WorldWideScience

Sample records for wastewater final effluents

  1. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Igbinosa Etinosa O

    2010-05-01

    Full Text Available Abstract Background To evaluate the antibiogram and antibiotic resistance genes of some Vibrio strains isolated from wastewater final effluents in a rural community of South Africa. V. vulnificus (18, V. metschnikovii (3, V. fluvialis (19 and V. parahaemolyticus (12 strains were isolated from final effluents of a wastewater treatment plant (WWTP located in a rural community of South Africa. The disk diffusion method was used for the characterization of the antibiogram of the isolates. Polymerase chain reaction (PCR was employed to evaluate the presence of established antibiotic resistance genes using specific primer sets. Results The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT element. They were resistant to sulfamethoxazole (Sul, trimethoprim (Tmp, cotrimoxazole (Cot, chloramphenicol (Chl, streptomycin (Str, ampicillin (Amp, tetracycline (Tet nalidixic acid (Nal, and gentamicin (Gen. The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; floR, tetA, strB, sul2 for chloramphenicol, tetracycline, streptomycin and sulfamethoxazole respectively. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. Conclusions These results demonstrate that final effluents from wastewater treatment plants are potential reservoirs of various antibiotics resistance genes. Moreover, detection of resistance genes in Vibrio strains obtained from the wastewater final effluents suggests that these resistance determinants might be further disseminated in habitats downstream of the sewage plant, thus constituting a serious health risk to the communities reliant on the receiving waterbodies.

  3. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  4. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae.

    Science.gov (United States)

    Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni

    2005-10-01

    This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.

  5. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health

    Directory of Open Access Journals (Sweden)

    Allisen N. Okeyo

    2018-06-01

    Full Text Available Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.

  6. Toxicity of cassava wastewater effluents to African catfish: Clarias ...

    African Journals Online (AJOL)

    The relative lethal and sublethal toxicity of cassava wastewater effluents from a local food factory were investigated on Clarias gariepinus fingerlings using a renewable static bioassay. The physico-chemical characteristics of the cassava wastewater effluents showed a number of deviations from the standards of the Federal ...

  7. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  8. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D

    2003-02-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  9. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  10. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  11. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    International Nuclear Information System (INIS)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D.

    2003-01-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists (β-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations ≤1.9 μg/l. Metoprolol and nadolol were identified in ≥71% of the samples with concentrations of metoprolol ≤1.2 μg/l and nadolol ≤0.36 μg/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that β-Blockers are present in United States wastewater effluent in the ng/l to μg/l range

  12. Identification of critical contaminants in wastewater effluent for managed aquifer recharge.

    Science.gov (United States)

    Yuan, Jie; Van Dyke, Michele I; Huck, Peter M

    2017-04-01

    Managed aquifer recharge (MAR) using highly treated effluent from municipal wastewater treatment plants has been recognized as a promising strategy for indirect potable water reuse. Treated wastewater effluent can contain a number of residual contaminants that could have adverse effects on human health, and some jurisdictions have regulations in place to govern these. For those that do not, but where reuse may be under consideration, it is of crucial importance to develop a strategy for identifying priority contaminants, which can then be used to understand the water treatment technologies that might be required. In this study, a multi-criteria approach to identify critical contaminants in wastewater effluent for MAR was developed and applied using a case study site located in southern Ontario, Canada. An important aspect of this approach was the selection of representative compounds for each group of contaminants, based on potential for occurrence in wastewater and expected health or environmental impacts. Due to a lack of MAR regulations in Canada, the study first proposed potential recharge water quality targets. Predominant contaminants, potential additional contaminants, and potential emerging contaminants, which together comprise critical contaminants for MAR with reclaimed water, were then selected based on the case study wastewater effluent monitoring data and literature data. This paper proposes an approach for critical contaminant selection, which will be helpful to guide future implementation of MAR projects using wastewater treatment plant effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa

    Directory of Open Access Journals (Sweden)

    Vuyokazi Nongogo

    2014-08-01

    Full Text Available We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05. Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05. Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86 were V. fluvialis, 28% (84 were V. vulnificus and 12% (35 were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.

  14. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent

    International Nuclear Information System (INIS)

    Grantham, Theodore E.; Cañedo-Argüelles, Miguel; Perrée, Isabelle; Rieradevall, Maria; Prat, Narcís

    2012-01-01

    The discharge of wastewater from sewage treatment plants is one of the most common forms of pollution to river ecosystems, yet the effects on aquatic invertebrate assemblages have not been investigated in a controlled experimental setting. Here, we use a mesocosm approach to evaluate community responses to exposure to different concentrations of treated wastewater effluents over a two week period. Multivariate analysis using Principal Response Curves indicated a clear, dose-effect response to the treatments, with significant changes in macroinvertebrate assemblages after one week when exposed to 30% effluent, and after two weeks in the 15% and 30% effluent treatments. Treatments were associated with an increase in nutrient concentrations (ammonium, sulfate, and phosphate) and reduction of dissolved oxygen. These findings indicate that exposure to wastewater effluent cause significant changes in abundance and composition of macroinvertebrate taxa and that effluent concentration as low as 5% can have detectable ecological effects. - Highlights: ► Stream invertebrate communities are altered by exposure to wastewater effluent. ► Principal Response Curves indicate a dose-effect response to effluent treatment. ► Biotic quality indices decline with increasing effluent concentration and exposure time. ► Effluent concentrations as low as 5% have detectable ecological effects. - Exposure to treated effluent in a stream mesocosm caused a dose-dependent response in the aquatic invertebrate community and led to declines in biological quality indices.

  15. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  16. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  17. Modified whole effluent toxicity test to assess and decouple wastewater effects from environmental gradients.

    Directory of Open Access Journals (Sweden)

    Sebastián Sauco

    Full Text Available Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd and salinity controls (SC: without canal water. CWd were prepared by diluting the water effluent (sampled during the pesticide application period with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.

  18. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals.

    Science.gov (United States)

    Santos, Lúcia H M L M; Gros, Meritxell; Rodriguez-Mozaz, Sara; Delerue-Matos, Cristina; Pena, Angelina; Barceló, Damià; Montenegro, M Conceição B S M

    2013-09-01

    The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients

  19. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  20. Presence of Stenotrophomonas maltophilia exhibiting high genetic similarity to clinical isolates in final effluents of pig farm wastewater treatment plants.

    Science.gov (United States)

    Kim, Young-Ji; Park, Jin-Hyeong; Seo, Kun-Ho

    2018-03-01

    Although the prevalence of community-acquired Stenotrophomonas maltophilia infections is sharply increasing, the sources and likely transmission routes of this bacterium are poorly understood. We studied the significance of the presence of S. maltophilia in final effluents and receiving rivers of pig farm wastewater treatment plants (WWTPs). The loads and antibiotic resistance profiles of S. maltophilia in final effluents were assessed. Antibiotic resistance determinants and biofilm formation genes were detected by PCR, and genetic similarity to clinical isolates was investigated using multilocus sequence typing (MLST). S. maltophilia was recovered from final effluents at two of three farms and one corresponding receiving river. Tests of resistance to antibiotics recommended for S. maltophilia infection revealed that for each agent, at least one isolate was classified as resistant or intermediate, with the exception of minocycline. Furthermore, multidrug resistant S. maltophilia susceptible to antibiotics of only two categories was isolated and found to carry the sul2 gene, conferring trimethoprim/sulfamethoxazole resistance. All isolates carried spgM, encoding a major factor in biofilm formation. MLST revealed that isolates of the same sequence type (ST; ST189) were present in both effluent and receiving river samples, and phylogenetic analysis showed that all of the STs identified in this study clustered with clinical isolates. Moreover, one isolate (ST192) recovered in this investigation demonstrated 99.61% sequence identity with a clinical isolate (ST98) associated with a fatal infection in South Korea. Thus, the pathogenicity of the isolates reported here is likely similar to that of those from clinical environments, and WWTPs may play a role as a source of S. maltophilia from which this bacterium spreads to human communities. To the best of our knowledge, this represents the first report of S. maltophilia in pig farm WWTPs. Our results indicate that

  1. Elimination of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/diatomite

    Directory of Open Access Journals (Sweden)

    Yupan Yun

    2018-03-01

    Full Text Available Because total nitrogen (TN, in which nitrate (NO3– is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L, NO3– elimination has attracted considerable attention. In this research, the novel diatomite-supported palladium-copper catalyst (Pd-Cu/diatomite with zero-valent iron (Fe0 was tried to use for catalytic reduction of nitrate in wastewater. Firstly, specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution were optimized for nitrate reduction in artificial solution. Secondly, the selected optimal conditions were further employed for nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results showed that 67% of nitrate removal and 62% of N2 selectivity could be obtained under the following conditions: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu, 4 g/L catalyst, 2 h reaction time and pH 4.3. Finally, the mechanism of catalytic nitrate reduction was also proposed.

  2. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.; Westerhoff, Paul K.; Chen, Baiyang; Rittmann, Bruce E.; Amy, Gary L.

    2009-01-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  3. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  4. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  5. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke; Idica, Eileen Y.; McWilliams, James C.; Stolzenbach, Keith D.

    2014-01-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  6. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  7. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  8. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Bartelt-Hunt, Shannon L. [Department of Civil Engineering, University of Nebraska-Lincoln, 203B Peter Kiewit Institute, Omaha, NE 68182-0178 (United States)], E-mail: sbartelt2@unl.edu; Snow, Daniel D.; Damon, Teyona [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583-0844 (United States); Shockley, Johnette [Department of Civil Engineering, University of Nebraska-Lincoln, 203B Peter Kiewit Institute, Omaha, NE 68182-0178 (United States); Hoagland, Kyle [UNL Water Center, University of Nebraska-Lincoln, Lincoln, NE 68583-0995 (United States)

    2009-03-15

    The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent. - Passive samplers were used to develop semi-quantitative estimates of pharmaceutical concentrations in receiving waters influenced by wastewater effluent.

  9. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska

    International Nuclear Information System (INIS)

    Bartelt-Hunt, Shannon L.; Snow, Daniel D.; Damon, Teyona; Shockley, Johnette; Hoagland, Kyle

    2009-01-01

    The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent. - Passive samplers were used to develop semi-quantitative estimates of pharmaceutical concentrations in receiving waters influenced by wastewater effluent

  10. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  11. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent

    Directory of Open Access Journals (Sweden)

    Maliheh Akhlaghi

    2018-06-01

    Full Text Available Disinfection of water refers to a special operation that is doing to kill or disable causative organisms (i.e. Pathogens and in particular, intestinal bacteria. The aim of this pilot study is comparison of disinfection power of Chlorine dioxide and chlorine in a real dairy wastewater effluent. In this regard, firstly prepared two 220-l tanks made of polyethylene as reaction tanks and filled by effluent of a dairy wastewater treatment plant. Both tanks were equipped with mechanical stirrer. Then a Diaphragm dosing pumps with the maximum capacity of 3.9 l per hour were used for the chlorine dioxide and chlorine (Calcium hypochlorite 0.5 up to 3 ppm injection. Residual level of Chlorine dioxide and Chlorine were measured by portable photometric method DT4B kit, Germany. Finally, the Multiple-Tube Fermentation, Brilliant Green Bile Broth (BGB and Eosin methylene blue Agar (EMB technique was used for microbial analysis and the results were reported as the most probable number index (MPN respectively. The data showed that the residual of chlorine dioxide could stood more active than residual of chlorine in the aqueous environment significantly. Therefore, Use of chlorine dioxide is more effective than chlorine for removal fecal and total coliform from dairy wastewater effluent. Keywords: Disinfection, Chlorine dioxide, Chlorine, Total coliform, Fecal coliform

  12. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    Science.gov (United States)

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs.

  13. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  14. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    Science.gov (United States)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  15. Multi-year prediction of estrogenicity in municipal wastewater effluents.

    Science.gov (United States)

    Arlos, Maricor J; Parker, Wayne J; Bicudo, José R; Law, Pam; Marjan, Patricija; Andrews, Susan A; Servos, Mark R

    2018-01-01

    In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP. The model was then applied to several possible future scenarios including population growth and river low flow conditions. The scenario analyses showed that post-upgrade operation of the Kitchener WWTP will not release highly estrogenic effluent under the 2041 projected population increase (36%) or summer low flows. Similarly, the Waterloo WWTP treatment operation is also expected to improve once the upgrades have been fully implemented and is expected to effectively treat estrogens even under extreme scenarios of population growth and river flows. The developed model may be employed to support decision making on wastewater management strategies designed for environmental protection, especially on reducing the endocrine effects in fish exposed to WWTP effluents. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  17. Antibiotic Susceptibilities of Enterococcus Species Isolated from Hospital and Domestic Wastewater Effluents in Alice, Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Benson Chuks Iweriebor

    2015-04-01

    Full Text Available Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus

  18. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali; Hoppe-Jones, Christiane; Yoon, Min; Hamadeh, Ahmed F.; Li, Dong; Drewes, Jorg

    2014-01-01

    . This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling

  19. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  20. Multiple-endpoints gene alteration-based (MEGA) assay: A toxicogenomics approach for water quality assessment of wastewater effluents.

    Science.gov (United States)

    Fukushima, Toshikazu; Hara-Yamamura, Hiroe; Nakashima, Koji; Tan, Lea Chua; Okabe, Satoshi

    2017-12-01

    Wastewater effluents contain a significant number of toxic contaminants, which, even at low concentrations, display a wide variety of toxic actions. In this study, we developed a multiple-endpoints gene alteration-based (MEGA) assay, a real-time PCR-based transcriptomic analysis, to assess the water quality of wastewater effluents for human health risk assessment and management. Twenty-one genes from the human hepatoblastoma cell line (HepG2), covering the basic health-relevant stress responses such as response to xenobiotics, genotoxicity, and cytotoxicity, were selected and incorporated into the MEGA assay. The genes related to the p53-mediated DNA damage response and cytochrome P450 were selected as markers for genotoxicity and response to xenobiotics, respectively. Additionally, the genes that were dose-dependently regulated by exposure to the wastewater effluents were chosen as markers for cytotoxicity. The alterations in the expression of an individual gene, induced by exposure to the wastewater effluents, were evaluated by real-time PCR and the results were validated by genotoxicity (e.g., comet assay) and cell-based cytotoxicity tests. In summary, the MEGA assay is a real-time PCR-based assay that targets cellular responses to contaminants present in wastewater effluents at the transcriptional level; it is rapid, cost-effective, and high-throughput and can thus complement any chemical analysis for water quality assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    Science.gov (United States)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  2. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  3. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.

    Science.gov (United States)

    Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B

    2006-08-01

    This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.

  4. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of exposure to wastewater treatment plant effluent on fathead minnow reproduction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adult fathead minnows were exposed to dilutions of a historically estrogenic wastewater treatment plant effluent in a 21-d reproduction study. This dataset is...

  6. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  7. Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium

    Science.gov (United States)

    Permatasari, R.; Rinanti, A.; Ratnaningsih, R.

    2018-01-01

    This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.

  8. Wastewater use in agriculture: irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia.

    Science.gov (United States)

    Madera, C A; Silva, J; Mara, D D; Torres, P

    2009-09-01

    In Valle del Cauca, south-west Colombia, surface and ground waters are used for sugar cane irrigation at a rate of 100 m3 of water per tonne of sugar produced. In addition large quantities of artificial fertilizers and pesticides are used to grow the crop. Preliminary experiments were undertaken to determine the feasibility of using effluents from the Cañaveralejo primary wastewater treatment plant in Cali. Sugar cane variety CC 8592 was planted in 18 box plots, each 0.5 m2. Six were irrigated with conventional primary effluent, six with chemically enhanced primary effluent and six with groundwater. For each set of six box plots, three contained local soil and three a 50:50 mixture of sand and rice husks. The three irrigation waters were monitored for 12 months, and immediately after harvest the sugar content of the sugar cane juice determined. All physico-chemical quality parameters for the three irrigation waters were lower than the FAO guideline values for irrigation water quality; on the basis of their sodium absorption ratios and electrical conductivity values, both wastewater effluents were in the USDA low-to-medium risk category C2S1. There was no difference in the sugar content of the cane juice irrigated with the three waters. However, the microbiological quality (E. coli and helminth numbers) of the two effluents did not meet the WHO guidelines and therefore additional human exposure control measures are required in order to minimize any resulting adverse health risks to those working in the wastewater-irrigated fields.

  9. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  10. Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential.

    Science.gov (United States)

    Bakopoulou, S; Emmanouil, C; Kungolos, A

    2011-02-01

    The objective of the present study is to assess wastewater effluent quality in Thessaly region, Greece, in relation to its physicochemical and microbiological burden as well as its toxic potential on a number of organisms. Wastewater may be used for agricultural as well as for landscape irrigation purposes; therefore, its toxicity potential is quite important. Thessaly region has been chosen since this region suffers from a distinct water shortage in summer period necessitating alternative water resources. During our research, treated effluents from four wastewater treatment plants operating in the region (Larissa, Volos, Karditsa, and Tirnavos) were tested for specific physicochemical and microbiological parameters [biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity, selected metals presence (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As), and fecal coliforms' (FC) number]. The effluents were also tested for their toxicity using two different bioassays (Daphnia magna immobilization test and Phytotoxkit microbiotest). The findings were compared to relative regulations and guidelines regarding wastewater reuse for irrigation. The results overall show that secondary effluents in Thessaly region are generally acceptable for reuse for irrigation purposes according to limits set by legislation, if effective advanced treatment methods are applied prior to reuse. However, their potential toxicity should be closely monitored, since it was found that it may vary significantly in relation to season and location, when indicator plant and zooplankton organisms are used. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    Science.gov (United States)

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  13. Demasculinization of male fish by wastewater treatment plant effluent

    Science.gov (United States)

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  14. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals.

    Science.gov (United States)

    Nasri, Emna; Subirats, Jessica; Sànchez-Melsió, Alexandre; Mansour, Hedi Ben; Borrego, Carles M; Balcázar, José Luis

    2017-10-01

    Carbapenems are β-lactam antibiotics with a broad spectrum of activity and are usually considered the last resort for the treatment of severe infections caused by multidrug-resistant pathogens. The clinically most significant carbapenemases are KPC, NDM, and OXA-48-like enzymes, whose genes have been increasingly reported worldwide in members of the family Enterobacteriaceae. In this study, we quantified the abundance of these genes in wastewater effluents from different Tunisian hospitals. The bla NDM and bla OXA-48 -like genes were detected at similar concentrations in all hospital wastewater effluents. In contrast, the bla KPC gene was detected at lower concentration than other genes and it was only detected in three of the seven effluents analyzed. To the best of our knowledge, this study quantified for the first time the abundance of bla KPC , bla NDM , and bla OXA-48 -like genes in wastewater effluents from Tunisian hospitals, highlighting the widespread distribution of these carbapenemase genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  16. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    Science.gov (United States)

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  17. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali

    2014-04-01

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health. © 2014

  18. Surveillance of Antibiotic-Resistant Bacteria from Wastewater Effluents Across the United States

    Science.gov (United States)

    This presentation will inform the audience of the purpose and importance of the antibiotic resistant bacteria surveillances that have been conducted to date. And an overview of why the EPA is looking into this problem in wastewater effluents.

  19. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  20. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  1. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  2. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents.

    Science.gov (United States)

    Amoah, Isaac Dennis; Reddy, Poovendhree; Seidu, Razak; Stenström, Thor Axel

    2018-05-01

    Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.

  3. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  4. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  5. Reuse of wastewater effluents in Saudi Arabia

    International Nuclear Information System (INIS)

    Ishaq, A.M.; Al-Suwaiyan, M.S.

    2002-01-01

    In the initial phase of a six-year study, laboratory investigations were carried out to establish conservative estimates of the contaminant removals that are possible by the recharge of local secondary effluents through a sand dune. In the preliminary laboratory study, chlorinated effluent was found to be more suitable than unchlorinated wastewater with respect to the development of anaerobic conditions and headlosses. In the main laboratory study, a 5-m high Plexiglass sand box column was used to investigate conservative predictions for the removal of contaminants. The average removals of BOD, COD, and TOC were over 65%, 65%, and 55%, respectively. The COD was primarily removed in the first 200 cm of the column. The effluent had a residual TOC of 1.66 mg/l and consisted of humic substances. The average removal of microbial indicator organisms: Total Coliform (TC) and Coliphage were over 85% and 66%, respectively. The product water contained only nominal amounts of TC (Average - 21.5 MPN/100 ml) and Coliphage (Average - 6 PFU/100 ml). The porous media largely remained unaffected by the recharge operation. In the second phase, a 'field recharge system' was constructed and recharge operations were carried out over a two year period resulting in the following observations. a. The quality of the end product will depend entirely on the quality of the secondary effluent. b. With the soil aquifer treatment system (SATS) under consideration, it was possible to achieve product water meeting the recharge standards with respect to heavy metals, pH, BOD, TOC, fecal coliform and total coliform. c. The product water met the standards for restricted and unrestricted irrigation. (author)

  6. Reuse of wastewater effluents in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, A.M.; Al-Suwaiyan, M.S. [King Fahd Univ. of Petroleum and Minerals, Dept. of Civil Engineering, Dhahran (Saudi Arabia)

    2002-06-15

    In the initial phase of a six-year study, laboratory investigations were carried out to establish conservative estimates of the contaminant removals that are possible by the recharge of local secondary effluents through a sand dune. In the preliminary laboratory study, chlorinated effluent was found to be more suitable than unchlorinated wastewater with respect to the development of anaerobic conditions and headlosses. In the main laboratory study, a 5-m high Plexiglass sand box column was used to investigate conservative predictions for the removal of contaminants. The average removals of BOD, COD, and TOC were over 65%, 65%, and 55%, respectively. The COD was primarily removed in the first 200 cm of the column. The effluent had a residual TOC of 1.66 mg/l and consisted of humic substances. The average removal of microbial indicator organisms: Total Coliform (TC) and Coliphage were over 85% and 66%, respectively. The product water contained only nominal amounts of TC (Average - 21.5 MPN/100 ml) and Coliphage (Average - 6 PFU/100 ml). The porous media largely remained unaffected by the recharge operation. In the second phase, a 'field recharge system' was constructed and recharge operations were carried out over a two year period resulting in the following observations. a. The quality of the end product will depend entirely on the quality of the secondary effluent. b. With the soil aquifer treatment system (SATS) under consideration, it was possible to achieve product water meeting the recharge standards with respect to heavy metals, pH, BOD, TOC, fecal coliform and total coliform. c. The product water met the standards for restricted and unrestricted irrigation. (author)

  7. Stress-related gene expression changes in rainbow trout hepatocytes exposed to various municipal wastewater treatment influents and effluents.

    Science.gov (United States)

    Gagné, F; Smyth, S A; André, C; Douville, M; Gélinas, M; Barclay, K

    2013-03-01

    The present study sought to examine the performance of six different wastewater treatment processes from 12 wastewater treatment plants using a toxicogenomic approach in rainbow trout hepatocytes. Freshly prepared rainbow trout hepatocytes were exposed to increasing concentrations of influent (untreated wastewaters) and effluent (C(18)) extracts for 48 h at 15 °C. A test battery of eight genes was selected to track changes in xenobiotic biotransformation, estrogenicity, heavy metal detoxification, and oxidative stress. The wastewaters were processed by six different treatment systems: facultative and aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically assisted primary treated, and trickling filter/solids contact. Based on the chemical characteristics of the effluents, the treatment plants were generally effective in removing total suspended solids and chemical oxygen demand, but less so for ammonia and alkalinity. The 12 influents differed markedly with each other, which makes the comparison among treatment processes difficult. For the influents, both population size and flow rate influenced the increase in the following mRNA levels in exposed hepatocytes: metallothionein (MT), cytochrome P4503A4 (CYP3A4), and vitellogenin (VTG). Gene expression of glutathione S-transferase (GST) and the estrogen receptor (ER), were influenced only by population size in exposed cells to the influent extracts. The remaining genes-superoxide dismutase (SOD) and multidrug resistance transporter (MDR)-were not influenced by either population size or flow rate in exposed cells. It is noteworthy that the changes in MT, ER, and VTG in cells exposed to the effluents were significantly affected by the influents across the 12 cities examined. However, SOD, CYP1A1, CYP3A4, GST, and MDR gene expression were the least influenced by the incoming influents. The data also suggest that wastewater treatments involving biological or aeration

  8. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  9. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  10. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  11. Photochemical degradation of atenolol, carbamazepine, meprobamate, phenytoin and primidone in wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mei Mei [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States); Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Trenholm, Rebecca [Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Rosario-Ortiz, Fernando L., E-mail: Fernando.rosario@colorado.edu [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2015-01-23

    Highlights: • The photochemical degradation of 5 compounds was evaluated in wastewater effluents. • Attenuation by sensitized photolysis was the most important degradation pathway. • Hydroxyl radical accounted for most of the degradation for aliphatic compounds. • Other transient oxidants could also significantly impact the degradation of the compounds. - Abstract: The photochemical degradation of five pharmaceuticals was examined in two secondary wastewater effluents. The compounds, which included atenolol, carbamazepine, meprobamate, phenytoin and primidone, were evaluated for both direct and sensitized photolysis. In the two wastewaters, direct photolysis did not lead to significant compound degradation; however, sensitized photolysis was an important removal pathway for the five pharmaceuticals. Upon solar irradiation, hydroxyl radical (HO·) was quantified using the hydroxylation of benzene and singlet oxygen ({sup 1}O{sub 2}) formation was monitored following the degradation of furfuryl alcohol. Degradation via sensitized photolysis was observed following five-day exposures for atenolol (69–91%), carbamazepine (67–98%), meprobamate (16–52%), phenytoin (44–85%), and primidone (34–88%). Varying removal is likely a result of the differences in reactivity with transient oxidants. Averaged steady state HO· concentrations ranged from 1.2 to 4.0 × 10{sup −16} M, whereas the concentrations of {sup 1}O{sub 2} were 6.0–7.6 × 10{sup −14} M. Partial removal due to presence of HO· indicates it was not the major sink for most compounds examined. Other transient oxidants, such as {sup 1}O{sub 2} and triplet state effluent organic matter, are likely to play important roles in fates of these compounds.

