WorldWideScience

Sample records for wastewater crada final

  1. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Sullivan, P.F. [Specialty Industrial Products, Inc., Spartanburg, SC (United States); Lovejoy, M.A.; Collier, J. [Sun River Innovations, Ltd., Lexington, KY (United States); Adams, C.D. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  2. Rapid response manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  3. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  4. Development of Charge Drain Coatings: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-17

    The primary goal of this CRADA project was to develop and optimize tunable resistive coatings prepared by atomic layer deposition (ALD) for use as charge-drain coatings on the KLA-Tencor digital pattern generators (DPGs).

  5. Brain Implants for Prediction and Mitigation of Epileptic Seizures - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, Nachappa

    2016-09-29

    This is a CRADA final report on C0100901 between Argonne National Laboratory and Flint Hills Scientific, LLC of Lawrence, Kansas. Two brain implantable probes, a surface acoustic wave probe and a miniature cooling probe, were designed, built, and tested with excellent results.

  6. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sauvageau, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-30

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments in LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.

  7. Growth of large detector crystals. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A. [Oak Ridge National Lab., TN (United States); Samuelson, S. [Deltronic Crystal Industries, Dover, NJ (United States)

    1997-06-18

    In the course of a collaborative research effort between L.A. Boatner of Oak Ridge National Laboratory and Prof. Alex Lempicki of the Department of Chemistry of Boston University, a new highly efficient and very fast scintillator for the detection of gamma-rays was discovered. This new scintillator consists of a single crystal of lutetium orthophosphate (LuPO{sub 4}) to which a small percentage of trivalent cerium is added as an activator ion. The new lutetium orthophosphate-cerium scintillator was found to be superior in performance to bismuth germanium oxide--a material that is currently widely used as a gamma-ray detector in a variety of medical, scientific, and technical applications. Single crystals of LuPO{sub 4} and related rare-earth orthophosphates had been grown for a number of years in the ORNL Solid State Division prior to the discovery of the efficient gamma-ray-scintillation response of LuPO{sub 4}:Ce. The high-temperature-solvent (flux-growth) method used for the growth of these crystals was capable of producing crystals in sizes that were adequate for research purposes but that were inadequate for commercial-scale production and widespread application. The CRADA between ORNL and Deltronic Crystal Industries of Dover, NJ was undertaken for the purpose of investigating alternate approaches, such as top-seeded-solution growth, to the growth of LuPO{sub 4}:Ce scintillator crystals in sizes significantly larger than those obtainable through the application of standard flux-growth methods and, therefore, suitable for commercial sales and applications.

  8. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  9. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  10. CRADA Final Report: Mechanisms of Sulfur Poisoning of NOx Adsorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muntean, George G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles H. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howden, Ken [Dept. of Energy (DOE), Washington DC (United States); Stafford, Randy [Cummins Inc., Columbus, IN (United States); Stang, John [Cummins Inc., Columbus, IN (United States); Yezerets, Aleksey [Cummins Inc., Columbus, IN (United States); Currier, Neal [Cummins Inc., Columbus, IN (United States); Chen, H. -Y. [Johnson Matthew Catalyst, Sevierville, TN (United States); Hess, H. [Johnson Matthew Catalyst, Sevierville, TN (United States)

    2009-03-01

    The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. The now commercial NOx adsorber (also known as lean-NOx trap (LNT) and NOx storage reduction (NSR) catalyst) technology is based upon the concept of storing NOx as nitrates over storage components, typically alkali or alkaline-earth species such as barium, during a lean-burn operation cycle and then reducing the stored nitrates to N2 during fuel-rich conditions over a precious metal catalyst. In part via this successful five-year CRADA project between PNNL and Cummins Inc. (CRADA PNNL/213), Cummins and the Johnson/Matthey Company commercialized this technology on the 2007 Dodge Ram pickup truck. In particular, this CRADA has focused on problems arising from either or both thermal and SO2 deactivation which were impeding the ability of the technology to meet durability standards. The results obtained in this CRADA have provided an essential understanding of these deactivation processes thereby leading to materials and process improvements that enabled the commercialization effort. The objective of this project has been to identify a clear pathway to robust NOx after-treatment solutions for light-duty diesel engines. The project focussed on understanding and characterizing the NOx storage, release and conversion of existing NOx adsorber materials. The impact of sulfur on these processes was studied, with special attention given to methods of regenerating the catalyst in the presence of sulfur and the effects of these regeneration treatments on long-term catalyst durability. Model catalysts and more fully formulated catalysts were both studied. The goal of this project has been to identify and understand the deactivation mechanisms of LNT materials in order to provide more robust systems for diesel after-treatment systems that will meet the key emission standards for NOx. Furthermore, the project aimed to provide information critical to

  11. Advanced Analog Signal Processing for Fuzing Final Report CRADA No. TC-1306-96

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spencer, D. [Raymond Engineering, Middletown, CT (United States)

    2018-01-24

    The purpose of this CRADA between LLNL and Kaman Aerospace/Raymond Engineering Operations (Raymond) was to demonstrate the feasibility of using Analog/Digital Neural Network (ANN) Technology for advanced signal processing, fuzing, and other applications. This cooperation sought to Ieverage the expertise and capabilities of both parties--Raymond to develop the signature recognition hardware system, using Raymond’s extensive experience in the area of system development plus Raymond’s knowledge of military applications, and LLNL to apply ANN and related technologies to an area of significant interest to the United States government. This CRADA effort was anticipated to be a three-year project consisting of three phases: Phase I, Proof-of-Principle Demonstration; Phase II, Proof-of-Design, involving the development of a form-factored integrated sensor and ANN technology processo~ and Phase III, Final Design and Release of the integrated sensor and ANN fabrication process: Under Phase I, to be conducted during calendar year 1996, Raymond was to deliver to LLNL an architecture (design) for an ANN chip. LLNL was to translate the design into a stepper mask and to produce and test a prototype chip from the Raymond design.

  12. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  13. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  14. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, Josh A [ORNL; West, Brian H [ORNL; Toops, Todd J [ORNL; Adelman, Brad [Navistar; Derybowski, Edward [Navistar

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure

  15. Improved catalyst materials and emission control systems. CRADA final report for CRADA Number ORNL 92-0115

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L.; Domingo, N.; Storey, J.M. [Oak Ridge National Lab., TN (United States); LaBarge, W.; Beckmeyer, R.F.; Theis, J.R. [Delphi Automotive Systems, Flint, MI (United States)

    1996-09-01

    The overall goal of this CRADA was the improvement of performance and/or development of alternate systems for conventional fuel, flex-fuel, and alternate fuel vehicles in order to meet stringent future emission standards. The objectives had three major thrusts: (1) the characterization of the structural and chemical evolution of the precious metals and washcoat during aging under bench flow reactor, engine dynamometer, and vehicle conditions; (2) the correlation of measured catalyst performance and degradation over time with details of microstructural changes under bench flow reactor and engine dynamometer conditions; and (3) the simulation and testing of an in-cylinder catalyst system to determine the effect on emissions of a single-cylinder engine. Catalyst formulations for both gasoline and natural gas applications were studied. The emission testing and structural characterization were performed on alternate formulations and processing variables in order to evaluate the relative conversion efficiency, lifetime, and stability. The aging parameters were correlated with the evolving structure and properties of the tested catalytic converters. A major portion of the second thrust area was the construction and validation of both the bench flow reactor and engine dynamometer test facility and the identification of deactivation/regeneration mechanisms associated with alternative fuels relative to those for conventional fuel. A number of microstructural changes were identified that could contribute to the deactivation of the catalyst during aging. The stability of several catalyst formulations and alternate processing procedures relative to these microstructural changes and changes in conversion efficiency and lifetime were studied.

  16. Development of an X-Ray Catheter Final Report CRADA No. TC-1265-96

    Energy Technology Data Exchange (ETDEWEB)

    Trebes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schlossberg, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Toe goal of this CRADA project was to develop a catheter-based x-ray source to provide treatment of restenosis in arteries with a radiation source which can be precisely controlled and turned on and off at will.

  17. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C.J.

    2005-10-17

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly

  18. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, R. K. [ORNL; Peters, Scott [Sypris Electronics, LLC

    2014-05-28

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  19. Development of a Landmine Detection Sensor Final Report CRADA No. TC02133.0

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheppard, C. [First Alliance Technologies, LLC, San Ramon, CA (United States)

    2017-09-06

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system. The focus of this CRADA was on developing a sensor system that accurately detects landmines, and provides exact location information in a timely manner with extreme reliability.

  20. Complex Multi-Chamber Airbag Performance Simulation Final Report CRADA No. TSB-961-94

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Gregory [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kithil, Philip [Advanced Safety Concepts, Inc. (ASCI), Santa Fe, NM (United States)

    2018-01-22

    The purpose of this small business CRADA was to evaluate the performance of new airbag concepts which were developed by the Advanced Safety Concepts, Inc. (ASCI). These new airbag concepts, if successful, could have major potential savings to society in terms of fewer injuries, lost time and lives.

  1. First Principles Diffusion Modeling Final Report CRADA No. TC-1540-98

    Energy Technology Data Exchange (ETDEWEB)

    delaRubia, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foad, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Giles, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The CRADA participants built on the capabilities LLNL had already developed for ab initio diffusion modeling, extending them to higher doping and damage levels, and applying them to improve the understanding of implant and annealing tradeoffs for technology-relevant conditions. The calculation results and some of the simulation capabilities developed here were transferred to Intel and Applied Materials.

  2. Hydrothermal Liquefaction of Agricultural and Biorefinery Residues Final Report – CRADA #PNNL/277

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Fjare, K. A.; Dunn, B. C.; McDonald, S. L.; Dassor, G.

    2010-07-28

    This project was performed as a Cooperative Research and Development Agreement (CRADA) with the participants: Archer-Daniels-Midland Company (ADM), ConocoPhillips (COP), and Pacific Northwest National Laboratory (PNNL). Funding from the federal government was provided by the Office of the Biomass Program within the Energy Efficiency and Renewable Energy assistant secretariat as part of the Thermochemical Conversion Platform. The three-year project was initiated in August 2007 with formal signing of the CRADA (#PNNL/277) in March 3, 2008 with subsequent amendments approved in November of 2008 and August of 2009. This report describes the results of the work performed by PNNL and the CRADA partners ADM and COP. It is considered Protected CRADA Information and is not available for public disclosure. The work conducted during this project involved developing process technology at PNNL for hydrothermal liquefaction (HTL) of agricultural and biorefinery residues and catalytic hydrothermal gasification (CHG) of the aqueous byproduct from the liquefaction step. Related work performed by the partners included assessment of aqueous phase byproducts, hydroprocessing of the bio-oil product and process analysis and economic modeling of the technology.

  3. Toxic Combustion By-Products: Final Report CRADA No. TC-0947-94

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, T. Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Westbrook, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grieves, Colin [Amoco Oil Company, Naperville, IL (United States); Seebold, Jim [Chevron Research and Technology Company, Richmond, CA (United States); Pratapas, John [Gas Research Inst. (Gas Technology Inst.), Des Plaines, IL (United States); Harrison, Doug J. [Exxon Mobil Research & Engineering, Fairfax, VA (United States); Farmayan, Walter [Shell Oil Company, Houston, TX (United States); Youssef, Cherif [Southern California Gas Company, Los Angeles, CA (United States); Gilmer, Lee [Texaco R& D (Equilon Enterprises, LLC), Houston, TX (United States)

    2000-11-16

    This CRADA provided a greater understanding of why air toxics are generated and enabled the Participants to find out how the combustion process can be changed to eliminate the air toxics. Ultimately, it would save industry and government millions of dollars in meeting the Clean Air Act standards and would greatly benefit the environment and government.

  4. Nano-Filament Field Emission Cathode Development Final Report CRADA No. TSB-0731-93

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Tony [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fahlen, Ted [Candescent Technologies Corporation, San Jose, CA (United States)

    2018-01-17

    At the time the CRADA was established, Silicon Video Corporation, of Cupertino, CA was a one-year-old rapidly growing start-up company. SVC was developing flat panel displays (FPDs) to replace Cathode Ray Terminals (CRTs) for personal computers, work stations and televisions. They planned to base their products on low cost and energy efficient field emission technology. It was universally recognized that the display was both the dominant cost item and differentiating feature of many products such as laptop computers and hand-held electronics and that control of the display technology through U.S. sources was essential to success in these markets. The purpose of this CRADA project was to determine if electrochemical planarization would be a viable, inexpensive alternative to current optical polishing techniques for planarizing the surface of a ceramic backplate of a thin film display.

  5. Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, Charles J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shi, Xizeng [Read-Rite Corporation, Fremont, CA (United States)

    2017-11-09

    The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executable code.

  6. Trinitromethyl Heterocyclic Oxidizers as a Solid Propellant Ingredient Final Report CRADA No TC02146.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis of two novel energetic heterocyclic oxidizers as possible replacements for ammonium perchlorate (AP) in rocket propellant formulations. This CRADA resulted from the award of the Phase I Small Business Technology Transfer (STTR) from DOD. The CRADA consisted of two phases. The goal for Phase 1 was to produce a new oxidizer called TNMDNP. Phase 2 is optional (based on the success of Phase 1) and the goal of Phase 2 (optional) was to produce a new oxidizer called TNMDNT. Phase 2 tasks would be performed based on the successful results of Phase 1.

  7. Electrical Resistance Tomography for Subsurface Imaging Final Report CRADA No. TC-609-93

    Energy Technology Data Exchange (ETDEWEB)

    Daily, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mondt, William [RIMtech, Inc., Westminster, CO (United States)

    2018-01-22

    The purpose of this CRADA was to develop a useful and commercially viable version of ERT technology for use in the oil, mining, engineering, and geotechnical industries. The goals required to accomplish these tasks included (1) developing commercial-grade data-acquisition systems and data analysis software, and (2) completing transfer of the state-of-the-art know-how, held by LLNL scientists and engineers, to personnel at RIMtech, Inc.

  8. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McGreevy, T. E. [Caterpillar Inc., Mossville, IL (United States)

    2017-09-06

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  9. Development of a Laser for Landmine Destruction Final Report CRADA No. TC02126.0

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheppard, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-31

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system.

  10. High Density, Insensitive Oxidizer With RDX Performance Final Report CRADA No. TC02178.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Preda, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis and evaluate a novel high density, insensitive oxidizer with RDX performance. This CRADA resulted from the award of a Phase I STTR ("STTR") from DOD. In recent years, the synthesis of new energetic heterocyclic compounds to replace the energetic materials currently in the stockpile has received a great amount of attention. The Office of the Secretary of Defense has identified that there is a need to incorporate new energetic materials in current and future weapon systems in an effort to increase performance and decrease sensitivity. For many of the future weapon systems, incorporation of energetic compounds currently in the stockpile will not provide the desired performance and sensitivity goals. The success of this CRADA may lead to a Phase I option STTR from DOD and to a Phase II STTR from DOD. The goal of this CRADA was to produce and test a novel oxidizer, 2,5,8-trinitroheptazine (TNH).

  11. Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Purcell, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even as small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding

  12. Development of Personal Decontamination System Final Report CRADA No. TC-02078-04

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); O' Dell, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and O’Dell Engineering, Ltd. (O’Dell) to develop an improved low-cost personal decontamination system for Toxic Industrial Chemicals (TICs) and chemical agents. The significant change to the project was that COTS (Commercial Off-the Shelf Components) were identified that performed as well, or better than, the proprietary materials created and tested as part of this CRADA. These COTS components were combined to create a new LPDS (low-cost personal decontamination system) that met all specifications.

  13. High Resolution Sub-MM Fiberoptic Endoscope Final Report CRADA No. TSB-1447-97

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Gary F. [Univ. of California, Livermore, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, John [CML Fiberoptics, Inc., Auburn, NY (United States)

    2018-01-22

    At the time of the CRADA, LLNL needed to develop a sub-mm outer diameter fiberoptic endoscope with 25pm or better resolution at 3-lOmm working distance to support the Enhanced Surveillance Program (ESP) and the Core Surveillance Program for DOE. The commercially available systems did not meet the image resolution requirements and development work was needed to reach three goals. We also needed to perform preliminary investigations into the production of such an endoscope with a steerable-articulated distal end. The goal of such an endoscope was to allow for a 45 degree inspection cone including the lens field of view.

  14. Improved Advanced Actuated Hybrid Mirrors Final Report CRADA No. TC02130.0

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ealey, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort to develop and demonstrate an improved Advanced Actuated Hybrid Mirrors (AAHM) for commercial or Government purposes. The AAHM consists of a nanolaminate film replicating a precision optical surface bonded to a Silicon Carbide (SiC) substrate with active figure control capability. The goal of this project was to further the development of specific AAHM technologies. The intent of the CRADA was to combine the expertise of LLNL and NG Xinetics in the manufacture and test of a very high quality AAHM, incorporating lessons learned from earlier joint efforts.

  15. Development of a Commercial Prototype of the Autonomous Pathogen Detection System Final Report CRADA No. TC-02077-04

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haigh, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), and GE Ion Track, Inc. (GEIT) to develop a commercial prototype of the Autonomous Pathogen Detection System (APDS), an instrument that monitors the air for all three biological threat agents (bacteria, viruses and toxins). This was originally a one year CRADA project, with the cost of the work at LLNL being funded by the Department of Homeland Security's Office of National Laboratories. The original project consisted of five major tasks and deliverables. The CRADA was then amended, converting the CRADA from a programmatically funded CRADA to a funds-in CRADA, extending the project for an additional 14 months, and adding four new tasks and deliverable to the project.

  16. Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Maley

    2004-03-31

    Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because

  17. Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-04

    Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry of the tribofilms produced during the tests.

  18. Laser Materials Processing Final Report CRADA No. TC-1526-98

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehane, C. J. [United Technologies Corp., East Hartford, CT (United States)

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to be developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.

  19. The final technical report of the CRADA, 'Medical Accelerator Technology'

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Rawls, J.M.

    2000-06-12

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation.

  20. Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wakalopulos, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams. During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.

  1. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Luk, K. [Oak Ridge National Lab., TN (United States); Brucher, H.G. [Doehler-Jarvis, Toledo, OH (United States)

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  2. Optical Mode Converters Final Report CRADA No. TC-0838-94

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, Michael D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carey, Kent [Hewlett-Packard Company, Palo Alto, CA (United States). Agilent Technologies

    2017-11-09

    The information age was maturing, and photonics was emerging as a significant technology with important'national security and commercial implications at the time of the CRADA. This was largely due to the vast information carrying capacity of optical beams and the availability of cheap.and effective optical fiber waveguides to guide the light. However, a major limitation to the widespread deployment of photonic systems was the high-cost (in an economic and performance sense) associated with coupling optical power between optoelectronic waveguide devices or between a device and an optical fiber. The problem was critical in the case of single-mode waveguide devices. Mitigating these costs would be a significant and pervasive enabler of the technology for a wide variety of applications that would have crucial defense and economic impact. The partners worked together to develop optical mode size converters on silicon substrates. Silicon was chosen because of its compatibility with the required photolithographic and micromachining techniques. By choosing silicon, these techniques could enable the close coupling of high-speed, high density silicon electronic circuitry to efficient low-cost photonics. The efficient coupling of electronics and photonics technologies would be important for many information age technologies. The joint nature of this project was intended to allow HP to benefit from some unique LLNL capabilities, and LLNL would be in a position to learn from HP and enhance its value to fundamental DP missions. Although the CRADA began as a hardware development project to develop the mode converter, it evolved into a software development venture. LLNL and HP researchers examined literature, performed some preliminary calculations, and evaluated production trade-offs of several known techniques to determine the best candidates for an integrated system.

  3. Recycling end-of-life vehicles of the future. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

    2010-01-14

    Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use

  4. Predictive Model and Methodology for Heat Treatment Distortion Final Report CRADA No. TC-298-92

    Energy Technology Data Exchange (ETDEWEB)

    Nikkel, D. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCabe, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This project was a multi-lab, multi-partner CRADA involving LLNL, Los Alamos National Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, Martin Marietta Energy Systems and the industrial partner, The National Center of Manufacturing Sciences (NCMS). A number of member companies of NCMS participated including General Motors Corporation, Ford Motor Company, The Torrington Company, Gear Research, the Illinois Institute of Technology Research Institute, and Deformation Control Technology •. LLNL was the lead laboratory for metrology technology used for validation of the computational tool/methodology. LLNL was also the lead laboratory for the development of the software user interface , for the computational tool. This report focuses on the participation of LLNL and NCMS. The purpose of the project was to develop a computational tool/methodology that engineers would use to predict the effects of heat treatment on the _size and shape of industrial parts made of quench hardenable alloys. Initially, the target application of the tool was gears for automotive power trains.

  5. Development of HANAA to Achieve Commercialization Final Report CRADA No. TC-2025-01

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schmidt, J. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The objective of this project was to provide DOD and the intelligence agencies with highly portable, advanced, bio-detection instruments and to further the DOE objective of putting advanced instrumentation for the detection of biological terrorism agents into the hands of first responders. All sponsors of the HANAA development work at LLNL believed that the technology must be commercialized to fully contribute to their missions. Intelligence organizations, military teams, and first responders must be able to purchase the instruments for a reasonable price and obtain maintenance services and support equipment from a reliable supplier in order for the instrument to be useful to them. The goal was to efficiently transfer HANAA technology from LLNL to ETG, a company that would manufacture the instrument and make it commercially available to the constituencies important to our sponsors. This was to include a current beta test instrument and all knowledge of problems with the instrument and recommendations for solving those problems in a commercial version. The following tasks were to be completed under this CRADA.

  6. High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94

    Energy Technology Data Exchange (ETDEWEB)

    Hair, Lucy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magno, Scott [Catalytic Combustion Systems, Inc., Mountain View, CA (United States)

    2018-01-19

    This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports are typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.

  7. Atrial Model Development and Prototype Simulations: CRADA Final Report on Tasks 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Villongco, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightstone, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The goal of this CRADA was to develop essential tools needed to simulate human atrial electrophysiology in 3-dimensions using an anatomical image-based anatomy and physiologically detailed human cellular model. The atria were modeled as anisotropic, representing the preferentially longitudinal electrical coupling between myocytes. Across the entire anatomy, cellular electrophysiology was heterogeneous, with left and right atrial myocytes defined differently. Left and right cell types for the “control” case of sinus rhythm (SR) was compared with remodeled electrophysiology and calcium cycling characteristics of chronic atrial fibrillation (cAF). The effects of Isoproterenol (ISO), a beta-adrenergic agonist that represents the functional consequences of PKA phosphorylation of various ion channels and transporters, was also simulated in SR and cAF to represent atrial activity under physical or emotional stress. Results and findings from Tasks 3 & 4 are described. Tasks 3 and 4 are, respectively: Input parameters prepared for a Cardioid simulation; Report including recommendations for additional scenario development and post-processing analytic strategy.

  8. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ally, Moonis Raza [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  9. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    Energy Technology Data Exchange (ETDEWEB)

    Abbatiello, L.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Haselkorn, M. [Caterpillar, Inc., Peoria, IL (United States)

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  10. EnergyPlus Hysteresis PCM Model: Cooperative Research and Development Final Report, CRADA Number CRD-16-639

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edwin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Under the CRADA, NREL will provide assistance to NRGsim to debug and convert the EnergyPlus Hysteresis Phase Change Material ('PCM') model to C++ for adoption into the main code package of the EnergyPlus simulation engine.

  11. Development of a Multi-Sensor Cancer Detection Probe Final Report CRADA No. TC-2026-01

    Energy Technology Data Exchange (ETDEWEB)

    Marion, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hular, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This collaboration continued work started under a previous CRADA (TSB-2023-00) to take a detailed concept specification for a multi-sensor needle/probe suitable for breast cancer analysis and produce a prototype system suitable for human FDA trials.

  12. Design and Product Optimization for Cast Light Metals (USCAR/AMP): Final Report CRADA No. TC-1061-94

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Kenneth W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osborne, Richard J. [General Motors Corporation, Warren, MI (United States); Cole, Gerald S. [Ford Motor Company, Dearborn, MI (United States); Cox, Bruce [Chrysler Corporation (DaimlerChrysler Corporation), Auburn Hills, MI (United States)

    2001-03-07

    The objective of the United States Automotive Partnership (USAMP) program was to develop information and technology for the U.S. automotive industry to optimize design and improve product capabilities for light weight, high strength, cast structural aluminum and magnesium components. Sandia National Laboratory and Oak Ridge National Laboratory were also involved with this CRADA. This report covers only the work done by LLNL.

