.

  8. Natural treatment system models for wastewater management: a study from Hyderabad, India.

    Science.gov (United States)

    Sonkamble, Sahebrao; Wajihuddin, Md; Jampani, Mahesh; Sarah, S; Somvanshi, V K; Ahmed, Shakeel; Amerasinghe, Priyanie; Boisson, Alexandre

    2018-01-01

    Wastewater generated on a global scale has become a significant source of water resources which necessitates appropriate management strategies. However, the complexities associated with wastewater are lack of economically viable treatment systems, especially in low- and middle-income countries. While many types of treatment systems are needed to serve the various local issues, we propose natural treatment systems (NTS) such as natural wetlands that are eco-friendly, cost-effective, and can be jointly driven by public bodies and communities. In order for it to be part of wastewater management, this study explores the NTS potential for removal of pollutants, cost-effectiveness, and reuse options for the 1.20 million m 3 /day of wastewater generated in Hyderabad, India. The pilot study includes hydro-geophysical characterization of natural wetland to determine pollutant removal efficiency and its effective utilization for treated wastewater in the peri-urban habitat. The results show the removal of organic content (76-78%), nutrients (77-97%), and microbes (99.5-99.9%) from the wetland-treated wastewater and its suitability for agriculture applications. Furthermore, the wetland efficiency integrated with engineered interventions led to the development of NTS models with different application scenarios: (i) constructed wetlands, (ii) minimized community wetlands, and (iii) single outlet system, suitable for urban, peri-urban and rural areas, respectively.

  9. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  11. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  12. Water Pollution

    Science.gov (United States)

    ... What is NIEHS Doing? Further Reading For Educators Introduction Water pollution is any contamination of water with ... NIEHS Newsletter) Karletta Chief Featured in Science Friday Film (April 2018) Chlorine Levels Help Detect Risk for ...

  13. Light Pollution

    Science.gov (United States)

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  14. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  15. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Oikawa, H.; Somessari, E.S.R.; Silveira, C.G.; Costa, F.E.

    2001-01-01

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  16. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  17. Purification and treatment of industrial wastewater by electron beam process: it's potential and effectiveness evaluation

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khomsaton Abu Bakar; Ting Teo Ming; Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Demand for water has grown dramatically globally. We have seen how acute is the demand for treated water in Malaysia during dry spell of late. Between 1900 and 1995, water consumption increased by over six times, globally, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industries, and the increasing use for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Electron beam treatment (E-Beam treatment) is a comparatively new method of wastewater purification. E-beam treatment is also an environment-friendly approach for the cleanup of contaminated groundwater and industrial wastewater. E-beam treatment treats multi-components waste streams and does not require any hazardous chemical additives nor does it create any secondary wastes. It uses fast formation of short-lived reactive particles, which are capable of efficient decomposition of pollutants inside wastewater. This paper highlights the practical treatment of wastewater using E-Beam method that gives essential conveniences and advantages of the followings: - strongest reducing and oxidizing agents; - universality and interchangeability of redox agents; - variety of paths for pollutant conversion; - process controllability; - wide choice of equipment and technological regimes; - compatibility with conventional methods. (Author)

  18. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    Science.gov (United States)

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  19. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Reuse the pulp and paper industry wastewater by using fashionable technology

    Science.gov (United States)

    Sudarshan, K.; Maruthaiya, K.; Kotteeswaran, P.; Murugan, A.

    2017-10-01

    This proposed method is a promising way, which can be implemented in pulp and paper industries by effective removal of the color and chemical oxygen demand (COD) and the resulting treated water may surely reuse to the other streams. Fourier Transformer Infra Red spectra confirmed the presence of the respective functional groups in the removed pollutants from the wastewater. The efficiency of Non-ferric Alum (NF Alum) and cationic polyacrylamide (C-PAM) with and without power boiler fly ash was also studied. The reduction efficiency of color and chemical oxygen demand (COD) is evaluated at the optimum dosage of NF Alum, fly ash, and C-PAM. At the optimized pH attained from these coagulants using to treat the wastewater, the flocs formation/settling and the pollutant removal efficiency are encouraging and the resulting color of the wastewater is to 40 PtCo units from 330 PtCo units and COD to 66 mg/L from 218 mg/L. While using NF Alum alone with C-PAM for the treatment of wastewater, the highest reduction efficiency of COD is 97 mg/L from 218 mg/L and the color is 60 from 330 PtCo units at pH 4.8 was noted. From these observations, NF Alum and power boiler fly ash with C-PAM can effectively remove the pollutants from the pulp and paper mill wastewater and the water can be reused for other streams.