  12. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  13. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  14. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    Science.gov (United States)

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  15. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent.

    Science.gov (United States)

    Shin, Dong Yun; Cho, Hyun Uk; Utomo, Joseph Christian; Choi, Yun-Nam; Xu, Xu; Park, Jong Moon

    2015-05-01

    Microalgae, Scenedesmus bijuga, was cultivated in anaerobically digested food wastewater effluent (FWE) to treat the wastewater and produce biodiesel simultaneously. Three different mixing ratios with municipal wastewater were compared for finding out proper dilution ratio in biodiesel production. Of these, 1/20 diluted FWE showed the highest biomass production (1.49 g/L). Lipid content was highest in 1/10 diluted FWE (35.06%), and the lipid productivity showed maximum value in 1/20 diluted FWE (15.59 mg/L/d). Nutrient removal was also measured in the cultivation. FAME compositions were mainly composed of C16-C18 (Over 98.94%) in S. bijuga. In addition, quality of FAMEs was evaluated by Cetane Number (CN) and Bis-allylic Position Equivalent (BAPE). Copyright © 2015. Published by Elsevier Ltd.

  17. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.

    Science.gov (United States)

    Kalčíková, G; Alič, B; Skalar, T; Bundschuh, M; Gotvajn, A Žgajnar

    2017-12-01

    Microplastics in the environment are either a product of the fractionation of larger plastic items or a consequence of the release of microbeads, which are ingredients of cosmetics, through wastewater treatment plant (WWTP) effluents. The aim of this study was to estimate the amount of microbeads that may be released by the latter pathways to surface waters using Ljubljana, Slovenia as a case study. For this purpose, microbeads contained in cosmetics were in a first step characterized for their physical properties and particle size distribution. Subsequently, daily emission of microbeads from consumers to the sewerage system, their fate in biological WWTPs and finally their release into surface waters were estimated for Ljubljana. Most of the particles found in cosmetic products were sewerage system at an average rate of 15.2 mg per person per day. Experiments using a lab-scale sequencing batch biological WWTP confirmed that on average 52% of microbeads are captured in activated sludge. Particle size analyses of the influent and effluent confirmed that smaller particles (up to 60-70 μm) are captured within activated sludge while bigger particles were detected in the effluent. Applying these data to the situation in Ljubljana indicates that about 112,500,000 particles may daily be released into the receiving river, resulting in a microbeads concentration of 21 particles/m 3 . Since polyethylene particles cannot be degraded and thus likely accumulate, the data raise concerns about potential effects in aquatic ecosystems in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  19. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  20. Simultaneous determination of several veterinary pharmaceuticals in effluents from urban, livestock and slaughterhouse wastewater treatment plants using a simple chromatographic method.

    Science.gov (United States)

    Cavenati, Simone; Carvalho, Pedro N; Almeida, C Marisa R; Basto, M Clara P; Vasconcelos, M Teresa S D

    2012-01-01

    Minocycline, oxytetracycline, tetracycline, enrofloxacin and ceftiofur, commonly used veterinary pharmaceuticals, were searched in four urban, two livestock and two slaughterhouse effluents from wastewater treatment plants (WWTPs) in the north of Portugal. A simple method that includes solid-phase extraction followed with analysis by high-performance liquid chromatography with diode array detector was established and applied to the simultaneous determination of the five pharmaceuticals in WWTP effluents. This method, which is expeditious, inexpensive and available in most laboratories, showed to be useful for screening for problematic levels of drugs in WWTP effluents. It is known that several livestock and slaughterhouse effluents (pre-treated or treated) are discharged to the urban network before discharge into the environment. The presence of these drugs in such effluents can constitute a significant environmental problem that should be addressed, by the monitoring of these drugs and by implementation of methodologies that contribute to their decrease/elimination from wastewaters. Minocycline (≤6 μg L(-1)), oxytetracycline (≤7 μg L(-1)), tetracycline (≤6 μg L(-1)) and enrofloxacin (effluents. Detectable levels of enrofloxacin (effluents.

  1. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    Science.gov (United States)

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  2. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems.

    Science.gov (United States)

    Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C

    2009-06-01

    The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.

  3. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and...

  4. Influent pathogenic bacteria may go straight into effluent in full scale wastewater treatment plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    , it is assumed that the bacteria present in the effluent comprise primarily of those bacteria that thrive/grow in the plants. However, standard techniques for detecting bacteria in the effluent, particularly pathogens, are based on culture-dependent methods, which may give erroneous results by underestimating...... flocs. Some of these are known as pathogens. One of these was from the genus Arcobacter (Campylobacteraceae) and it included one particularly abundant OTU found in both influent and effluent in all 14 investigated WWTPs. This single Arcobacter OTU accounted for up to 14% of all bacteria found......Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be adsorbed onto the activated sludge flocs, consumed by protozoan or to just die off. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. Thus...

  5. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  6. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  7. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  8. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  9. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  10. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  11. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    Science.gov (United States)

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  13. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  14. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities.

    Science.gov (United States)

    Chonova, Teofana; Keck, François; Labanowski, Jérôme; Montuelle, Bernard; Rimet, Frédéric; Bouchez, Agnès

    2016-01-15

    Hospital wastewaters (HWW) contain wider spectrum and higher quantity of pharmaceuticals than urban wastewaters (UWW), but they are generally discharged in sewers without pretreatment. Since traditional urban wastewater treatment plants (WWTP) are not designed to treat HWWs, treated effluents may still contain pollutants that could impair receiving aquatic environments. Hence, a better understanding of the effect of pharmaceuticals in the environment is required. Biofilms are effective "biological sensors" for assessing the environmental effects of pharmaceuticals due to their ability to respond rapidly to physical, chemical and biological fluctuations by changes in their structure and composition. This study evaluated the efficiency of biological treatment with conventional activated sludge system performed parallel on HWW and UWW. Furthermore, six successive monthly colonizations of biofilms were done on autoclaved stones, placed in grid-baskets in the hospital treated effluents (HTE) and urban treated effluents (UTE). The biomass of these biofilms as well as the structure and diversity of their bacterial communities were investigated. Results showed better treatment efficiency for phosphate and nitrite/nitrate during the treatment of UWW. Pharmaceuticals from all investigated therapeutic classes (beta-blockers, nonsteroidal anti-inflammatory drugs, antibiotics, analgesics and anticonvulsants) were efficiently removed, except for carbamazepine. The removal efficiency of the antibiotics, NSAIDs and beta-blockers was higher during the treatment of HWW. HTE and UTE shaped the bacterial communities in different ways. Higher concentrations of pharmaceuticals in the HTE caused adapted development of the microbial community, leading to less developed biomass and lower bacterial diversity. Seasonal changes in solar irradiance and temperature, caused changes in the community composition of biofilms in both effluents. According to the removal efficiency of pharmaceuticals

  15. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Science.gov (United States)

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, fecal coliform is the only microbial indicator, raising concerns about the potential for pathogen t...

  16. Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States

    Science.gov (United States)

    Brideau, J. M.; Ng, M.; Hoover, J. H.; Hale, R. L.; Thomas, B.; Vogel, R. M.; Northeast ConsortiumHydrologic Synthesis Summer Institute, 2010--Biogeochemistry

    2010-12-01

    Title: Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States Authors: Jeffrey Brideau, Melissa Ng, Joseph Hoover, Rebecca Hale, Brian Thomas, and Richard Vogel Presented by: Jeffrey Brideau B.A., M.A., PhD Candidate, Department of History, University of Maryland Regulation of pollution is a prevalent part of contemporary American society. Scientists and policy makers have established acceptable effluent thresholds, with the ostensible goal of protecting human and stream health. However, this ubiquity of regulation is a recent phenomenon, and institutional mechanisms for effluent control were virtually non-existent in the early 20th century. Nonetheless, these same decades witnessed the emergence of nascent efforts at water pollution abatement. This project aims to explore social and scientific perceptions of wastewater, and begins with the simple premise that socio-cultural values underlay human decision-making in water management, and that wastewater is imbued with a matrix of human values that are continuously renegotiated. So what were the primary motivations for abatement efforts? Were they aesthetic and olfactory, or scientific concern for public and stream health? This paper proposes that there are social as well as scientific thresholds for pollutant loads. Collaborating with a team of interdisciplinary researchers we have created and aggregated discrete data sets to model, using export coefficient and linear regression modeling techniques, historic pollutant loading in the Northeastern United States. Concurrently, we have drawn on historical narratives of agitation by abatement advocates, nuisance laws, regulatory regimes, and changing scientific understanding; and contrasting the modeling results with these narratives allows this project to quantitatively determine where social thresholds lay in relation to their scientific counterparts. This project’s novelty lies in its use of existing narratives of

  17. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  18. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  19. Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents

    NARCIS (Netherlands)

    Cébron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Achères wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study

  20. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents

    NARCIS (Netherlands)

    Cebron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Acheres wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study was

  1. Coastal California Wastewater Effluent as a Resource for Seawater Desalination Brine Commingling

    Directory of Open Access Journals (Sweden)

    Kelly E. Rodman

    2018-03-01

    Full Text Available California frequently experiences water scarcity, especially in high population areas. This has generated increased interest in using the Pacific Ocean as a water resource, with seawater desalination becoming a popular solution. To mitigate the environmental impacts of the high salinity brine from seawater desalination, California recommends commingling brine with wastewater effluent before ocean discharge. Results reveal that throughout the California coast, approximately 4872 MLD (1287 MGD of treated wastewater are discharged into the ocean and might be available as dilution water. Most of this dilution water resource is produced in Southern California (3161 MLD or 835 MGD and the San Francisco Bay Area (1503 MLD or 397 MGD, which are also the areas with the highest need for alternative water sources. With this quantity of dilution water, in principle, over 5300 MLD (1400 MGD of potable water could be produced in California through seawater desalination. Furthermore, this study provides a survey of the treatment levels and typical discharge violations of ocean wastewater treatment facilities in California.

  2. Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents

    NARCIS (Netherlands)

    Cébron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Achères wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study was

  3. A comparison of the suitability of different willow varieties to treat on-site wastewater effluent in an Irish climate.

    Science.gov (United States)

    Curneen, S J; Gill, L W

    2014-01-15

    Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics.

    Science.gov (United States)

    Šauer, Pavel; Stará, Alžběta; Golovko, Oksana; Valentová, Olga; Bořík, Adam; Grabic, Roman; Kroupová, Hana Kocour

    2018-06-15

    Vast numbers of xenobiotics are known still to be present in treated municipal wastewater treatment plant (WWTP) effluents. Some of these possess endocrine-disrupting potency and pose risks for exposed aquatic animals. We searched for 17 potential environmental contaminants having affinity to the progesterone receptor. Relative potency values of these progesterone receptor-active chemicals were obtained. On the basis of relative potencies and measured environmental concentrations, the contribution of progestins to measured progestagenic activities was evaluated. Wastewaters (influent and effluent) and surrounding surface waters (upstream and downstream) at six municipal WWTPs were screened using instrumental chemical analysis and in vitro reporter gene bioassay. We showed the presence of target compounds and (anti-)progestagenic activities in municipal wastewater and surface water. Nine and seven progestins were identified in influent and effluent wastewaters, respectively. Only two compounds, progesterone and medroxyprogesterone were found in surface waters. Progestagenic agonistic activities in influents were partially masked by strong anti-progestagenic activities that were detected in all influents and ranged from 2.63 to 83 ng/L of mifepristone equivalents (EQs). Progestagenic activities were detected in all effluents and ranged from 0.06 to 0.47 ng/L of reference compound ORG 2058 EQs (a synthetic progestin equivalents), thus indicating incomplete removal of progestins during wastewater treatment processing. This activity poses a continuing risk for the aquatic environment. By contrast, anti-progestagenic activities showed better removal efficiency in WWTPs compared to progestagenic agonistic activities. Anti-progestagenic activities were found in only three of six effluents and ranged from 0.26 to 2.1 ng/L mifepristone EQs. We explained most of the progestagenic activity in municipal WWTP effluents by the presence of synthetic progestins and

  5. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    Science.gov (United States)

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  6. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    International Nuclear Information System (INIS)

    Meckes, M.C.

    1982-01-01

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli

  7. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    Science.gov (United States)

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  8. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    Science.gov (United States)

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  9. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays.

    Science.gov (United States)

    Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan

    2011-05-01

    The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  11. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  12. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    Nowadays the need for sustainable water treatment is essential because water shortages are increasing. Depending on the wastewater treatment plant (WWTP) effluent constituents, the effluent cannot be simply discharged to environment because it contains toxic ions and organic micropollutants which...... pore size is 15 nm), mesoporous γ-alumina (5 nm), microporous TiO2 (1nm) and microporous hybrid silica (used. The total ions and specified toxic ions (e. g. Cu2+) rejections were measured using conductivity measurements and atomic adsorption...... spectroscopy, respectively. The type and the molecular size of removed organic compounds were determined using pH, full spectrum UV and size exclusion HPLC. Inorganic N-compound rejections were calculated by N-autoanalyzer. The retention of humic like substances measured by UV254 (Fig.1) decreased almost...

  13. Radionuclide content of wastewater and solid waste from a low-level effluent treatment plant

    International Nuclear Information System (INIS)

    Muhamat Omar; Zalina Laili; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin

    2010-01-01

    A study on radioactivity levels of wastewater and solid waste from a Low-level Effluent Treatment Plant has been carried out. The measurement of radionuclide concentration was carried out using gamma spectrometry. Natural and anthropogenic radionuclides were detected in solid radioactive waste recovered from the treatment plant. The presence of radionuclides in waste water varies depending on activities carried out in laboratories and facilities connected to the plant. (author)

  14. Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring.

    Science.gov (United States)

    Jarošová, Barbora; Erseková, Anita; Hilscherová, Klára; Loos, Robert; Gawlik, Bernd M; Giesy, John P; Bláha, Ludek

    2014-09-01

    A pan-European monitoring campaign of the wastewater treatment plant (WWTP) effluents was conducted to obtain a concise picture on a broad range of pollutants including estrogenic compounds. Snapshot samples from 75 WWTP effluents were collected and analysed for concentrations of 150 polar organic and 20 inorganic compounds as well as estrogenicity using the MVLN reporter gene assay. The effect-based assessment determined estrogenicity in 27 of 75 samples tested with the concentrations ranging from 0.53 to 17.9 ng/L of 17-beta-estradiol equivalents (EEQ). Approximately one third of municipal WWTP effluents contained EEQ greater than 0.5 ng/L EEQ, which confirmed the importance of cities as the major contamination source. Beside municipal WWTPs, some treated industrial wastewaters also exhibited detectable EEQ, indicating the importance to investigate phytoestrogens released from plant processing factories. No steroid estrogens were detected in any of the samples by instrumental methods above their limits of quantification of 10 ng/L, and none of the other analysed classes of chemicals showed correlation with detected EEQs. The study demonstrates the need of effect-based monitoring to assess certain classes of contaminants such as estrogens, which are known to occur at low concentrations being of serious toxicological concern for aquatic biota.

  15. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  16. Effects of Organic Load, pH, and EC Variations of Raw Wastewater and Weather Condition on the Efficiency of Yazd Stabilization Ponds

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Mozaheb

    2009-06-01

    Full Text Available This study investigates the effects of organic load, pH, and EC variations of raw wastewater as well as the effect of weather condition on organic removal in Yazd wastewater Stabilization Ponds (2007. During the course of this study, composite samples were collected from the inlet and outlet of the anaerobic pond and the final effluent to measure such quality parameters as BOD5, COD, TSS, EC, and pH.  BOD5, COD, TSS, and Fecal coliform removal efficiencies in the final effluent were found to be 64.9%, 44.9 %, 62.6 %, and 99.96%, respectively. No intestinal nematode egg was observed. Comparison of BOD5 and COD concentrations in the filtered and non-filtered samples showed that 52% of the BOD5 and 57% of the COD in the final effluent, respectively, were due to the presence of algal mass and organic suspended solids in the non-filtered samples. The results showed that variations in organic load, pH, EC as well as seasonal weather variations had no effects on organic removal and that the removal of BOD5 was almost constant. Effluent EC was higher than influent EC. This phenomenon can be related to the evaporation rate in wastewater stabilization ponds. The survey of algae in the final effluent showed that the major species of algae were Phytoconis, Chlorella, and Anabaena.

  17. Control and Prevention of Wastewater Pollution From Amerya Petroleum Refining Company

    International Nuclear Information System (INIS)

    Bakry, A.A.

    2004-01-01

    An oil refinery normally uses large quantities of water, for cooling and other process purpose. This water is treated from contaminants and finally returned to a lake or sea, outside the refinery. Amerya Petroleum Refining Company (APRC) uses conventional and special treatment methods for wastewater to remove all pollutants and to reduce the oil content in refinery final effluent water to a limit of 10 ppm , as the maximum permissible limit for environmental protection as designated by the Egyptian Act No.4 for the year 1994 . About 80% of oil in wastewater is separated by API (American Petroleum Institute) separator method and returned to refinery. Small oil droplets, emulsion and suspended matter escaped from API separator but were removed successfully in the dissolved air flotation (DAF) with chemical additives as the secondary treatment stage for wastewater. The flotation method with chemical additives and filtration were used to reduce the suspended solids and oil content to permissible levels (10 ppm) Furthermore, biological treatment unit was constructed to remove the dissolved oxygen consuming contaminates, e.g. phenolic compounds and traces of hydrocarbon derivatives. It was found that the BOD and COD of the effluent were reduced, and 100% removal of the trace amount of phenol was achieved in effluent

  18. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  19. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  20. Prevalence of Listeria monocytogenes in the river receiving the effluent of municipal wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Atefeh Taherkhani

    2013-01-01

    Full Text Available Aims: The objective of this study was to evaluate the prevalence of Listeria spp. in the river water before and after discharge of the effluent of the municipal wastewater treatment plant (WWTP in Isfahan, Iran. Materials and Methods: A total of 66 samples were collected bi-weekly over 4 months from eleven discrete sampling locations in Zayandehrood River, Iran. Three sampling sites were located above the discharge point and five sites were located after the discharge point of WWTP. Samples were also collected from the influent and the effluent of WWTP. Listeria spp. were isolated using a selective enrichment procedure and a subculture onto polymyxin-acriflavine-lithium chloride-ceftazidime-esculin-mannitol Agar. All isolates were subjected to standard biochemical tests. Results: L. monocytogenes was isolated from influent (83%, effluent (50% and (18.5% river water. Listeria spp. was not found before the discharge point in river water. However, L. monocytogenes was isolated in samples collected from 200 m (33%, 500 m (33%, 2 km (16.5%, 5 km (16.5% and 10 km (16.5% downstream from the WWTP. Listeria innocua (9% and Listeria seeligeri (10% were the second most frequently isolated species. Conclusion: During the wastewater treatment, Listeria spp. is not removed completely. L. monocytogenes is widely distributed in the Zayandehrood river. L. monocytogenes released into surface water demonstrates a potential risk for public health. These results indicate the need for appropriate water management in order to reduce human and animal exposure to such pathogens.

  1. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    Science.gov (United States)

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  2. Prevalence and characterisation of non-cholerae Vibrio spp. in final effluents of wastewater treatment facilities in two districts of the Eastern Cape Province of South Africa: implications for public health.

    Science.gov (United States)

    Okoh, Anthony I; Sibanda, Timothy; Nongogo, Vuyokazi; Adefisoye, Martins; Olayemi, Osuolale O; Nontongana, Nolonwabo

    2015-02-01

    Vibrios and other enteric pathogens can be found in wastewater effluents of a healthy population. We assessed the prevalence of three non-cholerae vibrios in wastewater effluents of 14 wastewater treatment plants (WWTP) in Chris Hani and Amathole district municipalities in the Eastern Cape Province of South Africa for a period of 12 months. With the exception of WWTP10 where presumptive vibrios were not detected in summer and spring, presumptive vibrios were detected in all seasons in other WWTP effluents. When a sample of 1,000 presumptive Vibrio isolates taken from across all sampling sites were subjected to molecular confirmation for Vibrio, 668 were confirmed to belong to the genus Vibrio, giving a prevalence rate of 66.8 %. Further, molecular characterisation of 300 confirmed Vibrio isolates revealed that 11.6 % (35) were Vibrio parahaemolyticus, 28.6 % (86) were Vibrio fluvialis and 28 % (84) were Vibrio vulnificus while 31.8 % (95) belonged to other Vibrio spp. not assayed for in this study. Antibiogram profiling of the three Vibrio species showed that V. parahaemolyticus was ≥50 % susceptible to 8 of the test antibiotics and ≥50 % resistant to only 5 of the 13 test antibiotics, while V. vulnificus showed a susceptibility profile of ≥50 % to 7 of the test antibiotics and a resistance profile of ≥50 % to 6 of the 13 test antibiotics. V. fluvialis showed ≥50 % resistance to 8 of the 13 antibiotics used while showing ≥50 % susceptibility to only 4 antibiotics used. All three Vibrio species were susceptible to gentamycin, cefuroxime, meropenem and imipenem. Multiple antibiotic resistance patterns were also evident especially against such antibiotics as tetracyclin, polymixin B, penicillin G, sulfamethazole and erythromycin against which all Vibrio species were resistant. These results indicate a significant threat to public health, more so in the Eastern Cape Province of South Africa which is characterised by widespread poverty, with more than a

  3. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The presen...

  4. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  5. Dynamic Membrane Technology for Printing Wastewater Reuse

    Science.gov (United States)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  6. Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate.

    Science.gov (United States)

    Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda

    2014-01-15

    The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.

  7. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation

    Science.gov (United States)

    We measured the concentrations of 56 active pharmaceutical ingredients (APIs) and seven metabolites, including 50 prioritized APIs, in 24-hour composite effluent samples collected from 50 very large municipal wastewater treatment plants across the US. Hydrochlorothiazide was foun...

  8. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    Science.gov (United States)

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  9. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  10. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  11. Environmental and public health implications of wastewater quality ...

    African Journals Online (AJOL)

    The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. This paper is aimed at reviewing the environmental and health impacts of untreated or inadequately treated wastewater effluents. The quality of wastewater effluents is ...

  12. Municipal Wastewater Effluents as a Source of Listerial Pathogens in the Aquatic Milieu of the Eastern Cape Province of South Africa: A Concern of Public Health Importance

    Directory of Open Access Journals (Sweden)

    Emmanuel E.O. Odjadjare

    2010-05-01

    Full Text Available We evaluated the effluent quality of an urban wastewater treatment facility in South Africa and its impact on the receiving watershed for a period of 12 months. The prevalence and antimicrobial susceptibility of potential Listeria pathogens (L. ivanovii and L. innocua and the physicochemical quality of the treated wastewater effluent was assessed, with a view to ascertain the potential health and environmental hazards of the discharged effluent. Total listerial density varied between 2.9 × 100 and 1.2 × 105 cfu/mL; free living Listeria species were more prevalent (84%, compared to Listeria species attached to planktons (59–75%. The treated effluent quality fell short of recommended standards for turbidity, dissolved oxygen, chemical oxygen demand, nitrite, phosphate and Listeria density; while pH, temperature, total dissolved solids and nitrate contents were compliant with target quality limits after treatment. The Listeria isolates (23 were sensitive to three (15% of the 20 test antibiotics, and showed varying (4.5–91% levels of resistance to 17 antibiotics. Of seven resistance gene markers assayed, only sulII genes were detected in five (22% Listeria strains. The study demonstrates a potential negative impact of the wastewater effluent on the receiving environment and suggests a serious public health implication for those who depend on the receiving watershed for drinking and other purposes.

  13. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  14. Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish.

    Science.gov (United States)

    Filby, Amy L; Shears, Janice A; Drage, Briane E; Churchley, John H; Tyler, Charles R

    2010-06-01

    Whether the implementation of additional treatments for the removal of estrogens from wastewater treatment works (WwTWs) effluents will eliminate their feminizing effects in exposed wildlife has yet to be established, and this information is crucial for future decisions on investment into WwTWs. Here, granular activated carbon (GAC), ozone (O(3)), and chlorine dioxide (ClO(2)) were investigated for their effectiveness in reducing steroidal estrogen levels in a WwTW effluent and assessments made on the associated estrogenic and reproductive responses in fathead minnows (Pimephales promelas) exposed for 21 days. All treatments reduced the estrogenicity of the standard-treated (STD) effluent, but with different efficacies; ranging between 70-100% for total estrogenicity and 53-100% for individual steroid estrogens. In fish exposed to the GAC- and ClO(2)- (but not O(3)-) treated effluents, there was no induction of plasma vitellogenin (VTG) or reduction in the weight of the fatpad, a secondary sex character in males, as occurred for fish exposed to STD effluent. This finding suggests likely benefits of employing these treatment processes for the reproductive health in wild fish populations living in rivers receiving WwTW discharges. Exposure of pair-breeding minnows to the GAC-treated effluent, however, resulted in a similar inhibition of egg production to that occurring for exposure to the STD effluent (34-40%). These data, together with a lack of effect on egg production of the estrogen, ethinylestradiol (10 ng/L), alone, suggest that chemical/physical properties of the effluents rather than their estrogenicity were responsible for the reproductive effect and that these factor(s) were not remediated for through GAC treatment. Collectively, our findings illustrate the importance of assessing integrative biological responses, rather than biomarkers alone, in the assessment and improvement of WwTW technologies for the protection of wild fish populations.