  13. Wilsonville wastewater sampling program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  14. Data summary report for M.W. Kellogg Z-sorb sorbent tests. CRADA 92-008 Final report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. This report presents results pertaining to Phillips Petroleum`s Z-Sorb III sorbent.

  15. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    Energy Technology Data Exchange (ETDEWEB)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  16. The Use of Vaporous Hydrogen Peroxide for Building Decontamination Final Report CRADA No. TC-2053-02

    Energy Technology Data Exchange (ETDEWEB)

    Verce, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwartz, L. I. [Strategic Technology Enterprises, Inc., Mentor, OH (United States)

    2017-09-08

    This was a collaborative effort between LLNL and STE to investigate the use of vaporized hydrogen peroxide (VHP®) to decontaminate spore-contaminated heating, ventilation, and cooling (HV AC) systems in a trailer sized room. LLNL's effort under this CRADA was funded by DOE's Chemical and Biological National Security Program (CBNP), which later became part of Department of Homeland Security in 2004.

  17. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  18. Pulsed Plasma Processing of Diesel Engine Exhaust Final Report CRADA No. TC-0336-92-1-C

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Bernard T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Broering, Louis [Cummins Engine Company, Inc., Columbus, IN (United States)

    2017-11-09

    The goal was to develop an exhaust-gas treatment process for the reduction of NOx and hydrocarbon from diesel engines. The project began believing that direct chemical reduction on NOx was possible through the use of non-thermal plasmas. The original CRADA began in 1993 and was scheduled to finish in 1996. It had as its goals three metrics: 1) remove two grams/brake-horse-power-hour of NOx, 2) have no more than five percent energy penalty, and 3) cost no more than ten percent of the engine cost. These goals were all aimed at heavy-duty diesel trucks. This CRADA had its Defense Program funding eliminated by DOE prior to completion in 1995. Prior to loss of funding from DOE, LLNL discovered that due to the large oxygen content in diesel exhaust, direct chemical reduction was not possible. In understanding why, a breakthrough was achieved that combined the use of a non-thermal plasma and a catalyst. This process was named Plasma Assisted Catalytic Reduction (P ACR). Because of this breakthrough, the CRADA became a funds-in only CRADA, once DOE DP funding ended. As a result, the funding decreased from about 1M dollars per year to about $400k per year. Subsequently, progress slowed as well. The CRADA was amended several times to reflect the funds-in nature. At each amendment, the deliverables were modified; the goals remained the same but the focus changed from heavy-duty to lightduty to SUVs. The diesel-engine NOx problem is similar to the furnace and boiler NOx emission problem with the added constraint that ammonia-like additives are impractical for a mobile source. Lean-burning gasoline engines are an additional area of application because the standard three-way catalyst is rendered ineffective by the presence of oxygen. In the P ACR process an electrical discharge is used to create a non-thermal plasma that contains oxidative radicals O and OH. These oxidative radicals convert NO to NO2. Selective catalytic

  19. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  20. Solutions for Digital Video Transmission Technology Final Report CRADA No. TC02068.0

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rivers, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-07

    This Project aimed at development of software for seismic data processing based on the Geotool code developed by the American company Multimax., Inc. The Geotool code was written in early 90-es for the UNIX platform. Under Project# 2821, functions of the old Geotool code were transferred into a commercial version for the Microsoft XP and Vista platform with addition of new capabilities on visualization and data processing. The developed new version of the Geotool+ was implemented using the up-to-date tool Microsoft Visual Studio 2005 and uses capabilities of the .NET platform. C++ was selected as the main programming language for the Geotool+. The two-year Project was extended by six months and funding levels increased from 600,000 to $670,000. All tasks were successfully completed and all deliverables were met for the project even though both the industrial partner and LLNL principal investigator left the project before its final report.

  1. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hoke, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chebahtah, J. [SolarCity Corporation, San Mateo, CA (United States); Wang, T. [SolarCity Corporation, San Mateo, CA (United States); Zimmerly, B. [SolarCity Corporation, San Mateo, CA (United States)

    2015-02-01

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here, as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.

  2. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orgren, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan for the customer.

  3. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  4. Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0

    Energy Technology Data Exchange (ETDEWEB)

    Landingham, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Neumann, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in order to develop an industrially sound process for the manufacture of these ultra-hard materials.

  5. Development of a Delivery System for Treating Cerebrovascular Aneurysms Final Report CRADA No. TC-1440-97

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Derbin, J. T. [Micrus Corp., Mountain View, CA (United States)

    2018-01-24

    The objective of the project was to develop a system for delivering an implantable medical device used to treat cerebrovascular aneurysms, which can cause disability or hemorrhagic stroke (over 15,000 strokes in the U.S. each year are caused by ruptured aneurysms). Micrus has developed an implantable device with the potential to significantly improve the treatment of cerebrovascular aneurysms. This implantable device should significantly reduce the number of hemorrhagic strokes. LLNL has performed proof-of-concept experiments for a delivery system that could be modified to deploy the Micrus device into aneurysms. The purpose of this CRADA was to complete development of the LLNL delivery system and to integrate it with the Micrus device. The goal of the project was to develop an integrated minimally-invasive medical device for treating cerebrovascular aneurysms. The device was designed to access aneurysms through commercially-available catheters which are introduced into the patient through a small incision in the leg.

  6. Development of Optical Diagnostic Probes to Enhance Minimally Invasive Surgical Systems: Final Report CRADA No. TC-1085-95

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Dennis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, Barbara [Conversion Energy Enterprises, Spring Valley, NY (United States)

    2000-11-28

    The purpose of this project was to develop optical probes that would identify tissue conditions and tissue type while the tissue was being subjected to therapeutic energy delivery systems (EDSs). These systems included electrosurgical, optical and thermal sources. Feedback from the probe would be given directly to the EDS leading to "smart" instruments which would automatically adjust energy delivery parameters to obtain optimal tissue welding, coagulation, and cutting. The project was scheduled to be a three-year effort. The initial three-year project was extended another two years with a first amendment of the work statement (Appendix A of the CRADA). A second and then third amendment extended the work statement two additional years.

  7. Catalytic Conditioning and Conversion of Bio-Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-10-418

    Energy Technology Data Exchange (ETDEWEB)

    Magrini, Kim [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    There is a critical need to increase the carbon yield of the gasification process. To this end, it has been suggested that tars and chars formed as by-products of gasification be re-injected into the gasifier. In this CRADA work facile and inexpensive methods of modifying chars and tars received from Enerkem are studied with the aim of increasing their gasification rate upon re-injection into the gasifier. Adding iron to the char, both in nitrate form and in clay form, speeds the CO2 gasification of the char (CO2 + C --> 2CO). It has been more difficult to speed the gasification of tar mixed with char, likely due to clogging of pores, resulting in a reduced accessible surface area.

  8. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  9. High Performance Parallel Processing (HPPP) Finite Element Simulation of Fluid Structure Interactions Final Report CRADA No. TC-0824-94-A

    Energy Technology Data Exchange (ETDEWEB)

    Couch, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ziegler, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    This project was a muki-partner CRADA. This was a partnership between Alcoa and LLNL. AIcoa developed a system of numerical simulation modules that provided accurate and efficient threedimensional modeling of combined fluid dynamics and structural response.

  10. National Security Science and Technology Initiative: Air Cargo Screening, Final Report for CRADA Number NFE-07-01081

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip [ORNL; Bush, John [Battelle Memorial Institute; Bowerman, Biays [Brookhaven National Laboratory; Cespedes, Ernesto [Idaho National Laboratory; White, Timothy [Pacific Northwest National Laboratory

    2004-12-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009.

  11. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, Troy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chin, Herbert [United Technologies Corporation, East Hartford, CT (United States)

    2017-11-09

    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using new materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.

  12. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  13. Plug-and -Play Model Architecture and Development Environment for Powertrain/Propulsion System - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Several tools already exist to develop detailed plant model, including GT-Power, AMESim, CarSim, and SimScape. The objective of Autonomie is not to provide a language to develop detailed models; rather, Autonomie supports the assembly and use of models from design to simulation to analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to support this ideal use of modeling and simulation for math-based automotive control system design. Models in the standard format create building blocks, which are assembled at runtime into a simulation model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical user interface (GUI) are designed to be flexible to support architectures, systems, components, and processes not yet envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and technical knowledge expands. This flexibility also allows for implementation of legacy code, including models, controller code, processes, drive cycles, and post-processing equations. A library of useful and tested models and processes is included as part of the software package to support a full range of simulation and analysis tasks, immediately. Autonomie also includes a configuration and database management front end to facilitate the storage, versioning, and maintenance of all required files, such as the models themselves, the model’s supporting files, test data, and reports. During the duration of the CRADA, Argonne has worked closely with GM to implement and demonstrate each one of their requirements. A use case was developed by GM for every requirement and demonstrated by Argonne. Each of the new features were verified by GM experts through a series of Gate. Once all the requirements were validated they were presented to the directors as part of GM Gate process.

  14. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  15. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, Arrelaine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  16. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D. A. [ORNL; Freeman, R. L. [Archimedes Technology Group

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  17. CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, P.

    2014-11-01

    Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

  18. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-27

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  19. Final Report of a CRADA Between Pacific Northwest National Laboratory and Cummins, Incorporated (CRADA No.PNNL/283): “Enhanced High and Low Temperature Performance of NOx Reduction Catalyst Materials”

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szanyi, Janos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Yong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles HF [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howden, Ken [US Dept. of Energy, Washington, DC (United States); Currier, Neal [Cummins Inc., Columbus, IN (United States); Kamasamudram, Krishna [Cummins Inc., Columbus, IN (United States); Kumar, Ashok [Cummins Inc., Columbus, IN (United States); Li, J. [Cummins Inc., Columbus, IN (United States); Stafford, R. J. [Cummins Inc., Columbus, IN (United States); Yezerets, Aleksey [Cummins Inc., Columbus, IN (United States); Luo, J. [Cummins Inc., Columbus, IN (United States); Chen, H. Y. [Johnson Matthey Company, Royston (United Kingdom)

    2016-09-01

    of the most daunting challenges in R&D on new catalyst materials and processes that can effectively eliminate emissions at these quite low exhaust temperatures. This project has two clear focuses: (1) development of potassium-based high-temperature NSR materials, and studying their key causes of deactivation and methods of regeneration. By comparing results obtained on ‘Simple Model’ Pt-K/Al2O3 with ‘Enhanced Model’ Pt-K/ MgAlOx and Pt-K/TiO2 materials, we have developed an understanding of the role of various additives on the deactivation and regeneration processes. Studies have also been performed on the real commercial samples being used in a Dodge Ram truck with a Cummins diesel emission control system. However, the results about these ‘commercial samples’ will not be covered in this report. Following a brief description of our experimental approach, we will present a few highlights from some of the work performed in this CRADA with more details about these results provided in publications/reports/presentations lists presented at the end of the report. (2) for the Cu and Fe/Chabazite SCR catalysts, since these are so newly developed and references from open literature and industry are nearly absent, our work started from zeolite synthesis and catalyst synthesis methodology development, before research on their low- and high-temperature performance, deactivation, regeneration, etc. was conducted. Again, most work reported here is based on our “model” catalysts synthesized in-house. Work done on the ‘commercial samples’ will not be covered in this report.

  20. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hee Je [Argonne National Lab. (ANL), Argonne, IL (United States); Choi, Seungmok [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  1. Improving Translation Models for Predicting the Energy Yield of Photovoltaic Power Systems. Cooperative Research and Development Final Report, CRADA Number CRD-13-526

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    The project under this CRADA will analyze field data of various flat-plate and concentrator module technologies and cell measurements at the laboratory level. The field data will consist of current versus voltage data collected over many years on a latitude tilt test bed for Si, CdTe, amorphous silicon, and CIGS technologies. The concentrator data will be for mirror- and lens-based module designs using multijunction cells. The laboratory data will come from new measurements of cell performance with systematic variation of irradiance, temperature and spectral composition. These measurements will be labor-intensive and the aim will be to cover the widest possible parameter space for as many different PV samples as possible. The data analysis will require software tools to be developed. These tools will be customized for use with the specific NREL datasets and will be unsuitable for commercial release. The tools will be used to evaluate different translation equations against NREL outdoor datasets.

  2. Development of a General-Purpose Analysis System Based on a Programmable Fluid Processor Final Report CRADA No. TC-2027-01

    Energy Technology Data Exchange (ETDEWEB)

    McConaghy, C. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gascoyne, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The purpose ofthis project was to develop a general-purpose analysis system based on a programmable fluid processor (PFP). The PFP is an array of electrodes surrounded by fluid reservoirs and injectors. Injected droplets of various reagents are manjpulated and combined on the array by Dielectrophoretic (DEP) forces. The goal was to create a small handheld device that could accomplish the tasks currently undertaken by much larger, time consuming, manual manipulation in the lab. The entire effo1t was funded by DARPA under the Bio-Flips program. MD Anderson Cancer Center was the PI for the DARPA effort. The Bio-Flips program was a 3- year program that ran from September 2000 to September 2003. The CRADA was somewhat behind the Bi-Flips program running from June 2001 to June 2004 with a no cost extension to September 2004.

  3. Development of ZnTe:Cu Contacts for CdTe Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-320

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, R.

    2012-04-01

    The main focus of the work at NREL was on the development of Cu-doped ZnTe contacts to CdTe solar cells in the substrate configuration. The work performed under the CRADA utilized the substrate device structure used at NREL previously. All fabrication was performed at NREL. We worked on the development of Cu-doped ZnTe as well as variety of other contacts such as Sb-doped ZnTe, CuxTe, and MoSe2. We were able to optimize the contacts to improve device parameters. The improvement was obtained primarily through increasing the open-circuit voltage, to values as high as 760 mV, leading to device efficiencies of 7%.

  4. CRADA Final Report: Application of Dual-Mode Invertor Control to Commercially Available Radial-Gap Permanent Magnet Motors - Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J.S. (U. Tennessee-Knoxville); McKeever, J.W.; Downing, M.E.; Stahlhut, R.D (John Deere); Bremmer, R. (John Deere); Shoemaker, J.M. (John Deere); Seksarian, A.K. (john Deere); Poore, B. (John Deere); Lutz, J. (UQM)

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current

  5. Equipment Loan for Concentrated PV Cavity Converter (PVCC) Research: Cooperative Research and Development Final Report, CRADA Number CRD-08-285

    Energy Technology Data Exchange (ETDEWEB)

    Netter, Judy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-28

    Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, high concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.

  6. Concepts for the Design of a Diagnostic Device to Detect Malignancies in Human Tissues Final Report CRADA No. TSB-2023-00

    Energy Technology Data Exchange (ETDEWEB)

    DaSilva, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marion, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chase, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    BioLuminate, Inc. planned to develop, produce and market a revolutionary diagnostic device for early breast cancer diagnosis. The device was originally invented by NASA; and exclusively licensed to BioLuminate for commercialization. At the time of the CRADA, eighty-five percent (85%) of all biopsies in the United States were found negative each year. The number of biopsies cost the health care system $23 billio n annually. A multi-sensor probe would allow surgeons to improve breast cancer scre ening and significantly reduce the number of biopsies. BioLuminate was developing an in-vivo system for the detection of cancer using a multi-sensor needle/probe. The first system would be developed for the detection of breast cancer. LLNL, in collaboration with BioLuminate worked toward a detailed concept specification for the prototype multi-sensor needle/probe suitable for breast cancer analysis. BioLuminate in collaboration with LLNL, worked to develop a new version of the needle probe that would be the same size as needles commonly used to draw blood.

  7. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  8. wastewaters

    African Journals Online (AJOL)

    DRINIE

    2003-10-04

    Oct 4, 2003 ... system without affecting the biochemical reactions in the reactor, whereas .... Results of inert COD experiment for the Study A. Time. Reactor 1. Reactor 2. Fed with raw. Fed with filtered wastewater wastewater. (COD, mg·l-1). (COD .... rate limiting process component for heterotrophic growth in the. IIDWTP.

  9. NREL and DONG Energy Collaboration for Grid Simulator Controls and Testing: Cooperative Research and Development Final Report, CRADA Number CRD-13-527

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling and testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.

  10. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14

    the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  11. CRADA Final Report: Application of Dual-Mode Inverter Control to Commercially Available Radial-Gap Mermanent Magnet Motors - Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, John W [ORNL; Lawler, Jack [ORNL; Downing, Mark [ORNL; Stahlhut, Ronnie D [ORNL; Bremmer, R. [John Deere -- Moline Tech Center; Shoemaker, J. M. [John Deere -- Moline Tech Center; Seksarian, A. K. [John Deere -- Moline Tech Center; Poore, B. [John Deere -- Moline Tech Center; Lutz, Jon F [ORNL

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current

  12. wastewater

    African Journals Online (AJOL)

    Mtui-Combined chemical and biological treatment of recalcitrant industrial effluets. Tzitzi M, Vayenas DV and Lyberatos G 1994 Pretreatment of textile industry wastewater with ozone. Water Sci. Tech. 29(9): 151-160. Walter RH and Sherman RM 1974 Ozonation of lactic acid fermentation effluent. J. Water Poll. Control Fed.

  13. Bioremediation of PCBs. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  14. Rapid Response Manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  15. Reconciling Basin-Scale Top-Down and Bottom-Up Methane Emission Measurements for Onshore Oil and Gas Development: Cooperative Research and Development Final Report, CRADA Number CRD-14-572

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-04

    The overall objective of the Research Partnership to Secure Energy for America (RPSEA)-funded research project is to develop independent estimates of methane emissions using top-down and bottom-up measurement approaches and then to compare the estimates, including consideration of uncertainty. Such approaches will be applied at two scales: basin and facility. At facility scale, multiple methods will be used to measure methane emissions of the whole facility (controlled dual tracer and single tracer releases, aircraft-based mass balance and Gaussian back-trajectory), which are considered top-down approaches. The bottom-up approach will sum emissions from identified point sources measured using appropriate source-level measurement techniques (e.g., high-flow meters). At basin scale, the top-down estimate will come from boundary layer airborne measurements upwind and downwind of the basin, using a regional mass balance model plus approaches to separate atmospheric methane emissions attributed to the oil and gas sector. The bottom-up estimate will result from statistical modeling (also known as scaling up) of measurements made at selected facilities, with gaps filled through measurements and other estimates based on other studies. The relative comparison of the bottom-up and top-down estimates made at both scales will help improve understanding of the accuracy of the tested measurement and modeling approaches. The subject of this CRADA is NREL's contribution to the overall project. This project resulted from winning a competitive solicitation no. RPSEA RFP2012UN001, proposal no. 12122-95, which is the basis for the overall project. This Joint Work Statement (JWS) details the contributions of NREL and Colorado School of Mines (CSM) in performance of the CRADA effort.

  16. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  17. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation system and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.

  18. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  19. Final Report for CRADA Agreement , AL-C-2006-01 with Microsens Biotechnologies: Detection of the Abnormal Prion Protein in Blood by Improving the Extraction of this Protein

    Energy Technology Data Exchange (ETDEWEB)

    Schmerr, Mary Jo

    2009-03-31

    Several conditions were examined to optimize the extraction protocol using Seprion beads for the abnormal prion protein. Different combinations of water, hexafluro-2-propanol and formic acid were used. The results of these extraction protocols showed that the magnetic beads coated with Seprion reagents were subject to degradation, themselves, when the extraction conditions that would solubilize the abnormal prion protein were used. These compounds caused interference in the immunoassay for the abnormal prion protein and rendered these protocols incompatible with the assay systems. In an attempt to overcome this problem, another approach was then used. The coated beads were used as an integral part of the assay platform. After washing away denaturing agents, the beads with the 'captured' abnormal prion were incubated directly in the immunoassay, followed by analysis by the capillary electrophoresis. When a capillary electrophoresis electro-kinetic separation was attempted, the beads disturbed the analysis making it impossible to interpret. A pressure separation method was then developed for capillary electrophoresis analysis. When 20 samples, 5 of which were positive were analyzed, the assay identified 4 of the 5 positives and had no false positives. When a larger number of samples were analyzed the results were not as good - there were false positives and false negatives. It was then observed that the amount of beads that were loaded was dependent upon how long the beads were allowed to settle before loading them into the capillary. This resulted in unacceptable variations in the results and explained that when large numbers of samples were evaluated the results were not consistent. Because the technical difficulties with using the Seprion beads could not be overcome at this time, another approach is underway that is outside of the scope of this CRADA. No further agreements have been developed. Because the results were not favorable, no manuscripts were

  20. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Igbinosa Etinosa O

    2010-05-01

    Full Text Available Abstract Background To evaluate the antibiogram and antibiotic resistance genes of some Vibrio strains isolated from wastewater final effluents in a rural community of South Africa. V. vulnificus (18, V. metschnikovii (3, V. fluvialis (19 and V. parahaemolyticus (12 strains were isolated from final effluents of a wastewater treatment plant (WWTP located in a rural community of South Africa. The disk diffusion method was used for the characterization of the antibiogram of the isolates. Polymerase chain reaction (PCR was employed to evaluate the presence of established antibiotic resistance genes using specific primer sets. Results The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT element. They were resistant to sulfamethoxazole (Sul, trimethoprim (Tmp, cotrimoxazole (Cot, chloramphenicol (Chl, streptomycin (Str, ampicillin (Amp, tetracycline (Tet nalidixic acid (Nal, and gentamicin (Gen. The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; floR, tetA, strB, sul2 for chloramphenicol, tetracycline, streptomycin and sulfamethoxazole respectively. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. Conclusions These results demonstrate that final effluents from wastewater treatment plants are potential reservoirs of various antibiotics resistance genes. Moreover, detection of resistance genes in Vibrio strains obtained from the wastewater final effluents suggests that these resistance determinants might be further disseminated in habitats downstream of the sewage plant, thus constituting a serious health risk to the communities reliant on the receiving waterbodies.

  1. Characterization of sludges of La Golondrina WWTP: sludges as final containers of the domestic wastewater pollution; Caracterizacion de fangos de la EDAR La Golondrina (EMACSA-Cordoba): su funcion como receptores finales de la contaminacion del agua residual urbana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Alonso Perez de siles, L.; Rojas Moreno, F. J.

    2005-07-01

    Treatment of wastewater is to concentrate the original pollution in a by-product: the wastewater sludge or bio-solid. As example, La Golondrina WWTP (Cordoba-spain) promotes the production of 1,3 kg of sludge per m''3 of wastewater, yielding logically a treated water according to laws. Furthermore, the treatment process there applied reduces the levels of nine majority metals (Cu, Fe, Mn, Pb, Cd, Ni, Cr, Zn, Hg) from 2,72 mg/l to 1.42 mg/l in the treated water, generating almost, a sludge agrees with the spanish normative to sludge intended to agricultural use (its main fate). Summarizing, the treatment of wastewater supposes the concentration of the original biodegradable load into the sludge around 340 times, while metals exhibited a different concentration degree for each one (from 10.000 times for Fe, u pto 1-2 times for Cd and Hg). Finally, the concentration degree of a metal in the sludge is mainly led by the removed concentration of metal in the treatment process, and after, by the original concentration of metal in the influent wastewater. (Author) 24 refs.

  2. CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P. J. [ORNL; Wilson, M. [Honeywell

    2014-11-28

    Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oC and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.

  3. Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Overly, P.; Tawiah, K.

    1981-12-01

    Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

  4. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    Energy Technology Data Exchange (ETDEWEB)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  5. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01

    The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

  6. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  7. CRADA Final Report: Mucin Mimic and Glycopeptide Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R.

    2002-10-22

    Mucus has several constituents but the most important are the mucins, heavily O-glycosylated proteins characterized by long stretches of tandem repeat sequences rich in glycosylated serine and threonine residues, with N- and C-terminal domains that have determined to a large extent by the viscous and viscoelastic properties of mucin glycoproteins. Indeed, these properties are evident in reconstituted purified mucin glycoproteins. Oligomeric mucin can be deconstructed into its monomeric components and then further into the domains that comprise each mucin molecule. There are two major domain types. "Glycodomains" are defined by stretches of the tandemly repeated Thr/Ser-rich segments that bear the characteristic O-linked glycans of the mucin molecule. The goal of this project is to synthesize polymeric materials that mimic mucin glycodomains. In order to mimic the central features of mucin, these materials should have dense clusters of glycans that bear a similar structure to those found in native mucins, and a fairly rigid polymer backbone. Four different polymers bearing ketone groups for the attachment of sugars were synthesized. GalNAc{alpha}-ONH{sub 2} and Sia{alpha}2,6GaINAc{alpha}·ONH{sub 2} both of which could be ligated to the polymer scaffolds were synthesized. Mucin glycodomain mimics were successfully synthesized by ligation of glycans to polymers.