  1. Microalgae: cultivation techniques and wastewater phycoremediation.

    Science.gov (United States)

    Pacheco, Marcondes M; Hoeltz, Michele; Moraes, Maria S A; Schneider, Rosana C S

    2015-01-01

    Generation of liquid and gaseous effluents is associated with almost all anthropogenic activities. The discharge of these effluents into the environment without treatment has reduced the availability and quality of natural resources, representing a serious threat to the balance of different ecosystems and human health. Universal access to water and global warming are topics of intense concern and are listed as priorities in the vast majority of global scientific, social and political guidelines. Conventional techniques to treat liquid and gaseous effluents pose economic and/or environmental limitations that prevent their use in certain applications. The technique of phycoremediation, which uses microalgae, macroalgae, and cyanobacteria for the removal or biotransformation of pollutants, is an emerging technology that has been highlighted due to its economic viability and environmental sustainability. This literature review discusses different techniques of microalgae cultivation and their use in the phycoremediation of contaminants in wastewater.

  2. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    , which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination......As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...

  3. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2008-01-01

    , which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination......As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...

  4. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  5. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  6. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  7. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  8. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  9. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  10. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  11. Environmental pollution

    International Nuclear Information System (INIS)

    Hanif, J.; Hanif, M.I.

    1997-01-01

    The third proceedings of National Symposium on Modern Trends in Contemporary Chemistry was held in Islamabad, Pakistan from February 24-26, 1997. In this symposium more than 220 scientists, engineers and technologist were registered from 11 universities, 17 research organisations and 8 non-governmental organisation including some commercial establishments. The symposium was divided into five technical sessions on hydro spheric pollution, atmospheric pollution, bio spheric pollution, lithospheric pollution and impact assessment and environmental education. Environmental and ecology are so interdependent that any change in the balance due to natural and man made cause may result in a disaster, flood, fire, earthquake, epidemic, population explosion etc. are the natural ways of unbalancing our ecosystem. The scope of this symposium includes: 1) Review the chemistry and the chemical techniques like polarography, coulometry, HPLC, GC-MS, NAA, XRF, AAS, AES etc. involved in the assessment monitoring and control of various pollutions. 2) Propose sampling, transportation, measurement and standardization procedures. 3) Collaboration in scientific data collection. 4) Mutual consultation for management of the pollution problem in a cost effective manner. 5) sharing knowledge and experience with various environmental protection groups both in public and private sector. (A.B.)

  12. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  13. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu (China); Chen, Xing-Peng; Ma, Zhen-Bang [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); Jia, Hui-Hui [State High-Tech Industrial Innovation Center, Shenzhen 518057, Guangdong (China); Wang, Jun-Jian, E-mail: junjian.wang@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, Toronto M1C 1A4 (Canada)

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  14. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    International Nuclear Information System (INIS)

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-01-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  15. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  16. Green Adsorbents for Wastewaters: A Critical Review

    Science.gov (United States)

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  17. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Ataullah,; Shaheen, A; Ahmad, I; Malik, F; Shahid, H A [Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300 (Pakistan). Research Laboratory of Bioenergy, Department of Chemistry

    2011-04-15

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  18. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    International Nuclear Information System (INIS)

    Khan, A.M.; Ataullah; Shaheen, A.; Ahmad, I.; Malik, F.; Shahid, H.A.