  15. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation

    International Nuclear Information System (INIS)

    Kostich, Mitchell S.; Batt, Angela L.; Lazorchak, James M.

    2014-01-01

    We measured concentrations of 56 active pharmaceutical ingredients (APIs) in effluent samples from 50 large wastewater treatment plants across the US. Hydrochlorothiazide was found in every sample. Metoprolol, atenolol, and carbamazepine were found in over 90% of the samples. Valsartan had the highest concentration (5300 ng/L), and also had the highest average concentration (1600 ng/L) across all 50 samples. Estimates of potential risks to healthy human adults were greatest for six anti-hypertensive APIs (lisinopril, hydrochlorothiazide, valsartan, atenolol, enalaprilat, and metoprolol), but nevertheless suggest risks of exposure to individual APIs as well as their mixtures are generally very low. Estimates of potential risks to aquatic life were also low for most APIs, but suggest more detailed study of potential ecological impacts from four analytes (sertraline, propranolol, desmethylsertraline, and valsartan). -- Highlights: • Report concentrations of 56 pharmaceuticals in effluents from 50 wastewater plants. • Model and measurements agree that potential risks to healthy adult humans are low. • Model and measurements agree some uncertainties remain about risks to aquatic life. -- Measurements of pharmaceuticals in municipal effluent suggest risks of exposure to healthy human adults are low, but suggest the need for study of potential impacts on aquatic life

  16. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Abafe, Ovokeroye A; Späth, Jana; Fick, Jerker; Jansson, Stina; Buckley, Chris; Stark, Annegret; Pietruschka, Bjoern; Martincigh, Bice S

    2018-06-01

    South Africa has the largest occurrence of the human immune deficiency virus (HIV) in the world but has also implemented the largest antiretroviral (ARV) treatment programme. It was therefore of interest to determine the presence and concentrations of commonly used antiretroviral drugs (ARVDs) and, also, to determine the capabilities of wastewater treatment plants (WWTPs) for removing ARVDs. To this end, a surrogate standard based LC-MS/MS method was optimized and applied for the detection of thirteen ARVDs used in the treatment and management of HIV/acquired immune deficiency syndrome (HIV/AIDS) in two major and one modular WWTP in the eThekwini Municipality in KwaZulu-Natal, South Africa. The method was validated and the detection limits fell within the range of 2-20 ng L -1 . The analytical recoveries for the ARVDs were mainly greater than 50% with acceptable relative standard deviations. The concentration values ranged from effluent) in a decentralized wastewater treatment facility (DEWATS); effluent) in Northern WWTP and 61-34000 ng L -1 (influent), effluent) in Phoenix WWTP. Whilst abacavir, lamivudine and zidovudine were almost completely removed from the effluents, atazanavir, efavirenz, lopinavir and nevirapine persisted in the effluents from all three WWTPs. To estimate the ecotoxicological risks associated with the discharge of ARVDs, a countrywide survey focussing on the occurrence of ARVDs in WWTPs, surface and fresh water bodies, and aquatic organisms, is necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review

    International Nuclear Information System (INIS)

    Verlicchi, P.; Al Aukidy, M.; Zambello, E.

    2012-01-01

    This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. - Highlights: ► The review refers to 118 pharmaceuticals occurring in raw and treated wastewaters. ► Data from 264 municipal WWTPs with a CAS or an MBR were analysed. ► The removal rates achieved

  18. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review

    Energy Technology Data Exchange (ETDEWEB)

    Verlicchi, P., E-mail: paola.verlicchi@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Terra and AcquaTech Technopoles, Via Borsari 46, I-44121 Ferrara (Italy); Al Aukidy, M., E-mail: mustafakether.alaukidi@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Zambello, E., E-mail: elena.zambello@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Terra and AcquaTech Technopoles, Via Borsari 46, I-44121 Ferrara (Italy)

    2012-07-01

    This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. - Highlights: Black-Right-Pointing-Pointer The review refers to 118 pharmaceuticals occurring in raw and treated wastewaters. Black-Right-Pointing-Pointer Data from 264 municipal WWTPs with a CAS or an

  19. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    DEFF Research Database (Denmark)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi

    2016-01-01

    ) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial....... An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop...

  20. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    Science.gov (United States)

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  2. Request for modification of 200 Area effluent treatment facility final delisting

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1998-01-01

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act

  3. Efficacy of HRF in COD Removal from Secondary Effluent of Yasuj Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    M Ehteshami

    2011-10-01

    Full Text Available Background & Aim: Re-use of wastewater is an appropriate approach for development of water resources and water supply strategies. The purpose of this study was to determine the efficacy of HRF in COD removal from secondary effluent of municipal wastewater in Yasouj. Methods: The pilot which was used in the present study was a horizontal roughing filter designed and prepared according to the Wegelin’s Design Criteria. The Samples were removed daily and instantaneous based on the predicted number of samples (28 samples at each filtration rate from the input and output filter, and then tested in the laboratory by the D5000 device. The collected data was analyzed using ANOVA and paired t-test. Results: The results indicated that the average COD removal in the filtration rate of 0.5, 1, and 1.5 were 60, 51, and 38 percent respectively. Conclusion: The average output of the HRF for all three filtration rates was lower than the maximum EPA standard of Iran.

  4. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  5. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    Science.gov (United States)

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 1 of 2

    International Nuclear Information System (INIS)

    1994-01-01

    The primary focus of this environmental analysis is on improvements to the Southeast Regional Wastewater Treatment Plant (SRWTP) facilities and disposal to the Geysers for injection. This analysis will be incorporated with an earlier EIR which evaluated system improvements to the SRWTP and twelve disposal alternatives. In July 1993, the Lake County Sanitation District Board of Directors (LACOSAN) selected the Geysers Effluent Pipeline as the preferred alternative to be analyzed in this EIR/EIS. This environmental analysis will primarily focus on improvements to the SRWTP facilities and a 24 inch pipeline designed to carry up to 5,400 gallons per minute of secondarily treated wastewater. The wastewater will be transported from the Lake County Sanitation District's Southeast Regional Wastewater Treatment Plant, Middletown Wastewater Treatment Plant with additional make-up water from Clear Lake to the Southeast portion of the Geysers Geothermal Field in Lake and Sonoma Counties, California

  7. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  8. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  9. Irrigation of Castor Bean (Ricinus communis L. and Sunflower (Helianthus annus L. Plant Species with Municipal Wastewater Effluent: Impacts on Soil Properties and Seed Yield

    Directory of Open Access Journals (Sweden)

    Vasileios A. Tzanakakis

    2011-11-01

    Full Text Available The effects of plant species (castor bean (Ricinus communis L. versus sunflower (Helianthus annus L. and irrigation regime (freshwater versus secondary treated municipal wastewater on soil properties and on seed and biodiesel yield were studied in a three year pot trial. Plant species were irrigated at rates according to their water requirements with either freshwater or wastewater effluent. Pots irrigated with freshwater received commercial fertilizer, containing N, P, and K, applied at the beginning of each irrigation period. The results obtained in this study showed that irrigation with effluent did not result in significant changes in soil pH, soil organic matter (SOM, total kjeldahl nitrogen (TKN, and dehydrogenase activity, whereas soil available P was found to increase in the upper soil layer. Soil salinity varied slightly throughout the experiment in effluent irrigated pots but no change was detected at the end of the experiment compared to the initial value, suggesting sufficient salt leaching. Pots irrigated with effluent had higher soil salinity, P, and dehydrogenase activity but lower SOM and TKN than freshwater irrigated pots. Sunflower showed greater SOM and TKN values than castor bean suggesting differences between plant species in the microorganisms carrying out C and N mineralization in the soil. Plant species irrigated with freshwater achieved higher seed yield compared to those irrigated with effluent probably reflecting the lower level of soil salinity in freshwater irrigated pots. Castor bean achieved greater seed yield than sunflower. Biodiesel production followed the pattern of seed yield. The findings of this study suggest that wastewater effluent can constitute an important source of irrigation water and nutrients for bioenergy crop cultivations with minor adverse impacts on soil properties and seed yield. Plant species play an important role with regard to the changes in soil properties and to the related factors of

  10. Integrated system of phytodepuration and water reclamation: A comparative evaluation of four municipal wastewater treatment plants.

    Science.gov (United States)

    Petroselli, Andrea; Giannotti, Maurizio; Marras, Tatiana; Allegrini, Elena

    2017-06-03

    In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.

  11. Request for modification of 200 Area effluent treatment facility final delisting

    Energy Technology Data Exchange (ETDEWEB)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  12. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  13. Effluent Guidelines

    Science.gov (United States)

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  14. Integrated wastewater management by reuse and recycling in a textile industry: a case study in Thailand

    International Nuclear Information System (INIS)

    Javed, M.R.; Trankler, J.

    2005-01-01

    Increasing stringent environmental legislation, scarcity of resources and development of treatment and management techniques for wastewater, have made recycling and reuse feasible and economical in many industrial processes. Wastewater management by integrating all available techniques was studied for reuse and recycling in a textile industry. Cotton and silk fabrics were main products of the selected industry. Approach was divided in to five parts, to achieve the objectives of reuse and recycling: in-house water consumption evaluation, segregation study, optimizing existing WWTP, treatability study and advanced treatment for final effluent to fulfill reuse criteria. Water consumption evaluation was done by in-house survey. Segregation study was performed by analyzing different wastewater streams. Efficiency of existing WWTP for COD and BOD removal was assessed and optimized. Treatability of dye wastewater by ozonation, chemical and nanofiltration was studied. Treatment study of final effluent for TDS and color removal by nanofiltration and chemical treatment was performed. Analyses show the possibilities to conserve and optimize water consumption up to 30% in the production processes by in-house improvement. Segregation study shows that up to 15% wastewater from less polluted streams can be recycled back. Adopting separate efficient treatment techniques could fulfill reuse criteria for remaining wastewater streams (50%). (author)

  15. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    Science.gov (United States)

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  16. Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network

    International Nuclear Information System (INIS)

    Emmanuel, E.; Perrodin, Y.; Keck, G.; Blanchard, J.-M.; Vermande, P.

    2005-01-01

    In hospitals a large variety of substances are in use for medical purposes such as diagnostics and research. After application, diagnostic agents, disinfectants and excreted non-metabolized pharmaceuticals by patients, reach the wastewater. This form of elimination may generate risks for aquatic organisms. The aim of this study was to present: (i) the steps of an ecological risk assessment and management framework related to hospital effluents evacuating into wastewater treatment plant (WWTP) without preliminary treatment; and (ii) the results of its application on wastewater from an infectious and tropical diseases department of a hospital of a large city in southeastern France. The characterization of effects has been made under two assumptions, which were related to: (a) the effects of hospital wastewater on biological treatment process of WWTP, particularly on the community of organisms in charge of the biological decomposition of the organic matter; (b) the effects on aquatic organisms. COD and BOD 5 have been measured for studying global organic pollution. Assessment of halogenated organic compounds was made using halogenated organic compounds absorbable on activated carbon (AOX) concentrations. Heavy metals (arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc) were measured. Low most probable number (MPP) for faecal coliforms has been considered as an indirect detection of antibiotics and disinfectants presence. For toxicity assessment, bioluminescence assay using Vibrio fischeri photobacteria, 72-h EC 50 algae growth Pseudokirchneriella subcapitata and 24-h EC 50 on Daphnia magna were used. The scenario allows to a semi-quantitative risk characterization. It needs to be improved on some aspects, particularly those linked to: long term toxicity assessment on target organisms (bioaccumulation of pollutants, genotoxicity, etc.); ecotoxicological interactions between pharmaceuticals, disinfectants used both in diagnostics and in cleaning of

  17. Efficiency Evaluation of Filtration with Fluidized Bed for Treatment of Secondary Effluents for Reuse

    OpenAIRE

    Mohammad Hosaini; Rohallah Moradi; Gholam Hossain Safari

    2013-01-01

    Background & Objectives: Recently, deficient in atmospheric drop and discharges of wastewater effluents leads to serious threat for water resource. For that reason, for prevention of water source pollution and also reuse of wastewater effluents, treatment of such effluents seems to be necessary. Methods: In this work, fluidized bed reactor with a filter was used for treatment of effluents from Shahrak Gharb wastewater treatment plant. Various parameters such as BOD5, COD, TS, TP, TN and t...

  18. High-resolution Mass Spectrometry of Skin Mucus for Monitoring Physiological Impacts in Fish Exposed to Wastewater Effluent at a Great Lakes AOC

    Science.gov (United States)

    High-resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales promela...

  19. High‐resolution mass spectrometry of skin mucus for monitoring physiological impacts and contaminant biotransformation products in fathead minnows exposed to wastewater effluent

    Science.gov (United States)

    High‐resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales pr...

  20. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  1. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  2. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.

    Science.gov (United States)

    Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien

    2013-01-01

    This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This

  3. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    Science.gov (United States)

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  4. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-01-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP Fe-surf ) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENP Fe-surf applied were present in the effluent stream. The stable presence of ENP Fe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP Fe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENP Fe-surf ) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENP Fe-surf . → ∼8.7% of ENP Fe-surf applied was present in the effluent. → ENP Fe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  5. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  6. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  7. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton

    2016-01-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  8. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    Science.gov (United States)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  9. Pesticides from wastewater treatment plant effluents affect invertebrate communities.

    Science.gov (United States)

    Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias

    2017-12-01

    We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Urbaniak, Magdalena; Kiedrzyńska, Edyta

    2015-10-01

    Wastewater treatment plants (WWTPs) are widely recognized as important sources of toxic contaminants such as polychlorinated biphenyls (PCBs). An example is given in the present paper, where concentrations of 12 dioxin-like PCBs (dl-PCBs) congeners were investigated in effluents from 14 WWTPs of different sizes, using gas chromatography tandem-mass spectrometry. The results obtained demonstrate that the smallest WWTPs are characterized by the highest total dl-PCB concentration of 102.69 pg/L, roughly twice those of medium-size and large WWTPs, i.e. 41.14 and 48.29 pg/L, respectively. In all cases, the concentrations obtained were generated mostly by increased contributions of PCB-77, PCB-105 and PCB-118 which constituted 48 %-59 % of the mean dl-PCB concentration. The results also reveal a predominance of mono-ortho over non-ortho PCBs. All three types of WWTP effluent were found to have similar toxic equivalency (TEQ) values, ranging from 0.31 for large to 0.37 pg TEQ/L for medium WWTPs.

  11. Comparative Inactivation of Murine Norovirus and MS2 Bacteriophage by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    Science.gov (United States)

    Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2017-03-07

    Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.

  12. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  13. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  14. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  15. Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater

    DEFF Research Database (Denmark)

    Tang, Kai; Escola Casas, Monica; Ooi, Gordon Tze Hoong

    2017-01-01

    in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were......The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated...

  16. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  17. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    Science.gov (United States)

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  18. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  19. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    Science.gov (United States)

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  20. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  2. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  4. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  5. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.

    2016-01-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  6. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    Science.gov (United States)

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  7. Kinetic modelling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent.

    Science.gov (United States)

    Enitan, Abimbola M; Kumari, Sheena; Swalaha, Feroz M; Adeyemo, J; Ramdhani, Nishani; Bux, Faizal

    2014-02-01

    The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60-69% of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K(B)) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R(2) = 0.957) which could be used for optimizing the reactor performance.

  8. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  9. Characterization and correlations of various pollution parameters in the tannery effluent

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a tannery in Sheikhupura, Punjab. The results of this study demonstrated that the composition of tannery wastewater could change continuously due to inherent nature of tannery operations. In general, tannery effluent was alkaline in nature and highly polluted in terms of organic, solids, sulfates, sulfides and chromium content. Basic ingredients of tannery effluent i.e. high alkalinity and substantial portions of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and other pollutants in particulate form rendered it suitable for enhanced pollutant removals at primary stage of treatment using suitable coagulants. Results of primary treatment of wastewater from this tannery suggested that primary treatment alone was not capable of reducing pollutant loads significantly. Hence post-primary biological treatment was required to meet local effluent quality standards. (author)

  10. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    Science.gov (United States)

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  11. Using Artificial Neural Networks to Determine Significant Factors Affecting the Pricing of WPT Effluent for Industrial Uses in Isfahan

    Directory of Open Access Journals (Sweden)

    Masoud Mirmohamadsaseghi

    2017-03-01

    Full Text Available The evidence indicates increasing trend of use of municipal wastewater treatment effluent as an alternative source of water both in developed and developing countries. Proper pricing of this unconventional water is one of the most effective economic tools to encourage optimum use of fresh water resources. In this study, artificial neural network is employed to identify and assess the factors affecting effluent tariffs supplied to local industries in Isfahan region. Given the wide variety of factors involved in the ultimate value of wastewater traement plant effluent, an assortment of relevant factors  has been considered in this study; the factors include the population served by the treatment plant, volume of effluent produced, maintenance, repair and replacement. costs of operating plants, topography, different water uses in the region, industrial wastewater collection fees, unit cost of pipe and fittings, and the volumes of water supplied from springs and aqueducts  in the region. Neural network modeling is used as a tool to determine the significance of each factor for pricing effluent. Based on the available data and the neural network models, the effects of different model architectures with different intermediate layers and numbers of nodes in each layer on the price of wastewater were investigated to develop aand adopt a final neural network model. Results indicate that the proposed neural network model enjoys a high potential and has been well capable of determining the weights of the parameter affecting in pricing effluent. Based on the the results of this study, the factors with the greatest role in effluent pricing are unit cost of pipe and fittings, industrial use of water, and the costs of plant maintentance, repair and replacement.

  12. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  13. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  14. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method.

    Science.gov (United States)

    Zhang, Meng-Lin; Sheng, Guo-Ping; Yu, Han-Qing

    2008-07-01

    A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.

  15. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, Maria Cristina Franco de

    2004-01-01

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  16. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    Science.gov (United States)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  17. Ecotoxicological risks associated with tannery effluent wastewater.

    Science.gov (United States)

    Shakir, Lubna; Ejaz, Sohail; Ashraf, Muhammad; Qureshi, Naureen Aziz; Anjum, Aftab Ahmad; Iltaf, Imran; Javeed, Aqeel

    2012-09-01

    The problem of water pollution acquires greater relevance in the context of a developing agrarian economy like Pakistan. Even though, the leather industry is a leading economic sector in Pakistan, there is an increasing environmental concern regarding tanneries because they produce large amounts of potentially toxic wastewater containing both trivalent and hexavalent chromium, which are equally hazardous for human population, aquaculture and agricultural activities in the area. Therefore, we defined the scope of the present study as to employ different bioassays to determine the eco-toxic potential of tannery effluent wastewater (TW) and its chromium based components, i.e., potassium dichromate (K(2)Cr(2)O(7)) and chromium sulfate Cr(2)(SO(4))(3). Particle-induced X-ray emission (PIXE) analysis of TW was carried out to determine the concentration of chromium in TW and then equal concentrations of hexavalent (K(2)Cr(2)O(7)) and trivalent chromium Cr(2)(SO(4))(3) were obtained for this study. Cytotoxicity assay, artemia bioassay and phytotoxicity assay was utilized to investigate the eco-toxicological potential of different concentrations of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3). All the dilutions of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3) presented concentration dependent cytotoxic effects in these assays. The data clearly represents that among all three tested materials, different dilutions of K(2)Cr(2)O(7) caused significantly more damage (P<0.001) to vero cell, brine shrimp and germination of maize seeds. Interestingly, the overall toxicity effects of TW treated groups were subsequent to K(2)Cr(2)O(7) treated group. Based on biological evidences presented in this article, it is concluded that hexavalent chromium (K(2)Cr(2)O(7)) and TW has got significant eco-damaging potential clearly elaborating that environmental burden in district Kasur is numerous and high levels of chromium is posing a considerable risk to the human population, aquaculture and agricultural

  18. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options

    Science.gov (United States)

    Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.

    2010-08-01

    SummaryHospital wastewaters contain a variety of toxic or persistent substances such as pharmaceuticals, radionuclides, solvents and disinfectants for medical purposes in a wide range of concentrations due to laboratory and research activities or medicine excretion. Most of these compounds belong to the so called emerging contaminants; quite often unregulated pollutants which may be candidates for future regulation depending on research on their potential health effects and monitoring of their occurrence. Their main characteristic is that they do not need to persist in the environment to cause negative effects since their high transformation/removal rates can be compensated for by their continuous introduction into the environment. Some of these compounds, most of them pharmaceuticals and personal care products may also be present in urban wastewaters. Their concentrations in the effluents may vary from ng L -1 to μg L -1. In this paper, hospital effluents and urban wastewaters are compared in terms of quali-quantitative characteristics. On the basis of an in-depth survey: (i) hospital average specific daily water consumptions (L patient -1 day -1) are evaluated and compared to urban ones (L person -1 day -1), (ii) conventional parameters concentrations in hospital effluents are compared to urban ones and (iii) main pharmaceuticals and other emerging compounds contents are compared in the two wastewaters. Finally, an overview of the removal capacity of the different treatments is reported.

  19. Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish.

    Science.gov (United States)

    Maier, Diana; Benisek, Martin; Blaha, Ludek; Dondero, Francesco; Giesy, John P; Köhler, Heinz-R; Richter, Doreen; Scheurer, Marco; Triebskorn, Rita

    2016-10-01

    Efficiency of advanced wastewater treatment technologies to reduce micropollutants which mediate dioxin-like toxicity was investigated. Technologies compared included ozonation, powdered activated carbon and granular activated carbon. In addition to chemical analyses in samples of effluents, surface waters, sediments, and fish, (1) dioxin-like potentials were measured in paired samples of effluents, surface waters, and sediments by use of an in vitro biotest (reporter gene assay) and (2) dioxin-like effects were investigated in exposed fish by use of in vivo activity of the mixed-function, monooxygenase enzyme, ethoxyresorufin O-deethylase (EROD) in liver. All advanced technologies studied, based on degradation or adsorption, significantly reduced dioxin-like potentials in samples and resulted in lesser EROD activity in livers of fish. Results of in vitro and in vivo biological responses were not clearly related to quantification of targeted analytes by use of instrumental analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Human enteric bacteria and viruses in five wastewater treatment plants in the Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Olayinka Osuolale

    2017-09-01

    Full Text Available Monitoring effluents from wastewater treatment plants is important to preventing both environmental contamination and the spread of disease. We evaluated the occurrence of human enteric bacteria (faecal coliforms and Escherichia coli and viruses (rotavirus and enterovirus in the final effluents of five wastewater treatment plants (WWTPs in the Eastern Cape of South Africa. Human viruses were recovered from the effluent samples with the adsorption–elution method and detected with singleplex real-time RT–PCR assays. Rotavirus was detected in several effluents samples, but no enterovirus was detected. At WWTP-C, rotavirus titre up to 105 genome copies/L was observed and present in 41.7% of the samples. At WWTP-B, the virus was detected in 41.7% of samples, with viral titres up to 103 genome copies/L. The virus was detected once at WWTP-E, in 9% of the samples analysed. The viral titres at WWTP-A were below the detection limit in all 25% of the 1.25 L samples in which the virus was detected. Rotavirus was not observed at WWTP-D. Faecal coliform bacteria and E. coli were detected in all the WWTPs, but no correlation was established between the enteric bacteria and viruses studied. The occurrence of rotavirus in effluent samples discharged into surface waters highlights the importance of assessing viral contamination in the water sources used for domestic water use. Keywords: Rotavirus, Enterovirus, Wastewater, Eastern Cape, Effluent, Faecal coliforms and Escherichia coli

  1. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Science.gov (United States)

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  2. Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality

    KAUST Repository

    Timraz, Kenda Hussain Hassan

    2016-12-15

    This study aims to evaluate the removal efficiency of microbial contaminants, including total cell counts, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs, e.g. tetO, tetZ, sul1 and sul2) and integrase genes (e.g. intl1 and intl2), by wastewater treatment plants (WWTPs) operated on-site of two hospitals (i.e., SH WWTP and IH WWTP). Both SH and IH WWTPs utilize the conventional activated sludge process but differences in the removal efficiencies were observed. Over the 2 week sampling period, IH WWTP outperformed SH WWTP, and achieved an approximate 0.388 to 2.49-log log removal values (LRVs) for total cell counts compared to the 0.010 to 0.162-log removal in SH WWTP. Although ARB were present in the hospital influent, the treatment process of both hospitals effectively removed ARB from most of the effluent samples. In instances where ARB were recovered in the effluent, none of the viable isolates were identified to be opportunistic pathogenic species based on 16S rRNA gene sequencing. However, sul1 and intl1 genes remained detectable at up to 105 copies per mL or 8 x 10(-1) copies per 16S rRNA gene in the treated effluent, with an LRV of less than 1.2. When the treated effluent is discharged from hospital WWTPs into the public sewer for further treatment as per requirement in many countries, the detected amount of ARGs and integrase genes in the hospital effluent can become a potential source of horizontal gene dissemination in the municipal WWTP. Proper on-site wastewater treatment and surveillance of the effluent quality for emerging contaminants are therefore highly recommended.