  8. Treatment of FGD plant wastewater by enhancing microfiltration fluxes. Final report, September 1, 1992--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.

    1994-03-24

    In coal-fired boilers, the wet limestone-gypsum based flue gas desulfurization (FGD) plants produce large volumes of wastewater containing dissolved salts and heavy metals. Before discharging these wastes to the environment, the heavy metals must be removed. One of the preferred methods for removal of heavy metals is by co-precipitation of hydroxides and sulfides of heavy metals, followed by coagulation and flocculation techniques. As a post-treatment of the resulting wastewater stream, crossflow microfiltration is being considered as a cost effective and environmentally acceptable method. However, membrane `fouling` and `concentration polarization` in such applications remain serious problems and result in flux decline of product during filtration. In this exploratory research, we investigated a novel concept: flow oscillation as a means of controlling fouling and concentration polarization. The treatment of FGD plants wastewater (simulated) by enhancing microfiltration fluxes was studied here as an example to demonstrate the oscillatory flow system in combating concentration polarization and membrane fouling in crossflow filtration. Microfiltration experiments were conducted in a tubular membrane module. From limited experimental data, it was found that flow oscillation increases the transmembrane flux when compared with the non-oscillatory flow condition. A mathematical model has been developed to evaluate the performance of a tubular membrane module under oscillatory flow condition. Results are presented for both hydrodynamics and transmembrane fluxes for such factors as amplitudes and frequencies of oscillatory flow, membrane permeability, and operating transmembrane pressure.

  9. Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa

    Directory of Open Access Journals (Sweden)

    Vuyokazi Nongogo

    2014-08-01

    Full Text Available We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05. Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05. Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86 were V. fluvialis, 28% (84 were V. vulnificus and 12% (35 were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.

  10. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    irrigation for years, and studies have shown that its use does not cause health problems. Reuse of gray water means less energy consumption and less chemicals in wastewater treatment plants, which is good for the community, i.e. households will be spending significantly less money on water bills. Reuse of wastewater from industry In industry, water is used in refrigeration, industrial process and power boilers. In the  purification of industrial wastewater two approaches are generally distinguished: a pretreatment of wastewater that must be implemented to meet the criteria for its   discharge  into public sewers and a singular wastewater treatment (without interference from household waste to meet the criteria for effluent to be discharged. More and more freguently companies release their waste into urban sewage,having previously partially refined it to the level where it is mixed with wastewater from households and then finally purified in the same installation. The composition of water for steam boilers is of very great importance, because the slightest disturbance in the steam boiler can cause a disturbance in the entire industrial process. The quality of water for steam boilers depends on the type of a plant, steam pressure and the purpose for which steam is used. Water should be of such quality that it does not leave residues and deposits and it should not have a corroding effect. The purity of produced steam should correspond to the purpose of the steam in question. Water should not contain substances that could cause foaming (fats, oils and other organic substances and should be slightly alkaline (pH = 7 to 9.5. Industrial water, depending on the processes in the industry, can be purified up to a certain degree. When discharged into natural water systems, it must meet the principles underpinning the system of the limit  values of major wastewater parameters, developed by The Association for wastewater from the Federal Republic of Germany and presented in Table 6

  11. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01

    A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

  12. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  13. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  14. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  15. Microalgae and wastewater treatment

    OpenAIRE

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged i...

  16. Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Paul C.; Schoenfield, Mark (Jupiter Oxygen Corp.)

    2004-09-13

    The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.

  17. Performance Modeling and Cost Analysis of a Pilot-Scale Reverse Osmosis Process for the Final Purification of Olive Mill Wastewater

    Science.gov (United States)

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-01-01

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated. PMID:24957058

  18. Incidence of human adenoviruses and Hepatitis A virus in the final effluent of selected wastewater treatment plants in Eastern Cape Province, South Africa.

    Science.gov (United States)

    Osuolale, Olayinka; Okoh, Anthony

    2015-06-24

    Municipal effluent constitutes a large reservoir of human enteric viruses and bacteria. Contemporary monitoring practices rely on indicator bacteria, and do not test for viruses. Different viruses, including Norwalk-like viruses, Hepatitis A virus (HAV), adenoviruses, and rotaviruses, are important agents of illnesses in humans. The burden of disease caused by adenoviruses manifests as pneumonia, bronchiolitis, otitis media, conjunctivitis, and tonsillitis, whereas HAV infection can manifest as acute inflammatory diseases of the liver, fever, anorexia, malaise, nausea, and abdominal discomfort, followed by jaundice and dark urine. The public health implications of these viruses depend upon the physiological status of the wastewater microbial community. The occurrence of human adenovirus (HAdV) and HAV was determined in the final effluents of five wastewater treatment plants (WWTPs) in the Eastern Cape, South Africa, over 12 months (September 2012-August 2013). The viruses were detected with real-time PCR, and conventional PCR was used for serotyping. Adenovirus was detected in effluent samples from all five WWTPs and in 64 % of the total samples, whereas HAV was not detected in any effluent sample. At WWPT-A, samples were collected from the final effluent tank (adenoviral concentrations ranged from 1.05 × 10(1) to 1.10 × 10(4) genome/L, with a 41.7 % detection rate) and the discharge point (adenoviral concentrations ranged between 1.2 × 10(1) and 2.8 × 10(4) genome/L, with a 54.5 % detection rate). At WWPT-B, HAdV was detected in 91.7 % of samples, with viral concentrations of 7.92 × 10(1)-2.37 × 10(5) genome/L. The HAdV concentrations at WWPT-C were 5.32 × 10(1)-2.20 × 10(5) genome/L, and the detection rate was 75 %. The adenoviral concentrations at WWPT-D were 1.23 × 10(3)-1.05 × 10(4) genome/L, and the detection rate was 66.7 %. At WWPT-E, the viral concentrations were 1.08 × 10(1)-5.16 × 10

  19. Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia.

    Science.gov (United States)

    Al-Saleh, Iman; Elkhatib, Rola; Al-Rajoudi, Tahreer; Al-Qudaihi, Ghofran

    2017-02-01

    Plasticizers such as phthalate esters (PAEs) and bisphenol A (BPA) are highly persistent organic pollutants that tend to bio-accumulate in humans through the soil-plant-animal food chain. Some studies have reported the potential carcinogenic and teratogenic effects in addition to their estrogenic activities. Water resources are scarce in Saudi Arabia, and several wastewater treatment plants (WTPs) have been constructed for agricultural and industrial use. This study was designed to: (1) measure the concentrations of BPA and six PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP), in secondary- and tertiary-treated wastewater collected from five WTPs in three Saudi cities for four to five weeks and (2) test their potential genotoxicity. Three genotoxicological parameters were used: % tail DNA (%T), tail moment (TM) and percentage micronuclei (%MN). Both DBP and DEHP were detected in all treated wastewater samples. DMP, DEP, BBP, DOP, and BPA were found in 83.3, 84.2, 79, 73.7 and 97.4% of the samples, respectively. The levels of DMP (pwastewater than secondary-treated wastewater, perhaps due to the influence of the molecular weight and polarity of the chemicals. Both weekly sampling frequency and WTP locations significantly affected the variability in our data. Treated wastewater from Wadi Al-Araj was able to induce DNA damage (%T and TM) in human lymphoblastoid TK6 cells that was statistically higher than wastewater from all other WTPs and in untreated TK6 cells (negative control). %MN in samples from both Wadi Al-Araj and Manfouah did not differ statistically but was significantly higher than in the untreated TK6 cells. This study also showed that the samples of tertiary-treated wastewater had a higher genotoxicological potential to induce DNA damage than the samples of secondary-treated wastewater. BPA and some PAEs in the treated wastewater

  20. Wastewater Treatment

    Science.gov (United States)

    ... and arsenic can have acute and chronic toxic effects on species. other substances such as some pharmaceutical and personal care products, primarily entering the environment in wastewater effluents, may also pose threats to human health, aquatic life and wildlife. Wastewater treatment The major ...

  1. Wastewater Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Wastewater districts layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  2. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  3. Wastewater reuse

    OpenAIRE

    Milan R. Radosavljević; Vanja M. Šušteršič

    2013-01-01

    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  4. 78 FR 71632 - Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of...

    Science.gov (United States)

    2013-11-29

    ... provide equipment and materials for proposed testing. This includes the ability of the collaborator to... agreement. 3. Ability of the collaborator to invest in system and RECONS development costs to ensure... rate. Participation in this CRADA does not imply the future purchase of any materials, equipment, or...

  5. 77 FR 48165 - Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of...

    Science.gov (United States)

    2012-08-13

    ... I and Phase II efficacy testing. Participation in this CRADA does not imply the future purchase of... Security for the Efficacy Testing of Vaporous Hydrogen Peroxide (VHP) and Chlorine Dioxide (ClO 2 ) Against... Directorate, Plum Island Animal Disease Center, Department of Homeland Security. ACTION: Notice of intent...

  6. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  7. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  8. Agreement Execution Process Study: CRADAs and NF-WFO Agreements and the Speed of Business

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, Bruce J.; Cejka, Cheryl L.; Macklin, Richard; Miksovic, Ann

    2011-02-01

    This report summarizes the findings of a study on the execution of Cooperative Research and Development Agreements (CRADAs) and Non-Federal Work for Others (NF-WFO) agreements across the U.S. Department of Energy (DOE) laboratory complex. The study provides quantitiative estimates of times required to negotiate and execute these agreements across the DOE complex. It identifies factors impacting on cycle times and describes best practicies used at various laboratories and site offices that reduce cycle times.

  9. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  10. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  11. Interactions within wastewater systems

    NARCIS (Netherlands)

    Langeveld, J.G.

    2004-01-01

    Wastewater systems consist of sewer systems and wastewater treatment works. As the performance of a wastewater treatment plant is affected by the characteristics, i.e. operation and design, of the contributing sewer systems, knowledge of the interactions between sewers and wastewater treatment works

  12. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  13. Field Emission Cathode Based X-Ray Source Final Report CRADA No. TSV-1456-97

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turner, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    To characterize the aging mechanisms of the nuclear stockpile, sensors and diagnostics were required for identifying the precursors to degradation of the materials and components. Existing approaches utilized an invasive sampling of the vacuum system surrounding the components to identify the presence of any chemicals that could outgas from the components by techniques such as ion mass spectrometry. This resulted in the inactivation of the system for a period of time, and possibly the destruction of the system as well. Furthermore, this approach did not allow for real time monitoring in order to determine rates of degradation. Instead, it provided an integration of the amount of degradation over the sample period.

  14. Laser Texturing of Magnetic Recording Media Final Report CRADA No. TSV-1298-96

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The Commercial Laser Systems Group at LLNL developed a concept for patterning of computer magnetic recording discs. Magnetic recording media require texturing over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate was polished to a specular finish then a mechanical means was used to roughen an annular area intended to be the head contact band. In a previous patent (US Patent 5,062,021) it was proposed that the focused output of a low power laser with short pulse length could be used to generate the textured pattern. However, the patterned area typically required 75,000 textured spots that needed to be rapidly (less than 10 seconds) printed with good uniformity. A means to achieve the accurate placement and uniform profile, as well as a meaningfully rapid process time, was not discussed in the referenced patent. The LLNL team devised a system that could rapidly and inexpensively accomplish the texturing.

  15. Building-Wide, Adaptive Energy Management Systems for High-Performance Buildings: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Zavala, Victor M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science

    2016-10-27

    Development and field demonstration of the minimum ratio policy for occupancy-driven, predictive control of outdoor air ventilation. Technology transfer of Argonne’s methods for occupancy estimation and forecasting and for M&V to BuildingIQ for their deployment. Selection of CO2 sensing as the currently best-available technology for occupancy-driven controls. Accelerated restart capability for the commercial BuildingIQ system using horizon shifting strategies applied to receding horizon optimal control problems. Empirical-based evidence of 30% chilled water energy savings and 22% total HVAC energy savings achievable with the BuildingIQ system operating in the APS Office Building on-site at Argonne.

  16. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tandon, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callis, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  17. Mosaic Transparent Armor System Final Report CRADA No. TC02162.0

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Breslin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windows would be introduced and commercially manufactured for military vehicles and aircraft.

  18. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    Energy Technology Data Exchange (ETDEWEB)

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  19. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  20. Tosoh SMD, Inc./Production of High-Quality Tantalum: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    The objectives of the proposed program are: (1) to produce Ta ingot with very high purity (> 99.99% overall, with ppm-level allowable for specific impurity elements); and (2) to provide requisite grain structure in the ingot with special metallurgical processing. We believe this research and development has a high potential to keep Tosoh competitive as the future continues to demand better performance from sputtering sources. We encourage further R&D activities and are looking forward to continued interaction.

  1. Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95

    Energy Technology Data Exchange (ETDEWEB)

    Tokarz, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gough, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.

  2. Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang-Wook [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gabel, Howard [Innovative Technology, Inc., Santa Barbara, CA (United States)

    2018-01-19

    A new metal coating method, cidled KEM (kinetic energy metal.lization), demonstrated in the laboratory by lnovati, utilized fast-moving solid particIes entrained in a gas that are caused to fiow through a nozzIe to effect particle deposition on metal surfaces at room temperature conditions. This method (US Patent 5,795,626) was an attractive and viabIe alternative to the currentIy available high-temperature coating methods avaiIabIe. Since it differs significantly from existing metal coating technologies, a brief description of the method is incIuded here. The proposed method, KEM, achieves cohesive and adhesive metallurgical bonding through the high-speed coUision of powder with a substrate and the subsequent discharge of electrical charge at the substrate. Such coating is effected by entraining metal powder in a gas and accelerating this mixture through a supersonic nozzle. The gas/powder is directed towards the substrate to be coated. Collisions occur, initiaIly between the powder and the substrate, and, as the first Iayer of the coating forms, between the powder and the coating. During these collisions the powder is rapidly deformed, causing the exposure of fresh (oxide free) active metal surface. When these’active surfaces contact one another, they agglomerate and form true metaIIurgicaI bonds. The resultant coating has Iow porosity and high adhesive and cohesive strength. The formation of metaIIurgicaI bonds is potentiated by the discharge of electrical energy. This electrical energy is the result of triboeIectric charging of the particIes during acceleration and transit to the nozzIe. An advantage of the method is that it does not raise the temperature of the powder being appLiedor that of the substrate. Consequently, materials sensitive to high temperature may be applied without changing Me properties of the materkd or substrate.

  3. Electrically Heated Afterburner Final Report CRADA No. TC-0537-93

    Energy Technology Data Exchange (ETDEWEB)

    Vernazza, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gehrman, F. H. [Retech Services, Inc., Ukiah, CA (United States)

    2018-01-24

    This project was established as a three-year collaboration to develop and improve an innovative hazardous waste-processing system via the addition of an electrically heated afterburner. The fundamental objective of this project was comprehensive engineering of a plasma-fired afterburner with the goal of delivering a scaled demonstration model to process the gaseous effluent from a Plasma Arc Centrifugal Treatment (PACT) system. The first stage PACT technology has been already well developed by Retech Services, Inc. (Retech).

  4. Plastic Substrate Active Matrix Displays Final Report CRADA No. TC-2011-00

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, A. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This project was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and FlexICs, Inc. to develop thin film transistor (TFT) electronics for active matrix displays.

  5. Fuel Testing for Sylvatex: Cooperative Research and Development Final Report, CRADA Number CRD-16-636

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    Sylvatex is a green nano-chemistry company that has developed a platform technology utilizing renewable, non-toxic inputs to create a stable nanoparticle that can be used in multiple applications. Their mission is to increase the use of renewables globally, to empower a cleaner and healthier future. The main application is a fuel technology product - MicroX - that utilizes proprietary knowledge to scale low-cost, cleaner-burning renewable diesel fuel and additives by using a co-location commercial model. The aspects of this project will include testing of two Sylvatex MicroX fuels on an engine dynamometer platform. Industry standard ultra-low sulfur diesel (ULSD) B3 fuel and a ULSD B20 will both be used for comparison of the Sylvatex fuels (U.S. standard diesel fuel at the pump contains an average of approximately 3% biodiesel; this is why B3 would be used as a baseline comparison). Sylvatex is currently using a prototype formulation (MicroX 1) that applies a high cost surfactant. An experimental formulation (MicroX 2) that uses lower cost materials is under development. The MicroX 1 will be blended at a 10% level into the B3 ULSD fuel and the MicroX 2 will be blended at a 10% level into both the B3 and the B20 ULSD fuels for study on the engine dynamometer test platform. All fuel blends will be tested over the FTP transient engine test cycle and a steady state ramped modal engine test cycle. Each test cycle will be performed a minimum of 3 times for each fuel. Tailpipe and/or engine out gaseous exhaust emissions (CO2, CO, NOx, THC, O2,), engine out PM emissions, and brake-specific fuel consumption rates will be evaluated for all test cycles.

  6. Optical Encoding Technology for Viral Screening Panels Final Report CRADA No TC02132.0

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haushalter, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory (LLNL) and Parallel Synthesis Technologies, Inc. (PSTI), to develop Optical Encoding Technology for Viral Screening Panels. The goal for this effort was to prepare a portable bead reader system that would enable the development of viral and bacterial screening panels which could be used for the detection of any desired set of bacteria or viruses in any location. The main objective was to determine if the combination of a bead-based, PCR suspension array technology, formulated from Parallume encoded beads and PSTI’s multiplex assay reader system (MARS), could provide advantages in terms of the number of simultaneously measured samples, portability, ruggedness, ease of use, accuracy, precision or cost as compared to the Luminexbased system developed at LLNL. The project underwent several no cost extensions however the overall goal of demonstrating the utility of this new system was achieved. As a result of the project a significant change to the type of bead PSTI used for the suspension system was implemented allowing better performance than the commercial Luminex system.

  7. Evaluation of Aerogel Clad Optical Fibers Final Report CRADA No. TSB-1448-97

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, Duncan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Droege, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-22

    Fiber-optic based sensors will be needed for in situ monitoring of degradation products in various components of nuclear weapons. These sensors typically consist of a transducer located at the measurement site whose optical properties are modulated by interaction with the targeted degradation product. The interrogating light source and the detector for determining sensor response are located remotely. These two subsystems are connected by fiber optic cables. LLNL has developed a new technology, aerogel clad optical fibers, that have the advantage of accepting incident rays over a much wider angular range than normal glass clad fibers. These fibers are also capable of transmitting light more efficiently. These advantages can lead to a factor of 2-4 improvement in sensitivity and detection limit.

  8. Improved Fiber Optics Final Report CRADA No. TSB-957-94

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Glenn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Livermore, CA (United States); Wilford, Sandy [Lumenyte futemational Corporation (LIC), Irvine, CA (United States)

    2018-01-22

    The existing chemistry of Lumenyte® (an illumination fiber optic developed by LIC) was such that the component monomers inherently polymerized to a very hard mass if exposed to environmental IR, UV, or a combination of these frequencies. Lumenyte optic also would cure to a hard mass by exposure to the UV & IR generated by the illuminating lamps-although this could occur at a much slower rate, and the hardening could occur even when the adverse frequencies were filtered. The resultant product did not have the flexibility for the required applications. LIC's objective was to include other monomeric components in the formulation to impart permanent flexibility. LIC sought the expertise and the use of the facilities in the Polymeric Materials Section at LLNL to achieve this objective.

  9. Development and Demonstration of Carbon Fuel Cell Final Report CRADA No. TC02091.0

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berner, J. K. [Contained Energy, Inc., Shaker Heights, OH (United States)

    2017-09-08

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  10. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nebeker, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF on this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.

  11. Automotive Airbag Safety Enhancement Final Report CRADA No. TSB-1165-95

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Durrell, Robert [Quantic Industries, Inc., San Carlos, CA (United States)

    2017-11-09

    The Vehicle Safety systems (VSS) Division of Quantic Industries, Inc. (QII) manufactured automotive airbag components. When both the driver and the passenger side airbags inflated in a tightly sealed passenger compartment, the compression of the surrounding air could and, in some instances, would cause damage to the eardrums of the occupants. The Aerospace and Division (ADD) of QII had partially developed the technology to fracture the canopy of a jet aircraft at the time of pilot ejection. The technical problem was how to adapt the canopy fracturing technology to the rear window of a motor vehicle in a safe and cost effective manner. The existing approach was to replace the embedded rear window defroster with a series-parallel network of exploding bridge wires (EBWs). This would still provide the defrost function at low voltage/ current, but would cause fracturing of the window when a high current/voltage pulse was applied without pyrotechnics or explosives. The elements of this system were the embedded EBW network and a trunk-mounted fireset. The fireset would store the required energy to fire the network upon the receipt of a trigger signal from the existing air bag crash sensor.

  12. Textile Resource Conservation Final Report CRADA No. TC-0699-93

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCreight, Dan J. [Institute of Textile Technology, Charlottesville, VA (United States)

    2018-01-22

    This project was undertaken to develop and demonstrate on a pilot scale the use of electro-osmotic transport to increase the efficiency of textiles wet processing operations. In particular, we sought to develop a means of rinsing textiles to remove material entrapped between the individual fibers that constitute a yarn. Material trapped within the yarn is slow to exchange with rinse water flowing primarily in the open weave are abetween the yarns. The application of an external field (strength, 5-50 kV /m) requires only a few volts for most fabric thicknesses. This field is sufficient to promote a rapid exchange of material to enhance rinsing and reduce the water required for rinsing from about 20 kg/kg-fabric to 3-6 kg/kg-fabric. We successfully developed technical and economic models of application of the process to the rinsing of many materials of industrial importance, including dyes, tints, chemicals, detergents and dye electrolytes. We demonstrated the process on a pilot plant scale using a translator designed in cooperation with Milliken and Company (Spartanburg, SC).

  13. ALPHA SMP SYSTEM(S) Final Report CRADA No. TC-1404-97

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beaudet, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    Within the scope of this subcontract, Digital Equipment Corporation (DIGITAL) and the University, through the Lawrence Livermore National Laboratory (LLNL), engaged in joint research and development activities of mutual interest and benefit. The primary objectives of these activities were, for LLNL to improve its capability to perform its mission, and for DIGITAL to develop technical capability complimentary to this mission. The collaborative activities had direct manpower investments by DIGITAL and LLNL. The project was divided into four areas of concern, which were handled concurrently. These areas included Gang Scheduling, Numerical Methods, Applications Development and Code Development Tools.

  14. Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kostov, C. [Schlumberger Cambridge Research (United Kingdom)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of Califomia)/Lawrence-Livermore National Laboratory (LLNL) and Schlumberger Cambridge Research (SCR), to develop synthetic seismic data sets and supporting codes.

  15. Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DaSilva, L. B. [BioTelligent, Inc., Livermore, CA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).

  16. Algorithms and Architectures for Elastic-Wave Inversion Final Report CRADA No. TC02144.0

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindtjorn, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Schlumberger Technology Corporation (STC), to perform a computational feasibility study that investigates hardware platforms and software algorithms applicable to STC for Reverse Time Migration (RTM) / Reverse Time Inversion (RTI) of 3-D seismic data.

  17. Rapidly Deployable Security System Final Report CRADA No. TC-2030-01

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhepp, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whiteman, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKibben, M. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The ultimate objective of the LEADER and LLNL strategic partnership was to develop and commercialize_a security-based system product and platform for the use in protecting the substantial physical and economic assets of the government and commerce of the United States. The primary goal of this project was to integrate video surveillance hardware developed by LLNL with a security software backbone developed by LEADER. Upon completion of the project, a prototype hardware/software security system that is highly scalable was to be demonstrated.

  18. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Castiglioni, Andrew J. [Argonne National Lab. (ANL), Argonne, IL (United States); Gelis, Artem V. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  19. Brandon Research, Inc. Orthopedic Implant Cooperative Research and Development Agreement (CRADA) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, W.R.