    2011-01-01

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  19. Present status on the use of electron accelerator for wastewater treatment in Korea

    International Nuclear Information System (INIS)

    Lee, Myun Joo; Han, Bum Soo; Choi, Jang Seung; Kang, Ho

    2006-01-01

    In the part 1, four major irradiation R and D works studied in field of wastewater treatment in Korea were introduced. Disinfection of total coli-forms in unchlorinated secondary effluent, removal of color in dyeing wastewater and feasibility test to control algal bloom used the electron beam as a radiation source. Treatment of groundwater polluted by TCE and PCE used gamma rays as a radiation source. Backgrounds and experimental results on each research topic were introduced. In the part 2, national on-going projects related to wastewater treatment using irradiation technology in Korea were introduced. With regarding these projects, EB treatment plant for textile dyeing wastewater was described based on the construction and evaluation of ecological stability. (author)

  20. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  1. Neutralization of wastewater from nitrite passivation

    International Nuclear Information System (INIS)

    Pawlowski, L.; Mientki, B.; Wasag, H.

    1982-01-01

    A method for neutralization of wastewater formed in nitrite passivation has been presented. The method consists of introducing urea into wastewater and acidifying it with sulphuric acid. Wastewater is neutralized with lime. After clarification, wastewater can be drained outside the plant

  2. Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis.

    Science.gov (United States)

    Dogan, Bugce; Kerestecioglu, Merih; Yetis, Ulku

    2010-01-01

    In the present study, several water recovery and end-of-pipe wastewater treatment alternatives were evaluated towards the evaluation of Best Available Techniques (BATs) for the management of wastewaters from a denim textile mill in accordance with the European Union's Integrated Pollution Prevention and Control (IPPC) Directive. For this purpose, an assessment that translates the key environmental aspects into a quantitative measure of environmental performance and also financial analysis was performed for each of the alternatives. The alternatives considered for water recovery from dyeing wastewaters were nanofiltration (NF) with coagulation and/or microfiltration (MF) pre-treatment, ozonation or peroxone and Fenton oxidation. On the other hand, for the end-of-pipe treatment of the mill's mixed wastewater, ozonation, Fenton oxidation, membrane bioreactor (MBR) and activated sludge (AS) process followed by membrane filtration technologies were evaluated. The results have indicated that membrane filtration process with the least environmental impacts is the BAT for water recovery. On the other side, MBR technology has appeared as the BAT for the end-of-pipe treatment of the mill's mixed wastewater. A technical and financial comparison of these two BAT alternatives revealed that water recovery via membrane filtration from dyeing wastewaters is selected as the BAT for the water and wastewater management in the mill.

  3. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion.

  4. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Removal of Alkylphenols from Industrial and Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Derco

    2017-07-01

    Full Text Available The results of the study of removal of nonylphenol, octylphenol and their ethoxylates from real industrial and municipal wastewater are presented. Industrial wastewater was pre-treated by coagulation with FeCl3 and adsorption on zeolite, before discharging into municipal sewer system. Their removal efficiencies in primary sedimentation tank of municipal WWTP were very low. From the practical point of view, the highest and the most significant removal efficiencies within the whole WWTP were observed for nonylphenol and nonylphenol ethoxylates. Dominancy of abiotic mechanisms of alkylphenols removal follows from adsorption measurements. Activated sludge cultivated in lab-scale extended aeration tank accounted for relatively high adsorption affinity to these substances. Activated sludge sampled from municipal wastewater treatment plant (MWWTP receiving industrial wastewater containing alkylphenols accounted for very low adsorption affinity to these pollutants. Significantly higher removal efficiency of octylphenol ethoxylates was observed with the O3/granular active carbon (GAC process compared to the ozonation process alone. Lower toxicity impact of intermediates and products of ozonation treatment on Vibrio fischeri was measured in comparison to the O3/GAC process. Actually, the municipal WWTP effluent discharge concentration values complies with EQS values, including nonylphenols.

  6. Ecotoxicity of Wastewater from Medical Facilities: A Review

    Directory of Open Access Journals (Sweden)

    Cidlinová A.