  3. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    Science.gov (United States)

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  4. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-01-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and the ratio of BOD 5 and COD (BOD 5 /COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV 254 ) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process. - Highlights: • Irradiation pre-treatment did not improve the raw textile wastewater biodegradability. • Irradiation can highly enhance the biodegradability of biological treated effluent. • EB irradiation can be used as a post-treatment after biological process.

  5. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Sullivan, P.F. [Specialty Industrial Products, Inc., Spartanburg, SC (United States); Lovejoy, M.A.; Collier, J. [Sun River Innovations, Ltd., Lexington, KY (United States); Adams, C.D. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  6. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  7. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Science.gov (United States)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  8. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  9. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Science.gov (United States)

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Investigating dynamic sources of pharmaceuticals: Demographic and seasonal use are more important than down-the-drain disposal in wastewater effluent in a University City setting

    Science.gov (United States)

    Vatovec, Christine; Phillips, Patrick J.; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward T.

    2016-01-01

    Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash.We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population.

  11. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.

    Science.gov (United States)

    Rodgers, M; Walsh, G; Healy, M G

    2011-01-01

    The objective of this study was to apply hydraulic and chemical oxygen demand (COD) loading rates at the upper limits of the design criteria for buried sand filters to test the sand filter depth design criteria. Over a 274-day study duration, synthetic effluent with a strength of domestic wastewater was intermittently dosed onto two sand filters of 0.2 m diameter, with depths of 0.3 and 0.4 m. Hydraulic and organic carbon loading rates of 105 L m(-2) d(-1) and 40 g COD m(-2) d(-1), respectively, were applied to the filters. The filters did not clog and had good effluent removal capabilities for 274 and 190 days, respectively. However, the 0.3 m-deep filter did experience a reduced performance towards the end of the study period. In the 0.3 and 0.4 m-deep filters, the effluent COD and SS concentrations were less than 86 and 31 mg L(-1), respectively, and nitrification was nearly complete in both these columns. Ortho-phosphorus (PO(4)-P) removal in fine sand and laterite 'upflow' filters, receiving effluent from the 0.3 m-deep filter, was 10% and 44%, respectively.

  12. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium

    Science.gov (United States)

    Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy

    2017-01-01

    Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.

  13. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  14. The effect of advanced treatment of sewage effluents on metal speciation and (bio)availability.

    Science.gov (United States)

    Peters, A; Merrington, G; Leverett, D; Ellor, B; Lofts, S; Gravell, A

    2014-02-01

    The bioavailability of metals can be strongly influenced by dissolved organic carbon (DOC). Wastewater treatment effluents add considerable quantities of DOC and metals to receiving waters, and as effluent controls become more stringent advanced effluent treatments may be needed. We assessed the effects of two types of advanced treatment processes on metal availability in wastewater effluents. Trace metal availability was assessed using diffuse gradients in thin films and predicted through speciation modelling. The results show little difference in metal availability post-advanced treatment. EDTA-like compounds are important metal complexants in the effluents.

  15. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  16. Disinfection of Water and Wastewater Using Gamma Irradiation in Isfahan Water and Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2011-01-01

    Full Text Available To investigate the effect of gamma irradiation on the disinfection of water and wastewater, water samples were collected from raw and filtered water and wastewater samples were taken from the effluent of the secondary sedimentation, polished effluent (1-day retention time, and also from filtered (rapid sand filter effluent. The samples were irradiated with gamma collimated beam in a batch system using a Co-60 therapeutic gamma radiation machine with a radioactive source emission rate of 405.38CGy/min at different doses of 20-160 Gy and 80-240 Gy, respectively. The samples were analyzed before and after irradiation for total and fecal coliforms. It was observed that nearly 100% reduction was achieved in total and fecal coliforms in water samples treated with a dose of 160 Gy. Depending on effluent quality, disinfection efficiencies achieved using 240 Gy gamma irradiation for inactivation of total coliforms in wastewater samples were 83, 64, and 56 percent for filtered, clarified, and secondary effluents, respectively. The same values were nearly 81, 58, and 46 percent, respectively, for inactivation of fecal coliforms. At lower doses of 120-240Gy, the coliform bacteria were successfully inactivated. It was concluded that a linear correlation holds between the dose delivered and the inactivation of microorganisms, so that inactivation increases with increasing irradiation time.

  17. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications

    Directory of Open Access Journals (Sweden)

    Olayinka Osuolale

    2015-10-01

    Full Text Available The final effluents of two wastewater treatment plants (WWTPs in the Eastern Cape Province of South Africa were evaluated for their physicochemical and microbiological qualities over a period of 12 months. The physicochemical parameters assessed ranged as follows both plants. The ranges of values for the physicochemical are: pH (3.9–8.6, total dissolved solids (86.50–336.3 mg/L, electrical conductivity (13.57–52.50 mS/m, temperature (13–28 °C, nitrate (0–21.73 mg/L, nitrite (0.01–0.60 mg/L, orthophosphate (1.29–20.57 mg/L, turbidity (4.02–43.20 NTU, free chlorine (0.05–7.18 mg/L, dissolve oxygen (3.91–9.60 mg/L, biochemical oxygen demand (0.1–9.0 mg/L and chemical oxygen demand (4.67–211 mg/L. The microbiological assessment for both WWTPs revealed the presence of E. coli in counts ranging between 0 and 1.86 × 104 CFU/100 mL and Vibrio counts ranging between 0 and 9.93 × 103 CFU/100 mL. We conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks.

  18. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications

    Science.gov (United States)

    Osuolale, Olayinka; Okoh, Anthony

    2015-01-01

    The final effluents of two wastewater treatment plants (WWTPs) in the Eastern Cape Province of South Africa were evaluated for their physicochemical and microbiological qualities over a period of 12 months. The physicochemical parameters assessed ranged as follows both plants. The ranges of values for the physicochemical are: pH (3.9–8.6), total dissolved solids (86.50–336.3 mg/L), electrical conductivity (13.57–52.50 mS/m), temperature (13–28 °C), nitrate (0–21.73 mg/L), nitrite (0.01–0.60 mg/L), orthophosphate (1.29–20.57 mg/L), turbidity (4.02–43.20 NTU), free chlorine (0.05–7.18 mg/L), dissolve oxygen (3.91–9.60 mg/L), biochemical oxygen demand (0.1–9.0 mg/L) and chemical oxygen demand (4.67–211 mg/L). The microbiological assessment for both WWTPs revealed the presence of E. coli in counts ranging between 0 and 1.86 × 104 CFU/100 mL and Vibrio counts ranging between 0 and 9.93 × 103 CFU/100 mL. We conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks. PMID:26512686

  19. Quantitative PCR Detection and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South Africa.

    Science.gov (United States)

    Adefisoye, Martins Ajibade; Nwodo, Uchechukwu U; Green, Ezekiel; Okoh, Anthony Ifeanyin

    2016-12-01

    The occurrence of enteric viruses in reclaimed wastewater, their removal by efficient treatment processes and the public health hazards associated with their release into the environments are of great significance in environmental microbiology. In this study, TaqMan-based real-time polymerase chain reaction (qPCR) was used to assess the prevalence of human adenovirus (HAdV), rotavirus (RV) and hepatitis A virus (HAV) in the final effluents of two wastewater treatment plants in the Eastern Cape Province, South Africa, over a twelve-month sampling period. The correlation between the concentrations of viruses in the effluents samples and faecal coliform (FC) densities were assessed as to validate the use of FC as microbiological indicator in water quality assessment. HAdV was detected in 62.5 % (30/48) of the samples with concentrations ranging between 8.4 × 10 1 and 1.0 × 10 5 genome copies/L while HAV and RV were only detected at concentrations below the set detection limits. FCs densities ranged from 1 to 2.7 × 10 4 CFU/100 ml. Adenovirus species HAdV-B (serotype 2) and HAdV-F (serotype 41) were detected in 86.7 % (26/30) and 6.7 % (2/30) of the HAdV-positive samples, respectively. No consistent seasonal trend was observed in HAdV concentrations, however, increased concentrations of HAdV were generally observed in the winter months. Also, there was no correlation between the occurrence of HAdV and FC at both the treatment plants. The persistent occurrence of HAdV in the discharged treated effluents points to the potential public health risk through the release of HAdV into the receiving watersheds, and the possibility of their transmission to human population.

  20. Wastewater Recycling in Greece: The Case of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Andreas Ilias

    2014-05-01

    Full Text Available In Greece, and particularly in many southeastern and island areas, there is severe pressure on water resources, further exacerbated by the high demand of water for tourism and irrigation in summertime. The integration of treated wastewater into water resources management is of paramount importance to meet future demands. Despite this need, only a few projects of effluent reuse have been implemented, most of them being pilot projects of crop or landscape irrigation. The most important projects which are currently in practice are those of Thessaloniki, Chalkida, Malia, Livadia, Amfisa, Kalikratia, and Chersonissos. In Thessaloniki, at the most important wastewater reuse site, the secondary effluent of the city’s Waste Water Treatment Plant (WWTP (165,000 m3/day is used for agricultural irrigation after mixing with freshwater at a 1:5 ratio. The main crops irrigated are rice, corn, alfalfa and cotton. A few other projects are under planning, such as that at Iraklion, Agios Nikolaos and several island regions. Finally, it should be mentioned that there are several cases of indirect reuse, especially in central Greece. However, the reuse potential in Greece is limited, since effluent from Athens’s WWTP, serving approximately half of the country’s population, is not economically feasible due to the location of the plant.

  1. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  2. Variations in nitrate isotope composition of wastewater effluents by treatment type in Hong Kong.

    Science.gov (United States)

    Archana, A; Li, Luo; Shuh-Ji, Kao; Thibodeau, Benoit; Baker, David M

    2016-10-15

    Stable isotopes (δ(15)N, δ(18)O) can serve as tracers for sources of nitrogen in the receiving environment. Hong Kong discharges ~3×10(6)m(3)d(-1) of treated wastewater into the ocean from 68 facilities implementing preliminary to tertiary treatment. We sampled treated sewage from 18 plants across 5 treatment types and examined receiving seawater from northeast Hong Kong. We analyzed nitrate and nitrite (NO3(-)+NO2(-), hereafter NOx) ammonium (NH4(+)), phosphate (PO4(+)) concentrations and δ(15)NNOx, δ(18)ONOx. Sewage effluents contained high mean nutrient concentrations (NO3(-)=260μmolL(-1), NH4(+)=1400μmolL(-1), PO4(+)=50μmolL(-1)) with some indication of nitrogen removal in advanced treatment types. Mean δ(15)NNOx of sewage effluents from all plants and treatment types (12‰) was higher than natural sources and varied spatially and seasonally. There was no overall effect of sewage treatment type on δ(15)NNOx. A mass balance model indicated that sewage (>68%) remains a dominant source of nitrate pollution in seawater in Tolo Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    International Nuclear Information System (INIS)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-01-01

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m 3 h −1 ) was operated with the same parameters. The results showed that the BOD 5 /COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L −1 for bench scale reactor and 60.9 mg L −1 for PCWWTP when the influent COD was about 480 mg L −1 on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L −1 . There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  4. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-03-01

    Full Text Available Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

  5. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  7. About the use and treatment of reclaimed wastewater; El reto de la reutilizacion de aguas usadas: tratamiento intensivo de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2009-07-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs.

  8. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 40 CFR 415.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... CATEGORY Potassium Metal Production Subcategory § 415.113 Effluent limitations guidelines representing the...): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  10. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  11. 40 CFR 415.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.112 Effluent limitations guidelines... available (BPT): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  12. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MC eff ) indicated no unacceptable risk for any of the individual chemicals, while MC eff /PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and

  13. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Mahvi, Amir Hossein, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ebrahimi, Seyed Jamal Al-din [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Mesdaghinia, Alireza, E-mail: mesdaghinia@sina.tums.ac.ir [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Gharibi, Hamed, E-mail: hgharibi65@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Sowlat, Mohammad Hossein, E-mail: hsowlat@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {center_dot} Max removal efficiencies of the reactor for both ammonia and phosphate were 99%. {center_dot} Corresponding efficiencies under actual wastewater conditions were 98%. {center_dot} Optimum removal conditions were neutral pH and current density of 3 A. {center_dot} Lower influent concentration and higher detention time favored removal efficiency. {center_dot} Besides ammonia and phosphate, Al{sup 3+} plate enables removal of nitrite and nitrate. - Abstract: The present study aimed to evaluate the performance of a continuous bipolar ECEO-EF reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. The reactor was comprised of two distinct units: electrochemical and separation. In the electrochemical unit, Al, stainless steel, and RuO{sub 2}/Ti plates were used. All the measurements were performed according to the standard methods. Maximum efficiency of the reactor for phosphate removal was 99% at pH of 6, current density of 3 A, detention time of 60 min, and influent phosphate concentration of 50 mg/l. The corresponding value for ammonia removal was 99% at a pH of 7 under the same operational conditions as for phosphate removal. For both phosphate and ammonia, the removal efficiency was highest at neutral pH, with higher current densities, and with lower influent concentrations. In addition to removal of phosphate and ammonia, application of the Al{sup 3+} plates enabled the removal of nitrite and nitrate, which may be present in wastewater effluent and are also products of the electrochemical process. The reactor was also able to decrease the concentrations of phosphate, ammonia, and COD under actual wastewater conditions by 98%, 98%, and 72%, respectively. According to the results of the present study, the reactor can be used for efficient removal of ammonia and phosphate from wastewater.

  14. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    Science.gov (United States)

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  15. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping

    2016-05-01

    To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.

  16. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  17. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  18. UASB/flash aeration enable complete treatment of municipal wastewater for reuse.

    Science.gov (United States)

    Khan, Abid Ali; Gaur, Rubia Zahid; Lew, Beni; Diamantis, Vasileios; Mehrotra, Indu; Kazmi, A A

    2012-08-01

    A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.

  19. Environmental impacts of polluted effluents on human health

    International Nuclear Information System (INIS)

    Ahmad, M.S.

    2005-01-01

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  20. Environmental impacts of polluted effluents on human health

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M S [NESPAK, Lahore (Pakistan). Geo-Environmental Engineering Div.

    2005-07-15

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  1. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  2. Wastewater treatment plant effluents change abundance and composition of ammonia-oxidizing microorganisms in mediterranean urban stream biofilms.

    Science.gov (United States)

    Merbt, Stephanie N; Auguet, Jean-Christophe; Blesa, Alba; Martí, Eugènia; Casamayor, Emilio O

    2015-01-01

    Streams affected by wastewater treatment plant (WWTP) effluents are hotspots of nitrification. We analyzed the influence of WWTP inputs on the abundance, distribution, and composition of epilithic ammonia-oxidizing (AO) assemblages in five Mediterranean urban streams by qPCR and amoA gene cloning and sequencing of both archaea (AOA) and bacteria (AOB). The effluents significantly modified stream chemical parameters, and changes in longitudinal profiles of both NH(4)(+) and NO(3)(-) indicated stimulated nitrification activity. WWTP effluents were an allocthonous source of both AOA, essentially from the Nitrosotalea cluster, and mostly of AOB, mainly Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira spp. changing the relative abundance and the natural composition of AO assemblages. Under natural conditions, Nitrososphaera and Nitrosopumilus AOA dominated AO assemblages, and AOB were barely detected. After the WWTP perturbation, epilithic AOB increased by orders of magnitude whereas AOA did not show quantitative changes but a shift in population composition to dominance of Nitrosotalea spp. The foraneous AOB successfully settled in downstream biofilms and probably carried out most of the nitrification activity. Nitrosotalea were only observed downstream and only in biofilms exposed to either darkness or low irradiance. In addition to other potential environmental limitations for AOA distribution, this result suggests in situ photosensitivity as previously reported for Nitrosotalea under laboratory conditions.

  3. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment.

    Science.gov (United States)

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2014-01-01

    In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities

  4. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...... removed at 5 mg/l ClO2 dose. Removal of the same APIs from the high COD effluent was observed when the ClO2 dose was increased to 1.25 mg/l and an increase in API removal only after treatment with 8 mg/l ClO2. This illustrates that treatment of wastewater effluents with chlorine dioxide has potential...

  5. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  6. Required ozone doses for removing pharmaceuticals from wastewater effluents

    DEFF Research Database (Denmark)

    Antoniou, Maria; Hey, Gerly; Rodríguez Vega, Sergio

    2013-01-01

    of each investigated API (DDO3) was determined for each effluent by fitting a first order equation to the remaining concentration of API at each applied ozone dose. Ozone dose requirements were found to vary significantly between effluents depending on their matrix characteristics.The specific ozone dose...... was then normalized to the dissolved organic carbon (DOC) of each effluent. The DDO3/DOC ratios were comparable for each API between the effluents.15 of the 42 investigated APIs could be classified as easily degradable (DDO3/DOC≤0.7), while 19 were moderately degradable (0.71.4). Furthermore, we predict...... that a reasonable estimate of the ozone dose required to remove any of the investigated APIs may be attained by multiplying the experimental average DDO3/DOC obtained with the actual DOC of any effluent....

  7. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran; Fortunato, Luca; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  8. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  9. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Treatment of wastewater from rubber industry in Malaysia. ... Discharge of untreated rubber effluent to waterways resulted in water pollution that affected the human health. ... Key words: Rubber industry, effluent, waste management, Malaysia.

  10. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2013-12-01

    The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  12. Comparison of dilution factors for German wastewater treatment plant effluents in receiving streams to the fixed dilution factor from chemical risk assessment.

    Science.gov (United States)

    Link, Moritz; von der Ohe, Peter C; Voß, Katharina; Schäfer, Ralf B

    2017-11-15

    Incomplete removal during wastewater treatment leads to frequent detection of compounds such as pharmaceuticals and personal care products in municipal effluents. A fixed standard dilution factor of 10 for effluents entering receiving water bodies is used during the exposure assessment of several chemical risk assessments. However, the dilution potential of German receiving waters under low flow conditions is largely unknown and information is sparse for other European countries. We calculated dilution factors for two datasets differing in spatial extent and wastewater treatment plant (WWTP) size: a national dataset comprising 1225 large WWTPs in Central and Northern Germany and a federal dataset for 678 WWTPs of a single state in Southwest Germany. We found that the fixed factor approach overestimates the dilution potential of 60% and 40% of receiving waters in the national and the federal dataset, with median dilution factors of 5 and 14.5, respectively. Under mean flow conditions, 8% of calculated dilution factors were below 10, with a median dilution factor of 106. We also calculated regional dilution factors that accounted for effluent inputs from upstream WWTPs. For the national and the federal dataset, 70% and 60% of calculated regional dilution factors fell below 10 under mean low flow conditions, respectively. Decrease of regional dilution potential in small receiving streams was mainly driven by the next WWTP upstream with a 2.5 fold drop of median regional dilution factors. Our results show that using the standard dilution factor of 10 would result in the underestimation of environmental concentrations for authorised chemicals by a factor of 3-5 for about 10% of WWTPs, especially during low flow conditions. Consequently, measured environmental concentrations might exceed predicted environmental concentrations and ecological risks posed by effluents could be much higher, suggesting that a revision of current risk assessment practices may be required

  13. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  14. Spatiotemporal variations in estrogenicity, hormones, and endocrine-disrupting compounds in influents and effluents of selected wastewater-treatment plants and receiving streams in New York, 2008-09

    Science.gov (United States)

    Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.

    2014-01-01

    Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs

  15. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    Science.gov (United States)

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  16. Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater Treatment Plant Effluents by a High-Throughput Sequencing Method.

    Science.gov (United States)

    Prevost, B; Lucas, F S; Ambert-Balay, K; Pothier, P; Moulin, L; Wurtzer, S

    2015-10-01

    Although clinical epidemiology lists human enteric viruses to be among the primary causes of acute gastroenteritis in the human population, their circulation in the environment remains poorly investigated. These viruses are excreted by the human population into sewers and may be released into rivers through the effluents of wastewater treatment plants (WWTPs). In order to evaluate the viral diversity and loads in WWTP effluents of the Paris, France, urban area, which includes about 9 million inhabitants (approximately 15% of the French population), the seasonal occurrence of astroviruses and noroviruses in 100 WWTP effluent samples was investigated over 1 year. The coupling of these measurements with a high-throughput sequencing approach allowed the specific estimation of the diversity of human astroviruses (human astrovirus genotype 1 [HAstV-1], HAstV-2, HAstV-5, and HAstV-6), 7 genotypes of noroviruses (NoVs) of genogroup I (NoV GI.1 to NoV GI.6 and NoV GI.8), and 16 genotypes of NoVs of genogroup II (NoV GII.1 to NoV GII.7, NoV GII.9, NoV GII.12 to NoV GII.17, NoV GII.20, and NoV GII.21) in effluent samples. Comparison of the viral diversity in WWTP effluents to the viral diversity found by analysis of clinical data obtained throughout France underlined the consistency between the identified genotypes. However, some genotypes were locally present in effluents and were not found in the analysis of the clinical data. These findings could highlight an underestimation of the diversity of enteric viruses circulating in the human population. Consequently, analysis of WWTP effluents could allow the exploration of viral diversity not only in environmental waters but also in a human population linked to a sewerage network in order to better comprehend viral epidemiology and to forecast seasonal outbreaks. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  18. The fate of wastewater-derived NDMA precursors in the aquatic environment.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Sedlak, David L

    2006-03-01

    To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.

  19. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    Science.gov (United States)

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  20. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  1. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  2. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  3. Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters.

    Science.gov (United States)

    Koivunen, J; Heinonen-Tanski, H

    2005-11-01

    The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.

  4. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    Science.gov (United States)

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (pRemoval efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Fenceline water quality monitoring of effluents from BARC establishment

    International Nuclear Information System (INIS)

    Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2007-01-01

    Wastewater generated from various sources (industrial, residential, rain water runoff etc.,) is either discharged into water bodies or reused/recycled for various purposes. Continuous monitoring of the wastewater is necessary to check whether these effluents are meeting the stringent limits proposed for discharge into water bodies or recycled/reused. Monitoring of these effluents also helps in designing the wastewater treatment system required to meet the standards. In this paper, water quality monitoring carried out during each quarter of the year 2005 for the effluents discharged from different utilities of BARC into Trombay bay is presented. The results indicate that the Bio-chemical oxygen demand (BOD) and chemical oxygen demand (COD) are in the range of 7.9 to 38.9 mg/l and 29.4 to 78.9 mg/l respectively. The nitrates and sulphates are in the range of 0.5 to 7.2 mg/l and 7.8 to 52.3 mg/l respectively. The water quality data of the parameters analyzed are well within the limits stipulated by Central Pollution Control Board. (author)

  6. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    Science.gov (United States)

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  7. Peracetic Acid (PAA Disinfection: Inactivation of Microbial Indicators and Pathogenic Bacteria in a Municipal Wastewater Plant

    Directory of Open Access Journals (Sweden)

    Silvia Bonetta

    2017-06-01

    Full Text Available Several studies have noted that treated and untreated wastewaters are primary contributors of a variety of pathogenic microorganisms to the aquatic ecosystem. Conventional wastewater treatment may not be sufficient to achieve microbiologically safe effluent to be discharged into natural waters or reused, thus requiring wastewater effluents to be disinfected. In recent years, peracetic acid (PAA has been adopted as a disinfectant for wastewater effluents. The aim of this study was to evaluate the disinfection efficiency of PAA at low doses (range 0.99–2.10 mg/L against microbial indicators and pathogenic bacteria in a municipal wastewater plant. Samples of untreated sewage and effluents before and after PAA treatment were collected seasonally for 1 year and were analysed for pathogenic Campylobacter, Salmonella spp., E. coli O157:H7 and E. coli virulence genes using molecular methods; moreover, the detection of specific microbial indicators (E. coli, faecal coliforms, enterococci, C. perfringens and Salmonella spp. were carried out using culturing methods. Salmonella spp. DNA was found in all untreated sewage and effluent before PAA treatment, whereas it was recovered in 50% of the samples collected after PAA treatment. Although E. coli O157:H7 was never identified, the occurrence of Shiga-like toxin I amplicons was identified in 75% of the untreated sewage samples, in 50% of the effluents assayed before PAA treatment, and in 25% of the effluents assayed after PAA treatment, whereas the stx2 gene was never found. Campylobacter coli was only detected in one effluent sample before PAA treatment. In the effluents after PAA treatment, a lower load of indicator bacteria was observed compared to the effluents before treatment. The results of this study highlight that the use of low doses of PAA seems to lead to an improvement of the microbiological quality of the effluent, although it is not sufficient to guarantee its suitability for irrigation

  8. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    Science.gov (United States)

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles 5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities. The results of this study highlight the

  9. Treatability study of pesticide-based industrial wastewater.

    Science.gov (United States)

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.

  10. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    Science.gov (United States)

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers.

    Science.gov (United States)

    Pavas, Edison Gil; Gómez-García, Miguel Angel

    2009-01-01

    This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO(2)) and hydrogen peroxide (H(2)O(2)). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.

  12. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  13. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY General Provisions § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Effluent limitations guidelines and...