    1999-04-22

    The project was a joint research effort between the U. S. Department of Energy's (DOE) Kansas City Plant (KCP) and Brandon Research, Inc. to develop ways to improve implants used for orthopedic surgery for joint replacement. The primary product produced by this study is design information, which may be used to develop implants that will improve long-term fixation and durability in the host bone environment.

  20. Electromagnetic Simulations for Aerospace Application Final Report CRADA No. TC-0376-92

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meredith, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Electromagnetic (EM) simulation tools play an important role in the design cycle, allowing optimization of a design before it is fabricated for testing. The purpose of this cooperative project was to provide Lockheed with state-of-the-art electromagnetic (EM) simulation software that will enable the optimal design of the next generation of low-observable (LO) military aircraft through the VHF regime. More particularly, the project was principally code development and validation, its goal to produce a 3-D, conforming grid,time-domain (TD) EM simulation tool, consisting of a mesh generator, a DS13D-based simulation kernel, and an RCS postprocessor, which was useful in the optimization of LO aircraft, both for full-aircraft simulations run on a massively parallel computer and for small scale problems run on a UNIX workstation.

  1. Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, G. Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Browne, Jolyon [Advanced Research & Applications Corporation, Sunnyvale, CA (United States)

    2018-01-22

    The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.

  2. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morse, T. [Flanders Corp., Washington, DC (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprise NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).

  3. Development of Physics Package Sensors Final Report CRADA No. TC02094.0

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmon, J. [Lockheed Martin Space Systems Company, Sunnyvale, CA (United States)

    2017-09-06

    The goal of this project was to work together through the project phases to conceive, demonstrate, and produce concepts for detecting, locating, tracking, imaging, and assessing emissions passively or actively. The initial Sensor Concept Exploration Phase was postulated and assessed concepts at a first-order level to ascertain whether the parties’ concepts (either separately developed or jointly developed) had merit for missile defense and homeland security applications

  4. West Virginia Diesel Study, CRADA MC96-034, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    M. Gautam

    1998-08-05

    The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

  5. Miniature CCD X-Ray Imaging Camera Technology Final Report CRADA No. TC-773-94

    Energy Technology Data Exchange (ETDEWEB)

    Conder, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mummolo, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.

  6. Carbon-carbon composites for orthopedic prosthesis and implants. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T D; Klett, J W; Strizak, J P [Oak Ridge National Lab., TN (United States); Baker, C [FMI, Biddeford, ME (United States)

    1998-01-21

    The prosthetic implant market is extensive. For example, because of arthritic degeneration of hip and knee cartilage and osteoporotic fractures of the hip, over 200,000 total joint replacements (TJRs) are performed in the United States each year. Current TJR devices are typically metallic (stainless steel, cobalt, or titanium alloy) and are fixed in the bone with polymethylacrylate (PMMA) cement. Carbon-carbon composite materials offer several distinct advantages over metals for TJR prosthesis. Their mechanical properties can be tailored to match more closely the mechanical properties of human bone, and the composite may have up to 25% porosity, the size and distribution of which may be controlled through processing. The porous nature of carbon-carbon composites will allow for the ingrowth of bone, achieving biological fixation, and eliminating the need for PMMA cement fixation.

  7. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenhua [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); France, David M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  8. Laser Shot Peening Final Report CRADA No. TC-02059-03

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.

  9. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  10. Development of DNA Pillar Chip Final Report CRADA No. TSB-2035-01

    Energy Technology Data Exchange (ETDEWEB)

    Ness, K. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Long, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Tetracore, to demonstrate a proof of principal device for the capture and controlled release of DNA moving within a flow stream.

  11. Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metzger, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.

  12. Development of Rotational Accelerometers Final Report CRADA No. TSB-2008-99

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Crosson, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    One of the difficulties in fabricating an inexpensive angular rate or rotation sensor is producing a device that is insensitive to acceleration, including the constant acceleration of gravity. The majority of rate sensors are either tuning fork type devices sensing a relatively weak force (i.e., Coriolis effect) and thus not very sensitive, or gyroscopes (either rotating or fiber optic based) that are large, consume lots of power and are expensive. This project was a collaborative effort between LLNL and The Fredericks Company to develop a rotational sensor as a standardized, commercial product. The Fredericks Company possessed expertise and capabilities in the technical aspects of manufacturing this type of sensor, and they were interested in collaborating with LLNL to manufacture the rotational rate sensors as a commercial product.

  13. Chemical Kinetics of Hydrocarbon Auto-Ignition: Final Report CRADA No. TC-1385-97

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eckerle, Wayne A. [Cummins Engine Company, Inc., Columbus, IN (United States)

    2001-02-01

    The goal of this cooperative effort was to provide the scientific basis for the understanding of Compression Ignition and the combustion mechanisms that could control it. LLNL developed a computer code that accurately modeled the kinetics of combustion processes for the full range of parameters for practical engine operation. LLNL also instructed engineers at Cummins on the application and use of the model. Cummins provided the experimental data for code validation. The chief deliverable was an analytical model that provided a fundamental understanding of the compression ignition process that could be used to assess the viability of the application of this technology to heavy-duty engines in the commercial sector.

  14. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

  15. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  16. Advanced Manufacturing - National Information Infrastructure (AM-NII) Final Report CRADA No. TO-4013-01

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-03-23

    Advanced Manufacturing - National Information Infrastructure (AM-NII) was a multiyear DOE/DP program, involving multiple DOE laboratories and production facilities, focused on improving the manufacturing capabilities of the Nuclear Weapons Complex (NWC) through the application of modem information technologies. AM-NII's published mission states: "In partnership with the manufacturing business sector, AMNII will leverage DOE capabilities to develop, demonstrate, and pilot industrial information infrastructure and applications that enhance national security." LLNL's AM-NII project targeted two opportunities for improving NWC manufacturing capabilities. First was the link between the NWC and its outside suppliers of manufactured parts - web-based supply-chain integration. Second was the cross-site enterprise integration (EI) within the Complex itself. The general approach to supply-chain integration was to leverage the National Information Infrastructure (including Internet) to demonstrate the procurement of fabricated electrical and mechanical parts using a completely paperless procurement process. The general approach to NWC enterprise integration was to utilize SecureNet, a network that provides a secure, high-speed data link among the various NWC sites. If one looks at SecureNet as "the track," our goal was to get the trains running. Cross-site enterprise integration presupposes there is some level of local integration, so we worked both local and cross-site is sues simultaneously. Our EI work was in support of the LLNL Stockpile Life Extension Programs (SLEPs), the Submarine Launch Ballistic Missile Warhead Protection Program (SWPP), and the Laser Cutter Workstation installed at Y-12.

  17. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

  18. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    Energy Technology Data Exchange (ETDEWEB)

    Hoppes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oster, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased water disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.

  19. Rapid Assessment of Individual Soldier Operational Readiness Final Report CRADA No. TC02104.0

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mapes, J. [Rules Based Medicine, Inc., Austin, TX (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security (LLNS) (formerly The Regents of the University of California), Lawrence Livermore National Laboratory (LLNL) and Rules Based Medicine, Inc. {RBM), to identify markers in blood that would be candidates for determining the combat readiness of troops.

  20. Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hebbar, R. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.

  1. Spray dryer/baghouse system testing - CRADA 92-001. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H. W.

    1992-04-28

    A series of seven tests were conducted to evaluate the effectiveness of scrubbing both NO{sub 2} and SO{sub 2} in a spray dryer/baghouse system. The operating conditions specified were a high spray dryer inlet temperature (500{degrees}F), and a high spray dryer outlet temperature (250 to 300 {degrees}F). The data required to adequately evaluate the effectiveness of this technology is enclosed. Discussion of some of the variables as well as an itemized list of the testing information is part of the report.

  2. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lyford-Pike, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  3. Artificial Retina Project: Final Report for CRADA ORNL 01-0625

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E; Little, J [Second Sight Medical Products

    2011-09-01

    The U.S. Department of Energy’s Artificial Retina Project is a collaborative, multi-institutional effort to develop an implantable microelectronic retinal prosthesis that restores useful vision to people blinded by retinal diseases. The ultimate goal of the project is to restore reading ability, facial recognition, and unaided mobility in people with retinitis pigmentosa and age-related macular degeneration. The project taps into the unique research technologies and resources developed at DOE national laboratories to surmount the many technical challenges involved with developing a safe, effective, and durable product. The research team includes six DOE national laboratories, four universities, and private industry.

  4. LST CGM Generator and Viewer Final Report CRADA No. TSB-1558-98

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, Don [Larson Software Technology, Houston, TX (United States)

    2017-11-09

    The purpose of this project was to jointly develop and test a software plug-in that would convert native Pro /ENGINEER digital engineering drawings to Computer Graphics Metafile (CGM) format. If it was not feasible to convert the Pro/ENGINEER files, we planned to develop and test a similar conversion of native AutoCAD engineering drawings to CGM. CGM viewer plug-ins were developed as needed. There were four main tasks in this project: 1. Requirements for CGM Plug-in 2. Product Evaluation 3. Product Development Feasibility Study 4. Developing a "Plug-In" Application.

  5. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  6. Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Clapp, N.E.; Hively, L.M. [Oak Ridge National Lab., TN (United States); Stickney, R.E. [Physio-Control Corp., Redmond, WA (United States)

    1999-03-01

    It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

  7. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); Jory, H. [Communications and Power Industries, Palo Alto, CA (United States); Vikharov, A. L. [Russian Academy of Sciences (RAS), Moscow (Russian Federation)

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this project uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)

  8. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications

    Science.gov (United States)

    Osuolale, Olayinka; Okoh, Anthony

    2015-01-01

    The final effluents of two wastewater treatment plants (WWTPs) in the Eastern Cape Province of South Africa were evaluated for their physicochemical and microbiological qualities over a period of 12 months. The physicochemical parameters assessed ranged as follows both plants. The ranges of values for the physicochemical are: pH (3.9–8.6), total dissolved solids (86.50–336.3 mg/L), electrical conductivity (13.57–52.50 mS/m), temperature (13–28 °C), nitrate (0–21.73 mg/L), nitrite (0.01–0.60 mg/L), orthophosphate (1.29–20.57 mg/L), turbidity (4.02–43.20 NTU), free chlorine (0.05–7.18 mg/L), dissolve oxygen (3.91–9.60 mg/L), biochemical oxygen demand (0.1–9.0 mg/L) and chemical oxygen demand (4.67–211 mg/L). The microbiological assessment for both WWTPs revealed the presence of E. coli in counts ranging between 0 and 1.86 × 104 CFU/100 mL and Vibrio counts ranging between 0 and 9.93 × 103 CFU/100 mL. We conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks. PMID:26512686

  9. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications

    Directory of Open Access Journals (Sweden)

    Olayinka Osuolale

    2015-10-01

    Full Text Available The final effluents of two wastewater treatment plants (WWTPs in the Eastern Cape Province of South Africa were evaluated for their physicochemical and microbiological qualities over a period of 12 months. The physicochemical parameters assessed ranged as follows both plants. The ranges of values for the physicochemical are: pH (3.9–8.6, total dissolved solids (86.50–336.3 mg/L, electrical conductivity (13.57–52.50 mS/m, temperature (13–28 °C, nitrate (0–21.73 mg/L, nitrite (0.01–0.60 mg/L, orthophosphate (1.29–20.57 mg/L, turbidity (4.02–43.20 NTU, free chlorine (0.05–7.18 mg/L, dissolve oxygen (3.91–9.60 mg/L, biochemical oxygen demand (0.1–9.0 mg/L and chemical oxygen demand (4.67–211 mg/L. The microbiological assessment for both WWTPs revealed the presence of E. coli in counts ranging between 0 and 1.86 × 104 CFU/100 mL and Vibrio counts ranging between 0 and 9.93 × 103 CFU/100 mL. We conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks.

  10. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications.

    Science.gov (United States)

    Osuolale, Olayinka; Okoh, Anthony

    2015-10-23

    The final effluents of two wastewater treatment plants (WWTPs) in the Eastern Cape Province of South Africa were evaluated for their physicochemical and microbiological qualities over a period of 12 months. The physicochemical parameters assessed ranged as follows both plants. The ranges of values for the physicochemical are: pH (3.9-8.6), total dissolved solids (86.50-336.3 mg/L), electrical conductivity (13.57-52.50 mS/m), temperature (13-28 °C), nitrate (0-21.73 mg/L), nitrite (0.01-0.60 mg/L), orthophosphate (1.29-20.57 mg/L), turbidity (4.02-43.20 NTU), free chlorine (0.05-7.18 mg/L), dissolve oxygen (3.91-9.60 mg/L), biochemical oxygen demand (0.1-9.0 mg/L) and chemical oxygen demand (4.67-211 mg/L). The microbiological assessment for both WWTPs revealed the presence of E. coli in counts ranging between 0 and 1.86 × 10⁴ CFU/100 mL and Vibrio counts ranging between 0 and 9.93 × 10³ CFU/100 mL. We conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks.

  11. Shuttle Wastewater Solution Characterization

    Science.gov (United States)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  12. Metal Removal in Wastewater

    OpenAIRE

    Sanchez Roldan, Laura

    2014-01-01

    The aim of this work was to study Copper removal capacity of different algae species and their mixtures from the municipal wastewater. This project was implemented in the greenhouse in the laboratories of Tampere University of Applied Sciences and the wastewater used was the one from the Tampere municipal wastewater treatment plant. Five algae species and three mixtures of them were tested for their Copper removal potential in wastewater in one batch test run. The most efficient algae mixture...

  13. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants. (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  14. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  15. Wastewater Triad Project: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F.

    2001-12-27

    The U.S. Department of Energy (DOE) facilities have performed nuclear energy research and radiochemical production since the early 1940s. Currently, millions of gallons of legacy radioactive liquid and sludge wastes are contained in over 300 large underground storage tanks, located primarily at Hanford, the Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and Oak Ridge National Laboratory (ORNL). Plans for tank waste retrieval, treatment, and immobilization are being developed and implemented throughout the DOE complex In order to meet regulatory requirements for remediation of underground storage tanks, ORNL has developed an integrated approach to the management of its waste that has applications across the DOE complex. The integrated approach consolidates plans for remediation of inactive tanks; upgrade of the active waste collection, storage, and treatment systems; and treatment of transuranic (TRU) tank waste for disposal. Important elements of this integrated approach to tank waste management include waste retrieval of sludges from tanks, conditioning and transport of retrieved waste to active storage tanks or treatment facilities, solid/liquid separations for supernatant recycle and/or waste treatment, removal of cesium from the supernatant, volume reduction of the supernatant, and solidification of sludges and supernatant for disposal. Each unit operation of the flowsheet is interconnected and impacts the overall efficiency of the entire flowsheet. ORNL has implemented innovative but proven technologies for each of the major unit operations to accelerate clean-up. ORNL used the integrated plan to determine where developing technologies were required to create an optimized flowsheet to (1) accelerate clean-out and remediation of underground storage tanks; (2) provide significant cost avoidance and schedule reductions; (3) consolidate wastes for private-sector immobilization; (4) facilitate regulatory compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and Land Disposal Restrictions (LDR) regulations; and (5) deploy state-of-the art technologies that have applications across the DOE complex. Partnerships were developed with DOE technology development agencies, private-sector companies, and other DOE sites to accomplish implementation of these technologies.

  16. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  17. Pre-study for the development of R and D-program for the plant DEPRA (demonstration and testing of technologies for wastewater and sludge treatment). Final report; Voruntersuchung zur Ausarbeitung der F und E-Konzeption der DEPRA. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.

    2002-07-01

    The purpose of the planned demonstration and testing plant (DEPRA) in Bremerhaven is to have a possibility to demonstrate and test new or further developed wastewater and sludge treatments in industrial scale. With that DEPRA will contribute to transfer attained results of research and development as soon as possible in to practice. The plant DEPRA will provide extensive possibilities of process control of different stages of wastewater and sludge treatment as well as the operation of additional process stages. The demonstration and testing plant should be open for research institutes and commercial users in Germany as well as for European countries in order to offer a possibility for projects concerning water purification. The aim of this study was to compile the framework of research projects for DEPRA. This report indicates trends of development for purification of municipal and industrial wastewater and sludge treatment whereas the potential of innovation for short, middle and long time implementation is considered. (orig.)

  18. Small Wastewater Systems Research

    Science.gov (United States)

    Small communities face barriers to building and maintaining effective wastewater treatment services, challenges include financial/economic limitations, lack of managerial training and geographic isolation/remoteness.

  19. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  20. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  1. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  2. Treatment of Wastewater from Backwashing Process Sand Filters

    Directory of Open Access Journals (Sweden)

    Miletić, S.

    2011-10-01

    Full Text Available In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the process of raw water clarification. To reduce the environmental impact of such wastewater and improve overall system processing of raw water, this paper presents the technological treatment of wastewater from backwashing process sand filters. The selected technological process with subsequent sedimentation of suspended matter from the wastewater enables it to be returned into the process stream. This paper also presents a wastewater treatment system, which consists of a concrete sedimentation tank, pumps, pipelines, and flocculator for the final acceptance of the wastewater. The treatment system of wastewater from backwashing process sand filters includes the wastewater from backwashing sand filters for the filtration of the clarified water after clarification of the raw water, sand filters for the filtration of the cooling water and sand filters for filtration of clarified water prior to ion decarbonatisation. The overall technological process is efficiently sized and fully automated. The treatment of wastewater from backwashing process sand filters allows the successful and continuous return of the water in a volume flow, Q, from 80 m3h-1 to 85 m3 h-1, with no negative impact on the clarification of raw water. The constructed technological solution resulted in 12-percent less use of raw water from the Pakra accumulation lake, as well as 50-percent less discharge of the wastewater into natural watercourses.

  3. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  4. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens

    2002-01-01

    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...... matter and nutrients compared to ordinary wastewater, since urine, faeces and toilet paper are not included. The levels of heavy metals are however in the same concentration range. The information regarding the content of xenobiotic organic compounds (XOCs) is limited. From this study, 900 different XOCs...

  5. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    Science.gov (United States)

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  6. Constructed wetland: an alternative for wastewater treatment; Humedales construidos: una alternativa a considerar para el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Plaza de los Reyes del Rio, C.; Vidal Saez, G.

    2007-07-01

    Research and trends dealing with sewage and industrial wastewaters treated by constructed wetlands are shown in this paper. Plant and constructed wetlands configurations are also described. Sewage domestic wastewaters from individual houses or villages have used constructed wetlands as wastewater treatment. On the other hand, constructed wetlands as finally treatment working together with conventional technologies could be a good alternative for improving the treated quality wastewater. (Author) 56 refs.

  7. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  9. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  10. Biohydrogen production from industrial wastewaters.

    Science.gov (United States)

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  11. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  12. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  13. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens

    2002-01-01

    Information regarding the contents of xenobiotic organic compounds (XOCs) in wastewater is limited, but it has been shown that at least 900 different compounds / compound groups could potentially be present in grey wastewater. Analyses of Danish grey wastewater revealed the presence of several hu...... aquatic toxicity were present and that data for environmental fate could only be retrieved for about half of the compounds....

  14. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...... emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...

  15. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... treatment, even by utilizing waste heat from the waste incinerators. For the seweraged parts of the towns it might be most beneficial to maintain the flush toilet solutions, while introducing a treatment step prior to discharging to the recipient, such as simple mechanical treatment which might even...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...

  16. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  17. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  18. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  19. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  20. Applications of Natural Coagulants to Treat Wastewater − A Review

    Directory of Open Access Journals (Sweden)

    Kumar Vicky

    2017-01-01

    Full Text Available The natural water falls from the mountain is merging into the oceans. This water is preserved by humans that are consumed for agriculture, industrial, and municipal use. This water become wastewater after different usage, and finally, completes the hydrological cycle. The water becomes wastewater due to population growth, urbanization, industrialization, sewage from household, institutions, hospitals, industries and etc. Wastewater can be destructive for the public because it contains a variety of organic and inorganic substances, biological substances, toxic inorganic compounds and the presence of toxic materials. The coagulant chemicals and its associated products are resourceful but these may change the characteristics of water in terms of physical and chemical characteristics, this make matters worse in the disposal of sludge. An option of natural polymer can be used in water and wastewater in this review. The natural polymers are most efficient that provide several benefits such as; prolific, exempt from physical and chemical changes from the treated water.

  1. Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.

    2011-10-01

    The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

  2. Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); McMillan, L. [Symetrix International, Inc., Colorado Springs, CO (United States); Tulupov, A. [Soliton-NTT, Moscow (Russia)

    2017-10-19

    The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples produced using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).

  3. Metallic Inks for Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-10-370

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, M.

    2013-04-01

    This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts. The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

  4. Development of Electrodeposited CIGS Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-357

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    At present, most PV materials are fabricated by vacuum technologies. Some of the many disadvantages of vacuum technology are complicated instrumentation, material waste, high cost of deposition per surface area, and instability of some compounds at the deposition temperature. Solution-based approaches for thin-film deposition on large areas are particularly desirable because of the low capital cost of the deposition equipment, relative simplicity of the processes, ease of doping, uniform deposition on a variety of substrates (including interior and exterior of tubes and various nonplanar devices), and potential compatibility with high-throughput (e.g., roll-to-roll) processing. Of the nonsilicon solar photovoltaic device modules that have been deployed to date, those based on the n-CdS/p-CdTe is a leading candidate. Two features in the optical characteristics of CdTe absorber are particularly attractive for photovoltaic conversion of sunlight; (a) its energy bandgap of 1.5 eV, which provides an optimal match with the solar spectrum and thus facilitates its efficient utilization and (b) the direct mode of the main optical transition which results in a large absorption coefficient and turn permits the use of thin layer (1-2 um) of active material. Thin films of CdTe required for these devices have been fabricated by a variety of methods (e.g., vapor transport deposition, vacuum deposition, screen printing and close-spaced sublimation). Electrodeposition is another candidate deserves more attention. This project will focus on delivering low-cost, high efficiency electrodeposited CdTe-based device.

  5. Development of Chemically Amplified Optical Sensors for Continuous Blood Glucose Monitoring Final Report CRADA No. TSB-1162-95

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Stephen M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Livermore, CA (United States); Mastrototaro, John J. [Minimed Technologies, Inc., Sylmar, CA (United States)

    2018-01-22

    Diabetes is a chronic disease that affects 14 million people in the U.S. and more than 110 million people worldwide. Each year in this country 27,000 diabetic patients become blind, 15,000 have kidney failure, and over 54,000 have peripheral limb amputations. In 1992, total healthcare costs in the U.S. for diabetes were more than $105 billion, approximately 15% of our healthcare budget. Conventional therapy for the most severe form of diabetes, insulin-dependent diabetes mellitus (IDDM) or Type I diabetes, is to administer one or two injections per day of various forms of insulin while monitoring blood glucose levels twice or three times daily with commercial glucometers that require blood samples. Near normal blood sugar levels (glycemic control) is difficult to achieve with conventional therapy. In the fall of 1993, the results of the 10-year $165 million Diabetes Control and Complications Trial (DCCT) were published which showed that intensive insulin management would lead to dramatically fewer cases of retinopathy (which leads to blindness), nephropathy (which leads to kidney failure), and neuropathy (which can lead to limb amputations) [New England Journal of Medicine, Vo1239, No.14 977-986 (1993)]. If existing commercial insulin pumps could be combined with a continuous glucose sensor, a more physiological and fine-tuned therapy could be provided - in effect, an artificial biomechanical pancreas would be available. Existing research suggested that such a development would dramatically improve glucose control, thus greatly reducing morbidity and mortality from this disease. MiniMed Technologies in Sylmar, CA, identified a number of optically based sensor strategies as well as candidate chemical reactions that could be used to implement a minimally invasive opto-chemical glucose sensor. LLNL evaluated these sensor strategies and chemical reactions. These evaluations were the first steps leading to development of a sensor of considerable importance that could maintain near normal physiological glycemic levels, thus dramatically reducing the risk of the microvascular complications mentioned above.

  6. Tracking of Polycarbonate Films using Low-energy Ions Final Report CRADA No. TC-774-94

    Energy Technology Data Exchange (ETDEWEB)

    Musket, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Ion tracking is performed almost exclusively using ions with energies near or above the maximum in electronic stopping. For the present study, we have examined the results of etching ion tracks created by ions bombarding polycarbonate films with energies corresponding to stopping well below the maximum and just above the anticipated threshold for creating etchable latent tracks. Low-energy neon and argon ions with 18-60 keV /amu and fluences of about 108/cm2 were used to examine the limits for producing etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., -20 nm < SEM hole diameter < -100 nm), we can directly relate the energy deposition calculated for the incident ion to the creation of etchable tracks. The experimental results will be discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness the films. These results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications.