    2018-03-01

    Full Text Available Wastewater from medical facilities contains a wide range of chemicals (in particular pharmaceuticals, disinfectants, heavy metals, contrast media, and radionuclides and pathogens, therefore it constitutes a risk to the environment and human health. Many micropollutants are not efficiently eliminated during wastewater treatment and contaminate both surface water and groundwater. As we lack information about the long-term effects of low concentrations of micropollutants in the aquatic environment, it is not possible to rule out their adverse effects on aquatic organisms and human health. It is, therefore, necessary to focus on the evaluation of chronic toxicity in particular when assessing the environmental and health risks and to develop standards for the regulation of hazardous substances in wastewater from medical facilities on the basis of collected data. Wastewater from medical facilities is a complex mixture of many compounds that may have synergetic, antagonistic or additive effects on organisms. To evaluate the influence of a wide range of pollutants contained in the effluents from medical facilities on aquatic ecosystems, it is necessary to determine their ecotoxicity.

  7. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  8. Treatment of laundry wastewater by biological and electrocoagulation methods.

    Science.gov (United States)

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  9. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  10. Integrated Urban Wastewater System Data Network - Data network system : Diagnostic Report Cali, Colombia

    NARCIS (Netherlands)

    Unesco-IHE

    2008-01-01

    The pressure on the Urban Wastewater Systems (UWwS) increases as urbanization continues relentlessly and climate change appears to lead to more extreme rainfall events. These pressures have a negative effect on the efficiency of UWwS to reduce the urban pollution reaching water-receiving systems.

  11. Electrochemical peroxidation as a tool to remove arsenic and copper from smelter wastewater

    DEFF Research Database (Denmark)

    Gutiérrez, Claudia; Hansen, Henrik K.; Nuñez, Patricio

    2010-01-01

    Electrochemical peroxidation (ECP) is a method that recently has been applied in the treatment of heavy metal polluted wastewater. This method is based on the anodic dissolution of iron to ferrous ions that reacts with H2O2 to produce tiny particles of ferric oxides. These oxides adsorb metals ef...

  12. The Evolution of National Wastewater Management Regimes : The Case of Israel

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon

    2010-01-01

    In the state of Israel wastewater management (WWM), the legal responsibility of municipalities, was neglected for decades, resulting in pollution of the scarce water resources and the environment. This trend was reversed during the 1990s. This paper analyses the evolution process of the national WWM

  13. Dynamics of China's regional development and pollution : an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2001-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of thirty regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas and solid waste. We consider the development of the sources of pollution in a pooled

  14. Organic pollution of rivers : Combined threats of urbanization, livestock farming and global climate change

    NARCIS (Netherlands)

    Wen, Y.; Schoups, G.H.W.; van de Giesen, N.C.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time

  15. The dynamics of China's regional development and pollution: an investigation into the environmental Kuznets curve

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; de Groot, H.L.F.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982-1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  16. The dynamics of China's regional development and pollution: an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  17. Making Water Pollution a Problem in the Classroom Through Computer Assisted Instruction.

    Science.gov (United States)

    Flowers, John D.

    Alternative means for dealing with water pollution control are presented for students and teachers. One computer oriented program is described in terms of teaching wastewater treatment and pollution concepts to middle and secondary school students. Suggestions are given to help teachers use a computer simulation program in their classrooms.…

  18. The Value of Decentralisation in Wastewater Management: Gauteng Province Case Study, South Africa

    Directory of Open Access Journals (Sweden)

    Cornelius Chris Reynders

    2012-07-01

    Full Text Available In a semi-arid water scarce country like South Africa, the efficient use of limited water resources and measures to extend the service value of these resources is a prerequisite for achieving sustainable development. The conventional supply-sided management approach to water supply causes increased wastewater generation with accompanied increased pollution loads requiring higher levels of mitigation environmental pollution. Where disposal of wastewater treatment effluent takes place in rivers and natural water bodies, the lack of adequate natural compensating capacity of such water bodies typically result in severe ecological damage of the aquatic environment. With a shift of emphasis to a sustainable demand side management approach (as opposed to a supply side one, the avoidance of water wastage and high wastewater generation represents both resource conservation and environmental protection friendly approaches and contribute to overall sustainability. The integrated nature of water supply and wastewater management systems require an approach that considers these systems holistically. A new paradigm for water management is therefore needed to ensure that the issues of waste disposal and pollution are dealt with in a sustainable manner taking into account the emerging objectives of modern society for resource conservation and environmental protection. A balance therefore has to be found between the uses of additional fresh water resources as a means of satisfying en ever increasing water demand on the one hand and alternative unconventional resource exploration and employment, without the risk of depletion of natural available fresh water resource flow, irreversible harm to the environment and social and economic constraints. This paper explores wastewater and grey water reuse as unconventional resources in a qualitative manner within this balancing equation. It further proposes a methodology for deriving monetary indicator values for wastewater