  14. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  15. CO2 Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Yoon, Tae Kyung; Jin, Hyojin; Begum, Most Shirina; Kang, Namgoo; Park, Ji-Hyung

    2017-09-19

    Continuous underway measurements were combined with a basin-scale survey to examine human impacts on CO 2 outgassing in a highly urbanized river system in Korea. While the partial pressure of CO 2 (pCO 2 ) was measured at 15 sites using syringe equilibration, 3 cruises employing an equilibrator were done along a 30 km transect in the Seoul metropolitan area. The basin-scale survey revealed longitudinal increases in surface water pCO 2 and dissolved organic carbon (DOC) in the downstream reach. Downstream increases in pCO 2 , DOC, fluorescence index, and inorganic N and P reflected disproportionately large contributions from wastewater treatment plant (WWTP) effluents carried by major urban tributaries. Cruise transects exhibited strong localized peaks of pCO 2 up to 13 000 μatm and 13 CO 2 enrichment along the confluences of tributaries at an average flow, whereas CO 2 pulses were dampened by increased flow during the monsoon period. Fluctuations in pCO 2 along the eutrophic reach downstream of the confluences reflected environmental controls on the balance between photosynthesis, biodegradation, and outgassing. The results underscore WWTP effluents as an anthropogenic source of nutrients, DOC, and CO 2 and their influences on algal blooms and associated C dynamics in eutrophic urbanized river systems, warranting further research on urbanization-induced perturbations to riverine metabolic processes and carbon fluxes.

  16. Effects of a surfacing effluent plume on a coastal phytoplankton community

    KAUST Repository

    Reifel, Kristen M.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100mgm-3 and densities between 100 and 2000cellsmL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition. © 2013 Elsevier Ltd.

  17. An Evaluation of Illicit Stimulants and Metabolites in Wastewa ter Effluent and the Wisconsin River Along the Central Wisconsin River Basin

    Directory of Open Access Journals (Sweden)

    Erik S. Hendrickson

    2015-09-01

    Full Text Available The goals of the study were to develop a method for extracting and quantifying illicit stimulants and metabolites, methamphetamine, amphetamine, cocaine, and benzoylecogonine from wastewater effluent and surface water grab samples, and evaluate Central Wisconsin wastewater treatment plant’s (WWTP removal efficiency of compounds of interest. The method created used HLB solid-phase extraction (SPE cartridges to extract substances of interest and High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC/MS/MS for quantification and qualification. All four wastewater effluent samples and three Wisconsin River samples had quantifiable concentrations of at least one analyte. Conclusions derived from the study were: The method created is effective for separating, quantifying, and identifying amphetamine, cocaine, and benzoylecognine from wastewater effluent and surface water grab samples, and each illicit stimulant and metabolite analyzed in this study were all quantified in wastewater effluent, indicating these compounds have the ability to survive WWTP.

  18. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, F.A.; Badawy, M.I. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt); El-Khateeb, M.A. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)], E-mail: elkhateebcairo@yahoo.com; El-Kalliny, A.S. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)

    2009-03-15

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H{sub 2}O{sub 2} dose, Fe{sup +2}, COD:H{sub 2}O{sub 2} ratio and Fe{sup +2}:H{sub 2}O{sub 2} ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l{sup -1} for {rho}-hydroxy-benzaldhyde to 3.273 mg l{sup -1} for cinnamic acid.

  19. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  20. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  1. Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wu, Yin-Hu; Hu, Hong-Ying

    2014-01-01

    Cultivation of microalgae for biomass production is a promising way to dispose of wastewater and recover nutrients simultaneously. The properties of nutrient removal and biomass production in domestic wastewater of a newly isolated microalga Scenedesmus sp. ZTY1 were investigated in this study. Scenedesmus sp. ZTY1, which was isolated from a wastewater treatment plant in Beijing, grew well in both the primary and secondary effluents of a wastewater treatment plant during the 21-day cultivation, with a maximal algal density of 3.6 × 10(6) and 1.9 × 10(6) cells · mL(-1), respectively. The total phosphorus concentrations in both effluents could be efficiently removed by over 97% after the cultivation. A high removal rate (over 90%) of total nitrogen (TN) was also observed. After cultivation in primary effluent for 21 days, the lipid content of Scenedesmus sp. ZTY1 in dry weight had reached about 32.2%. The lipid and triacylglycerol (TAG) production of Scenedesmus sp. ZTY1 was increased significantly with the extension of cultivation time. The TAG production of Scenedesmus sp. ZTY1 increased from 32 mg L(-1) at 21 d to 148 mg L(-1) at 45 d in primary effluent. All the experiments were carried out in non-sterilized domestic wastewater and Scenedesmus sp. ZTY1 showed good adaptability to the domestic wastewater environment.

  2. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  3. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    Science.gov (United States)

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  4. Use of G3-DHS Bioreactor for Secondary Treatment of Septic Tank Desludging Wastewater

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-01-01

    Full Text Available Study was done for the use of the third-generation of downflow hanging sponge (G3-DHS bioreactor for secondary treatment of septic tank desludging wastewater. The main objective of this study was to evaluate the prospective system of G3-DHS bioreactor to be applied in Indonesia. During experiment, the G3-DHS bioreactor kept a relatively high dissolved oxygen concentration under natural aeration. At a relatively short hydraulic retention (HRT of 3 h, the G3-DHS bioreactor could remove up to 21% (SD 15% of total COD, 21% (SD = 7% of filtered-COD, 58% (SD = 24% of unfiltered-BOD, and 33% (SD = 24% of ammonium removal. The final effluent had an unfiltered-BOD of only 46 mg.L-1 (SD = 20 mg.L-1 that it was below the Indonesian standard (unfiltered-BOD = 100 mg.L-1 for thresholds of domestic wastewater treatment plants effluent.

  5. High-resolution mass spectrometry of skin mucus for monitoring physiological impacts and contaminant biotransformation products in fathead minnows exposed to wastewater effluent.

    Science.gov (United States)

    Mosley, Jonathan D; Ekman, Drew R; Cavallin, Jenna E; Villeneuve, Daniel L; Ankley, Gerald T; Collette, Timothy W

    2018-03-01

    High-resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales promelas) exposed to control water or treated wastewater effluent at 5, 20, and 100% levels for 21 d, using an on-site, flow-through system providing real-time exposure. Both sex-specific and non-sex-specific responses were observed in the mucus metabolome, the latter suggesting the induction of general compensatory pathways for xenobiotic exposures. Altogether, 85 statistically significant treatment-dependent metabolite changes were observed out of the 310 total endogenous metabolites that were detected (156 of the 310 were annotated). Partial least squares-regression models revealed strong covariances between the mucus metabolomes and up-regulated hepatic messenger ribonucleic acid (mRNA) transcripts reported previously for these same fish. These regression models suggest that mucus metabolomic changes reflected, in part, processes by which the fish biotransformed xenobiotics in the effluent. In keeping with this observation, we detected a phase II transformation product of bisphenol A in the skin mucus of male fish. Collectively, these findings demonstrate the utility of mucus as a minimally invasive matrix for simultaneously assessing exposures and effects of environmentally relevant mixtures of contaminants. Environ Toxicol Chem 2018;37:788-796. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  7. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  8. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  9. Control and decision strategies in wastewater treatment plants for operation improvement

    CERN Document Server

    Santín, Ignacio; Vilanova, Ramón

    2017-01-01

    This book examines the operation of biological wastewater treatment plants (WWTPs), with a focus on maintaining effluent water quality while keeping operational costs within constrained limits. It includes control operation and decision schemes and is based on the use of benchmarking scenarios that yield easily reproducible results that readers can implement for their own solutions. The final criterion is the effect of the applied control strategy on plant performance – specifically, improving effluent quality, reducing costs and avoiding violations of established effluent limits. The evaluation of the different control strategies is achieved with the help of two Benchmark Simulation Models (BSM1, BSM2). Given the complexity of the biological and biochemical processes involved and the major fluctuations in the influent flow rate, controlling WWTPs poses a serious challenge. Further, the importance of control goal formulation and control structure design in relation to WWTP process control is widely recogniz...

  10. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  11. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  12. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    Science.gov (United States)

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats

    International Nuclear Information System (INIS)

    Kumar, Vikas; Chakraborty, Ajanta; Viswanath, Gunda; Roy, Partha

    2008-01-01

    Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern region of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated and intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450 SCC , cytochrome P450 C17 , 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health

  14. An Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents

    Science.gov (United States)

    Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.

    2006-01-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  15. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    2018-04-02

    Apr 2, 2018 ... The experimental site at Newlands-Mashu Research Facility, located in Durban ... Samples of effluent used during the study were collected from the AF ... Yield parameters of banana (number and mass of true fingers ..... GHOREISHI M, HOSSINI Y and MAFTOON M (2012) Simple models for predicting leaf ...

  16. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  17. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge; Hioka, Noboru

    2009-01-01

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO 2 ) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m -2 , 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO 2 /H 2 O 2 (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L -1 TiO 2 and 10 mmol L -1 H 2 O 2 shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L -1 for the sample from the factory, 160 mg L -1 after EC and 50 mg L -1 after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification

  18. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Saxena, S. [Indian Agricultural Research Institute, New Delhi (India). Centre for Conservation of Blue Green Algae

    2005-07-01

    Study was conducted on recycling municipal wastewaters for cultivation of Azolla microphylla biomass, which is used for inoculation into paddy fields as N biofertiliser and has other applications as green manure, animal feed and biofilter. Secondary-treated municipal wastewaters were collected from Wazirabad sewage treatment plant in New Delhi during all four seasons and tested for reactive P and heavy metal content. The reactive P levels in effluents ranged between 1-2 ppm and levels of heavy metals like Cd, Pb, Ni, Zn, Fe and Mn were well below permissible limits. A. microphylla was grown in sewage effluents and its dilutions prepared with tapwater. It showed good growth potential on sewage effluents. Doubling times during September and December months compared well with those on Espinase and Watanabe (E and W) medium and tapwater. Dried Azolla biomass produced on sewage waters did not show presence of toxic heavy metals Cd, Cr and Pb. However, levels of P in dried biomass cultivated on sewage effluents were lower as compared to those from E and W medium and tapwater. The biomass produced can be used for inoculating paddy fields or for other applications and polished wastewaters can be recycled for irrigation purposes. (author)

  19. Post-treatment and reuse of secondary effluents using natural ltreatment systems: the Indian practices.

    Science.gov (United States)

    Kumar, D; Asolekar, S R; Sharma, S K

    2015-10-01

    Paper summarizes the results of India-wide survey of natural treatment systems (NTSs) for wastewater treatment and reuse. The quality of treated wastewater from different types of NTSs was analyzed for various physico-chemical and bacteriological parameters, and needs for post-treatment were identified. Currently, about 1838 million liters per day (MLD) of wastewater is being treated using NTSs, of which the contributions of polishing ponds, waste stabilization ponds, duckweed ponds, constructed wetlands, and Karnal technology were found to be 53.39, 45.15, 0.13, 0.55, and 0.78%, respectively. Among the NTSs studied, constructed wetland was found most efficient in removal of pollutants including nitrogen, phosphorus, total coliform, and fecal coliform in the range of 76, 61, 99.956, and 99.923%, respectively. Of all types of NTSs, only constructed wetland was found to meet the total coliform count requirements (effluents for irrigation; effluents from 48 systems are being discharged into river or lake, and remaining 38 systems have not found any designated use of treated effluent. The chlorination was the only post-treatment, which is being practiced at only three wastewater treatment facilities. During post-treatment, 1-2 ppm of chlorine is applied to the secondary effluent irrespective of its quality. The treated effluents from different NTSs contain fecal bacteria in the magnitude of 10(3) to 10(5), which may cause the severe health impacts through contamination of groundwater as well as surface water resources.

  20. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Using Combined Processes of Filtration and Ultraviolet Irradiation for Effluent Disinfection of Isfahan North Wastewater Treatment Plant in Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2011-07-01

    Full Text Available This study was carried out to evaluate the secondary effluent disinfection of the Isfahannorth municipal wastewater treatment plant using filtration and UV technology in current operational condition. The combined system was used in series in pilot scale including: Pressure Sand Filter + Low Pressure (LP + Medium Pressure (MP UV Lamps. The UV dose varied according to the initial intensity of lamp, flow rate and influent transmittance. Total coliform (TC, fecal coliform (FC and fecal streptococcus (FS were analyzed as microbiological parameters in all effluent samples. TSS, BOD5, COD, VSS, pH and transmittance (UVT percentage were tested as physicochemical parameters, before and after the units. Results showed that the filtration with loading of 1050 lit/m2.hr, followed by MP lamp with dose of 230 mW.s/cm2 is an effective alternative to reduce the TC/FC and FS in the secondary effluent. The combined disinfection processes that were used in this study, could be met the standards of 1000 TC, and 400FC/100ml for effluent discharge to receiving waters or restricted reuses in the agriculture. This process can also inactivate the FS down to 6-log.Using low-pressure lamps due to low dose radiation for disinfection is not cost-effective. In this study, parasite egg counts due to lack of access to accurate identification techniques for alive cyst detection was not examined.

  2. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system

    International Nuclear Information System (INIS)

    Wang, Zixing; Xu, Xiaochen; Gong, Zheng; Yang, Fenglin

    2012-01-01

    Highlights: ► Anaerobic–anoxic–aerobic MBR system treated the coal gasification wastewater. ► COD removal rate was 97.4% with effluent concentration less than 100 mg/L. ► NH 4 + -N removal rate was 92.8% with effluent concentration less than 12 mg/L. ► HRT and recycle ratio strongly affected the performance of the system. ► GC/MS analysis found refractory organic removal in anaerobic and anoxic stage. - Abstract: As a typical industrial wastewater, coal gasification wastewater has poor biodegradability and high toxicity. In this paper, a laboratory-scale anaerobic–anoxic–oxic membrane reactor (A 2 O-MBR) system was developed to investigate the treatment ability of coal gasification wastewater. The removal capacity of each pollutants used in this system were determined at different hydraulic residence times (HRT) and mixed liquor recycle ratios (R). The experimental results showed that this system could effectively deal with COD and phenol removal and remain in a stable level when the operational parameters altered, while the nitrification was sensitive to operational conditions. The best performance was obtained at HRT of 48 h and R of 3. The maximum removal efficiencies of COD, NH 4 + -N and phenols were 97.4%, 92.8% and 99.7%, with final concentrations in the effluent of 71 mg/L, 9.6 mg/L and 3 mg/L, respectively. Organics degradation and transformation were analyzed by GC/MS and it was found that anaerobic process played an important role in degradation of refractory compounds.

  3. Biotreatment of Slaughterhouse Wastewater Accompanied with Sustainable Electricity Generation in Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zainab Z. Ismail

    2016-04-01

    Full Text Available This study aimed to investigate the performance of microbial fuel cell (MFC for simultaneous bioremediation of slaughterhouse wastewater and sustainable power generation. For the first time, an integrated system of tubular type microbial fuel cell (MFC was used in this study. The MFC consisted of three concentric Plexiglas tubes; the inner tube was the anaerobic anodic compartment, the mid tube was the aerobic biocathodic chamber, and the outer tube act as an aerobic bioreactor for extended nitrification process. The MFC system was connected to a complementary external anaerobic bioreactor for denitrification process. The microbial fuel cell was inoculated with freshly collected activated sludge and was continuously fueled with simulated slaughterhouse wastewater. Results revealed that the removal efficiency of the chemical oxygen demand (COD was up to 99%, and the power generation was 165 mW/m2. Also, results demonstrated that maximum removal of NO3- via the denitrification process in the final effluent was 94.7% when the initial concentration of NO3- in the effluent of the extended bioreactor was 15.2 mg/L. Approximately; complete recovery of nitrogen gas was obtained in the complementary external anaerobic bioreactor. These results indicated that MFC could be a promising approach for slaughterhouse wastewater bioremediation and renewable power generation.

  4. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  5. A Novel Methylotrophic Bacterial Consortium for Treatment of Industrial Effluents.

    Science.gov (United States)

    Hingurao, Krushi; Nerurkar, Anuradha

    2018-01-01

    Considering the importance of methylotrophs in industrial wastewater treatment, focus of the present study was on utilization of a methylotrophic bacterial consortium as a microbial seed for biotreatment of a variety of industrial effluents. For this purpose, a mixed bacterial methylotrophic AC (Ankleshwar CETP) consortium comprising of Bordetella petrii AC1, Bacillus licheniformis AC4, Salmonella subterranea AC5, and Pseudomonas stutzeri AC8 was used. The AC consortium showed efficient biotreatment of four industrial effluents procured from fertilizer, chemical and pesticide industries, and common effluent treatment plant by lowering their chemical oxygen demand (COD) of 950-2000 mg/l to below detection limit in 60-96 h in 6-l batch reactor and 9-15 days in 6-l continuous reactor. The operating variables of wastewater treatment, viz. COD, BOD, pH, MLSS, MLVSS, SVI, and F/M ratio of these effluents, were also maintained in the permissible range in both batch and continuous reactors. Therefore, formation of the AC consortium has led to the development of an efficient microbial seed capable of treating a variety of industrial effluents containing pollutants generated from their respective industries.

  6. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Głuszewski, W. [Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2012-07-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  7. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Głuszewski, W.

    2012-01-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  8. Towards the design of a zero effluent facility in the pharmaceutical industry

    CSIR Research Space (South Africa)

    Gouws, JF

    2007-05-01

    Full Text Available . The pharmaceutical production industry has some unique characteristics that make it possible to reach the goal of zero effluent. In such industries wastewater is generally produced from washing out of mixing vessels. The wastewater thus contains valuable product...

  9. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with Chlorella sp. Microalgae Production.

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Szwaja, Stanisław; Kisielewska, Marta

    2018-02-01

      Nutrient removal effectiveness from anaerobic digestion effluents (ADEs) by Chlorella sp. cultivation and microalgae biomass productivity were evaluated in this study. The results showed that the highest Chlorella sp. biomass productivities of 386.5 ± 24.1 mg dry weight/L•d and 338.3 ± 11.0 mg dry weight/L•d were respectively obtained with the anaerobically digested effluent of municipal wastewater sludge and effluent from a fermentation tank treating dairy wastewater. Lower (p effluents of maize silage and swine slurry and cattle manure. The increase of the initial ammonia nitrogen concentration in ADEs to the level of 160 mg/L did not encourage Chlorella sp. productivity because of phosphorus limitation. The removal efficiencies of ammonia nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand (COD) reached 99.7%, 98.6%, 88.2%, and 58.7%, respectively, depending on the source of ADE, but not on the initial ammonia nitrogen concentrations.

  10. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  11. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  12. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    International Nuclear Information System (INIS)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-01-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO 2 , have potential for wastewater treatment. In this study, TiO 2 anatase phase nanobelts (30–100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO 2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h + ), and hydrogen peroxide (H 2 O 2 )—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO 2 nanobelt membranes, including those harnessing sunlight for water treatment

  13. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    Science.gov (United States)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-10-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30-100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

  14. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  15. Sustainable technologies for olive mill wastewater management (abstract)

    Science.gov (United States)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  16. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    Science.gov (United States)

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  17. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  18. Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation

    International Nuclear Information System (INIS)

    Tiezheng Wang; Waite, T.D.; Kurucz, C.

    1994-01-01

    Paper mill bleach processing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. A preliminary study using a 5000 Ci 60 Co gamma radiation source as a surrogate for electron beam irradiation, potentially an emerging technology for wastewater treatment, to treat a paper mill bleach effluent showed that for an absorbed dose of 800 krads, chemical oxygen demand (COD) was reduced by 13.5% and 5 day biochemical oxygen demand (BOD 5 ) was increased 58.6%. These changes altered the value of COD/BOD 5 from 14 to 5. For the same dose, the absorbable organic halogen (AOX) was reduced 76.2%. These results suggested the possibility of using the electron beam process to detoxify paper mill effluent thereby generating a more biodegradable wastewater. (author)

  19. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  20. Coagulation increased the growth potential of various species bacteria of the effluent of a MBR for the treatment of domestic wastewater.

    Science.gov (United States)

    Yu, Tong; Li, Guoqiang; Lin, Wenqi; Hu, Hong-Ying; Lu, Yun

    2017-02-01

    Microbial regrowth in reclaimed water is an important issue restricting water reclamation and reuse. Previous studies about the effect of coagulation on microbial growth in reclaimed water were limited and inconsistent. In this study, microbial growth potentials of the effluent of a membrane bioreactor (MBR) for the treatment of domestic wastewater after coagulation was evaluated by using bacteria of various phyla, classes (α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Actinobacteriaa) or species isolated from wastewater treatment plants (WWTPs) and assimilable organic carbon (AOC) test strains. Bacterial growth increased considerably after coagulation with polyaluminum for the samples investigated in this study. The results revealed that the microbial growth potentials in the effluent of the MBR evidently increased after coagulation. The increase ratio of bacterial growth could reach up to 929 %. Specific UV absorbance (SUVA) of the samples averagely decreased 16.3 %, but the removal efficiencies of the excitation emission matrices (EEMs) were less than 5 % after coagulation. It is suggested that the organic matter which affected the bacterial growth might be substances having aromaticity (i.e., UV 254 absorbance) but little fluorescence. According to molecular weight (MW) distribution analysis, the coagulation was indeed effective in removing organic matters with large MW. The removal of large MW organic matters might be related to bacterial growth increase. The results indicated that posttreatments are needed after coagulation to maintain the biological stability of reclaimed water.

  1. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    Science.gov (United States)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  2. Recycling and reuse of wastewater from uranium mining and milling

    International Nuclear Information System (INIS)

    Xu Lechang; Gao Jie; Zhang Xueli; Wei Guangzhi; Zhang Guopu

    2010-01-01

    Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)

  3. Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater.

    Science.gov (United States)

    Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana

    2018-09-15

    Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  5. Removal of pharmaceuticals in WWTP effluents by ozone and ...

    African Journals Online (AJOL)

    Ozonation to achieve removal of pharmaceuticals from wastewater effluents, with pH values in the upper and lower regions of the typical range for Swedish wastewater, was investigated. The main aim was to study the effects of varying pH values (6.0 and 8.0), and if small additions of H2O2 prior to ozone treatment could ...

  6. Water movement and fate of nitrogen during drip dispersal of wastewater effluent into a semi-arid landscape.

    Science.gov (United States)

    Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S

    2014-04-01

    Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification

  7. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  8. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  9. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China

    International Nuclear Information System (INIS)

    Ma Mei; Rao Kaifeng; Wang Zijian

    2007-01-01

    Estrogenic potencies of the effluents or water samples from wastewater treatment plants (WWTPs), industries and hospitals and some receiving rivers in Beijing city were estimated by using a human estrogen receptor recombinant yeast assay. Estrogenic activity of industrial wastewaters was found to range from 0.1 to 13.3 ng EEQ/L and decreased to the range of 0.03-1.6 ng EEQ/L after treatment. Estrogenic activity in WWTP influent ranged from 0.3 to 1.7 ng EEQ/L and decreased to the range of 0.05-0.5 ng EEQ/L after treatment. In the receiving river waters, the estrogenic effect range was 0.1-4.7 ng EEQ/L. These data suggest that treated industrial effluents and WWTP effluents of concern are not the only source of estrogenic pollution in surface waters in Beijing city. EEQ levels in Beijing river water are likely attributable to untreated municipal and industrial wastewaters discharged directly into the river. - Estrogenic activity in Beijing river water is attributed to direct discharges of untreated municipal and industrial wastewaters

  10. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    Science.gov (United States)

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    International Nuclear Information System (INIS)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-01-01

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  12. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  13. Assessing the Effectiveness of Microelement Removal in the South Tertiary Wastewater Plant, Riyadh KSA

    OpenAIRE

    Leda G. Bousiakou; Leda G. Bousiakou; Rabia Qindeel; A. S. Almuzaini; Hosham A. Alghamdi; Walid Tawfik; Walid Tawfik; W. A Farooq; H. Kalkani; E. Manzou

    2015-01-01

    This work focuses on the monitoring of trace element removal from the Riyadh South Tertiary Wastewater Treatment plant using inductively coupled plasma mass spectrometry (ICP-MS). Considering that the final effluent originating from the plant is directed for irrigation purposes towards the farms of Al- Dirayia, Dirab and Wadi Hanifa it is important to consider the possible presence of elevated microelement concentrations that could pose potential threats to the human health. All samples were...

  14. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  15. Different techniques recently used for the treatment of textile dyeing effluents: a review

    International Nuclear Information System (INIS)

    Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M.

    2010-01-01

    Industrial textile processing comprises the operation of pretreatment dyeing printing and finishing. These production processes produce a substantial amount of chemical pollution. Textile finishing's wastewater, especially dye house effluent, contain different classes of organic dyes, chemicals and auxiliaries. They are colored and have extreme pH, COD and BOD values, and contain different salts, surfactants heavy metals and mineral oils. Therefore, dye bath effluents have to be treated before being discharge into the environment or municipal wastewater reservoir. This paper presents the review of different techniques currently used for the treatment of textile effluent, which are based on carbon adsorption, filtration, chemical precipitation, photo degradation, biodegradation and electrolytic chemical treatment. Membrane Technology has also been applied with the objective of recovering dyes and water. Biological processes could be adopted as a pretreatment decolorization step, combined with conventional treatment system (eg. coagulation flocculation, adsorption on activated carbon) to reduce the COD and BOD, an effective alternative for use by the textile dyeing industries. Electrochemical oxidation is an efficient process for the removal of colour and total organic carbon in reactive dyes textile wastewater. The ozonation is effective for decolorization of several dyes of different classes. Practical application of this process is feasible by treating industrial textile effluent after biological treatment. Processes using membranes technique, very interesting possibilities of separating hydrolyzed dyestuffs, dyeing auxiliaries and reuse treated wastewater in different finishing operation of textile industries. (author)

  16. Combined electrocoagulation and TiO{sub 2} photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil)], E-mail: nhioka2@yahoo.com.br

    2009-02-15

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO{sub 2}) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m{sup -2}, 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO{sub 2}/H{sub 2}O{sub 2} (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L{sup -1} TiO{sub 2} and 10 mmol L{sup -1} H{sub 2}O{sub 2} shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L{sup -1} for the sample from the factory, 160 mg L{sup -1} after EC and 50 mg L{sup -1} after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification.