  7. Community Energy Storage Thermal Analysis and Management: Cooperative Research and Development Final Report, CRADA Number CRD-11-445

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-09

    The goal of this project is to create thermal solutions and models for community energy storage devices using both purpose-designed batteries and EV or PHEV batteries. Modeling will be employed to identify major factors of a device's lifetime and performance. Simultaneously, several devices will be characterized to determine their electrical and thermal performance under controlled conditions. After the factors are identified, a variety of thermal design approaches will be evaluated to improve the performance of energy storage devices. Upon completion of this project, recommendations for community energy storage device enclosures, thermal management systems, and/or battery sourcing will be made. NREL's interest is in both new and aged batteries.

  8. Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.

  9. Phase II: Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1554-98

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cellomics, Inc. (formerly BioDx and Biological Detection, Inc.) to develop an automated system for detecting human sperm aneuploidy. Aneuploidy (an abnormal number of chromosomes) is one of the major categories of chromosomally abnormal sperm, which results in chromosomally defective pregnancies and babies. An automated system would be used for testing the effects of toxic agents and for other research and clinical applications. This collaborated effort was funded by a National Institutes of Environmental Health Services, Phase II, Small Business Innovation Research Program (SBIR) grant to Cellornics (Contract No. N44-ES-82004).

  10. Research and Development of Zinc Air Fuel Cell To Achieve Commercialization Final Report CRADA No. TC-1544-98

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haley, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The specific goal of this project was to advance the development of the zinc air fuel cell (ZAFC) towards commercial readiness in different mobile applications, including motor bikes, passenger cars, vans, buses and off-road vehicles (golf carts, factory equipment), and different stationary applications including generator sets, uninterruptible power systems and electric utility loading leveling and distributive power.

  11. Design of 3x3 Focusing Array for Heavy Ion Driver Final Report on CRADA TC-02082-04

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This memo presents a design of a 3x3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  12. Evaluation of SAGE Electrochromic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-15-579

    Energy Technology Data Exchange (ETDEWEB)

    Tenent, Robert C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-06

    NREL will conduct durability testing of Sage Electrochromics dynamic windows products using American Society for Testing and Materials (ASTM) standard methods and drive parameters as defined by Sage. Window units will be tested and standard analysis performed. Data will be summarized and reported back to Sage at the end of the testing period.

  13. Accelerator-Detector Complex for Photonuclear Detection of Hidden Explosives Final Report CRADA No. TC2065.0

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brothers, L. J. [Valley Forge Composite Technologies, Inc., Covington, KY (United States)

    2017-09-06

    This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.

  14. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    Energy Technology Data Exchange (ETDEWEB)

    Molau, Nicole [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vail, Curtis [Accu.Photonics, Inc., Ann Arbor, MI (United States)

    2018-01-24

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  15. Optimization of Diode Laser System to Treat Benign Prostate Hyperplasia Final Report CRADA No. TSB-1154-95

    Energy Technology Data Exchange (ETDEWEB)

    London, Richard A [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, Mark [Ethicon Endo-Surgery, Inc., Cincinnati, OH (United States)

    2018-01-22

    Benign prostate hyperplasia (BPH) is a pervasive condition of enlargement of the male prostate gland which leads to several urinary difficulties ranging from hesitancy to incontinence to kidney dysfunction in severe cases. Currently the most common therapy is transurethral resection of the prostate (TURP) utilizing an electrosurgical device. Although TURP is largely successful, new BPH therapy methods are desired to reduce the cost and recovery time, improve the success rate, and reduce side effects. Recently, lasers have been introduced for this purpose. Indigo Medical Inc. is currently engaged in the development, testing, and preparation for sales of a new diode laser based BPH therapy system. The development is based on laboratory experiments, animal studies, and a limited FDA-approved clinical trial in the US and in other countries. The addition of sophisticated numerical modeling, of the sort that has been highly developed at Lawrence Livermore National Laboratory, can greatly aid in the design of the system and treatment protocol. The benefits to DOE include the maintenance and advancement of numerical modeling expertise in radiation-matter interactions of the sort essential for the stockpile stewardship, inertial confinement fusion, and advanced manufacturing, and the push on advanced scientific computational methods, ultimately in areas such as 3-D transport.

  16. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  17. Hazardous and Medical Waste Destruction Using the AC Plasmatron Final Report CRADA No. TC-1560-98

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucher, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tulupov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The goal of this project was to develop a prototype medical waste destruction facility based on the AC plasma torch capable of processing 150 kg of waste per hour while satisfying US EPA emission standards. The project was to provide the first opportunity for a joint U.S.-Russian project using an AC Plasma Torch in a hazardous waste destruction system to be assembled and operated in the U.S. thus promoting the commercialization in the U.S. of this joint U.S.-Russian developed technology. This project was a collaboration between the Russian Institute Soliton- NTT, the U.S industrial partner Scientific Utilization Inc. (SUI) and Lawrence Livermore National Laboratory ( LLNL). The project was funded by DOE for a total of $1.2 million with $600K for allocated for Phase I and $600K for Phase II. The Russian team received about $800K over the two (2) year period while LLNL received $400K. SUI was to provide in kind matching funds totaling $1.2 million.

  18. Manufacturing Steps for Commercial Production of Nano-Structure Capacitors Final Report CRADA No. TC02159.0

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schena, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.

  19. A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cell maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.

  20. Predictive Battery Management System for Commercial Hybrid Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-13-520

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    NREL and Eaton Corporation will perform work together on DOE Advanced Research Projects Agency-Energy (ARPA-E) 'Advanced Management and Protection of Energy Storage Devices' program (DE-FOA0000675). NREL will experimentally characterize aging behavior of Eaton cells and packs. Eaton and NREL will implement NREL's prognostic life model in Eaton HEV supervisory controllers and demonstrate the algorithms in accelerated life hardware-in-the loop testing conducted at NREL.

  1. Biodiesel Performance with Modern Engines. Cooperative Research and Development Final Report, CRADA Number CRD-05-153

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel quality and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.

  2. Solar Technology Test, Evaluation, and Data Collection: Cooperative Research and Development Final Report, CRADA Number CRD-08-279

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-08

    Under this Agreement, NREL will work with Abengoa Solar Inc. on the testing, evaluation, and collection of data related to Abengoa Solar Inc. solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, thermal energy storage integration, solar resource measurement and forecasting, grid impact testing, and analysis. This work will be conducted at NREL, SolarTAC (Aurora), and other field test locations.

  3. Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barker, J. [Halliburton Energy Services, Alvarado, TX (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.

  4. Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02

    Energy Technology Data Exchange (ETDEWEB)

    Scheibner, K. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fought, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.

  5. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    Energy Technology Data Exchange (ETDEWEB)

    De Supinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caliga, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  6. CRADA Final Report: Thermal Design and Analysis Tools for Dense-Wavelength-Division-Multiplexed (DWDM) Optical Networks

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Deborah

    2005-01-31

    The current project originated from discussions with designers and engineers in the opto-electronics industry who sought help from LBNL in identifying effective thermal-management strategies for optical-network components and systems. Miniaturization of opto-electronic components exacerbates the thermal management problem because it allows a greater number of temperature-sensitive components to be fit into less space. Measurement techniques are required to evaluate emerging technologies, test prototype designs, and provide data that can be used to calibrate and validate models. To address these needs, LBNL and project partners developed a test station that allows experiments to be performed under tightly controlled conditions. The central component of the testing device is a "guarded" hot plate that enables high-precision temperature measurements, allowing forced-convection cooling devices to be evaluated. The device is so named because guard plates are used to eliminate heat flow and ensure that heat is not dissipated through the cooling device under investigation. This tool not only allows characterization of emerging technologies and materials, but also allows collection of high-resolution data that can be used to validate and improve simulation tools used to develop next-generation cooling devices for telecommunication systems. The ability to measure and analyze thermal performance benefits the photonics and optical-network industry by reducing development costs and time to market.

  7. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  8. Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamm, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.

  9. Hydrogen Compressor Reliability Investigation and Improvement. Cooperative Research and Development Final Report, CRADA Number CRD-13-514

    Energy Technology Data Exchange (ETDEWEB)

    Terlip, Danny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    Diaphragm compressors have become the primary source of on-site hydrogen compression for hydrogen fueling stations around the world. NREL and PDC have undertaken two studies aimed at improving hydrogen compressor operation and reducing the cost contribution to dispensed fuel. The first study identified the failure mechanisms associated with mechanical compression to reduce the maintenance and down-time. The second study will investigate novel station configurations to maximize hydrogen usage and compressor lifetime. This partnership will allow for the simulation of operations in the field and a thorough analysis of the component failure to improve the reliability of diaphragm compression.

  10. Public Key-Based Need-to-Know Authorization Engine Final Report CRADA No. TSB-1553-98

    Energy Technology Data Exchange (ETDEWEB)

    Mark, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    The goals of this project were to develop a public key-based authentication service plug-in based on LLNL's requirements, integrate the public key-based authentication with the Intra Verse authorization service adn the LLNL NTK server by developing a full-featured version of the prototyped Intra Verse need-to-know plug in; and to test the authorization and need-to-know plug-in in a secured extranet prototype among selected national Labs.

  11. Flexible CdTe Solar Cells and Modules: Cooperative Research and Development Final Report, CRADA Number CRD-14-548

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Lucintech and NREL will collaborate to develop flexible CdTe solar cells on flexible glass using sputtering and other deposition technologies. This initial work will be conducted under the DOE funded Foundational Program to Advance Cell Efficiency (FPACE) 1 project, and the interaction with Lucintech will focus on scaling up and transferring the high efficiency cell processes to module production on a pilot line.

  12. Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

    1999-01-01

    This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

  13. Biomass Resource Demand Characterization Study: Cooperative Research and Development Final Report, CRADA Number CRD-11-436

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Competing demands for U.S. biomass resources and resulting impacts on regional feedstock availability could have a significant impact on the ability of the biofuels industry to transition to lower cost feedstocks, such as wood, agricultural residues, and energy crops, as well as on the ability of U.S. electric utilities and consumers to meet Renewable Portfolio Standards (RPS) and transition to lower carbon-footprint sources of electricity. Promulgation of regulations that place a cost on CO2 emissions from fossil fuels will also impact this situation as biomass to power applications become increasingly cost competitive. This increased competition for biomass feedstocks could create technical and economic risks for the Government, industry, and investors, and has the potential to impede commercialization of bio-energy in the U.S. at a meaningful scale.

  14. Liquid-Liquid Separation Process: Cooperative Research and Development Final Report, CRADA Number CRD-09-362

    Energy Technology Data Exchange (ETDEWEB)

    Schell, D.

    2014-06-01

    The 3M Company, in collaboration with the National Renewable Energy Laboratory (NREL) and others, will develop the concept of the membrane solvent-extraction (MSE) technology for water removal and verify the technology at a pilot scale for bio-ethanol production to increase energy and water savings.

  15. Process Parameter Evaluation and Optimization for Advanced Material Development Final Report CRADA No. TC-1234-96

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McGann, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was established as a three-year collaboration to produce and characterize · silica aerogels prepared by a Rapid Supercritical Extraction (RSCE) process to meet . BNA, Inc. application requirements. The objectives of this project were to study the parameters necessary to produce optimized aerogel parts with narrowly specified properties and establish the range and limits of the process for producing such aerogels. The project also included development of new aerogel materials useful for high temperature applications. The results of the project were expected to set the conditions necessary to produce quantities of aerogels having particular specifications such as size, shape, density, and mechanical strength. BNA, Inc. terminated the project on April 7, 1999, 10-months prior to the anticipated completion date, due to termination of corporate funding for the project. The technical accomplishments achieved are outlined in Paragraph C below.

  16. Rapid Tooling for Functional Prototype of Metal Mold Processes Final Report CRADA No. TC-1032-98

    Energy Technology Data Exchange (ETDEWEB)

    Heestand, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jaskolski, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    Production inserts for die-casting were generally fabricated from materials with sufficient strength and· good wear properties at casting temperatures for long life. Frequently tool steels were used and machining was done with a combination of. conventional and Electric Discharge Machining (EDM) with some handwork, an expensive and time consuming process, partilly for prototype work. We proposed electron beam physical vapor deposition (EBPVD) as a process for rapid fabrication of dies. Metals, ranging from low melting point to refractory metals (Ta, Mo, etc.), would be evaporated and deposited at high rates (-2mm/hr.). Alloys could be easily evaporated and deposited if their constituent vapor pressures were similar and with more difficulty if they were not. Of course, layering of different materials was possible if required for a specific application. For example, a hard surface layer followed by a tough steel and backed by a high thermal conductivity (possibly cooled) copper layer could be fabricated. Electron-beam deposits exhibited 100% density and lull strength when deposited at a substrate (mandrel) temperature that was a substantial fraction of the deposited material's melting point. There were several materials that could have the required high temperature properties and ease of fabrication required for such a mandrel. We had successfully used graphite, machined from free formed objects with a replicator, to produce aluminum-bronze test molds. There were several parting layer materials of interest, but the ideal material depended upon the specific application.

  17. Sperm Scoring Using Multi-Spectral Flow Imaging and FISH-IS Final Report CRADA No. TC02088.0

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morrissey, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was to be a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Amnis Corporation, to develop an automated system for scoring sperm interphase cells for the presence of chromosomal abnormalities using fluorescence in situ hybridization and the Amnis ImageStream technology platform.

  18. Extraction of Iodine from Source Rock and Oil for Radioiodine Dating Final Report CRADA No. TC-1550-98

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Summa, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.

  19. Projecting Fatalities in Crashes Involving Older Drivers, 2000–2025, CRADA No. ORNL98-0500 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Patricia S. [ORNL; Jones, Donald W. [ORNL; Reuscher, Timothy [Oak Ridge Institute for Science and Education; Schmoyer, Richard S. [ORNL; Truett, Lorena F. [ORNL

    2000-04-01

    At the turn of the century – the 20th century that is – the median age in the United States was under 30 years; America was 60% rural in nature; and there were only 36 highway fatalities all year. As we leave the 20th century behind, the route into the 21st century is very different. “Intelligent” cars speed down multi-lane “smart” highways in a nation that is 75% urban. According to the Federal Highway Administration’s Highway Statistics, there are 28,000 times more vehicles on the road in 2000 than there were in 1900, and these vehicles travel about 2.6 trillion miles each year. Annual fatalities resulting from highway crashes have also increased – by over 1100%. We see other changes as well. The face of America is changing. It is growing older. In 2025, persons 65 and over will make up 18.5% of the total population. The number of persons aged 85 and over is increasing more rapidly than any other age group. More importantly, the elderly are taking more trips, driving further, and continuing to drive much later in life. These conditions lead to concerns about traffic safety. Although the elderly are healthier and drive safer cars than they did just two decades ago, their frailty makes them more susceptible to injury than younger persons involved in traffic crashes of the same severity. In addition, visual, physical, and cognitive skills, all of which contribute to driving abilities, decrease with advancing age. The familiar “U”-shaped curve depicting the rate of fatalities per vehicle miles traveled, shows that the elderly experience a higher highway fatality rate than any other age group except teenagers. While the overall number of highway fatalities has decreased regularly since 1972, the number of fatalities of elderly travelers has continued to increase steadily. This increase is cause for concern for both the elderly driver and for other persons on the roads who migh tbe placed in danger through crashes involving elderly drivers.

  20. Modeling Parasitic Energy Losses and the Impact of Advanced Tribological Concepts on Fuel Efficiency - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-28

    Our primary task for this project was to perform FMEP calculations for a broad range of parameters including engine type [spark ignition (SI) or compression ignition (CI)], engine size, engine mode (speed and load), lubricant viscosity, asperity friction, surface finish, oil type (mineral or synthetic), and additive (friction modifier), as discussed previously [1–3]. The actual analysis was limited to a large diesel engine and it included both load and speed dependencies as well as lubricant viscosity and speed.

  1. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    In the first part of this article, we have learned about the need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and advanced techniques are being studied and in ...

  2. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Techniques of Wastewater Treatment. 1. Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni, Mugdha Deshpande and A B Pandit. Amol A Kulkarni is a PhD student from the Chemi- cal Engineering division in UDCT and is working on the characterization of non-linear dynamics in chemical reactors.

  3. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)

    drinie

    The impact of wastewater prefermentation cannot be evaluated in isolation, based only on the local prefermenter biodegradable organic matter production rate, as represented by the volatile fatty acids concentration increase across the prefermenter. The nutrients ratio changes and solids removal variations from the raw to ...

  4. Vietnam Urban Wastewater Review

    OpenAIRE

    World Bank

    2013-01-01

    Vietnam is facing the challenge of trying to keep pace with increasing environmental pollution associated with rapid urbanization, especially in the larger cities. Over the past 20 years, the Government of Vietnam has made considerable effort to develop urban sanitation policies, legislations and regulations, and to invest in urban sanitation including wastewater treatment systems. This st...

  5. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  6. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris.

    Science.gov (United States)

    Mayhead, Elyssia; Silkina, Alla; Llewellyn, Carole A; Fuentes-Grünewald, Claudio

    2018-01-19

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH₄-N) and 97.69% ortho-phosphate (PO₄-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent.

  7. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Elyssia Mayhead

    2018-01-01

    Full Text Available The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N and 97.69% ortho-phosphate (PO4-P occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent.

  8. Identifying sustainable rehabilitation strategies for urban wastewater systems: a retrospective and interdisciplinary approach. Case study of Coronel Oviedo, Paraguay.

    Science.gov (United States)

    Cuppens, Arnoud; Smets, Ilse; Wyseure, Guido

    2013-01-15

    Many wastewater managers in developing countries struggle with the daily operation of urban wastewater systems. Technically well-designed wastewater collection and treatments are often degraded and/or not properly functioning. In this paper, a realistic rehabilitation strategy is developed for the urban wastewater system of Coronel Oviedo (Paraguay), in which the actual performance is unsatisfactory, as revealed by a detailed technical assessment, including water quantity and quality monitoring data. Understanding the history, starting from the initial planning and design process, allows to explain the current failing status of the urban wastewater system of Coronel Oviedo. The key information for the specific local rehabilitation strategy was extracted from an interdisciplinary assessment of shortcomings of urban wastewater systems in Paraguay which were revealed by a survey of all existing wastewater systems. Opting for a stepwise rehabilitation strategy allows the wastewater manager to gradually improve the performance of the wastewater system. Reusing the wastewater in agriculture and recovering the energy of methane gas are possible advantageous options for attracting external financial resources. Finally, the crucial role that the wastewater manager must play for sustainable wastewater management to become effective in practice is discussed, and recommendations are provided on how decision makers, researchers and consultants can contribute by anticipating the challenging circumstances inherent to developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Development of a process for a better biological degradation of dangerous substance by using tensid in the wastewater treatment. Final report; Tensideinsatz - Entwicklung eines Verfahrens zum verbesserten biologischen Abbau gefaehrlicher Stoffe bei der Abwasserreinigung durch Tensideinsatz. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.; Fischer, U.; Leibfritz, D.

    2001-07-01

    In this Project in an interdisciplinary cooperation the influence of tensides on the performance improvement of biochemical decomposition of persistent substances has been investigated. During the first part of the project (Prof. Raebiger) two continously supplied experimental plants were built. These two plants, using activated sludge from a municipal wastewater treatment plant, were run simultaneously with and without tensides respectively. The investigations show, that the results in regard to the decomposition rate are better from the plant operated with tenside. Also, the decomposition rate in relation to the total solids content has shown to be better in the plant run with tenside in comparison to the plant without tenside. This was especially relevant during simulated malfunctions. In project part II (Prof. Dr. U. Fischer) further investigations into the influence of tensids on the microbial decomposition of pollutants have been conducted using the adapted microorganism cultures taken from the experimental reactors. Investigations using activated sludge flakes and a monoculture in a batchprocess have shown an increased growth in the presence of the investigated tensids. A variation in the pollutant concentration as well as the addition of the tensid Bioversal to the nutrient medias yielded hints for the optimization of the culture conditions. In Part III of the project (Prof. Leibfritz) an extraction process was optimized in order to meet the requirements of the bacteria cultures and the objective of the project. Among other things, the influence of the tensids on the decomposition speed of the pollutants has been demonstrated in the course of this examinations. The findings gathered from this joint project regarding the use of tensids for improved decomposition of persistent substances, particularly during malfunctions and strong changes in the concentration, can be transposed into technical application in the future. (orig.)

  10. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  11. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    from a longterm field experiment were included in combination with 33P isotope techniques. In particular sewage sludges, but also sewage sludge incineration ashes, from different wastewater treatment plants varied substantially in P availability. The variation between different sludges could be partly......, localised applications of sewage sludge and sewage sludge ashes cannot be recommended. Methodological considerations included an evaluation of the WEP (water extractable P) method used in most of the experiments to describe P availability after application to soil, was evaluated. This suggested...... included anaerobically digested and dewatered sewage sludges from six different wastewater treatment plants, thermally dried sewage sludge, four sewage sludge incineration ashes, thermochemically treated sewage sludge ash, struvite, two rejectwater evaporation products, composted household waste, cattle...

  12. Britz-Heidbrink Inc. Mini-CRADA, Powder Coating of Animal Enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.

    2000-01-04

    The goal of this CRADA was to combine the powder coating material and application techniques and laboratory testing capabilities of FM and T with the manufacturing, real-world testing, and practical knowledge available to BHI in a limited study to determine if coated stainless steel would provide the durability needed to justify additional work in this area. The coating materials chosen had to have low reflectivity and be easily sanitized, non-toxic, pleasant in appearance, and durable for the lifetime of the stainless steel product. The materials also had to be capable of withstanding the daily abuse of animal contact, impact with walls or other hard surfaces, and exposure to a variety of lighting and climatic conditions. FM and T and BHI worked together to investigate coating materials that under normal conditions would be exposed, at least weekly, to 180 F to 260 F washing and sanitization procedures that include strong detergents and phosphoric acid. After a proper cleaning method for the bare panels was established, six different powder coatings were selected and tested. The coatings were selected for their known resistance to harsh chemicals. Sample panels of each coating passed 1000 hours of continuous salt fog exposure and 24-hour constant submersion in heated disinfectant solutions. Actual cage panels were then coated and installed in a high-pressure spray washer at a medical research facility for accelerated real-world testing. In the high-pressure spray washer, the panels received the equivalent of one year's exposure to harsh chemicals in one week. In addition to the exposure to the harsh sanitizing chemicals, the test panels never had a chance to get completely dry. In actual use, the panels would have been cleaned once a week and would have been essentially dry the rest of the time. Constant soak in wet conditions is one of the most difficult tests of paint durability. The accelerated aging indicated that five of the six coatings tested are able

  13. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tang, Lixin [ORNL; Chambon, Paul H [ORNL; Ozpineci, Burak [ORNL; Smith, David E [ORNL

    2016-06-20

    Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazards in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project

  14. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  15. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  16. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  17. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  18. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  19. Aerobic degradation of olive mill wastewaters.

    Science.gov (United States)

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V

    1997-02-01

    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data.

  20. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  1. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  2. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  3. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  4. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very...... useful for gaining insight in real time operation of wastewater treatment systems with variable influent flows and pollution loads, and for the design of plant operation control. In the present context non-linear structural time series models are proposed, which are identified by combining the well...

  5. Selecting a Sustainable Disinfection Technique for Wastewater Reuse Projects

    Directory of Open Access Journals (Sweden)

    Jorge Curiel-Esparza

    2014-09-01

    Full Text Available This paper presents an application of the Analytical Hierarchy Process (AHP by integrating a Delphi process for selecting the best sustainable disinfection technique for wastewater reuse projects. The proposed methodology provides project managers a tool to evaluate problems with multiple criteria and multiple alternatives which involve non-commeasurable decision criteria, with expert opinions playing a major role in the selection of these treatment technologies. Five disinfection techniques for wastewater reuse have been evaluated for each of the nine criteria weighted according to the opinions of consulted experts. Finally, the VIKOR method has been applied to determine a compromise solution, and to establish the stability of the results. Therefore, the expert system proposed to select the optimal disinfection alternative is a hybrid method combining the AHP with the Delphi method and the VIKOR technique, which is shown to be appropriate in realistic scenarios where multiple stakeholders are involved in the selection of a sustainable disinfection technique for wastewater reuse projects.