  19. Factors affecting reuse of wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Haraszti, L

    1981-01-01

    Changing the quality of circulating water, raising the effectiveness of sedimentation, examples of biological treatment of wastewater are presented. The necessity of continuing the studies on biological treatment of wastewater is demonstrated. It is considered useful to define the importance of KhPK and BP5 in each case. During biological treatment in ponds, to define the relation BPK5:N:P, research on conditions for nutrient removal must be done. To do this, as well as decrease the significance of KhPK, a mathematical model for defining the effectiveness of biological treatment of wastewater and consequently their reuse must be developed.

  20. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  1. ENVIRONMENTAL POLLUTION

    OpenAIRE

    Reyna Ramos, julio

    2014-01-01

    The article shows the complexity of the problem of environmental pollution and what can be the possible solutions to the problem. Also, how the Industrial Engineering can contribute to the prevention and control of pollution. El artículo muestra la complejidad del problema de la contaminación ambiental y cuáles pueden ser las propuestas de solución al problema. Así mismo, cómo la Ingeniería Industrial puede contribuir a la prevención y control de la contaminación.

  2. Characterization of the variability of settling in wastewater treatment

    International Nuclear Information System (INIS)

    Cherif, Hayet; Touhami, Youssef; Shayeb, Hedi

    2009-01-01

    The processes of biological treatment of wastewater in activated sludge are complex dynamic processes are difficult to manage. The ability of the sludge settling is a key parameter for the overall effectiveness of pollution control process and for preserving the quality of the receiving environment. So for better management of wastewater treatment plants, a study of interactions between the couple reactor clarifier is necessary. A new management technique must notify the operator to problems related to sludge mainly to the loss of the sludge blanket which will have adverse effects on the environment. The approach is widely adopted and applied an approach aims to identify factors that may explain the observed phenomena in order to draw strategies that could improve the sludge settling on an industrial scale. The widely used approach is based on measuring Mohlman index and gives an impression, on the ability of the mud settling, but does not prevent the operator to anomalies that have places in the decanter.

  3. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  4. Removal of Industrial Pollutants From Wastewater's By Graft Copolymers

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; El-Nagar Abdel-Wahab, M.; Senna Magdy, M.; Zahran Abdel-Hamid, H.

    1999-01-01

    Graft copolymers that obtained by radiation grafting of acrylic acid and acrylamide onto LDPE film were converted to N-hydroxy ethyl amide and hydroxamic acid derivatives respectively. The possible application for the different prepared chemical derivatives of LDPE graft copolymers in metal adsorption from solutions containing a single cation or simulated medium active waste has been investigated. The results showed that the adsorption of Cu(II) metal by different chemical derivatives was greatly affected by different factors such as graft yield, ph value, concentration of metal in the feed solution, immersion time and treatment temperature. The affinity of N-hydroxy ethyl amide derivative toward the different metals was found to be in the order of; Cu(II) >Pd(II) > Cd(II)> Co(II). However, for hydroxamic acid derivative , the affinity order was: Cd(II) > Cu(II) > Co(II). The ESR and IR analysis revealed that the metal ions are chelated through the lone pair of electrons on the -OH and -NH- groups forming a ring structure. The measured metal ion uptake from simulated medium active waste mixture by N-hydroxy ethyl amide derivative was found to follow the following order: Fe> U> Ni> Zr> Zn> Cr. On the other hand, the measured metal uptake by hydroxamic acid derivative was found to follow: Fe>U> Zr> Ca. It is concluded that the prepared grafted copolymers are of interest for metal chelation and could be applied in the field of waste treatment

  5. Heavy Metal Pollution of Vegetable Crops Irrigated with Wastewater ...

    African Journals Online (AJOL)

    User

    Cr (< 0.006), Cd (< 0.002) and Co (< 0.005), soil Fe (164.38; 162.92), Mn (39.39; 20.09), Cu (7.21; ... extent of heavy metal contamination, steps must be taken to reduce human activities at the sites. ...... The degree of toxicity of heavy metals to.