  17. Evaluation of flat sheet membrane bioreactor efficiency for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Somayeh Fazeli

    2012-01-01

    Conclusion: It is concluded that FS-MBR can be used in the large scale municipal wastewater treatment plants to improve effluent quality due to high removal of COD, BOD 5 , TSS and VSS to meet effluent discharge standards.

  18. Assessing the Sensitivity of Different Life Stages for Sexual Disruption in Roach (Rutilus rutilus) Exposed to Effluents from Wastewater Treatment Works

    Science.gov (United States)

    Liney, Katherine E.; Jobling, Susan; Shears, Jan A.; Simpson, Peter; Tyler, Charles R.

    2005-01-01

    Surveys of U.K. rivers have shown a high incidence of sexual disruption in populations of wild roach (Rutilus rutilus) living downstream from wastewater treatment works (WwTW), and the degree of intersex (gonads containing both male and female structural characteristics) has been correlated with the concentration of effluent in those rivers. In this study, we investigated feminized responses to two estrogenic WwTWs in roach exposed for periods during life stages of germ cell division (early life and the postspawning period). Roach were exposed as embryos from fertilization up to 300 days posthatch (dph; to include the period of gonadal sex differentiation) or as postspawning adult males, and including fish that had received previous estrogen exposure, for either 60 or 120 days when the annual event of germ cell proliferation occurs. Both effluents induced vitellogenin synthesis in both life stages studied, and the magnitude of the vitellogenic responses paralleled the effluent content of steroid estrogens. Feminization of the reproductive ducts occurred in male fish in a concentration-dependent manner when the exposure occurred during early life, but we found no effects on the reproductive ducts in adult males. Depuration studies (maintenance of fish in clean water after exposure to WwTW effluent) confirmed that the feminization of the reproductive duct was permanent. We found no evidence of ovotestis development in fish that had no previous estrogen exposure for any of the treatments. In wild adult roach that had previously received exposure to estrogen and were intersex, the degree of intersex increased during the study period, but this was not related to the immediate effluent exposure, suggesting a previously determined programming of ovotestis formation. PMID:16203238

  19. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  20. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments.

    Science.gov (United States)

    Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M

    2017-12-01

    This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  2. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    International Nuclear Information System (INIS)

    Batt, Angela L.; Bruce, Ian B.; Aga, Diana S.

    2006-01-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 μg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 μg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 μg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants

  3. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Meng Jin

    2017-11-01

    Full Text Available With the recent development of constructed wetland technology, it has become a mainstream treatment technology for the mitigation of a variety of wastewaters. This study reports on the treatment performance and pH attenuation capacity of three different configurations of small-scale on-site surface flow constructed wetlands (SFCW: T1 (Peat + Typha latifolia, T2 (T. latifolia alone, and T3 (Peat alone treating secondary effluent from the Amherstview Water Pollution Control Plant (WPCP for two treatment periods (start-up period and operational period. The aim of this study was to compare the nutrients removal efficiencies between the different treatments, as well as to evaluate the effects of substrate and vegetation on the wetland system. For a hydraulic retention time of 2.5 days, the results showed that all treatment systems could attenuate the pH level during both the start-up and operational periods, while significant nutrient removal performance could only be observed during the operational period. Peat was noted to be a better SFCW substrate in promoting the removal of nitrate (NO3-N, total nitrogen (TN, and phosphorus. The addition of T. latifolia further enhanced NO3-N and TN removal efficiencies, but employing T. latifolia alone did not yield effluents that could meet the regulatory discharge limit (1.0 mg/L for phosphorus.

  4. Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Benassi, J.C.; Laus, R.; Geremias, R.; Lima, P.L.; Menezes, C.T.B.; Laranjeira, M.C.M.; Wilhelm, D.; Favere, V.T.; Pedrosa, R.C. [Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2006-11-15

    The aim of this work was to evaluate the remediation of mining wastewater effluents by chitosan microspheres using biomarkers of exposure and effect. DNA damage (Comet assay) and several biomarkers of oxidative stress, such as lipoperoxidation levels (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activities, and contents of reduced glutathione (GSH), were measured in blood and liver of tilapia (Oreochromis niloticus) exposed for 7, 15, and 30 days to dechlorinated tap water, 10% coal mining wastewater (CMW), and coal mining wastewater treated with chitosan microspheres (RCM). The results obtained indicated that the use of oxidative stress biomarkers were useful tools for the toxicity evaluation of coal mining effluents and also suggest that chitosan microspheres may be used as an alternative approach for remediation of coal mining wastewaters.

  5. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  6. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  7. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO{sub 2} nanobelt photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Robert; Hu, Anming, E-mail: a2hu@uwaterloo.ca; Li, Wenjuan; Zhou, Y. Norman [University of Waterloo, Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-10-15

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO{sub 2}, have potential for wastewater treatment. In this study, TiO{sub 2} anatase phase nanobelts (30-100 nm in width and 10 {mu}m in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products-naproxen, carbamazepine, and theophylline-that are difficult to oxidize without AOP processes. TiO{sub 2} nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species-hydroxyl radial (OH{center_dot}), positive holes (h{sup +}), and hydrogen peroxide (H{sub 2}O{sub 2})-involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO{sub 2} nanobelt membranes, including those harnessing sunlight for water treatment.

  8. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    Science.gov (United States)

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  9. Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Stephanie V. Del; Garcia, Vanessa S.G.; Boiani, Nathalia F.; Rosa, Jorge M.; Andrade e Silva, Leonardo G. de; Borrely, Sueli I., E-mail: vanessagranadeiro@gmail.com, E-mail: steh.vdsole@gmail.com, E-mail: jotarosa@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); SENAI, Faculdade de Tecnologia Antoine Skaf, Sao Paulo, SP (Brazil)

    2017-11-01

    Textile industry has an expressive scenario in the world economy and Brazil is the 5{sup th} in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric (ABIT, 2017). The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations. Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective in reducing the color of the effluent, starting from 0.5 kGy. EB radiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes. (author)

  10. Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

    International Nuclear Information System (INIS)

    Sole, Stephanie V. Del; Garcia, Vanessa S.G.; Boiani, Nathalia F.; Rosa, Jorge M.; Andrade e Silva, Leonardo G. de; Borrely, Sueli I.

    2017-01-01

    Textile industry has an expressive scenario in the world economy and Brazil is the 5"t"h in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric (ABIT, 2017). The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations. Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective in reducing the color of the effluent, starting from 0.5 kGy. EB radiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes. (author)

  11. Effect of dairy wastewater on changes in COD fractions in technical-scale SBR type reactors.

    Science.gov (United States)

    Struk-Sokołowska, Joanna; Rodziewicz, Joanna; Mielcarek, Artur

    2017-04-01

    The annual global production of milk is approximately 630,000 million litres and the volume of generated dairy wastewater accounts for 3.2 m 3 ·m -3 product. Dairy wastewater is characterized by a high load of chemical oxygen demand (COD). In many wastewater plants dairy wastewater and municipal wastewater are co-treated. The effect of dairy wastewater contribution on COD fraction changes in municipal sewage which has been treated with a sequencing batch reactor (SBR) in three wastewater treatment plants in north-east Poland is presented. In these plants the real contribution of dairy wastewater was 10, 13 and 17%. In raw wastewater, S S fraction (readily biodegradable dissolved organic matter) was dominant and ranged from 38.3 to 62.6%. In the effluent, S S fraction was not noted, which is indicative of consumption by microorganisms. The presence of dairy wastewater in municipal sewage does not cause changes in the content of the X I fraction (insoluble fractions of non-biodegradable organic matter). SBR effluents were dominated by non-biodegradable dissolved organic matter S I , which from 57.7 to 61.7%. In raw wastewater S I ranged from 1.0 to 4.6%. X s fraction (slowly biodegradable non-soluble organic matter) in raw wastewater ranged from 24.6 to 45.5% while in treated wastewater it ranged from 28.6 to 30.8%. In the control object (fourth wastewater plant) which does not process dairy wastewater, the S S , S I , X s and X I fraction in inflow was 28.7, 2.4, 51.7 and 17.2% respectively. In the effluent the S S , S I , X s and X I fraction was below 0.1, 33.6, 50.0 and 16.4% respectively.

  12. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it

  13. Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.

    Science.gov (United States)

    Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao

    2010-06-15

    In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  14. physico-chemical characteristics of effluents from garri processing

    African Journals Online (AJOL)

    DR. AMIN

    0.62ppm all in contrast to World Health Organization maximum admissible limit of 0.07ppm. A two- ... indiscriminate discharge of industrial effluents [Salami and Egwin, 1997]. ..... Wastewater Engineering, Treatment and Refuse,. 4th edition ...

  15. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Worms, Isabelle A.M.; Traber, Jacqueline; Kistler, David; Sigg, Laura; Slaveykova, Vera I.

    2010-01-01

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  16. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    Energy Technology Data Exchange (ETDEWEB)

    Worms, Isabelle A.M. [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Traber, Jacqueline; Kistler, David; Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-02-15

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 mum). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  17. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments.

    Science.gov (United States)

    Burd, B; Macdonald, T; Bertold, S

    2013-09-15

    We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW): A comparative analysis of effluent from different treatment processes.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi

    2018-05-04

    Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.

  19. Advanced Oxidation Processes (AOPs for Refinery Wastewater Treatment Contains High Phenol Concentration

    Directory of Open Access Journals (Sweden)

    Azizah Alif Nurul

    2018-01-01

    Full Text Available Petroleum Refinery wastewater is characterized by a high phenol content. Phenol is toxic and resistant to biological processes for treatment of the petroleum refinery wastewater. The combination of an AOP and a biological process can be used for treatment of the refinery wastewater. It is necessary to conduct a study to determine the appropriate condition of AOP to meet the phenol removal level. Two AOP configurations were investigated: H2O2 / UV and H2O2 / UV / O3. From each process samples, COD, phenol and pH were measured. The oxidation was carried out until the targeted phenol concentration of treated effluent were obtained. The better result obtained by using process H2O2 / UV / O3 with the H2O2 concentration 1000 ppm. After 120 minutes, the final target has been achieved in which phenol concentration of 37.5 mg/L or phenol degradation of 93.75%.

  20. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; García, M. C.; Karakashev, Dimitar Borisov

    2009-01-01

    oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 +/- 4.9% for diluted UASB-post-digested effluent (95 mg COD L-1) and up to 98.5 +/- 0.8% for diluted partially oxidized effluent (121 mg COD L-1). Mass balance clearly showed that an increase in organic loading......The anammox process, under different organic loading rates (COD), was evaluated using a semi-continous UASB reactor at 37 degrees C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial...... improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L-1 of UASB-post-digested effluent and 242 mg COD L-1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80...

  1. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  2. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  4. Introduction to Effluent Treatment and Industrial Methods

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  5. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  6. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  7. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations

    International Nuclear Information System (INIS)

    Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G. Li; Malato, S.

    2012-01-01

    Highlights: ► Low TiO 2 concentration suitable for removal of contaminants in WWTP effluents. ► The low concentration of TiO 2 limits the reaction rate due to the loss of photons. ► Contaminant degradation >85% is possible after a certain reaction time. ► New developments in CPC photoreactors with as large an O.D. are necessary. - Abstract: The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO 2 ) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO 2 suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography–mass spectrometry (LC–MS). In view of the results, low concentrations of TiO 2 of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration.

  8. Assessment of the estrogenic potency of effluents from petrochemical facilities and a petroleum refinery in Ontario

    International Nuclear Information System (INIS)

    Sherry, J.P.; Trepanier, T.; Tinson, C.; Munro, S.

    2002-01-01

    Studies have shown that wastewater from refineries could induce vitellogenin (Vg) in juvenile rainbow trout. Vg is a biomarker of exposure to estrogenic chemicals. This study reassessed the estrogenic potency of the wastewater from an Ontario refinery and assessed the estrogenicity of wastewater from 3 petrochemical facilities. A 21 day static renewal test was conducted to test the effluents and in which a competitive binding ELISA detected induced Vg. Statistical testing for tank effects was performed in a replicated tank design and the St. Clair River water from upstream industrial facilities was used as a negative reference. The positive control treatment was waterborne 17β-estradiol. Wastewater from the petroleum refinery induced Vg in the treated fish, but wastewater from the petrochemical effluents did not induce detectable levels of Vg in treated trout. The information obtained through this study will be used to determine the potential for responses in feral fish

  9. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  10. Pharmaceuticals and illicit drugs in wastewater samples in north-eastern Tunisia.

    Science.gov (United States)

    Moslah, Bilel; Hapeshi, Evroula; Jrad, Amel; Fatta-Kassinos, Despo; Hedhili, Abderrazek

    2017-04-07

    Pharmaceutically active substances (PhACs) and drugs of abuse (DAs) are two classes of contaminants of emerging concern that have attracted great concern and interest by the scientific community during the last two decades. Numerous studies have revealed their presence in treated urban wastewaters. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, and are thus able to reach the aquatic environment through wastewater discharge and reuse practices. The application of an optimized multi-residue method for the simultaneous confirmation and quantification of licit and illicit drugs has been investigated in influent and effluent wastewater samples from seven wastewater treatment plants (WWTPs) located in north-eastern Tunisia. Analysis was performed through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Out of 12 pharmaceutical compounds analyzed, 11 of them were detected mainly in effluent wastewaters. In both matrices, antibiotics and β-blockers were the most detected groups. This suggests that these compounds show noticeable resistance against biological treatment in WWTPs. The estimated concentrations of antibiotics in effluents ranged from ca. 35 ng/L to 1.2 μg/L. However, all five studied illicit drugs were detected, mainly in influent wastewaters. Forensic investigation performed on people suspected to be drug abusers covering all Tunisian cities was conducted by monitoring an epidemiological study of human urine samples surveying rate of consumption for illicit drugs. Hence, these preliminary results confirmed the presence of illicit drugs in the influent wastewater samples. For example, quantification ranges for cocaine were found to be 25-450 ng/L in influent wastewater samples. Significant differences for cocaine consumption across the two sampling methods were observed. Consequently, we conclude that the analyses in wastewater are more reflective of the

  11. Wilsonville wastewater sampling program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  12. Assessment of the effluent quality from a gold mining industry in Ghana.

    Science.gov (United States)

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  13. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes.

    Science.gov (United States)

    Ben, Weiwei; Wang, Jian; Cao, Rukun; Yang, Min; Zhang, Yu; Qiang, Zhimin

    2017-04-01

    Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10 1 to 8.9 × 10 3  CFU mL -1 and 3.6 × 10 1 (tetW) to 5.4 × 10 6 (tetX) copies mL -1 , respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10 12 to 4.8 × 10 15  CFU d -1 and 6.4 × 10 12 (tetW) to 1.7 × 10 18 (sul1) copies d -1 , respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Renovation of food-processing wastewater by a Riparian wetland

    Science.gov (United States)

    Baillie, Priscilla W.

    1995-01-01

    Treated wastewater from a food-processing plant, together with intermittent outflow from a hypereutrophic pond, were discharged over a 20-year period to a cattail-dominated wetland and hence to a small stream. Organics and nutriet levels in the effluent were comparable to levels in domestic wastewater. Fifteen variables were monitored upstream and downstream from the plant over 18 months. Means for most variables were slightly higher downstream, but differences between stations were not statistically significant. Wetland processing of nitrogen was markedly affected by a change from drought to flood conditions. After accounting for dilution, the overall effect of the wetland on the effluent was to reduce biological oxygen demand 43.7%, ammonia N 46.3%, nitrate/nitrite N 17.4%, and conductivity 15.6%. However, total suspended solids were increased 41.4%, total organic nitrogen 28.8%, and total phosphorus 24.7%. It was concluded that the wetland effectively renovated the effluent but the removal efficiency would be improved if the effluent were pretreated to reduce phosphorus and dispersed to increase residence time in the wetland.

  15. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants

    International Nuclear Information System (INIS)

    Wang, Jilu; Mao, Daqing; Mu, Quanhua; Luo, Yi

    2015-01-01

    This study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, β-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.08 ± 0.16) × 10 3 to (3.68 ± 0.27) × 10 6 copies/mL. The absolute abundance of ARGs in effluents accounted for only 0.6%–59.8% of influents of the five PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (9.38 ± 0.73) × 10 7 to (4.30 ± 0.81) × 10 10 copies/g dry weight (dw). The total loads of ARGs discharged through dewatered sludge was 7–308 folds higher than that in the raw influents and 16–638 folds higher than that in the final effluents. The proliferation of ARGs mainly occurs in the biological treatment processes, such as conventional activated sludge, cyclic activated sludge system (CASS) and membrane bio-reactor (MBR), implying that significant replication of certain subtypes of ARGs may be attributable to microbial growth. High concentrations of antibiotic residues (ranging from 0.14 to 92.2 mg/L) were detected in the influents of selected wastewater treatment systems and they still remain high residues in the effluents. Partial correlation analysis showed significant correlations between the antibiotic concentrations and the associated relative abundance of ARG subtypes in the effluent. Although correlation does not prove causation, this study demonstrates that in addition to bacterial growth, the high antibiotic residues within the pharmaceutical WWTPs may influence the proliferation and fate of the associated ARG subtypes. - Highlights: • The ARGs in final discharges were 7–308 times higher than

  16. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilu [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Mao, Daqing, E-mail: mao@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Mu, Quanhua [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Luo, Yi, E-mail: luoy@nankai.edu.cn [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China)

    2015-09-01

    This study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, β-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.08 ± 0.16) × 10{sup 3} to (3.68 ± 0.27) × 10{sup 6} copies/mL. The absolute abundance of ARGs in effluents accounted for only 0.6%–59.8% of influents of the five PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (9.38 ± 0.73) × 10{sup 7} to (4.30 ± 0.81) × 10{sup 10} copies/g dry weight (dw). The total loads of ARGs discharged through dewatered sludge was 7–308 folds higher than that in the raw influents and 16–638 folds higher than that in the final effluents. The proliferation of ARGs mainly occurs in the biological treatment processes, such as conventional activated sludge, cyclic activated sludge system (CASS) and membrane bio-reactor (MBR), implying that significant replication of certain subtypes of ARGs may be attributable to microbial growth. High concentrations of antibiotic residues (ranging from 0.14 to 92.2 mg/L) were detected in the influents of selected wastewater treatment systems and they still remain high residues in the effluents. Partial correlation analysis showed significant correlations between the antibiotic concentrations and the associated relative abundance of ARG subtypes in the effluent. Although correlation does not prove causation, this study demonstrates that in addition to bacterial growth, the high antibiotic residues within the pharmaceutical WWTPs may influence the proliferation and fate of the associated ARG subtypes. - Highlights: • The ARGs in final discharges were 7

  17. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  18. Removal of pharmaceuticals in WWTP effluents by ozone and ...

    African Journals Online (AJOL)

    2013-02-12

    Feb 12, 2013 ... discharge of effluents by wastewater treatment plants (WWTPs) that are not ... The efficiency of ozone in removing pharmaceuticals and personal care ...... assessment and modeling of an ozonation step for full-scale munic-.

  19. In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern

    International Nuclear Information System (INIS)

    Arini, Adeline; Cavallin, Jenna E.; Berninger, Jason P.; Marfil-Vega, Ruth; Mills, Marc; Villeneuve, Daniel L.; Basu, Niladri

    2016-01-01

    Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24–42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24–54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences. - Highlights: • We conducted in vivo and in vitro neurochemical

  20. Assessment of peracetic acid disinfected effluents by microbiotests.

    Science.gov (United States)

    Antonelli, M; Mezzanotte, V; Panouillères, M

    2009-09-01

    Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.

  1. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    Science.gov (United States)

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for

  3. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    Science.gov (United States)

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality.

  4. Research and development on municipal Wastewater treatment processes using electron beams

    International Nuclear Information System (INIS)

    Kashiwaya, Mamoru

    1994-01-01

    This paper was described concerning the experimental results and their engineering evaluations on electron beam irradiation treatment to effluent and sludge produced in existing municipal wastewater treatment plants implemented by the Japan Atomic Energy Research Institute and the study committee for past five years. Laboratory tests using an electron accelerator were carried out for the purposes of disinfection both to effluent and to dewatered sludge. And composting tests by a pilot-plant were also carried out to find the optimal conditions on design and operation, and initial and operational cost estimations for pelletized sludge with/without the irradiation. It was found that these applications to effluent, sludge and supernatant were quite effective. However, several problems awaiting solution were found from the tests and evaluating works on the matters of marketed electron accelerators. As the results of tests and evaluating works, electron beam irradiation treatment process applied to effluent should be carried out at the municipal wastewater treatment plants. Regenerated granular activated carbon treated by electron beam irradiation may also be applicable to remove hazardous organic substances in effluent. However, long-term tests by pilotplants will be necessary to determine the design criteria, operation and maintenance conditions, and so on. For composting of dewatered sludge produced at municipal wastewater treatment plants, several sizes of smaller electron accelerator are required to be on the market. Especially, medium and small sizes municipalities expect to install composting facilities in the plant. (J.P.N.)

  5. Survey the performance of the Shohada of Behshahr the wastewater treatment plant hospital in 2015-2016

    Directory of Open Access Journals (Sweden)

    Sakine Mollaie Tavani

    2017-03-01

    Full Text Available Background and Objective: Hospital wastewater due to having pollutants like pharmaceuticals and antibiotics, chemical and heavy metals and … In the absence of proper treatment and its entry into the receiving waters are causing health risks. This study evaluate treatment and the quality of effluents from a single wastewater hospital Behshahr's Shohada gynecology and compare effluent with environmental standards. Materials and Methods: The study on wastewater treatment plant was to Descriptive - analytical method 2015-2016 in the hospital A single gynecologic Behshahr's Shohada. In order to determine the sewage quality and efficiency Wastewater treatment plant outlet effluent sampling was performed. Samples of BOD, COD, TDS, TSS, DO, turbidity, free chlorine, fecal coliform and total coliform were analyzed using standard methods. Results: The average daily water consumption of 33 m3 and the average hospital wastewater generated per bed is 26.4 m3/day. Average parameters BOD, COD, TDS, TSS, DO, turbidity, free chlorine, fecal coliform and total coliform in the outlet effluent treatment plant respectively is 112/25 mg /l, 157 mg / L, 1122/25 mg / L, 138/75 mg / L, 59/5 mg / L, 13 NTU, 1mg / L,4/75 MPN / 100mL, 46 MPN / 100mL. Conclusion: The results showed that all parameters are above the standard level suitable effluent disposal to receiving the waters were, therefore efficiency is unsuitable the process of and requires management and leadership is more accurate. This wastewater treatment plant also can be used for agricultural use, Discharge into surface waters and catchy wells are not  and Total coliform and fecal coliform amounts were measured only by the standards of the Iran Environmental Protection Agency were compatible.

  6. Application of electrochemically synthesized ferrate(VI in the purification of wastewater from coal separation plant

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2010-01-01

    Full Text Available The oxidative and coagulation efficiency of Na2FeO4 solution, electrochemically generated by trans-passive anodic oxidation of electrical steel in 10M NaOH solution, is confirmed in the process of purification of heavily contaminated wastewater from coal separation plant. The decontamination efficiency is evaluated comparing the values of selected contamination parameters obtained by chemical and biochemical analysis of plant effluent water and water obtained after decontamination with ferrate(VI solution in relatively simple laboratory procedure. The sample of 450 ml of wastewater is treated in laboratory conditions with 100cm3 solution of 1 mg dm-3 Na2FeO4 in 10M NaOH. The chemical analysis of effluent water after treatment have shown almost 3 times lower permanganate index, about 3 times lower iron content, 1.45 times lower As3+ content, 7.35 times lower ammonia content. Turbidity and chemical oxygen demand (COD is reduced for more than 5.77and 13.4 times, respectively. The suspended and colloid matter is eliminated from effluent water after treatment with ferrate(VI solution. Also, biochemical exploration has confirmed high efficiency of ferrate(VI in organics and microbial elimination showing 7.1 times lower 5-days bio-chemical oxygen demand (BOD5, and total elimination of aerobic and anaerobic bacteria from effluent water. According to standards on quality of industrial wastewater effluents, it may be concluded that ferrate(VI treatment of wastewater almost completely eliminates excess of dangerous chemicals and pathogen bacteria, with the exemption of arsenic. Thus, ferrate(VI shows capable performance in treatment of coal separation plant wastewater.

  7. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa.

    Science.gov (United States)

    Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho

    2010-06-15

    Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater.

    Science.gov (United States)

    Rúa-Gómez, Paola C; Püttmann, Wilhelm

    2012-05-01

    The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from Infiltration of the target analytes into groundwater was not observed.