  6. About the use and treatment of reclaimed wastewater; El reto de la reutilizacion de aguas usadas: tratamiento intensivo de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2009-07-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs.

  7. High salinity wastewater treatment.

    Science.gov (United States)

    Linarić, M; Markić, M; Sipos, L

    2013-01-01

    The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.

  8. 40 CFR 63.1106 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified in... source shall comply with the HON process wastewater requirements in §§ 63.132 through 63.148. (1) When...

  9. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review.

    Science.gov (United States)

    Ratola, Nuno; Cincinelli, Alessandra; Alves, Arminda; Katsoyiannis, Athanasios

    2012-11-15

    A wastewater treatment plant may receive various types of wastewater namely, urban, industrial, agricultural, washout from the streets, wet or/and dry atmospheric deposition. As such, scientists have detected in wastewaters all major categories of pollutants like persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides, but also substances that are widely used as pharmaceuticals and cosmetics, classified as "PPCPs" (pharmaceuticals and personal care products). Finally, the latest categories of compounds to be looked upon in these types of matrices are illicit drugs (drugs of abuse, like cocaine, etc.) and doping substances. This review article summarises major categories of organic microcontaminants that have been detected in wastewaters and studies their fate during the wastewater treatment process. Occurrence of these compounds in the influents and effluents are reported, as well as percents of removal, mass balances and phase distributions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  11. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.

    Science.gov (United States)

    Oh, Sang Eun; Logan, Bruce E

    2005-11-01

    Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735+/-15 and 3250+/-90 mg-COD/L), an equalization tank (Lagoon; 1670+/-50mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920+/-150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64+/-16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21+/-18 mL/L for Effluent 2, and 16+/-2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210+/-56 mL/L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were 0.61-0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52 mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81+/-7 mW/m(2) (normalized to the anode surface area), or 25+/-2 mA per liter of wastewater, and a final COD of hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production.

  12. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  13. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  14. Fischer-Tropsch Wastewater Utilization

    Science.gov (United States)

    Shah, Lalit S.

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  15. Arthrospira (Spirulina) in tannery wastewaters

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Part 1: The microbial ecology of tannery waste stabilisation ponds and the management of ... of tannery wastewaters in severely water-stressed areas, and .... ured using a Skye Instruments 210 light sensor and SDL 2580.

  16. The Sources and Solutions: Wastewater

    Science.gov (United States)

    Wastewater treatment plants process water from homes and businesses, which contains nitrogen and phosphorus from human waste, food and certain soaps and detergents, and they can be a major source of nutrient pollution.

  17. Constructed Wetlands for Wastewater Treatment

    Science.gov (United States)

    This presentation is a general introductory overview of constructed wetlands for wastewater treatment. Photographs show a wide range of applications and sizes. Summary data on cost and performance from previously published documents by WERF and EPA is presented. Previously pre...

  18. Performance of Conventional Activated Sludge to Remove Nitrogen Compounds from Tomato Factory Wastewater

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2012-10-01

    Full Text Available Today discharge of raw or treated wastewater containing nutrients (nitrogen and phosphorus compounds to the surface water causing an Utrification phenomenon, will be due to excessive growth of algae in the receptive water source. Each of the of wastewater treatment system, providing principled design and operation can be reduced nutrients to standard level [1]. The purpose of this study was to evaluate the efficacy of conventional activated sludge systems to remove nitrogen compounds from wastewater of Kermanshah Rojintak tomato factory and comparison of the final effluent quality with discharge standards to water resource and reuse it in agricultural irrigation in term of nitrogen compounds are considered.

  19. Determination of Algae and Macrophyte Species Distribution in Three Wastewater Stabilization Ponds Using Metagenomics Analysis

    OpenAIRE

    Wallace, Jack; Champagne, Pascale; Hall, Geof; Yin, Zhaochu; Liu, Xudong

    2015-01-01

    This study involved the evaluation of algae and macrophyte species distributions in three wastewater stabilization ponds (WSPs) at a wastewater treatment plant in Ontario, Canada, which has experienced high pH levels at the final effluent and excessive algae growth during the summer since 2003. From samples collected from the system, the relative abundances of specific algae and aquatic plant (macrophyte) taxa were assessed and correlated to water chemistry data. A strong shift from the domin...

  20. Modelling to Manage Activated Sludge Wastewater Treatment Plant and Facultative Lagoons Finishing for Irrigation Reuse

    OpenAIRE

    Fiorentino, Carmine

    2017-01-01

    In the last years, the role of wastewater treatment plants has become even more relevant not only as final destination of the collected sewage but also as a center of the sustainable approaches for the water cycle. Moreover, the considerable improvements in wastewater treatment control technologies enable now the implementation of advanced sustainable management perspectives. A particular incentive to increase the efficiency of WWTPs performances comes from the possibility to reuse treated wa...

  1. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    Energy Technology Data Exchange (ETDEWEB)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

  2. CRADA NFE-08-01456 Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Unocic, Kinga A [ORNL; Yamamoto, Yukinori [ORNL; Kumar, Deepak [ORNL; Lipschutz, Mark D. [Solar Turbines, Inc.

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Solar Turbines Incorporated (Solar) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for industrial gas turbine recuperator components. ORNL manufactured lab scale foil of three different AFA alloy compositions and delivered them to Solar for creep properties evaluation. One AFA composition was selected for a commercial trial foil batch. Both lab scale and the commercial trial scale foils were evaluated for oxidation and creep behavior. The AFA foil exhibited a promising combination of properties and is of interest for future scale up activities for turbine recuperators. Some issues were identified in the processing parameters used for the first trial commercial batch. This understanding will be used to guide process optimization of future AFA foil material production.

  3. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  4. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    Science.gov (United States)

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L-1 of Fe2+ and 500 mg L-1 of H2O2; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  5. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  6. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  7. Properties of Concrete Mixes with Carwash Wastewater

    OpenAIRE

    Shahidan Shahiron; Senin Mohamad Syamir; Abdul Kadir Aeslina Binti; Yee Lau Hai; Ali Noorwirdawati

    2017-01-01

    The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0) while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressiv...

  8. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  9. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  10. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  11. SEM analysis of particle size during conventional treatment of CMP process wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A., E-mail: sbrenner@sunycnse.com

    2015-03-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles.

  12. 40 CFR 63.647 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.647 Section... Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.647 Wastewater provisions... wastewater stream shall comply with the requirements of §§ 61.340 through 61.355 of 40 CFR part 61, subpart...

  13. 40 CFR 63.1330 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Wastewater provisions. 63.1330 Section... for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1330 Wastewater provisions... subpart. (10) Whenever §§ 63.132 through 63.149 refer to a Group 1 wastewater stream or a Group 2...

  14. 18 CFR 1304.402 - Wastewater outfalls.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  15. 40 CFR 63.1433 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Wastewater provisions. 63.1433 Section... for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1433 Wastewater provisions. (a) Process wastewater. Except as specified in paragraph (c) of this section, the owner or operator...

  16. 40 CFR 63.1256 - Standards: Wastewater.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards: Wastewater. 63.1256 Section... for Pharmaceuticals Production § 63.1256 Standards: Wastewater. (a) General. Each owner or operator of any affected source (existing or new) shall comply with the general wastewater requirements in...

  17. 40 CFR 63.501 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Wastewater provisions. 63.501 Section... for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.501 Wastewater provisions. (a... comply with the requirements of §§ 63.132 through 63.147 for each process wastewater stream originating...

  18. remediation of refinery wastewater using electrocoagulation

    African Journals Online (AJOL)

    userpc

    ABSTRACT. This study was designed to assess the effi remediation of wastewater from Kaduna liters of wastewater was collected from. Petrochemical Company for the period of 1 sedimentation and filtration was perform wastewater. The results obtained showed turbidity, electrical conductivity, nitrate, grease as well as ...

  19. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  20. Reclaimed wastewater use alternatives and quality standards

    OpenAIRE

    Dalahmeh, Sahar; Baresel, Christian

    2014-01-01

    Reclaimed wastewater use is crucial for increasing water availability, improving water resources management, minimising environmental pollution and permitting sustainable nutrient recycling. However, wastewater also contains microbiological and chemical pollutants posing risks to human health and the environment, and these risks have to be handled. Successful use of reclaimed wastewater requires stringent standards for its treatment, disposal and distribution. This report summarises global an...

  1. Automatic Regulation of Wastewater Discharge

    Directory of Open Access Journals (Sweden)

    Bolea Yolanda

    2017-01-01

    Full Text Available Wastewater plants, mainly with secondary treatments, discharge polluted water to environment that cannot be used in any human activity. When those dumps are in the sea it is expected that most of the biological pollutants die or almost disappear before water reaches human range. This natural withdrawal of bacteria, viruses and other pathogens is due to some conditions such as the salt water of the sea and the sun effect, and the dumps areas are calculated taking into account these conditions. However, under certain meteorological phenomena water arrives to the coast without the full disappearance of pollutant elements. In Mediterranean Sea there are some periods of adverse climatic conditions that pollute the coast near the wastewater dumping. In this paper, authors present an automatic control that prevents such pollution episodes using two mathematical models, one for the pollutant transportation and the other for the pollutant removal in wastewater spills.

  2. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  3. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  4. Algae cultivation for wastewater reclamation

    OpenAIRE

    Grobler, Gerbrand

    2013-01-01

    The possibility of using algae to clean wastewater has recently gotten attention because wastewater is becoming a bigger problem all over the world. Many scientist and engi-neers are researching better ways to utilize the high potential of algae to clean these waters. By experimenting with algae we try to explore the potential of growing algae on a mechanical system called “algae turf scrubber” or “ATS” to absorb the excess nutrients for the production of biomass. By knowing the amount of...

  5. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  6. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    Science.gov (United States)

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins

  7. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    Science.gov (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Science.gov (United States)

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  10. Wastewater Use in Irrigated Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Yael Lampert, Graduate Student, Department of Ecology, Bar Ilan University, Ranut Gan, Israel. Jules B. van Lier, ... Urban population growth, particularly in developing countries, places immense pressure on water and land resources; it also results in the release of growing volumes of wastewater – most of it untreated.

  11. Design in Domestic Wastewater Irrigation

    NARCIS (Netherlands)

    Huibers, F.P.; Raschid-Sally, L.

    2005-01-01

    When looking at the domestic wastewater streams, from freshwater source to destination in an agricultural field, we are confronted with a complexity of issues that need careful attention. Social and economic realities arise, along with technical, biological and institutional issues. Local realities

  12. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  13. Continuous treatment of flotation collector wastewater using a membrane bioreactor.

    Science.gov (United States)

    Lin, Weixiong; Dai, Yongkang; Wu, Chun; Xu, Pingting; Ren, Jie; Sun, Shuiyu; Li, Biao

    2016-01-01

    Aniline aerofloat (DDA) is a widely used material in China and has become a main pollutant in floatation wastewater. In this study, a membrane reactor (MBR) was constructed to continuously treat simulated wastewater contaminated with DDA. The study investigated the hydraulic retention time (HRT) and the impact of influent DDA concentration on MBR performance, and analyzed intermediates from the DDA biodegradation pathway and activated sludge transfer pathway. The results showed that a 3 h HRT was an efficient and economical time period for MBR to remove 95 ± 5 mg/L DDA from the simulated wastewater; the chemical oxygen demand reduction rate was 89.9%. DDA concentration negatively impacted MBR performance. MBR performance fluctuated slightly when HRT was 3 h, dissolved oxygen ranged from 4.8 to 5.3 mg/L, pH was between 6.5 and 7.0, and DDA concentrations were at 95 ± 5 mg/L DDA. The transfer pathway in the activated sludge of DDA was through soluble microbial products, loosely bound extracellular polymeric substances, tightly bound extracellular polymeric substances, and finally cell biodegradation. DDA initially degraded to aniline; the aniline was further biodegraded to other organic compounds and was finally mineralized through the tricarboxylic acid cycle. This study offers a new continuous biological treatment technology to address DDA.

  14. Energy-efficiency in wastewater treatment plants; Energieeffizienz in Abwasserreinigungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, R.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a data-collection system developed to monitor the energy consumption and production of wastewater treatment plants. The aim of the project was to optimise not only energy consumption but also the power and heat production in such an installation. Results are presented for the use of such a system at the wastewater treatment plant in Thun, Switzerland. The results show that considerable savings can be made by reducing the consumption of peak-rate external power by making use of the facility's own power and heat production that uses sewage-gas-powered combined heat and power units. Also, the demand-driven operation of various power consumers in the facility is discussed.

  15. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  16. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?

    Science.gov (United States)

    Acién, F Gabriel; Gómez-Serrano, C; Morales-Amaral, M M; Fernández-Sevilla, J M; Molina-Grima, E

    2016-11-01

    Microalgae have been proposed as an option for wastewater treatment since the 1960s, but still, this technology has not been expanded to an industrial scale. In this paper, the major factors limiting the performance of these systems are analysed. The composition of the wastewater is highly relevant, and especially the presence of pollutants such as heavy metals and emerging compounds. Biological and engineering aspects are also critical and have to be improved to at least approximate the performance of conventional systems, not just in terms of capacity and efficiency but also in terms of robustness. Finally, the harvesting of the biomass and its processing into valuable products pose a challenge; yet at the same time, an opportunity exists to increase economic profitability. Land requirement is a major bottleneck that can be ameliorated by improving the system's photosynthetic efficiency. Land requirement has a significant impact on the economic balance, but the profits from the biomass produced can enhance these systems' reliability, especially in small cities.

  17. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan

    2011-10-01

    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  18. Performance of Multilevel Contact Oxidation in the Treatment of Wastewater from Automobile Painting Industry

    Science.gov (United States)

    Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang

    2017-01-01

    A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.

  19. Application of Biotechnology to Construct a Sustainable Biodiesel Production System on Wastewater

    Science.gov (United States)

    Wu, Xiaodan; Liu, Yuhuan; Xu, Erni; Liu, Jianqiang; Ruan, Roger; Fu, Guiming

    2010-11-01

    The potential of microalgae biodiesel is unlimited. The ingenious combination of microalgae biomass exploitation, decontamination of municipal wastewater, and CO2 fixation may gestate the ultimate hope for solving the problem of liquid alternative fuel. However, the municipal wastewater has some characteristics, such as high content of nitrogen and phosphorus, low C/N ratio, fluctuation of loading rate, toxicity of heavy metal, etc. To overcome these problems, studies are currently underway in our laboratory. In this paper, an idea of constructing a sustainable biodiesel production system from microalgae on wastewater is assumed. The system could realize CO2 fixation, decontamination of municipal wastewater, and production of high value-added biodiesel by microalgae. Firstly, municipal wastewater is used as the cultivation media and CO2 as gaseous fertilizer for mass culture of Shuihua microalgae. So with the harvest of large quantities of low-price Shuihua microalgae, the nitrogen, phosphorus and heavy metals can be removed from the wastewater, and the emission of greenhouse gas can be reduced. Secondly, try to breed a high-oil content engineering microalgae by heterotrophic cultivation which could realize high-density growth through the conjunction of the advanced methods of fermentation engineering with the microalgae breeding technology. Finally, make the high-oil content engineering microalgae cultivated on the decomposed Shuihua microalgae cells, and try to make the high-oil content engineering microalgae grow rapidly in the initial stage and start oil accumulation when nitrogen is exhausted by controlling the conditions of fermentation.

  20. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  1. Water and Wastewater Rate Hikes Outpace CPI

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Water and wastewater treatment and delivery is the most capital-intensive of all utility services. Historically underpriced, water and wastewater rates have exhibited unprecedented growth in the past fifteen years. Steep annual increases in water and wastewater rates that outpace the Consumer Price Index (CPI) have increasingly become the norm across the United States. In this paper, we analyze water and wastewater rates across U.S. census regions between 2000 and 2014. We also examine some of the driving factors behind these rate increases, including drought, water source, required infrastructure investment, population patterns, and conservation effects. Our results demonstrate that water and wastewater prices have consistently increased and have outstripped CPI throughout the study period nationwide, as well as within each census region. Further, evaluation of the current and upcoming challenges facing water and wastewater utilities suggests that sharp rate increases are likely to continue in the foreseeable future.

  2. Electricity generation directly using human feces wastewater for life support system

    Science.gov (United States)

    Fangzhou, Du; Zhenglong, Li; Shaoqiang, Yang; Beizhen, Xie; Hong, Liu

    2011-05-01

    Wastewater reuse and power regeneration are key issues in the research of bioregeneration life support system (BLSS). Microbial fuel cell (MFC) can generate electricity during the process of wastewater treatment, which might be promising to solve the two problems simultaneously. We used human feces wastewater containing abundant organic compounds as the substrate of MFC to generate electricity, and the factors concerning electricity generation capacity were investigated. The removal efficiency of total chemical oxygen demand (TCOD), Soluble chemical oxygen demand (SCOD) and NH4+ reached 71%, 88% and 44%, respectively with two-chamber MFC when it was fed with the actual human feces wastewater and operated for 190 h. And the maximum power density reached 70.8 mW/m 2, which implicated that MFC technology was feasible and appropriate for treating human feces wastewater. In order to improve the power generation of MFC further, human feces wastewater were fermented before poured into MFC, and the result showed that fermentation pretreatment could improve the MFC output obviously. The maximum power density of MFC fed with pretreated human feces wastewater was 22 mW/m 2, which was 47% higher than that of the control without pretreatment (15 mW/m 2). Furthermore, the structure of MFC was studied and it was found that both enlarging the area of electrodes and shortening the distance between electrodes could increase the electricity generation capacity. Finally, an automatic system, controlled by time switches and electromagnetic valves, was established to process one person's feces wastewater (1 L/d) while generating electricity. The main parts of this system comprised a pretreatment device and 3 one-chamber air-cathode MFCs. The total power could reach 787.1 mW and power density could reach the maximum of about 240 mW/m 2.

  3. Detection of Aichi virus genotype B in two lines of wastewater treatment processes.

    Science.gov (United States)

    Ibrahim, Chourouk; Hammami, Salah; Mejri, Selma; Mehri, Ines; Pothier, Pierre; Hassen, Abdennaceur

    2017-08-01

    Enteric viruses are released in important quantities into the environment where they can persist for a very long time. At very low doses, they can cause human gastroenteritis, and are responsible for a substantial number of waterborne diseases. The aims of this study were multiple: firstly, to study the circulation of Aichi viruses (AiV) in wastewater sampled at the scale of a pilot wastewater treatment plant; secondly, to evaluate the performance of two wastewater treatment procedures, as natural oxidizing lagoons and rotating Biodisks, concerning the AiV removal; and finally, to determine the different type of AiV genotype found during this study. Hence, the pilot wastewater treatment plant is principally irrigated by the wastewater of three neighbouring clinics. Wastewater samples were collected during 2011 from the two lines of biological treatment procedures. AiV detection in wastewater were achieved using the Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique, and the identification of AiV genotype was realized by the direct sequencing of PCR products. The result revealed that AiV strains were identified in 50% (n = 51) of the wastewater samples. A significant increase of the AiV detection frequency was registered from upstream to downstream of the five ponds constituting the natural oxidizing lagoon process, and at the exit of the rotating Biodisks procedure. All detected AiV strains showed the highest nucleotide sequence identity to genotype B that has been recently observed in patients in Asia. This finding represented the first Tunisian survey that revealed and mentioned the first detection of AiV genotype B in sewage and by the same argued for a noticeable resistance or survival of this type of virus in the two lines of treatment considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  5. Evaluation of Alternative Methods for Wastewater Disinfection

    Science.gov (United States)

    1994-09-01

    viruses in water and wastewater (Trojan, undated:l). Used properly, ultraviolet light can effectively destroy bacteria, viruses, algae and other...highly effective in disinfecting wastewaters of an industrial nature and viable for medium to large plants, where purified oxygen is readily available or...Alternatives This appendix provides information and cost data obtained from vendors in the wastewater disinfection industry . This data is provided for

  6. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  7. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  8. 40 CFR Table 10 to Subpart G of... - Wastewater-Compliance Options for Wastewater Tanks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Wastewater-Compliance Options for Wastewater Tanks 10 Table 10 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater Pt. 63, Subpt. G, Table 10 Table 10 to Subpart G of Part 63—Wastewater—Compliance Options for...

  9. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    Science.gov (United States)

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO2)/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  10. Wastewater treatment: options for Louisiana seafood processors

    National Research Council Canada - National Science Library

    Zachritz, W.H; Malone, R.F

    1991-01-01

    ...) to define the environmental regulatory requirements that apply to seafood processors; 3) to catalog available historical data for describing the wastewaters of major Louisiana seafood processors, and 4...

  11. [FTIR and 13C NMR Analysis of Dissolved Organic Matter (DOM) in the Treatment Process of Tannery Wastewater].

    Science.gov (United States)

    Fan, Chun-hui; Zhang, Ying-chao; Tang, Ze-heng; Wang, Jia-hong

    2015-05-01

    Nowadays, the wastewater quantity discharged yearly from tannery industry is around 0. 2 billion t in China. The contaminants of tannery wastewater include macromolecular organic matters, such as grease, fur scraps and collagen, and the alkaline wastewater appears to be of high content of salt and COD. The quality of tannery wastewater is monitored strictly among all kinds of industry wastewater. In the treatment process of tannery wastewater, the quality of inlet and outlet water is generally analyzed. In fact, the transformation behavior of contaminants should be additionally checked to optimize the treatment conditions. Dissolved organic matter (DOM) is commonly existed in water-bodies and helpful to understand the physicochemical characteristics, while the related work should be further studied on tannery wastewater. The approaches of elemental analysis, thermal gravimetric analysis (TG), Fourier infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (13C NMR) were used to reveal the characteristics of DOM in the treatment process of tannery wastewater. The results showed the carbon content of DOM samples increased gradually, atomic ratios of H/C increased firstly and then decreased, indicating the organic matters were decomposed into chain structures firstly, finally forming the component hard to degraded. The pyrolysis process of DOM mainly proceeded in the regions of 110~530 °C (aliphatic compound, protein, etc. ) and 530~800 °C (aromatic ring, single bond of C-C, etc. ). The functional groups of DOM included -OH, -NH2, C=O and so on, and the aromatic substances were detected, shown from FTIR figures, in the later period of the reaction, caused by the metabolism effect of micro-organism. The content of alkoxy-C increased to the maximum in the second biochemical pond, and the minimum content of aromatic-C appeared in the second biochemical pond, suggesting the transformation behavior of carbon functional groups. The investigation on DOM in tannery

  12. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  13. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  14. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R. [Arizona Univ., Mesa, AZ (United States)

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  15. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  16. Virtues of acclimated microbial cultures in wastewater ...

    African Journals Online (AJOL)

    The main take-home message from this paper is two-pronged: 1) BOD tests on recalcitrant wastewater must be done using acclimated seed cultures, and 2) the assessment of the strength of recalcitrant or toxic wastewater must be based on both BOD and COD tests. Journal of Building and Land Development Vol.

  17. Cytogenotoxicity Screening of Untreated Hospital Wastewaters ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2005-09-05

    Sep 5, 2005 ... 1999). Hospital wastewater samples are very often different in nature eliciting different effects on biological systems. The aim of the paper was to investigate the potential toxicity and genotoxicity of an untreated hospital wastewaters obtained from a University. Teaching Hospital in the Niger Delta Region of.

  18. Physicochemical and Bacteriological Properties of Wastewaters ...

    African Journals Online (AJOL)

    The results showed that the wastewaters contained high levels of calcium, magnesium and iron. The high calcium and magnesium contents correlated positively with the high wastewater hardness observed after analysis. ... Low alkalinity and high content of free carbon dioxide make water chemically aggressive.

  19. Options for wastewater management in Harare, Zimbabwe

    NARCIS (Netherlands)

    Nhapi, I.

    2004-01-01

    The sustainable management of wastewater should aim at pollution prevention and reduction first, followed by resource recovery and reuse. This thesis shows that substantial water quality improvements could be achieved through a so-called 3-Step Strategic Approach to wastewater management. This

  20. Sustainable wastewater management in developing countries

    DEFF Research Database (Denmark)

    Laugesen, Carsten Hollænder; Fryd, Ole; Koottatep, Thammarat

    of treated wastewater, energy conservation, and proper financial and organizational set up.   Sustainable Wastewater Management in Developing Countries will urge practitioners, decision makers, and researchers to approach these systems in new ways that are practical, innovative, and-best of all-sustainable....