  6. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    International Nuclear Information System (INIS)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-01-01

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  7. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  8. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  9. Nuclear pollution

    International Nuclear Information System (INIS)

    Ramade, Francois

    1979-01-01

    In this chapter devoted to nuclear pollution the following topics were studied: fundamentals of radiobiology (ecological importance of the various radioisotopes, biological effects of ionizing radiations); ecological effects of radioactive fallout (contamination of atmosphere, terrestrial ecosystems, oceans). The electronuclear industry and its environmental impact. PWR type reactors, fuel reprocessing plants, contamination of trophic chains by radionuclides released in the environment from nuclear installations [fr

  10. Water Pollution

    Science.gov (United States)

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  11. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  12. Recent Trend on Bioremediation of Polluted Salty Soils and Waters Using Haloarchaea

    OpenAIRE

    Aracil-Gisbert, Sonia; Torregrosa-Crespo, Javier; Martínez-Espinosa, Rosa María

    2018-01-01

    Pollution of soils, sediments, and groundwater is a matter of concern at global level. Industrial waste effluents have damaged several environments; thus, pollutant removal has become a priority worldwide. Currently, bioremediation has emerged as an effective solution for these problems, and, indeed, the use of haloarchaea in bioremediation has been tested successfully. A bibliographic review is here presented to show the recent advances in bioremediation of polluted soil and wastewater using...

  13. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Linares-Hernandez, Ivonne [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico)]. E-mail: cbarrera@uaemex.mx; Roa-Morales, Gabriela [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, PO Box 305310, Denton, TX 76203-5310 (United States); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico)

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m{sup -2} current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD{sub 5}) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  14. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    International Nuclear Information System (INIS)

    Linares-Hernandez, Ivonne; Barrera-Diaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Urena-Nunez, Fernando

    2007-01-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m -2 current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD 5 ) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  15. Treatment Solutions for Rainwater Contaminated with Various Pollutants

    Directory of Open Access Journals (Sweden)

    Adriana Tokar

    2015-07-01

    Full Text Available This study presents aspects on the environmental pollution with contaminants difficult to manage from sources such as car parking, roads and roofs in crowded areas that have deficient wastewater harvesting urban networks. The contaminants washed by the rainwater that are not collected and treated can reach directly into the natural environment. Thus, rainwater which falls on rough surfaces, especially in car parking and roads without drainage channels carries out various pollutants directly into the soil and water. In order to control environmental pollution there are presented solutions for contaminated rainwater depollution.

  16. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Tonci; Santek, Bozidar; Rezić, Iva; Hann, Stephan; Stingeder, Gerhard

    2012-10-02

    Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.

  17. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Marin, Claudia; Osorio, Paula [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia); Benitez, Norberto, E-mail: lubenite@univalle.edu.co [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2010-05-15

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe{sup 2+} and H{sub 2}O{sub 2} concentrations.

  18. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  19. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    International Nuclear Information System (INIS)

    Mendoza-Marin, Claudia; Osorio, Paula; Benitez, Norberto

    2010-01-01

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe 2+ and H 2 O 2 concentrations.

  20. Upgrading the Benchmark Simulation Model Framework with emerging challenges - A study of N2O emissions and the fate of pharmaceuticals in urban wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura

    Nowadays a wastewater treatment plant (WWTP) is not only expected to remove traditional pollutants from the wastewater; other emerging challenges have arisen as well. A WWTP is now, among other things, expected to also minimise its carbon footprint and deal with micropollutants. Optimising...