  10. Effluent Mixing Modeling for Liquefied Natural Gas Outfalls in a Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Mustafa Samad

    2014-06-01

    Full Text Available Liquid Natural Gas (LNG processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.

  11. Biothane process. Methane-producing treatment of wastewaters in a granular sludge bed

    Energy Technology Data Exchange (ETDEWEB)

    Boulenger, P; Vesprille, B

    1982-01-01

    The Biothane-UASB (upflow anaerobic sludge blanket) process, an anaerobic fermentation system with 2 granular sludge beds, effectively treats wastewaters from cheese and starch manufacture and is suitable for other industrial effluents, such as sugar beet alcohol distillation wastewaters and biosynthesis wases.

  12. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    Science.gov (United States)

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  13. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  14. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean

    2013-01-01

    Titanium dioxide (TiO2) photocatalysts have been shown to be effective at degrading a wide range of organic micropollutants during short-term batch experiments conducted under ideal laboratory solution conditions (e.g., deionized water). However, little research has been performed regarding longer-term photocatalyst performance in more complex matrices representative of contaminated water sources (e.g., wastewater effluent, groundwater). Here, a benchtop continuous-flow reactor was developed for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole, and carbamazepine) was monitored in both a pH-buffered electrolyte solution and a biologically treated wastewater effluent (WWE) to study the effects of non-target constituents enriched in the latter matrix. Reactor performance was shown to be stable over 7d when treating micropollutants in buffered electrolyte, with 7-d averaged kobs values (acetaminophen=0.97±0.10h-1; carbamazepine=0.50±0.04h-1; iopromide=0.49±0.03h-1; sulfamethoxazole=0.79±0.06h-1) agreeing closely with measurements from short-term circulating batch reactions. When reactor influent was switched to WWE, treatment efficiencies decreased to varying degrees (acetaminophen=40% decrease; carbamazepine=60%; iopromide=78%; sulfamethoxazole=54%). A large fraction of the catalyst activity was recovered upon switching back to the buffered electrolyte influent after 4d, suggesting that much of the observed decrease resulted from reversible inhibition by non-target constituents (e.g., scavenging of photocatalyst-generated OH). However, there was also a portion of the decrease in activity that was not recovered, indicating WWE constituents also contributed to photocatalyst deactivation (acetaminophen=6% deactivation; carbamazepine=24%; iopromide=16

  15. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  16. Final environmental impact statement supplement for wastewater management systems, North Jefferson County, Kentucky wastewater facilities

    International Nuclear Information System (INIS)

    1992-12-01

    The Final Environmental Impact Statement Supplement (FEISS) serves to update the wastewater treatment alternatives presented in the original EIS (The North County Area Environmental Impact Statement, Jefferson County, KY, July 1984), determine the best alternative, and compare that alternative to the Louisville and Jefferson County Metropolitan Sewer District's North County Action Plan (NCAP). The NCAP was determined to have the greatest cost effectiveness, lowest environmental impact, and best implementability and reliability and so is the preferred alternative in the FEISS. Significant environmental impacts of the alternative are described and mitigative measures discussed

  17. Membrane processes for the reuse of car washing wastewater

    Directory of Open Access Journals (Sweden)

    Deniz Uçar

    2018-04-01

    Full Text Available This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD removal. Finally, wastewater was filtered by four ultrafiltration membranes of varying molecular weight cutoff (MWCO (1, 5, 10 and 50 kDa and one nanofiltration membrane (NF270, MWCO = 200–400 Da. The permeate COD concentrations varied between 64.5 ± 3.2 and 85.5 ± 4.3 mg L−1 depending on UF pore size. When the NF270 nanofiltration membrane was used, the permeate COD concentration was 8.1 ± 0.4 mg L−1 corresponding to 97% removal. FeCl3 precipitation and activated carbon adsorption techniques were also applied to the retentate and 60–76% COD removals were obtained for activated carbon adsorption and FeCl3 precipitation, respectively.

  18. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    Science.gov (United States)

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  19. Simulation of ammoniacal nitrogen effluent using feedforward ...

    African Journals Online (AJOL)

    Ammoniacal nitrogen in domestic wastewater treatment plants has recently been added as the monitoring parameter by the Department of Environment, Malaysia. It is necessary to obtain a suitable model for the simulation of ammonical nitrogen in the effluent stream of sewage treatment plant in order to meet the new ...

  20. Short communication: Industrial effluent treatments using heavy ...

    African Journals Online (AJOL)

    Bioflocculants produced by Herbaspirillium sp. CH7, Paenibacillus sp. CH11, Bacillus sp. CH15 and a Halomonas sp. were preliminarily evaluated as flocculating agents in the treatment of industrial wastewater effluents. Industrial (1 local chemical-industry and 2 textile-industry: Biavin 109-medium blue dye and Whale dye) ...

  1. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  2. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  3. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m 3 d −1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L −1 ; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L −1 ), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L −1 ) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  4. Chemical phosphorus removal: A clean strategy for piggery wastewater management in Brazil

    Science.gov (United States)

    The intensive production of animal protein is known to be an environmental polluting activity, especially if the wastewater produced is not managed properly. Swine production in Brazil is growing and technologies to manage all pollutants present in the wastewater effluent are needed. This work prese...

  5. Wastewater characterization of IPEN facilities - a preliminary study

    International Nuclear Information System (INIS)

    Monteiro, Lucilena R.; Goncalves, Cristina; Terazan, Wagner R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2011-01-01

    As part of IPEN's Environmental Monitoring Program, wastewater sample collection and analysis was implemented on a daily basis. CQMA- Centro de Quimica e Meio Ambiente was responsible for the determination of total, fixed and volatile solids, pH, metals (as Al, Sb, Ba, Cd, Pb, Co, Cu, Cr, Hg, Mo, Ni, Ag, Na, Zn, Ca, Mg, Be, Sn, Li, K, Sr, Ti and V), semimetals (As, B, Se and Si) and anions (such as chloride, nitrate, sulfate and fluoride). The results were compared to the legal values established by the Sao Paulo State regulation 8,468/76, which defines the maximum permitted values for most of the studied substances in wastewater, aiming its releasing in public wastewater treatment system. The evaluation of this parameters concentration on Ipen's effluent implies that 50% of the wastewater corresponds to organic matter due to the sanitary load and inorganic macro elements, mainly as sodium, potassium, calcium. The only parameter not found in accordance with Brazilian legislation was pH in four out of the one hundred and seven samples collected throughout 2009 (2.8% of the samples analyzed). This preliminary study showed the effluents generated at Ipen's facility is characterized by the presence of organic matter and macro elements, commonly found in sanitary wastewater and it is in compliance with Sao Paulo regulations. (author)

  6. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  7. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  8. Particle size distribution in effluent of trickling filters and in humus tanks.

    Science.gov (United States)

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  9. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  10. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  11. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  12. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  13. Soil Quality after Six Years of Paper Mill Industrial Wastewater Application

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Carreiro Almeida

    Full Text Available ABSTRACT The application of wastewater to irrigate soils may be an attractive option for paper mills, especially when the effluents can also provide nutrients to plants. Since there could be negative environmental effects, such activity must be preceded by a thorough evaluation of the consequences. The changes in soil quality of a Neossolo Flúvico Distrófico (Typic Udifluvent were evaluated over a period of six years of irrigation with treated effluent from a wood pulp company. Although effluent application for six years did not affect soil resistance to penetration and soil hydraulic conductivity, it promoted a decrease in the mean size of aggregates and an increase in clay dispersion. Effluent application increased soil pH but did not change exchangeable Ca and Mg contents and organic carbon. After a full rotation of eucalyptus cultivation common in Brazil (six years, no negative effects in tree growth were found due to effluent irrigation. However, effluent addition caused higher values of Na adsorption ratio and intermediate electrical conductivity in the soil, which indicates a possible negative effect on soil quality if the application continues over a longer period. Therefore, a monitoring program should be carried out during subsequent crop rotations, and alternatives must be studied to obtain better effluent quality, such as adding Ca and Mg to the wastewater and using gypsum in the soil.

  14. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  15. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  16. Disinfection of wastewater with peracetic acid: a review.

    Science.gov (United States)

    Kitis, Mehmet

    2004-03-01

    Peracetic acid is a strong disinfectant with a wide spectrum of antimicrobial activity. Due to its bactericidal, virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various industries, the use of peracetic acid as a disinfectant for wastewater effluents has been drawing more attention in recent years. The desirable attributes of peracetic acid for wastewater disinfection are the ease of implementing treatment (without the need for expensive capital investment), broad spectrum of activity even in the presence of heterogeneous organic matter, absence of persistent toxic or mutagenic residuals or by-products, no quenching requirement (i.e., no dechlorination), small dependence on pH, short contact time, and effectiveness for primary and secondary effluents. Major disadvantages associated with peracetic acid disinfection are the increases of organic content in the effluent due to acetic acid (AA) and thus in the potential microbial regrowth (acetic acid is already present in the mixture and is also formed after peracetic acid decomposition). Another drawback to the use of peracetic acid is its high cost, which is partly due to limited production capacity worldwide. However, if the demand for peracetic acid increases, especially from the wastewater industry, the future mass production capacity might also be increased, thus lowering the cost. In such a case, in addition to having environmental advantages, peracetic acid may also become cost-competitive with chlorine.

  17. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  18. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    Science.gov (United States)

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  19. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  20. Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland

    Science.gov (United States)

    Romano, Vincenza; Krovacek, Karel; Mauri, Federica; Demarta, Antonella; Dumontet, Stefano

    2012-01-01

    The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+ B+ CDT+), whereas 51% showed the profile A+ B+ CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater. PMID:22798376

  1. ENHANCEMENT OF PHENOL REMOVAL EFFICIENCY IN DORA REFINERY WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Salah F. Sharif

    2013-05-01

    Full Text Available Because the sanctions imposed on Iraq by the United Nations, programmed maintenance and wearing parts replacement has not been performed according to schedules in DORA Refinery Wastewater Unit, which resulted in higher phenol content and BOD5 in effluents disposed to river. The investigations showed that two main reasons were behind this problem: Firstly, increased emissions of hydrocarbons in the complexity of refinery equipment and Secondly, the decreased efficiency of the aerators in the biological. During the last few months, phenol average concentration in the effluent, after biological treatment was found to be between 0.06-0.13 mg/L, while COD was exceeding 110 mg/L after treatment in the same period. Considerable enhancement, has been indicated recently, after the following performances: First: Recycling wastewater from some heat exchangers, and the segregation of low and high strength of wastewaters, Second: Minimizing emissions of hydrocarbons from fluid catalytic cracking and steam cracking, Third: Replacement of driving motors of the aerators in the biological treatment unit. After replacement of these units, a significant decrease in phenol concentration was obtained in purified water (0.03-0.05 mg/L and COD of 60 mg/L before the tertiary treatment. It is concluded that a better quality of effluents has been obtained after a series of emissions control and wastewater treatment unit equipment maintenance performances.

  2. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  3. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  4. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  5. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-01-01

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L -1 ). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  6. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Removal of Cu2+ from Wastewater Using Synthesized Magnetite Bentonite Nano-absorbent

    Directory of Open Access Journals (Sweden)

    Gholamhossein Nourmohammadi

    2015-12-01

    Full Text Available The objective of the present study was to investigate absorption of copper from wastewater using the synthesized magnetite (Fe3O4 bentonite nanoadsorbent. Synthesized magnetite-bentonite nanoparticles (20‒40 nm were produced using the coprecipitation method and subsequently subjected to Scanning Electron Microscopy (SEM, X-Ray Diffraction (XRD, and Fourier Transform Infrared Spectroscopy (FT-IR for analysis and evaluation. The nanoparticles were finally used as an adsorbent in wastewater treatment. Experiments were also designed using the Design of Experiment (DOE software. Absorbent quantity, contact time, Cu+2 concentration , and pH were the most important factors selected for investigation. In a second step, the CCD design model was used to identify the optimum conditions for achieving the best metal ion absorption (removal efficiency. It was found that 89% of Copper metal ions were absorbed under optimum conditions. Finally, experiments were performed on the inorganic effluent (from the Sarcheshme Copper Mines under the optimum conditions. Results revealed a sorption content of 30% for Cu2+..

  8. Prevalence of antibiotic resistant coliform bacteria, Enterococcus spp. and Staphylococcus spp. in wastewater sewerage biofilm.

    Science.gov (United States)

    Lépesová, Kristína; Kraková, Lucia; Pangallo, Domenico; Medveďová, Alžbeta; Olejníková, Petra; Mackuľak, Tomáš; Tichý, Jozef; Grabic, Roman; Birošová, Lucia

    2018-03-28

    Urban wastewater contains different micropollutants and high number of different microorganisms. Some bacteria in wastewater can attach to the surfaces and form biofilm, which gives bacteria advantage in fight against environmental stress. This work is focused on bacterial community analysis in biofilms isolated from influent and effluent sewerage of wastewater treatment plant in Bratislava. Biofilm microbiota detection was performed by culture-independent and culture-dependent approaches. Composition of bacterial strains was detected by denaturing gradient gel electrophoresis fingerprinting coupled with the construction of 16S rRNA clone libraries. The biofilm collected at the inlet point was characterized primarily by the presence of Pseudomonas sp., Acinetobacter sp. and Janthinobacterium sp. clones, while in the biofilm isolated at outflow of wastewater treatment plant members of Pseudomonas genus were largely detected. Beside this analysis prevalence of antibiotics and resistant coliforms, Enterococcus spp. and Staphylococcus spp. in sewerage was studied. In influent wastewater were dominant antibiotics like azithromycin, clarithromycin and ciprofloxacin. Removal efficiency of these antibiotics notably azithromycin and clarithromycin were 30% in most cases. The highest number of resistant bacteria with predominance of coliforms was detected in sample of effluent biofilm. Multidrug resistant strains in effluent biofilm showed very good ability to form biofilm. Copyright © 2018. Published by Elsevier Ltd.

  9. The status of wastewater management in Shokuhieh industrial park (A case study of Qom province

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2015-12-01

    Full Text Available Background: Water resource management is a strategic issue in Qom city. Water scarcity is one of the most critical concerns of industrial estates. This study aimed to evaluate wastewater management in the Shokuhieh industrial park of Qom province in 2013. Methods: This is a descriptive cross-sectional study done by visiting the industrial units in person, completing questionnaires and analyzing the results. The questionnaire had 25 questions, including general information, the status of water supply, treatment and consumption, wastewater production, reuse or discharge of produced wastewater and the status of wastewater treatment and discharge of effluent. The industrial units evaluated were active with over 50 personnel and numbered 44 in total. Results: The water suppliers in the industries included network (70.5%, network and reverse osmosis (RO (22.5%, network and tanker (2.4% and tanker (4.6%. 63.63% of the industries had water treatment systems. 19.5% reused wastewater and 31.8% performed pretreatment before discharge of wastewater. The discharge sites of water treatment units’ effluent included the absorption well (17%, greenbelt (18% and sewer (65%. Discharge sites of sanitary wastewater in 50% of the industries was sewer and in 50%, it was absorption well. The discharge sites of processed wastewater was reuse (2%, sewer (52% and absorption well (46%. Discharge sites of exiting effluent from pretreatment units in the industrial park, included sewer (85.5%, transport by tanker (7.1% and absorption well (7.1%. The type of pretreatment process in 35.7% of the industries was chemical and in 64.3%, it was septic tank. Conclusion: The results of this study showed that pre-treatment is not done in most industries and wastewater reuse is performed in few industries. The main method of wastewater disposal in industries was by discharge into the sewer and absorbent well.

  10. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  11. Performance of Isfahan North Wastewater Treatment Plant in the Removal of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    nahid Navijouy

    2013-08-01

    Full Text Available Listeria and in particular Listeria monocytogenes is considered a ubiquitous foodborne pathogen which can lead listeriosis in human and animals. Listeriosis can be serious and may cause meningitis, septicemia and abortion in pregnant women. Although wastewater or sludge may contaminate foods of plant origin, there are no data on occurrence of Listeria spp. in wastewater and sludge in Iran. The purpose of current investigation was to study the occurrence of Listeria spp. in various samples of wastewater and sludge in Isfahan North wastewater treatment plant. Influent, effluent, raw sludge and dried sludge samples were collected from Isfahan North municipal wastewater treatment plant. L. monocytogenes were enumerated by a three–tube most probable number (MPN assay using enrichment Fraser broth. A total of 65 various samples from five step in 13 visits were collected. The presence of Listeria spp. also was determined using USDA procedure. Then, phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction amplification. L. monocytogenes isolated from 76.9%, 38.5%, 84.6%, 69.2% and 46.2% of influent, effluent, raw sludge, stabilized sludge and dried sludge respectively. The efficiency of wastewater treatment processes, digester tank and drying bed in removal L. monocytogenes were 69.6%, 64.7% and 73.4% respectively. All phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction. The results of present study have shown that Listeriaspp. and L. monocytogenes in particular, were present in wastewater treatment plant effluents and sludge at high level. The bacteria may spread on agriculture land and contaminate foods of plant origin. This may cause a risk of spreading disease to human and animals.

  12. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading.

    Science.gov (United States)

    Turolla, A; Cattaneo, M; Marazzi, F; Mezzanotte, V; Antonelli, M

    2018-01-01

    The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion.

  14. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS.

    Science.gov (United States)

    Vidmar, Janja; Oprčkal, Primož; Milačič, Radmila; Mladenovič, Ana; Ščančar, Janez

    2018-04-12

    Zero-valent iron nanoparticles (nZVI) exhibit great potential for the removal of metal contaminants from wastewater. After their use, there is a risk that nZVI will remain dispersed in remediated water and represent potential nano-threats to the environment. Therefore, the behaviour of nZVI after remediation must be explored. To accomplish this, we optimised a novel method using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for the sizing and quantification of nZVI in wastewater matrices. H 2 reaction gas was used in MS/MS mode for the sensitive and interference-free determination of low concentrations of nZVI with a low size limit of detection (36nm). This method was applied to study the influence of different iron (Fe) loads (0.1, 0.25, 0.5 and 1.0gL -1 ) and water matrices (Milli-Q water, synthetic and effluent wastewater) on the behaviour of nZVI, their interactions with Cd 2+ and the efficiency of Cd 2+ removal. The aggregation and sedimentation of nZVI increased with settling time. Sedimentation was slower in effluent wastewater than in Milli-Q water or synthetic wastewater. Consequently, Cd 2+ was more efficiently (86%) removed from effluent wastewater than from synthetic wastewater (73%), while its removal from Milli-Q water was inefficient (19%). The trace amounts of Cd 2+ that remained in the remediated water were either dissolved or sorbed to residual nZVI. The results of the nanoremediation of effluent wastewater with varying Fe loads showed that sedimentation was faster at higher initial concentrations of nZVI. After seven days of settling, low concentrations of Fe remained in the effluent wastewater at Fe loads of 0.5gL -1 or higher, which could indicate that the use of nZVI in nanoremediation under the described conditions may not represent an environmental nano-threat. However, further studies are needed to assess the ecotoxicological impact of Fe-related NPs used for the nanoremediation of wastewaters. Copyright © 2018

  15. Ecological surveys of the proposed high explosives wastewater treatment facility region

    International Nuclear Information System (INIS)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area

  16. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  17. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  18. Urban wastewater development in Central and Eastern Europe.

    Science.gov (United States)

    Somlyódy, László; Patziger, Miklós

    2012-01-01

    In the early nineties the region of Central and Eastern Europe (CEE, more than 1 million km² and 100 million inhabitants) went through fundamental political, economic and social changes which eventually led to the European integration process. This positively influenced urban water and wastewater management , which had an unbalanced structure and rather low level of development. The paper outlines first the 1990 situation (water supply, sewerage and wastewater treatment (WWT)) and the infrastructure development of the last two decades, on the basis of a comprehensive data collection for six countries (Bulgaria, the Czech Republic, Hungary, Poland, Romania and Slovakia). Austria serves as a reference basis. Alterations of some of the drivers such as GDP (Gross Domestic Product), water tariff, investment funding and legislation are studied in detail. Then, the paper focuses on WWT by analyzing data of 20 large plants. Influent and effluent quality is evaluated. Technology indicators are estimated and assessed. They include plant removal rates and violation ratios assuming the application of the Urban Wastewater Directive, primary clarifier removal rates, actual anoxic volume and sludge age in comparison with the recommendations of the ATV guideline, criteria of secondary settling tanks and energy consumption. Finally, nutrient removal rates and upgrading options are outlined.

  19. Planned reuse of wastewater effluents for environmental applications in Granollers (Barcelona, Spain); Reutilizacion planificada de aguas depuradas para uso ambientales en Granollers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.; Domingo, V.

    2006-07-01

    This paper describe the technical characteristics, performance, and operation and maintenance activities of the 1 ha surface flow constructed wetland (SF) located in Can Cabanyes, Granollers, Barcelona, Spain. The system started in operation by April 2003 as restoration measure for a degraded zone near the river Congost. The SFis fed with treated effluent of Granollers wastewater treatment plant. Currently treats a small flow (approximately 100 m''3/d, hydraulic load of 10mm/d) because the effluents of the TP have a high concentration of ammonia N (approximately 30 mg N/L) and the system was designed to reach a concentration lower than 2 mg/l. Somewhat more of the 50% of the data have an ammonia concentration lower than 2 mg N/L. The 85% of the samples had a faecal coliform concentration lower than 1.4 ulog/100 mL, which was the target value used for design. The system is currently a key element in the natural environments surrounding the Congost river. (Author) 6 refs.

  20. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J L [University of Maine, Orano, ME (United States). Dept. of Civil Engineering

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  1. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  2. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems.

    Science.gov (United States)

    Hocquet, D; Muller, A; Bertrand, X

    2016-08-01

    Hospitals are hotspots for antimicrobial-resistant bacteria (ARB) and play a major role in both their emergence and spread. Large numbers of these ARB will be ejected from hospitals via wastewater systems. In this review, we present quantitative and qualitative data of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, vancomycin-resistant enterococci and Pseudomonas aeruginosa in hospital wastewaters compared to community wastewaters. We also discuss the fate of these ARB in wastewater treatment plants and in the downstream environment. Published studies have shown that hospital effluents contain ARB, the burden of these bacteria being dependent on their local prevalence. The large amounts of antimicrobials rejected in wastewater exert a continuous selective pressure. Only a few countries recommend the primary treatment of hospital effluents before their discharge into the main wastewater flow for treatment in municipal wastewater treatment plants. Despite the lack of conclusive data, some studies suggest that treatment could favour the ARB, notably ESBL-producing E. coli. Moreover, treatment plants are described as hotspots for the transfer of antibiotic resistance genes between bacterial species. Consequently, large amounts of ARB are released in the environment, but it is unclear whether this release contributes to the global epidemiology of these pathogens. It is reasonable, nevertheless, to postulate that it plays a role in the worldwide progression of antibiotic resistance. Antimicrobial resistance should now be seen as an 'environmental pollutant', and new wastewater treatment processes must be assessed for their capability in eliminating ARB, especially from hospital effluents. Copyright © 2016. Published by Elsevier Ltd.

  3. Shadow prices of emerging pollutants in wastewater treatment plants: Quantification of environmental externalities.

    Science.gov (United States)

    Bellver-Domingo, A; Fuentes, R; Hernández-Sancho, F

    2017-12-01

    Conventional wastewater treatment plants (WWTPs) are designed to remove mainly the organic matter, nitrogen and phosphorus compounds and suspended solids from wastewater but are not capable of removing chemicals of human origin, such as pharmaceutical and personal care products (PPCPs). The presence of PPCPs in wastewater has environmental effects on the water bodies receiving the WWTP effluents and renders the effluent as unsuitable as a nonconventional water source. Considering PPCPs as non-desirable outputs, the shadow prices methodology has been implemented using the output distance function to measure the environmental benefits of removing five PPCPs (acetaminophen, ibuprofen, naproxen, carbamazepine and trimethoprim) from WWTP effluents discharged to three different ecosystems (wetland, river and sea). Acetaminophen and ibuprofen show the highest shadow prices of the sample for wetland areas. Their values are 128.2 and 11.0 €/mg respectively. These results represent a proxy in monetary terms of the environmental benefit achieved from avoiding the discharge of these PPCPs in wetlands. These results suggest which PPCPs are urgent to remove from wastewater and which ecosystems are most vulnerable to their presence. The findings of this study will be useful for the plant managers in order to make decisions about prioritization in the removal of different pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.

    2004-07-01

    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  5. Estimated discharge of treated wastewater in Florida, 1990

    Science.gov (United States)

    Marella, R.L.

    1994-01-01

    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  6. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Aleksandra [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Fatone, Francesco; Di Fabio, Silvia [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Petrovic, Mira, E-mail: mpetrovic@icra.cat [Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 80010 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain); Cecchi, Franco [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Barcelo, Damia [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain)

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ss-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 {mu}g/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  7. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    International Nuclear Information System (INIS)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-01-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification–denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  8. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation.

    Science.gov (United States)

    Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong

    2013-01-01

    GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW wastewater.

  9. Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants.

    Science.gov (United States)

    Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2012-01-01

    New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.