  1. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...

  2. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  3. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  4. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  5. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  6. Commercialization of LLNL Zinc Air Fuel Cell Technology For Stationary And Mobile Applications And Electromechanical Battery For Mobile Applications Final Report CRADA No. TC-1420-97

    Energy Technology Data Exchange (ETDEWEB)

    Tokarz, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haley, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Utility deregulation is occurring throughout the world. Energy storage, peak demand leveling and power quality are becoming increasingly important. New, innovative costeffective methods are critical to the financial success or failure of utility companies in the new free market environment. The implementation of energy storage gives a utility the ability to better utilize existing generating capacity. Energy is stored in the periods of low overall demand and then the stored energy is connected to the power grid during peak demand periods. Storing energy in this manner will lead to significant economic benefits to utilities as well as their customers. Furthermore, because the utility's system is operated more efficiently there is a direct reduction in atmospheric pollutants including greenhouse gases.

  7. Studies on the impact, detection, and control of microbiology influenced corrosion related to pitting failures in the Russian oil and gas industry. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.

    2006-09-30

    The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized and studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection effect of carbon steel. More than three times decrease of corrosion rate on steel surface was observed after lignosulfonate electropolymerization, exceeding protective effect of standard commercially available corrosion inhibitor. Solikamsky lignin could be a promising candidate as a base for the development of the future green corrosion inhibitor. A protective effect of isothiazolones in compositions with other biocides and inhibitors was investigated. Additionally to high biocidal properties, combination of kathon 893 and copper sulfate may also produce a strong anticorrosion effect depending on concentrations of the biocides. Based on its joint biocidal and anticorrosion properties, this combination can be recommended for protection of pipelines against carbon dioxide-induced corrosion. By means of linear polarization resistance test, corrosion properties of biocides of different classes were studied. Isothiazolones can be recommended for treating oil-processing waters in Tatarstan to curb carbon dioxide - induced corrosion. A laboratory research on evaluation of the efficiency of biocides, inhibitors and penetrants by biological and physical-and-chemical methods has been carried out. It was shown that action of corrosion inhibitors and biocides strongly depends on character of their interaction with mineral substances available in waters on oil-exploration sites. It was found that one of approaches to designing environmentally safe ('green') antimicrobial formulations may be the use of synergetic combinations, which allow one to significantly decrease concentrations of biocides. It was shown that the efficacy of biocides and inhibitors depends on physicochemical characteristics of the environment. Anticorrosion and antimicrobial effects of biocides and inhibitors depended in much on the type of medium and aeration regimen. Effects of different biocides, corrosion inhibitors. penetrants and their combinations on the biofilm were investigated. It has been shown that minimal inhibiting concentrations of the reagents for the biofilm are much higher than those for aquatic microorganisms. Results obtained from the research in stationary conditions have been confirmed with data from experiments carried out in hydrodynamic conditions. New approaches to the investigation of biocorrosive processes on the basis of bioluminescent method of intracellular ATP determination have been developed. Approaches and methods developed on the basis of bioluminescent method could significantly simplify the analysis of biocorrosion processes and allow to conduct the analysis directly under the field conditions in situ. An express method to assess biogenic sulfate reduction in soil and water samples has been elaborated. The method intends for field application and allows one to no-problem assess action of such harmful and corrosion provoking microorganisms, as sulfate-reducing bacteria.

  8. Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context: Cooperative Research and Development Final Report, CRADA Number CRD-12-500

    Energy Technology Data Exchange (ETDEWEB)

    Chum, Helena L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-01

    This work focuses on developing a thermochemical route to produce biofuels from agricultural wastes such as sugar cane bagasse, wood chips or corn stover; more specifically it intends to develop the biomass pyrolysis route, which produces bio-oils. Production of bio-oils by pyrolysis is a commercial technology. However, bio-oils are currently not being used for liquid fuels production. Although bio-oils can be produced by high-pressure liquefaction, pyrolysis is a less expensive technology. Nevertheless, bio-oils cannot be used directly as a transportation fuel without upgrading, since they are generally unstable, viscous, and acidic. Thus NREL and Petrobras intend to use their combined expertise to develop a two-step route to biofuels production: in the first step, a stable bio-oil is produced by NREL biomass pyrolysis technology, while in the second step it is upgraded by using two distinct catalytic processes under development by Petrobras. The first process converts bio-oil into gasoline, LPG, and fuel oil using the catalytic cracking process, while the second one, converts bio-oil into synthesis gas. Syngas gasification catalysts provided by both NREL and Petrobras will be tested. The work includes experiments at both sites to produce bio-oil and then biofuels, life-cycle analysis of each route, personnel training and development of analytical methods with a duration time of two years.

  9. The Google High Power Density Inverter Prize: Innovation in PV Inverter Power Density: Cooperative Research and Development Final Report, CRADA Number: CRD-14-568

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-08

    Google is encouraging development of advanced photovoltaic inverters with high power density by holding a public competition and offering a prize for the best performing high power developed. NREL will perform the performance and validation for all inverters entered into the competition and provide results to Google.

  10. Development and Demonstration of Grid Integration System for PEVs, ESS, and RE: Cooperative Research and Development Final Report, CRADA Number CRD-13-515

    Energy Technology Data Exchange (ETDEWEB)

    Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    NREL and Ideal Power Converters (IPC) will jointly develop and demonstrate a hybrid power converter system integrating bi-directional electric vehicle charging, photovoltaic generation, and stationary battery storage using IPC's 3-Port Hybrid Converter. The organizations will also jointly investigate synergies in tightly integrating these separate power conversion systems.

  11. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

    2012-12-15

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

  12. Defining the Interactions of Cellobiohydrolase with Substrate through Structure Function Studies: Cooperative Research and Development Final Report, CRADA Number CRD-10-409

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, G. T.; Himmel, M. E.

    2013-07-01

    NREL researchers will use their expertise and skilled resources in numerical computational modeling to generate structure-function relationships for improved cellulase variant enzymes to support the development of cellulases with improved performance in biomass conversion.

  13. Optical Materials, Adhesive and Encapsulant, III-V, and Optical Characterization Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-07-216

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.

    2012-11-01

    SolFocus is currently developing solar technology for utility scale application using Winston collector based concentrating photovoltaics (CPV). Part of that technology development includes small mirror dishes and front surface reflectors, and bonding the separate parts to the assembly. Mirror panels must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. The reflective surfaces must demonstrate long term durability and maintain high reflectivity. Some bonded surfaces must maintain adhesion and transparency under high concentrations and high temperatures. Others will experience moderate temperatures and do not require transparency. NREL researchers have developed methods and tools that address these related areas.

  14. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity Final Report CRADA No. TC02099.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Physical Sciences, Inc., Andover, MD (United States)

    2017-09-08

    The project involved the synthesis of 5g of a target energetic compound, 3,4-bis(5-nitro-1,2,5- oxadiazol-4-yl)-1,2,5-oxadiazole-1-oxide (DNTF. The deliverables were the synthesis of 5g of DNTF along with quantities of the precursor compounds. In addition, small-scale safety tests on DNTF were performed, which to confirmed that DNTF has no undesirable safety properties before scaling up the synthesis in Phase II of this project.

  15. A Compact, Portable, Reduced-Cost, Gamma Ray Spectroscopic System for Nuclear Verification Final Report CRADA No. TSB-1551-98

    Energy Technology Data Exchange (ETDEWEB)

    Lavietes, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalkhoran, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The overall goal of this project was to demonstrate a compact gamma-ray spectroscopic system with better energy resolution and lower costs than scintillator-based detector systems for uranium enrichment analysis applications.

  16. Development of a Bio-Equivalent Ultraviolet Dosimeter to Monitor the Capacity for Vitamin D Synthesis of Sunlight Final Report CRADA No. TC02086.0

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project represents a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Rhyolite Technology Group, Inc. (Rhyolite) to develop concepts and designs for a consumer ultraviolet (UV) biodosimeter based on the human biochemistry of Vitamin D synthesis. Rhyolite was established to engage in product development, licensing and consulting for the manufacture and supply of new products worldwide. Rhyolite worked jointly with LLNL and the Kiev Institute of Physics (KIP) in Ukraine to leverage previously developed UV sensor technologies by extending the previous work into commercially viable products. The project consisted primarily of the scientific, engineering and business activities needed to develop the UV bio-dosimeter for applications that include health and industrial measurement of ultraviolet radiation.

  17. CRADA with Teledyne Electronic Technologies and Pacific Northwest National Laboratory (PNL-096): The Exposure-to-Risk monitoring system. Final letter report

    Energy Technology Data Exchange (ETDEWEB)

    Thrall, K.D.

    1996-10-01

    The purpose of this project was to demonstrate the ``Exposure-to- Risk`` monitoring system in an actual occupational environment. The system is a unique combination of existing hardware with proprietary software to create an integrated means of assessing occupational exposures to volatile organic compounds. One component of this system utilizes a portable mass spectrometer developed by Teledyne Electronic Technologies. Integration of the system was accomplished under Laboratory Directed Research and Development (LDRD) funding. Commercialization of the system will take place following demonstration in an actual occupational environment, and will include, in part, Teledyne Electronic Technologies. The Exposure-to-Risk monitoring system will benefit DOE by overcoming present-day limitations in worker health protection monitoring. There are numerous sites within the` DOE complex where many different hazardous chemicals are used on a routine basis. These chemicals range from paint stripers and cleaning solvents to chemical warfare agents, each having its own degree of potential adverse health risk to a worker. Thus, a real concern for DOE is to ensure that a worker is properly monitored to assess any adverse health risk from exposure to potentially hazardous chemicals. With current industrial hygiene technologies, this is an arduous task. The Exposure-to-Risk monitoring system integrates a patented breath-inlet device connecting a subject`s exhaled breath directly with a field-portable mass spectrometer with physiologically based pharmacokinetic (PBPK) modeling to estimate the target tissue dose following a chemical exposure. Estimation of the adverse health risk prediction follows from the exposure/dose calculation based on currently accepted methodologies. This new system can determine, in the field, the possible adverse health risks on a daily basis to an individual worker.

  18. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity (Phase 2) Final Report CRADA No. TC02125.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This project was a continuation of work originally performed under a Phase 1 of the Small Business Technology Transfer (STIR). The success of the Phase 1 led to the award of a Phase 2 of the STIR. In Phase 1 of the STIR, the target energetic compound, 3,4-bis(4-nitro-l,2,5- oxadiazol-3yl)-1,2,5-oxadiazole-l-oxide (DNTF), was synthesized at the 5g scale and small-scale safety tests were performed. DNTF showed promising performance· and safety properties. DNTF was shown to be relatively insensitive while performing better than the current industry standard, H1vIX, in solid propellant formulations. Because of the successful research and development project involving PSI, LLNL and Aerojet in Phase I of the STIR, the sponsors wanted to obtain larger quantities of DNTF for further testing.

  19. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  20. Hyperspectral Geobotanical Remote Sensing for Monitoring and Verifying CO2 Containment Final Report CRADA No. TC-2036-02

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, W. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ebrom, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This collaborative effort was in support of the CO2 Capture Project (CCP), to develop techniques that integrate overhead images of plant species, plant health, geological formations, soil types, aquatic, and human use spatial patterns for detection and discrimination of any CO2 releases from underground storage formations. The goal of this work was to demonstrate advanced hyperspectral geobotanical remote sensing methods to assess potential leakage of CO2 from underground storage. The timeframes and scales relevant to the long-term storage of CO2 in the subsurface make remote sensing methods attractive. Moreover, it has been shown that individual field measurements of gas composition are subject to variability on extremely small temporal and spatial scales. The ability to verify ultimate reservoir integrity and to place individual surface measurements into context will be crucial to successful long-term monitoring and verification activities. The desired results were to produce a defined and tested procedure that could be easily used for long-term monitoring of possible CO2 leakage from underground CO2 sequestration sites. This testing standard will be utilized on behalf of the oil industry.

  1. Development of an Ultra-Low-Cost Solar Water Heater: Cooperative Research and Development Final Report, CRADA Number CRD-12-487

    Energy Technology Data Exchange (ETDEWEB)

    Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-17

    NREL and RhoTech will collaborate to bring long-lived, ultra-low-cost, high-performance solar water heaters (SWH) to market readiness. An existing RhoTech design uses seam-welded polymer thin films to make an unglazed thermosiphon, and this design will be modified to improve durability through ultraviolet and overheat protection, and to improve performance by adding a glazing to the collector. Two generations of the new glazed systems will be tested in the field, resulting in a robust market-ready SWH design that can be installed for under $1,000 without rebates.

  2. Base-Catalyzed Depolymerization of Lignin with Heterogeneous Catalysts: Cooperative Research and Development Final Report, CRADA Number CRD-13-513

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    We will synthesize and screen solid catalysts for the depolymerization of lignin to monomeric and oligomeric oxygenated species, which could be fractionated and integrated into refinery intermediate streams for selective upgrading, or catalytically upgraded to fuels and chemicals. This work will primarily focus on the synthesis and application of layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for depolymerization of lignin model compounds and softwood lignin. LDHs have been shown in our group to offer good supports and catalysts to promote base-catalyzed depolymerization of lignin model compounds and in preliminary experiments for the depolymerization of lignin from an Organosolv process. We will also include additional catalyst supports such as silica, alumina, and carbon as identified in ongoing and past efforts at NREL. This work will consist of two tasks. Overall, this work will be synergistic with ongoing efforts at NREL, funded by the DOE Biomass Program, on the development of catalysts for lignin depolymerization in the context of biochemical and thermochemical conversion of corn stover and other biomass feedstocks to advanced fuels and chemicals.

  3. Improved Tools for Wind Resource Assessment with Remote Sensing Sodar Device: Cooperative Research and Development Final Report, CRADA Number: CRD-09-363

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Under this Agreement, NREL will work with the Participant to characterize wind resource assessment measurement systems needed for the design, construction, and integration of wind energy conversion systems to produce electricity for utility grid applications. This work includes, but is not limited to, research and development of hardware and software systems needed to advance wind energy resource assessment technology at speed and scale for use by electric utilities and wind power system integrators.

  4. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.

    2013-05-01

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  5. Catalytic Depolymerization and Upgrading of Lignin for Vanillin Production: Cooperative Research and Development Final Report, CRADA Number CRD-14-545

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-31

    Examine catalytic conversion of lignin using multifunctional catalysts that are able to depolymerize and oxidize lignin to a vanillin-rich stream. Examine separation processes for isolation of vanillin from product mixtures. Conduct preliminary experiments to determine if deconstructed lignin streams can be metabolized by Pseudomonas putida.

  6. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Forber, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  7. Portfolio-Scale Optimization of Customer Energy Efficiency Incentive and Marketing: Cooperative Research and Development Final Report, CRADA Number CRD-13-535

    Energy Technology Data Exchange (ETDEWEB)

    Brackney, Larry J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-17

    North East utility National Grid (NGrid) is developing a portfolio-scale application of OpenStudio designed to optimize incentive and marketing expenditures for their energy efficiency (EE) programs. NGrid wishes to leverage a combination of geographic information systems (GIS), public records, customer data, and content from the Building Component Library (BCL) to form a JavaScript Object Notation (JSON) input file that is consumed by an OpenStudio-based expert system for automated model generation. A baseline model for each customer building will be automatically tuned using electricity and gas consumption data, and a set of energy conservation measures (ECMs) associated with each NGrid incentive program will be applied to the model. The simulated energy performance and return on investment (ROI) will be compared with customer hurdle rates and available incentives to A) optimize the incentive required to overcome the customer hurdle rate and B) determine if marketing activity associated with the specific ECM is warranted for that particular customer. Repeated across their portfolio, this process will enable NGrid to substantially optimize their marketing and incentive expenditures, targeting those customers that will likely adopt and benefit from specific EE programs.

  8. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKannay, R. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  9. University of Colorado - Center for Research and Education in Wind (CREW): Cooperative Research and Development Final Report, CRADA Number CRD-11-446

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Enabled by petascale supercomputing, the next generation of computer models for wind energy will simulate a vast range of scales and physics, spanning from turbine structural dynamics and blade-scale turbulence to mesoscale atmospheric flow. A single model covering all scales and physics is not feasible. Thus, these simulations will require the coupling of different models/codes, each for different physics, interacting at their domain boundaries.

  10. NREL and SDG&E Collaboration to Support SDG&E Grid and Storage Efforts: Cooperative Research and Development Final Report, CRADA Number CRD-14-562

    Energy Technology Data Exchange (ETDEWEB)

    Baggu, Murali [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    This project will enable effective utilization of high penetration of photovoltaics (PV) in islanded microgrids, increasing overall system efficiency, decreased fuel costs and resiliency of the overall system to help meet the SunShot goals of enhancing system integration methods to increase penetration of PV. National Renewable Energy Laboratory (NREL) will collaborate with San Diego Gas & Electric (SDG&E) to provide research and testing support to address their needs in energy storage sizing and placement, Integrated Test Facility (ITF) development, Real Time Digital Simulator (RTDS) Modeling and simulation support at ITF, Visualization and Virtual connection to Energy Systems Integration Facility (ESIF), and microgrid simulation and testing areas. Specifically in this project a real microgrid scenario with high penetration of PV (existing in SDG&E territory) is tested in the ESIF laboratory. Multiple control cases for firming PV using storage in a microgrid scenario will be investigated and tested in the laboratory setup.

  11. Pilot Scale Integrated Biorefinery for Producing Ethanol from Hybrid Algae: Cooperative Research and Development Final Report, CRADA Number CRD-10-389

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, P. T.

    2013-11-01

    This collaboration between Algenol Biofuels Inc. and NREL will provide valuable information regarding Direct to Ethanol technology. Specifically, the cooperative R&D will analyze the use of flue gas from industrial sources in the Direct to Ethanol process, which may demonstrate the potential to significantly reduce greenhouse gas emissions while simultaneously producing a valuable product, i.e., ethanol. Additionally, Algenol Biofuels Inc. and NREL will develop both a techno-economic model with full material and energy balances and an updated life-cycle analysis to identify greenhouse gas emissions relative to gasoline, each of which will provide a better understanding of the Direct to Ethanol process and further demonstrate that it is a breakthrough technology with varied and significant benefits.

  12. Removal of Nickel and Vanadium from heavy Crude Oils by Ligand Exchange Reactions: Final Report CRADA No. TC-0400-92

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paul, Robert H. [Phillips Petroleum Company, Bartlesville, OK (United States)

    2000-10-02

    This was a collaborative agreement to develop new methods for the removal of nickel and vanadium from heavy crude oils utilizing chemical agents in a pre-treatment or before downstream processing step. The project was motivated by the need to utilize more heavy crude oils in refining. The result expected would decrease America's dependence on foreign oil, and protect against potential foreign oil embargoes. This project attempted to: a) find any or several chemical agents which removed Ni and/ or V from heavy crude oils in a pre-treatment step; b) understand the fundamental chemical reactions which accomplish this; c) measure the intrinsic kinetic reaction rates relevant to scale-up and utilization in the refinery; and d) scale-up to refinery utilization.

  13. Narrative Finality

    Directory of Open Access Journals (Sweden)

    Armine Kotin Mortimer

    1981-01-01

    Full Text Available The cloturai device of narration as salvation represents the lack of finality in three novels. In De Beauvoir's Tous les hommes sont mortels an immortal character turns his story to account, but the novel makes a mockery of the historical sense by which men define themselves. In the closing pages of Butor's La Modification , the hero plans to write a book to save himself. Through the thrice-considered portrayal of the Paris-Rome relationship, the ending shows the reader how to bring about closure, but this collective critique written by readers will always be a future book. Simon's La Bataille de Pharsale , the most radical attempt to destroy finality, is an infinite text. No new text can be written. This extreme of perversion guarantees bliss (jouissance . If the ending of De Beauvoir's novel transfers the burden of non-final world onto a new victim, Butor's non-finality lies in the deferral to a future writing, while Simon's writer is stuck in a writing loop, in which writing has become its own end and hence can have no end. The deconstructive and tragic form of contemporary novels proclaims the loss of belief in a finality inherent in the written text, to the profit of writing itself.

  14. Electrocoagulation of synthetic dairy wastewater.

    Science.gov (United States)

    Smoczynski, Lech; Munska, Kamilla; Pierozynski, Boguslaw

    2013-01-01

    This study compares the effectiveness of pollutant removal from synthetic dairy wastewater electrocoagulated by means of aluminum and iron anodic dissolution. A method based on the cubic function (third degree polynomial) was proposed for electrocoagulant dosing. Mathematical methods for calculating the optimal electrocoagulant doses proved to be quite precise and useful for practical applications. The results of gravimetric measurements of electrocoagulant (electrode) consumption demonstrated that theoretical doses of Al determined based on Faraday's law were substantially lower than those produced by electrode weighing. The above phenomenon was also discussed in the light of the results of polarization resistance measurements for Al and Fe electrodes used in the study.

  15. ARW/VCI research object. Isolation and identification of individual substances contained in wastewater and Rhine water that have the potential to enter drinking water. Final report; ARW/VCI-Forschungsvorhaben. Erfassung und Identifizierung von trinkwassergaengigen Einzelsubstanzen in Abwaesssern und im Rhein. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, K. [Arbeitsgemeinschaft Rhein-Wasserwerke e.V. (ARW), Koeln (Germany); Knepper, T.P. [ESWE-Institut fuer Wasserforschung und Wassertechnologie GmbH, Wiesbaden (Germany); Karrenbrock, F. [Gas-, Elektrizitaets- und Wasserwerke Koeln AG (GEW) (Germany); Roerden, O. [Gas-, Elektrizitaets- und Wasserwerke Koeln AG (GEW) (Germany); Brauch, H.J. [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Lange, F.T. [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Sacher, F. [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany)

    1996-08-01

    ``Father Rhine`` is made to answer a chorus of demands: his water reservoir serves the drinking and service water supply of millions of people including their workplaces in industry and agriculture, while at the same time he is made to take up the more or less contaminated wastewater produced by these consumers. These antagonistic uses of one and the same water must inevitably cause problems which can only be solved properly by cooperation. Water suppliers and wastewater dischargers should know about each other`s problems and technical possibilities in order to jointly arrive at the best solution. A key instrument to this end is chemical analysis. In 1992 the Arbeitsgemeinschaft der Rheinwasserwerke (ARW) and the Verband der Chemischen Industrie (VCI) agreed to undertake a joint research project with the aim of improving this instrument. The project served to extend the range of methods for isolating and identifying individual substances contained in wastewater and the Rhine itself that have the potential to enter drinking water. The present report summarises the results of the research project. Thirty-eight wastewater constituents were were identified for the first time, and analysis methods were developed for their determination. New insights were gained into the origin and degradation paths of these substances. In some cases it was possible to directly use the research results for improving industrial processes at the companies concerned. (orig./SR) [Deutsch] Von `Vater Rhein` wird viel verlangt: Sein Wasserreservoir dient der Trinkwasser- und Nutzwasserversorgung fuer Millionen von Menschen, samt ihren Arbeitsplaetzen in Industrie und Landwirtschaft - und gleichzeitig muss er deren mehr oder minder belastetes Wasser aufnehmen. Diese unterschiedliche Nutzung des gleichen Gewaessers bringt zwangslaeufig Probleme mit sind, die nur auf kooperativem Wege befriedigend geloest werden koennen. Wasserversorger und Abwassereinleiter muessen ihre gegenseitigen Probleme

  16. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  17. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater.

    Science.gov (United States)

    Somensi, Cleder A; Simionatto, Edésio L; Bertoli, Sávio L; Wisniewski, Alberto; Radetski, Claudemir M

    2010-03-15

    In this study, ozonation of raw textile wastewater was conducted in a pilot-scale plant and the efficiency of this treatment was evaluated based on the parameters color removal and soluble organic matter measured as chemical oxygen demand (COD), at two pH values (9.1 and 3.0). Identification of intermediate and final degradation products of ozone pre-treatment, as well as the evaluation of the final ecotoxicity (Lumistox test) of pre-treated wastewater, was also carried out. After 4h of ozone treatment with wastewater recirculation (flow rate of 0.45 m(3)h(-1)) the average efficiencies for color removal were 67.5% (pH 9.1) and 40.6% (pH 3.0), while COD reduction was 25.5% (pH 9.1) and 18.7% (pH 3.0) for an ozone production capacity of 20 g h(-1). Furthermore, ozonation enhances the biodegradability of textile wastewater (BOD(5)/COD ratios) by a factor of up to 6.8-fold. A GC-MS analysis of pre-treated textile wastewater showed that some products were present at the end of the pre-treatment time. In spite of this fact, the bacterial luminescence inhibition test (Lumistox test) showed a significant toxicity reduction on comparing the raw and treated textile wastewater. In conclusion, pre-ozonation of textile wastewater is an important step in terms of improving wastewater biodegradability, as well as reducing acute ecotoxicity, which should be removed completely through sequential biological treatment. (c) 2009. Published by Elsevier B.V.