  10. A Survey on the Removal Efficiency of Fat, Oil and Grease in Shiraz Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Dehghani

    2014-12-01

    Full Text Available Background Fat, oil and grease (FOG in municipal wastewater treatment plant (MWWTP caused many problems. Objectives This study aimed to determine the removal efficiency of FOG in Shiraz MWWTP. Materials and Methods The removal efficiencies of FOG in the MWWTP were studied from June 2011 to September 2011 in Shiraz (Iran. The influent and effluent wastewater samples were collected in a volume of one liter (4 samples per week and analyzed according to the standard methods. Samples are transferred to the laboratory immediately. The concentration of FOG was determined using the solvent extraction and separating funnel and then compared with the effluent standards. To analyze the data, SPSS (version 11.5, Chi-square test and t test were used. Results The results showed that the FOG amount in input raw sewage in the MWWTP from June 2011 to September 2011 was around 25.5 mg/L and the amount in treated wastewater was about 8.1 mg/L. The FOG removal efficiency in this refinery was about 70% and met the environmental standards for the discharge (less than 10 mg/L (P < 0.05. Conclusions The effluent can be discharged to surface waters or used for irrigation. In order to the FOG concentration met the effluent standards, it is very crucial to control the entrance of industrial wastewater to the municipal wastewater collection networks. Otherwise, the MWWTP should be upgraded and the special techniques used to reduce FOG.

  11. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  12. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  13. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    Science.gov (United States)

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.

  14. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems.

    Science.gov (United States)

    Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Cook, Shaun R; Zaheer, Rahat; Yang, Hua; Woerner, Dale R; Geornaras, Ifigenia; McArt, Jessica A; Gow, Sheryl P; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; McAllister, Tim A; Belk, Keith E; Morley, Paul S

    2016-04-20

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.

  15. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system.

    NARCIS (Netherlands)

    Buelow, Elena; Bayjanov, Jumamurat R; Majoor, Eline; Willems, Rob J L; Bonten, Marc J M; Schmitt, Heike; van Schaik, Willem

    2018-01-01

    Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of

  16. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  17. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  18. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  19. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    African Journals Online (AJOL)

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  20. Application of the mixture design to decolourise effluent textile ...

    African Journals Online (AJOL)

    Important pollutants in textile effluents are mainly recalcitrant organics, colours, toxicants and inhibitory compounds, surfactants, chlorinated compounds (AOX), pH and salts. An aerobic system using a continuous stirred bed reactor (SBR) was continuously operated at constant temperature and fed with textile wastewater ...

  1. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    Science.gov (United States)

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.

  2. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  3. Remediation of textile effluents by membrane based treatment techniques: a state of the art review.

    Science.gov (United States)

    Dasgupta, Jhilly; Sikder, Jaya; Chakraborty, Sudip; Curcio, Stefano; Drioli, Enrico

    2015-01-01

    The textile industries hold an important position in the global industrial arena because of their undeniable contributions to basic human needs satisfaction and to the world economy. These industries are however major consumers of water, dyes and other toxic chemicals. The effluents generated from each processing step comprise substantial quantities of unutilized resources. The effluents if discharged without prior treatment become potential sources of pollution due to their several deleterious effects on the environment. The treatment of heterogeneous textile effluents therefore demands the application of environmentally benign technology with appreciable quality water reclamation potential. These features can be observed in various innovative membrane based techniques. The present review paper thus elucidates the contributions of membrane technology towards textile effluent treatment and unexhausted raw materials recovery. The reuse possibilities of water recovered through membrane based techniques, such as ultrafiltration and nanofiltration in primary dye houses or auxiliary rinse vats have also been explored. Advantages and bottlenecks, such as membrane fouling associated with each of these techniques have also been highlighted. Additionally, several pragmatic models simulating transport mechanism across membranes have been documented. Finally, various accounts dealing with techno-economic evaluation of these membrane based textile wastewater treatment processes have been provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  5. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  6. Optimization of Dye Removal from Textile Wastewater using ...

    African Journals Online (AJOL)

    OLUWASOGO

    however, this often gets polluted through the activities of man ... study examines the treatment of effluent from a textile industry in Kano ... II. MATERIALS AND METHODS. A. Materials. The textile wastewater used in this research was collected.

  7. Industrial effluent quality, pollution monitoring and environmental management.

    Science.gov (United States)

    Ahmad, Maqbool; Bajahlan, Ahmad S; Hammad, Waleed S

    2008-12-01

    Royal Commission Environmental Control Department (RC-ECD) at Yanbu industrial city in Kingdom of Saudi Arabia has established a well-defined monitoring program to control the pollution from industrial effluents. The quality of effluent from each facility is monitored round the clock. Different strategic measures have been taken by the RC-ECD to implement the zero discharge policy of RC. Industries are required to pre-treat the effluent to conform pretreatment standards before discharging to central biological treatment plant. Industries are not allowed to discharge any treated or untreated effluent in open channels. After treatment, reclaimed water must have to comply with direct discharge standards before discharge to the sea. Data of industrial wastewater collected from five major industries and central industrial wastewater treatment plant (IWTP) is summarized in this report. During 5-year period, 3,705 samples were collected and analyzed for 43,436 parameters. There were 1,377 violations from pretreatment standards from all the industries. Overall violation percentage was 3.17%. Maximum violations were recorded from one of the petrochemical plants. The results show no significant pollution due to heavy metals. Almost all heavy metals were within RC pretreatment standards. High COD and TOC indicates that major pollution was due to hydrocarbons. Typical compounds identified by GC-MS were branched alkanes, branched alkenes, aliphatic ketones, substituted thiophenes, substituted phenols, aromatics and aromatic alcohols. Quality of treated water was also in compliance with RC direct discharge standards. In order to achieve the zero discharge goal, further studies and measures are in progress.

  8. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Benjamin D. [School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204 (United States); Crago, Jordan P. [Department of Biology, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204 (United States); Hedman, Curtis J. [State Laboratory of Hygiene, University of Wisconsin-Madison, 2601 Agriculture Drive, Madison, WI 53718 (United States); Treguer, Ronan J.F. [Veolia Water North America, 101 West Washington St., Ste. 1400 East, Indianapolis, IN 46204 (United States); Magruder, Christopher [Milwaukee Metropolitan Sewer District, 260 W. Seeboth St, Milwaukee, WI 53204 (United States); Royer, L. Scott [Veolia Water Milwaukee, 700 E. Jones St., Milwaukee, WI 53207 (United States); Klaper, Rebecca D., E-mail: rklaper@uwm.edu [School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-02-01

    Current wastewater treatment processes are insufficient at removing many pharmaceutical and personal care products (PPCPs) from wastewater and it is necessary to identify the chemical characteristics that determine their fate. Models that predict the fate of various chemicals lack verification using in situ data, particularly for PPCPs. BIOWIN4 is a quantitative structure–activity relationship (QSAR) model that has been proposed to estimate the removal of PPCPs from wastewater, but data verifying the accuracy of its predictions is limited. In this study, the in situ soluble and suspended solid concentrations were assessed from raw influent, primary effluent, secondary effluent, and final effluent for 54 PPCPs and hormones over six dates. When assessing the removal efficiency across the different stages of the WWTP, the majority of the removal occurred across the secondary treatment process for the majority of the compounds. The primary treatment and disinfection process had limited impacts on the removal of most PPCPs. Sorption to solids was found to influence the removal for compounds with a log octanol–water partitioning coefficient greater than 4.5 across the secondary treatment process. For other compounds, the removal of PPCPs across the secondary treatment process was significantly correlated with the biodegradation predicted by BIOWIN4. Removal efficiencies across the aerobic secondary treatment process were predicted by integrating BIOWIN4 into pseudo-first order kinetics of PPCPs and these predicted values were compared to the in situ data. This study determines that under a certain set of operating conditions, two chemical characteristics — the expected hydrophobic interaction and the modeled biological degradation from BIOWIN4 — were found to predict the removal of highly degradable and recalcitrant PPCPs from a wastewater secondary treatment process. - Highlights: ► Fifty-six PPCPs were assessed across the stages of a wastewater treatment

  9. Post treatment of antibiotic wastewater by adsorption on activated carbon

    Science.gov (United States)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  10. Bioremediation of the textile waste effluent by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2014-01-01

    Full Text Available The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE was investigated using 22 Central Composite Design (CCD. This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE and the study of the best dilution of the WE for maximum biomass production and for the removal of colour and Chemical Oxygen Demand (COD by this microalga. The cultivation of C. vulgaris, presented maximum cellular concentrations Cmax and maximum specific growth rates μmax in the wastewater concentration of 5.0% and 17.5%, respectively. The highest colour and COD removals occurred with 17.5% of textile waste effluent. The results of C. vulgaris culture in the textile waste effluent demonstrated the possibility of using this microalga for the colour and COD removal and for biomass production. There was a significant negative relationship between textile waste effluent concentration and Cmax at 0.05 level of significance. However, sodium bicarbonate concentration did not significantly influence the responses of Cmax and the removal of colour and COD.

  11. Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan).

    Science.gov (United States)

    Salian, Rupa; Wani, Suhas; Reddy, Ramamohan; Patil, Mukund

    2018-03-01

    Brewing industry releases large quantities of wastewater after product generation. Brewery wastewater contains organic compounds which are biodegradable in nature. These biodegradable wastes can be recycled and reused and hence considered as suitable products for agriculture. But before using wastewater for agriculture, it is better to evaluate the phytotoxic effects of wastewater on crops. Hence, the main objective of this study is to evaluate the effects of brewery effluent on seed germination and growth parameters of selected crop species like chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Study comprised seven types of water treatments-tap water as control, diluted UASBR effluent (50% effluent + 50% distilled water): UASBR50, undiluted UASBR effluent: UASBR100, diluted TC effluent (50% effluent + 50% distilled water): ETP50,TC effluent without dilution: ETP100, 10% diluted reverse osmosis (RO10) reject (10% RO reject + 90% distilled water), and 25% diluted reverse osmosis(RO25) reject (25% RO reject + 75% distilled water) with three replications in completely randomized design. Germination test was performed in petri plates for 5 days. Parameters like germination percentage, germination rate index, seedling length, phytotoxicity index, seed vigor index, and biomass were calculated. All parameters decreased with increase in respective effluent concentration. Among all treatments, RO25 showed highest inhibitory effect on all three crops. Even though undiluted effluent of UASBR and ETP effluent showed positive effect on germination, seedling growth of three crops was promoted to the maximum by UASBR50 and ETP50. Hence, from the study, it was concluded that dilution of brewery effluent can be recommended before using it for irrigational purpose.

  12. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process.

    Science.gov (United States)

    Grassi, Mariangela; Rizzo, Luigi; Farina, Anna

    2013-06-01

    In the last years, a lot of emerging contaminants, such as, endocrine disruptors compounds (EDCs), pharmaceuticals, and personal care products (PPCPs) have been detected in wastewater. Because of their toxicity and possible adverse effects on the environment and humans, their release from urban wastewater treatment plants (UWWTPs) effluents should be minimized, particularly when a wastewater reuse for crops irrigation is expected. Many processes have been investigated for advanced treatment of UWWTP effluents as well as for emerging contaminant degradation; among these, adsorption process was successfully used to remove EDCs and PPCPs from wastewater. This article shortly reviews EDCs and PPCPs removal from UWWTP effluents by adsorption process using conventional and non-conventional adsorbents. The fate of EDCs and PPCPs in UWWTPs and the implications for agricultural wastewater reuse has been addressed too. In spite of the adsorption process looking to be a valuable alternative to other advanced technologies for the removal of emerging contaminants from wastewater, some gaps still remain to evaluate the actual feasibility at full scale. However, according to a few studies available in scientific literature on the use of both powdered activated carbon and granular activated carbon at full scale, adsorption process by activated carbon is a promising, potentially effective, and economically feasible solution for producing safe wastewater for agricultural reuse.

  13. Effect of wastewater colloids on membrane removal of antibiotic resistance genes.

    Science.gov (United States)

    Breazeal, Maria V Riquelme; Novak, John T; Vikesland, Peter J; Pruden, Amy

    2013-01-01

    Recent studies have demonstrated that wastewater treatment plants (WWTPs) significantly alter the magnitude and distribution of antibiotic resistance genes (ARGs) in receiving environments, indicating that wastewater treatment represents an important node for limiting ARG dissemination. This study examined the potential for membrane treatment of microconstituent ARGs and the effect of native wastewater colloids on the extent of their removal. Plasmids containing vanA (vancomycin) and bla(TEM) (β-lactam) ARGs were spiked into three representative WWTP effluents versus a control buffer and tracked by quantitative polymerase chain reaction through a cascade of microfiltration and ultrafiltration steps ranging from 0.45 μm to 1 kDa. Significant removal of ARGs was achieved by membranes of 100 kDa and smaller, and presence of wastewater colloids resulted in enhanced removal by 10 kDa and 1 kDa membranes. ARG removal was observed to correlate significantly with the corresponding protein, polysaccharide, and total organic carbon colloidal fractions. Alumina membranes removed ARGs to a greater extent than polyvinylidene fluoride membranes of the same pore size (0.1 μm), but only in the presence of wastewater material. Control studies confirmed that membrane treatment was the primary mechanism of ARG removal, versus other potential sources of loss. This study suggests that advanced membrane treatment technology is promising for managing public health risks of ARGs in wastewater effluents and that removal may even be enhanced by colloids in real-world wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation.

    Science.gov (United States)

    Gan, J; Bondarenko, S; Ernst, F; Yang, W; Ries, S B; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.

  15. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  16. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP); FINAL

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  17. Assessing Methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion.

    Science.gov (United States)

    Romanazzi, Valeria; Bonetta, Silvia; Fornasero, Stefania; De Ceglia, Margherita; Gilli, Giorgio; Traversi, Deborah

    2016-12-15

    Wastewater treatment plants (WWTP) are an important source of surface water contamination by enteric pathogens, affecting the role of environmental water as a microbial reservoir. We describe the release to the environment of certain anaerobes of human and environmental concern. The work was focused on emerging microbial targets. They are tracing, by RT-qPCR, on WWTP effluents, both liquid and solid, when an anaerobic digestion step is included. The focus is placed on Clostridium spp. with the specific quantification of Clostridium perfringens, as typical bioindicator, and Clostridium difficile, as emerging pathogen not only confined into nosocomial infection. Moreover methanogens were quantified for their involvement in the anaerobic digestion, and in particular on Methanobrevibacter smithii as major methanogenic component of the human gut microbiome and as not conventional faecal indicator. In the water samples, a reduction, statistically significant, in all microbial targets was observed (p effluents, particularly bio-solids, to reduce the potential release of pathogens into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.

    Science.gov (United States)

    Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman

    2014-09-01

    Seasonal changes in the concentration of 21 pharmaceuticals in a wastewater treatment plant (WWTP) in České Budějovice were investigated over 12months. The target compounds were 10 antibiotics, 4 antidepressants, 3 psychiatric drugs, 2 antihistamines and 2 lipid regulators. 272 Wastewater samples (136 influents and 136 effluents) were collected from March 2011 to February 2012 and analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. All studied pharmaceuticals were frequently detected in both the influent and the effluent wastewater samples, except for meclozine, which was only found in the influent. The mean concentration of pharmaceuticals varied from 0.006μgL(-1) to 1.48μgL(-1) in the influent and from 0.003μgL(-1) to 0.93μgL(-1) in the effluent. The concentration of most pharmaceuticals was higher during winter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Using the Multi-Criteria AHP for the Optimal Selection of Site Location and Wastewater Collection System The Case Study of Varzeghan

    Directory of Open Access Journals (Sweden)

    Hassan talebi

    2015-11-01

    Full Text Available This study investigates the use of multi-criteria decision making in waste management and selection of the site location and proper wastewater collection and processing system in Varzeqan Town. Moreover, the effect of the decision-making method employed on ranking the final alternatives will be evaluated. Different factors are involved in the selection of wastewater treatment construction sites. These factors, in turn, not only depend on the special location and time the decision is made but also have their own weights in the final decision. In this study, the environmental conditions in the study area are initially investigated to select one site from among five different alternatives proposed for the construction of the facility using the AHP method. Also, the AHP method is used to evaluate and select the suitable collection and treatment method from among the four non-conventional options including Septic Tank Effluent Gravity, Septic Tank Effluent Pressure, Vacuum Sewerage System, and Simplified Sewerage for this region based on the special geographical and geotechnical conditions. The results indicate that the barren lands between Varzeghan Town and Dizaj Safar Ali Village are the best site for constructing the treatment facility and that the simplified sewarge system is the best collection system for the region.

  20. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  1. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    Science.gov (United States)

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  3. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis

    Directory of Open Access Journals (Sweden)

    I. Kyrychuk

    2015-05-01

    Full Text Available Introduction. Dairy industry generates a large amount of wastewaters that have high concentrations and contain milk components. Membrane processes have been shown to be convenient for wastewater treatment recovering milk components present in wastewaters and producing treated water. Materials and methods. The experiments were carried out in an unstirred batch sell using nanofiltration membranes OPMN-P (ZAO STC “Vladipor”, Russian Federation and reverse osmosis membranes NanoRo, ZAO (“RM Nanotech”, Russian Federation. The model solutions of dairy effluents –diluted skim and whole milk were used. Results. The nanofiltration and reverse osmosis membranes showed the same permeate flux during the concentration of model solutions of dairy effluents. The reason of this was likely membrane fouling with feed components. The fouling indexes indicated the fouling factor that was higher for RO. The higher permeate quality was obtainedwith RO membranes. The NF permeate containing up to 0.4 g/L of lactose and 0.75 g/L of mineral salts can be discharged or after finishing trеatment (e.g. RO or other can be reused. The obtained NF and RO retentate corresponds to milk in composition and can be used for non-food applications or as feed supplement for animals. Conclusions.The studied RO and NF membranes can be used for concentration of dairy effluents at low pressure. They showed better performance and separation characteristics comparing with data of other membranes available in the literature.

  4. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL.

    Science.gov (United States)

    Daskin, Joshua H; Calci, Kevin R; Burkhardt, William; Carmichael, Ruth H

    2008-05-01

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring delta 15N per thousand and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific delta 15N per thousand. delta 15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with delta 15N per thousand in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific delta 15N per thousand and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.

  5. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL

    Energy Technology Data Exchange (ETDEWEB)

    Daskin, Joshua H. [MB 0193 Brandeis University, Waltham, MA 02454 (United States); Calci, Kevin R.; Burkhardt, William [1 Iberville Road, US Food and Drug Administration Gulf Coast Seafood Laboratory, Dauphin Island, AL 36528 (United States); Carmichael, Ruth H. [101 Bienville Boulevard, Dauphin Island Sea Lab, Dauphin Island, AL 36528 (United States); University of South Alabama, Mobile, AL, 36688 (United States)], E-mail: rcarmichael@disl.org

    2008-05-15

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring {delta}{sup 15}N per mille and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific {delta}{sup 15}N per mille . {delta}{sup 15}N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with {delta}{sup 15}N per mille in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific {delta}{sup 15}N per mille and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.

  6. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL

    International Nuclear Information System (INIS)

    Daskin, Joshua H.; Calci, Kevin R.; Burkhardt, William; Carmichael, Ruth H.

    2008-01-01

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring δ 15 N per mille and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific δ 15 N per mille . δ 15 N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with δ 15 N per mille in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific δ 15 N per mille and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms

  7. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  8. EVALUATION OF LEATHER QUALITY AND ECOTOXICITY IN SIMULATED TANNERY WASTEWATERS USING MIMOSA TANNIN

    Directory of Open Access Journals (Sweden)

    ÇELİK Cem

    2016-05-01

    Full Text Available The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC. Tanning stabilizes the protein structure of the hide and imparts heat stability, enhanced tensile properties, and resistance to microbial degradation. Currently most high quality leather is "chrome-tanned," produced by treatment of the hide with salts of the mineral chromium. In this study, the wastewater characteristics and ecotoxicity before and after tanning and retanning processes using mimosa tannin are assessed. Vegetable leather production procedure was followed using one dose mimosa tannin. Leather quality was evaluated according to standard methods. Wastewater characteristics showed that mimosa contributed high organic content to the wastewater. Although vegetable tannin was used the effluent toxicity was observed in tanning and retanning effluents. The preliminary results also showed that leather quality tests failed or at minimum level to comply with the standard values indicating that there is still a need to optimize the procedure including mimosa dose. This study was designed to produce eco-friendly leather using mimosa in tanning and retanning processes. Leather quality and the ecotoxicity of each process during leather production was assessed according to standard methods.

  9. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda Hussain Hassan

    2016-01-01

    treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive

  10. Combined oxidative and biological treatment of separated streams of tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, G.; Nieto, J. [Environmental Science Center EULA - Chile, Univ. of Concepcion, Concepcion (Chile); Mansilla, H.D. [Lab. of Renewable Resources, Univ. of Concepcion, Concepcion (Chile); Bornhardt, C. [Chemical Engineering Dept., Univ. of La Frontera, Temuco (Chile)

    2003-07-01

    Leather tanning effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to the beamhouse processes, generates an alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids, and salts, which shows significant toxicity. The objective of this work was to evaluate the biodegradation of this industrial wastewater by combined oxidative and biological treatments. An advanced oxidation process (AOP) with Fenton's reagent was used as batch pre-treatment. The relationships of H{sub 2}O{sub 2}/Fe{sup 2+} and H{sub 2}O{sub 2}/COD were 9 and 4, respectively, reaching an organic matter removal of about 90%. Subsequently, the oxidised beamhouse effluent was fed to an activated sludge system, at increasing organic load rates (OLR), in the range of 0.4 to 1.6 g COD/L.d. The biological organic matter removal of the pre-treated wastewater ranged between 35% and 60% for COD, and from 60% to 70% for BOD. Therefore, sequential AOP pretreatment and biological aerobic treatment increased the overall COD removal up to 96%, compared to 60% without pretreatment. Bioassays with D. magna and D. pulex showed that this kind of treatment achieves only a partial toxicity removal of the tannery effluent. (orig.)

  11. The supply and demand for pollution control: Evidence from wastewater treatment

    Science.gov (United States)

    McConnell, V.D.; Schwarz, G.E.

    1992-01-01

    This paper analyzes the determination of pollution control from wastewater treatment plants as an economic decision facing local or regional regulators. Pollution control is measured by plant design effluent concentration levels and is fully endogenous in a supply- and-demand model of treatment choice. On the supply side, plant costs are a function of the design treatment level of the plant, and on the demand side, treatment level is a function of both the costs of control and the regional or regulatory preferences for control. We find evidence that the economic model of effluent choice by local regulators has a good deal of explanatory power. We find evidence that wastewater treatment plant removal of biological oxygen demand (BOD) is sensitive to many local factors including the size of the treatment plant, the flow rate of the receiving water, the population density of the surrounding area, regional growth, state sensitivity to environmental issues, state income, and the extent to which the damages from pollution fall on other states. We find strong evidence that regulators are sensitive to capital costs in determining the design level of BOD effluent reduction at a plant. Thus, proposed reductions in federal subsidies for wastewater treatment plant construction are likely to have significant adverse effects on water quality. ?? 1992.

  12. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee [Chungbuk National University, Cheongju (Korea, Republic of)

    2011-04-15

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  13. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    International Nuclear Information System (INIS)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee

    2011-04-01

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  14. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  15. An innovative concept for handling and operation of the wastewater treatment plant of Cottbus

    International Nuclear Information System (INIS)

    Spiller, K.; Schmitt, J.

    1994-01-01

    A new concept for handling and operating the wastewater treatment plant of Cottbus, with computerized modelling and an expert system as integral parts of process analysis and decision-making, is developed. Optimized plant operation and process stability is to be achieved by conrolling process-dependent dosage of wastewater coming from sludge treatment and from faecal wastewater. With the treatment plant still being built, a thorough analysis of the influent and the resulting process conditions is done, using the computerized model. Results and consequences for process optimization are presented in this article. Special attention has to be given to load smoothing and optimization of denitrification, influencing process stability and quality. Thereby not only the legal requirements can be fulfilled but improvement of effluent quality also could be achieved, reducing total nitrogen in the effluent by as much as 50%, lowering wastewater treatment costs by allowing lower control levels and fees to be payed. (orig.) [de

  16. Membrane processes for the reuse of car washing wastewater

    OpenAIRE

    Deniz Uçar

    2018-01-01

    This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD...

  17. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    OpenAIRE

    Stefania Iordache; Nicolae Petrescu; Cornel Ianache

    2010-01-01

    The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR) process in theWastewater Treatment Plant (WWTP) of Moreni city (Romania). In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process li...

  18. Method for the recovery of Cr and Co species from effluents using ...

    African Journals Online (AJOL)

    Method for the recovery of Cr and Co species from effluents using agricultural adsorbent ... International Journal of Biological and Chemical Sciences ... recovery of Cr and Co species in microbial-treated industrial wastewater using agricultural ...

  19. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda

    2016-02-01

    This study aims to evaluate the removal efficiency of microbial contaminants from two hospitals on-site Wastewater Treatment Plants (WWTPs) in Saudi Arabia. Hospital wastewaters often go untreated in Saudi Arabia as in many devolving countries, where no specific regulations are imposed regarding hospital wastewater treatment. The current guidelines are placed to ensure a safe treated wastewater quality, however, they do not regulate for pathogenic bacteria and emerging contaminants. Results from this study have detected pathogenic bacterial genera and antibiotic resistant bacteria in the sampled hospitals wastewater. And although the treatment process of one of the hospitals was able to meet current quality guidelines, the other hospital treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive investigation is needed that will facilitate and guide suggestions for more detailed guidelines and monitoring.

  20. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.