  18. Is A/A/O process effective in toxicity removal? Case study with coking wastewater.

    Science.gov (United States)

    Shi, Liu; Wang, Dong; Cao, Di; Na, Chunhong; Quan, Xie; Zhang, Ying

    2017-08-01

    The anaerobic-anoxic-oxic (A/A/O) process is the commonly used biological wastewater treatment process, especially for the coking wastewater. However, limit is known about its ability in bio-toxicity removal from wastewater. In this study, we evaluated the performance of A/A/O process in bio-toxicity removal from the coking wastewater, using two test species (i.e. crustacean (Daphnia magna) and zebra fish (Danio rerio)) in respect of acute toxicity, oxidative damage and genotoxicity. Our results showed that the acute toxicity of raw influent was reduced gradually along with A/A/O process and the effluent presented no acute toxicity to Daphnia magna (D. magna) and zebra fish. The reactive oxygen species (ROS) level in D. magna and zebra fish was promoted by the effluent from each tank of A/A/O process, showing that coking wastewater induced oxidative damage. Herein, the oxidative damage to D. magna was mitigated in the oxic tank, while the toxicity to zebra fish was reduced in the anoxic tank. The comet assays showed that genotoxicity to zebra fish was removed stepwise by A/A/O process, although the final effluent still presented genotoxicity to zebra fish. Our results indicated that the A/A/O process was efficient in acute toxicity removal, but not so effective in the removal of other toxicity (e.g. oxidative damage and genotoxicity). Considering the potential risks of wastewater discharge, further advanced toxicity mitigation technology should be applied in the conventional biological treatment process, and the toxicity index should be introduced in the regulation system of wastewater discharge. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.

  20. Integrating the Anaerobic Process with Ultrafiltration in Meat Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna

    2014-12-01

    Full Text Available The aim of this paper was to study meat industry wastewater treatment efficiency during fermentation process in ASBR reactor and post-treatment in UF process. The anaerobic process obtained a considerable degree of the removal of organic pollutants from raw wastewater designated as COD (73.3%, BOD (71.4% and TOC (83.2%. The concentrations of COD and BOD were 435 and 443 mg/dm3, respectively. The value of TOC reached a level of 136 mg/dm3. Generated biogas in the methane fermentation process of wastewater from meat industry plants was characterized by high methane content (80.9% vol.. In the final part of the experiment, the UF process was used in order to post-treating effluent from ASBR reactor. During the UF process, COD, BOD and TOC parameters were removed at 67.2%, 68% and 70.4%, respectively.

  1. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  2. General Characteristics and Treatment Possibilities of
Dairy Wastewater – A Review

    Science.gov (United States)

    2017-01-01

    Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730

  3. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  4. Performance evaluation of real time control in urban wastewater systems

    NARCIS (Netherlands)

    van Daal-Rombouts, P.M.M.

    2017-01-01

    This thesis deals with real time control (RTC) in urban wastewater systems, where
    urban wastewater systems are defined as a combination of combined sewer systems and wastewater treatment plants (WWTPs). Urban wastewater systems discharge, through combined sewer over flows (CSOs) and WWTP

  5. physico-chemical evaluation of wastewater in katsina metropolis ...

    African Journals Online (AJOL)

    pc

    creation of wastewater treatment plant so as to avoid adverse conditions. Keywords: Physico-chemical Parameters, Pollution, Wastewater, and Katsina Metropolis ... associated sludge and grey water kitchen and bathroom wastewater or the mixture of domestic wastewater from commercial establishments and institutions ...

  6. Quality control in treated wastewater: practical application of the E-PRTR normative; Control de la calidad de aguas depuradas: aplicacion del Reglamento E-PRTR

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2007-07-01

    Publication of the RD 508/2007 about substances generated in industrial activities at Spain implies that is necessary to inform of these substances if certain threshold values are over passed. In this way, this paper is focused on the analytical control of organic and inorganic substances present in treated wastewater. This survey must be more intensive, according is imposed in the RD 508/2007, in the treated wastewater emanating from WWT facilities of more than 100.000 inhabitants of treatment capacity, for this purpose, the application of instrumental techniques as gas chromatography, HPL and ICP must be essential. Finally, we comment in paper few dates about pollutants investigated in the treated wastewater of Corboda (15% of industrial wastewater over total wastewater) of those established in the E-PRTR normative. (Author)

  7. Pollution control of industrial wastewater from soap and oil industries: a case study.

    Science.gov (United States)

    Abdel-Gawad, S; Abdel-Shafy, M

    2002-01-01

    Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.

  8. Constructed wetlands in the treatment of agro-industrial wastewater: A review

    Directory of Open Access Journals (Sweden)

    Sultana Mar-Yam

    2015-01-01

    Full Text Available Due to their simplicity and low operation cost, constructed wetlands are becoming more prevalent in wastewater treatment all over the world. Their range of applications is no longer limited to municipal wastewater but has expanded to the treatment of heavily polluted wastewaters such as agro-industrial effluents. This paper provides a comprehensive literature review of the application of constructed wetlands in treating a variety of agro-industrial wastewaters, and discusses pollutant surface loads and the role of constructed wetland type, prior-treatment stages and plant species in pollutant removal efficiency. Results indicate that constructed wetlands can tolerate high pollutant loads and toxic substances without losing their removal ability, thus these systems are very effective bio-reactors even in hostile environments. Additionally, the review outlines issues that could improve pollutant treatment efficiency and proposes design and operation suggestions such as suitable vegetation, porous media and constructed wetland plain view. Finally, a decision tree for designing constructed wetlands treating agro-industrial wastewaters provides an initial design tool for scientists and engineers.

  9. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities.

    Science.gov (United States)

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2011-03-01

    Hydrogen sulfide generation is the key cause of sewer pipe corrosion, one of the major issues in water infrastructure. Current abatement strategies typically involve addition of various types of chemicals to the wastewater, which incurs large operational costs. The transport, storage and application of these chemicals also constitute occupational and safety hazards. In this study, we investigated high rate electrochemical oxidation of sulfide at Ir/Ta mixed metal oxide (MMO) coated titanium electrodes as a means to remove sulfide from wastewater. Both synthetic and real wastewaters were used in the experiments. Electrochemical sulfide oxidation by means of indirect oxidation with in-situ produced oxygen appeared to be the main reaction mechanism at Ir/Ta MMO coated titanium electrodes. The maximum obtained sulfide removal rate was 11.8 ± 1.7 g S m(-2) projected anode surface h(-1) using domestic wastewater at sulfide concentrations of ≥ 30 mg L(-1) or higher. The final products of the oxidation were sulfate, thiosulfate and elemental sulfur. Chloride and acetate concentrations did not entail differences in sulfide removal, nor were the latter two components affected by the electrochemical oxidation. Hence, the use of electrodes to generate oxygen in sewer systems may constitute a promising method for reagent-free removal of sulfide from wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  11. Development of a Technology for Treating Wastewater Contaminated with Nitric Acid

    Directory of Open Access Journals (Sweden)

    Liz Mabel Ríos Hidalgo

    2013-01-01

    Full Text Available The production process of nitroaromatic hazardous compounds, with the generation of acidic wastewater, represents a significant danger for the health and safety of the workers and the environment. The present study is focused on the development of an efficient installation to treat acidic wastewater resulting from the synthesis process of nitroaromatic compound, considering workers safety and environmental criteria. In this research, a detailed study of the different alternatives that can be used for effective and safe treatment of acidic wastewater was performed. The analysis of several technological schemes for the acidic wastewaters neutralization and the selection of the most feasible alternative from a technical-economic point of view were carried out. The simulation and mathematical modeling developed in this research represent a significant advance in the knowledge of this process for working in a much more secure form. The technological scheme of the process was defined, and the design of the main and auxiliary equipment as well as the piping system was carried out using different computational programs. Finally, this paper proposes a technological design for the treatment of acidic wastewater generated by the production process of nitroaromatic compound, which represents the basic criteria for the further design, construction, and equipment installation of the plant.

  12. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  13. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  14. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Transport and fate of microplastic particles in wastewater treatment plants.

    Science.gov (United States)

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  16. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  17. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  18. Effects of wastewater on forested wetlands

    Science.gov (United States)

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  19. Characterization of Wastewater for Modelling of Activated Sludge Processes

    DEFF Research Database (Denmark)

    Henze, Mogens

    1992-01-01

    . Fractionation of biomass in wastewater and in activated sludge is difficult at present, as methods are only partly developed. Nitrogen fractions in wastewater are mainly inorganic. The organic nitrogen fractions are coupled to the organic COD fractions. The fractions of COD, biomass and nitrogen found...... in a specific wastewater seem to be constant even when concentrations vary. Wastewater input to sewers and the sewer transport system significantly influences the raw wastewater composition at treatment plants....

  20. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  1. Wastewater Characterization Survey, Thule Air Base, Greenland

    Science.gov (United States)

    1993-03-01

    wastewater . A large amount of the phosphorus that is discharged is likely to be removed by the algae and plant life in the ditch before reaching the...continuous). The high concentration of algae can be expected to deplete oxygen in the bay during the dark respiration cycle. If a wastewater treatment...APR 15 1993 AD,-A262 806 S C I WASTEWATER CHARACTERIZATION SURVEY, A THULE AIR BASE, GREENLAND R M S T Richard P. McCoy, Captain, USAF, BSC R

  2. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  3. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  4. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  5. Restoration of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Skabo, R.R. [CH2M Hill, Denver, CO (United States)

    1994-12-31

    Corrosion in Wastewater Treatment Plants (WWTP) has always been a problem. As systems increase in size, corrosion of materials in certain areas of the plant can become more serious. Concrete is the primary material used in RWPS, and it can be severely corroded by the environment in a WWTP. This paper discusses some of the more common types of HWP corrosion, which occur in both concrete and metallic structures. Corrosion caused by poor design will be discussed also. Examples of corrosion will be described and practical solutions for restoration of corroded surfaces will be presented The advantages and disadvantages of various restoration methods will be compared and alternative construction methods and design changes will be offered. These alternatives will improve the corrosion performance of common construction materials.

  6. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  7. Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus.

    Science.gov (United States)

    Zorpas, Antonis A; Costa, Costa N

    2010-10-01

    Co-composting of olive oil solid residue (OOSR) and treated wastewaters (with Fenton) from the olive oil production process has been studied as an alternative method for the treatment of wastewater containing high organic and toxic pollutants in small olive oil industry in Cyprus. The experimental results indicated that the olive mill wastewater (OMW) is detoxified at the end of Fenton Process and the COD is reduced up to 70%. The final co-composted material of OOSR with the treated olive mile wastewater (TOMW) is presented with optimum characteristics and is suitable for agricultural purpose. The final product coming out from an in-Vessel reactor seems to mature faster than the product from the windrow system and is presented with a better soil conditioner. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Genotoxicity of wastewater from health care facilities.

    Science.gov (United States)

    Vlková, Alena; Wittlingerová, Zdeňka; Zimová, Magdalena; Jírová, Gabriela; Kejlová, Kristina; Janoušek, Stanislav; Jírová, Dagmar

    2016-12-18

    Health care facilities use for therapeutic purposes, diagnostics, research, and disinfection a high number of chemical compounds, such as pharmaceuticals (e.g. antibiotics, cytostatics, antidepressants), disinfectants, surfactants, metals, radioactive elements, bleach preparations, etc. Hospitals consume significant amounts of water (in the range of 400 to 1200 liters/day/bed) corresponding to the amount of wastewater discharge. Some of these chemicals are not eliminated in wastewater treatment plants and are the source of pollution for surface and groundwater supplies. Hospital wastewater represents chemical and biological risks for public and environmental health as many of these compounds might be genotoxic and are suspected to contribute to the increased incidence of cancer observed during the last decades. The changes of the genetic information can have a lethal effect, but more often cause tumor processes or mutations in embryonic development causing serious defects. A review of the available literature on the mutagenicity/genotoxicity of medical facilities wastewater is presented in this article.

  9. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  10. Bioenergy from wastewater-based biomass

    Directory of Open Access Journals (Sweden)

    Ronald C. Sims

    2016-01-01

    Full Text Available The U.S. Department of Energy (DOE has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1 wastewater treatment systems that can be used to cultivate algae biomass, and (2 land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.

  11. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  12. Wastewater Out Front in Bay Restoration

    Science.gov (United States)

    Clean Water Act programs administered by EPA and the delegated states have played a central role in the success of the wastewater sector in effectively meeting nutrient limits in the Chesapeake Bay “pollution diet” a decade early.

  13. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    2014-01-01

    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI...... increased by 635 and 765 euro ha-1y-1 with FTS and MBR, respectively. Tubers were not contaminated by E. coli found in treated wastewater used for irrigation. The frequency of heavy metal and nitrate detection in tubers were comparable among water sources, as well as for the average contents. Only for boron......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...

  14. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  15. Butanol / Honda CRADA Report

    Science.gov (United States)

    2015-02-01

    fuels I - , I I -----· --.. --.1--------0 20 40 Content [vol%] Fig. 8: Relatio ns hip of Mixing Ratio of Butano I an d Startabilit\\( under RVP...build Crown up l.....ts Piston Thrust l oad Majorttvust Skill I Udt.J cnc::e~ l’lSton Piston side lnside diameter- Wrist Pin Connecting

  16. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    It was found that for anaerobic treatment of olive mills wastewater COD:N:P ratio of about 900:5:1.7 was able to achieve more than 80% COD removal. The observed biomass yield was about 0.06 kg VSS per kg of COD degraded. For extended aeration aerobic treatment of pulp and paper mill wastewater COD:N:P ratio of ...

  17. Microalgae at wastewater treatment in cold climate

    OpenAIRE

    Grönlund, Erik

    2002-01-01

    The thesis concludes that microalgae may improve wastewater treatment in ponds in cold climate, from a treatment perspective as well as a sustainability perspective. A literature review revealed that the microalgae biomass produced may find economic use, depending on what species will come to dominate, since there are many possible products from microalgae biomass. Laboratory experiments showed that microalgae collected in the Mid Sweden region can grow readily in wastewater from the same reg...

  18. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  19. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    Science.gov (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  20. Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and High-Quality Pigments

    Directory of Open Access Journals (Sweden)

    Teresa Schneider

    2012-01-01

    Full Text Available The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. The screening of feedstocks should be extended to other wastewaters.

  1. Disinfection and dewatering of wastewater solids by interstitial vapor generation.

    Science.gov (United States)

    Kramer, Timothy A; Hill, T Keith; Beckley, John

    2004-01-01

    Disinfection of wastewater solids (waste activated solids [WAS]) by interstitial vapor generation was investigated. In addition to the magnitude of disinfection, the amount of water removed and cost relative to traditional residuals disinfection processes was also examined. The process of interstitial vapor generation occurs as a result of the rapid heating of liquid in the interstices of the solid-liquid array. Intense heating causes boiling of the slurry liquid, resulting in an expanding vapor front that simultaneously dewaters the wastewater solids and contributes to the destruction of viable pathogenic microorganisms. Objectives of the study were threefold: (1) to validate disinfection of WAS using the interstitial vapor technique; (2) establish the degree of possible drying of the residuals using the techniques; and (3) establish the key operating variables for the process. Results showed a significant reduction in the most probable number of total coliforms and Escherichia coli (E. coli). Specifically, greater than four-log unit reductions were produced for both total coliform and E. coli bacteria. In addition to quantifying the reduction in bacteria, the percent solids were increased from an initial amount of 7.6% (mass basis) to a final solids content greater than 90% using optimal processing conditions. Cost comparisons were also conducted and shown to be quite favorable when compared with traditional disinfection methods such as lime addition. Because of the high level of E. coli reduction achieved, the process of interstitial vapor generation is shown to be capable of converting a class B biosolids into a class A pathogen reduced product. For example, an initial most probable number (MPN) of 1.2 x 10(6) E. coli bacteria were reduced to 19 at the extreme conditions of the process, well below the requirement of an MPN of 1000 for fecal coliform bacteria. Given its ability to disinfect and dewater wastewater solids, the interstitial vapor generation process

  2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  3. CRADA with Beckman Instruments and Pacific Northwest National Laboratory (PNL-013): Development and commercialization of the Unsaturated Flow Apparatus (UFA) using characterization of aridisols

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.; Conca, J.

    1996-10-01

    The objective of this Cooperative Research and Development Agreement (CRADA) was to develop and commercialize a technology conceived by scientists at Pacific Northwest National Laboratory (PNNL) and manufactured by Beckman Instruments, Inc. (Beckman), and to apply this technology to the characterization of and soils. The technology is the Unsaturated Flow Apparatus (UFA). The UFA provides a highly efficient method of direct, rapid measurement of hydraulic conductivity and other flow properties according to Darcy-Buckingham principles because the operator controls both the fluid driving force, using an ultracentrifuge, and the flow into the sample while it is spinning, with a rotating seal assembly. The concept of using centrifugation to significantly decrease the time needed, from years or months to days, for study of subsurface transport, particularly under unsaturated conditions, was conceived by James Conca, Ph.D., and Judith Wright, Ph.D., in 1986. The prototype UFA was developed in 1988 because there was a need to rapidly and accurately determine transport parameters in soils, sediments, and rocks for the Grout Waste Disposal Program. Transport parameters are critical to modeling outcomes for site-specific solutions to environmental remediation and waste disposal problems.

  4. Removing Fe, Zn and Mn from steel making plant wastewater using RO and NF membranes

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Mirbagheri

    2016-12-01

    Full Text Available Background and purpose: Excessive amount of heavy metals in industrial wastewater is a seriously crucial issue and requires efficient methods to be introduced and dealt with. Meanwhile, steel making plants as productive units in every country release large amounts of fluid into surface and underground sources. Typically, this wastewater contains heavy metals in minor amounts, while this amount could cause severe damages to the living organisms. Materials and methods: In this study, removing iron, manganese, zinc and total dissolved solid in a typical wastewater resulted from steel making plant was considered using reverse osmosis (RO and nanofiltration (NF membranes. At first, different pH values and operating pressures were applied to the wastewater. Then, these parameters were evaluated for a wastewater only containing iron to compare the interaction of other elements in iron removal. Results: The results indicated that RO and NF membranes could successfully treat industrial wastewater containing several heavy metals with high concentrations of Fe, Zn and Mn, especially at optimum pH and pressure. Moreover, the interaction of other heavy metals and components in the influent decreased the efficiency of RO but improved the NF efficiency to remove iron. To have a better image, a formula was proposed for each method to represent the influence of the parameters on removal rates. Finally, cost estimation for both procedures showed that RO was not economically-technically efficient in comparison with NF. Conclusion: NF showed an acceptable performance with high water flow which made it more suitable for industries. At the end, the relative cost analysis showed that even if the initial price of NF is high, the energy consumption and total cost of RO will be higher.

  5. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini

    2008-01-01

    yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  6. Identification of clinically antibiotic resistant genes Aac(3-IIa and Aac(6’-Ib in wastewater samples by multiplex PCR

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2015-06-01

    Full Text Available Background: Aminoglycoside antibiotics are widely used in medical centers, particularly to treat infections. The resistance developed against these agents is a huge concern in health care. A number of researchers have reported that hospital and municipal wastewaters are among the most important dissemination sources of these agent into the environment. Some, however, do not agree with this opinion. In the present study, the prevalence of aminoglycoside resistance genes was investigated in raw and effluent wastewater from hospital and municipal wastewater treatment plants. Methods: To conduct this descriptive-analytical study, 30 samples were taken according to sampling principles and cold cycle and transferred to the molecular laboratory. DNA was extracted by the freeze-thaw method using a kit (Promega. The genes aac(3-IIa and aac(6’-Ib which code aminoglycoside resistance were examined in this study. Results: The results indicated that the studied genes are present in 35% of urban and hospital wastewaters, and their frequency percentage is higher in hospital wastewater (52% than urban wastewater (48%. The studied genes were identified in 61% of raw hospital wastewater samples; however, they were not detected in the output wastewater from the studied treatment plants. Conclusion: Although, the studied genes were not detected in the final effluent, there is a high potential for their release into the environment. The current study demonstrated that the coding genes of aminoglycoside antibiotic resistance are present in raw urban and hospital wastewaters. In the case of improper exploitation of wastewater treatment plants, the output water can contaminate other environmental sections, such as soil and water resources, and result in the emission of these contaminants.

  7. Acute toxicity reduction and toxicity identification in pigment-contaminated wastewater during anaerobic-anoxic-oxic (A/A/O) treatment process.

    Science.gov (United States)

    Deng, Minjie; Zhang, Ying; Quan, Xie; Na, Chunhong; Chen, Shuo; Liu, Wei; Han, Shuping; Masunaga, Shigeki

    2017-02-01

    In China, a considerable part of industrial wastewater effluents are discharged into the municipal wastewater treatment plants (WWTPs) after pretreatment in their own wastewater treatment plants. Even though the industrial effluents meet the professional emission standards, many micro-pollutants still remained, and they could be resistant in the municipal WWTPs with conventional activated sludge process. Pigment wastewater was chosen in this study, and the acute toxicity reduction and identification of the pigment-contaminated wastewater treated by the conventional anaerobic-anoxic-oxic (A/A/O) process were evaluated. Results indicated that the raw pigment-contaminated wastewater was acutely toxic to Photobacterium phosphoreum (P. phosphoreum), Daphnia magna (D. magna) and Danio rerio (D. rerio). The acute toxicity was decreased in some degree after A/A/O treatment, but the final effluent still exhibited acute toxicity to D. magna and D. rerio with the toxic units (TU) of 1.1 and 2.0, respectively. Chemical analyses showed the presence of various refractory and toxic nitrogen-containing polycyclic and heterocyclic compounds in the pigment-contaminated wastewater. Toxicity identification by combining chemical analyses and correlation analysis showed that N-containing refractory organic toxicants were the main toxicity source for the pigment-contaminated wastewater, and several toxicants showed significant correlation with P. phosphoreum and D. magna. This study indicated that the A/A/O process was not efficient for pigment-contaminated wastewater treatment, and it was irradiative for technology improvement in the WWTPs receiving pretreated industrial wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Wastewater Recycling in Greece: The Case of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Andreas Ilias

    2014-05-01

    Full Text Available In Greece, and particularly in many southeastern and island areas, there is severe pressure on water resources, further exacerbated by the high demand of water for tourism and irrigation in summertime. The integration of treated wastewater into water resources management is of paramount importance to meet future demands. Despite this need, only a few projects of effluent reuse have been implemented, most of them being pilot projects of crop or landscape irrigation. The most important projects which are currently in practice are those of Thessaloniki, Chalkida, Malia, Livadia, Amfisa, Kalikratia, and Chersonissos. In Thessaloniki, at the most important wastewater reuse site, the secondary effluent of the city’s Waste Water Treatment Plant (WWTP (165,000 m3/day is used for agricultural irrigation after mixing with freshwater at a 1:5 ratio. The main crops irrigated are rice, corn, alfalfa and cotton. A few other projects are under planning, such as that at Iraklion, Agios Nikolaos and several island regions. Finally, it should be mentioned that there are several cases of indirect reuse, especially in central Greece. However, the reuse potential in Greece is limited, since effluent from Athens’s WWTP, serving approximately half of the country’s population, is not economically feasible due to the location of the plant.

  9. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  10. Selection of microalgae for wastewater treatment and potential lipids production.

    Science.gov (United States)

    Aravantinou, Andriana F; Theodorakopoulos, Marios A; Manariotis, Ioannis D

    2013-11-01

    In the present study, ten microalgal strains found in fresh and saline waters were cultured, and used to conduct batch experiments in order to evaluate their potential contribution to nutrient removal and biofuel production. The growth rate of microalgae was inversely analogous to their initial concentration. Three freshwater strains were selected, based on their growth rate, and their behavior with synthetic wastewater was further investigated. The strains studied were the Scenedesmus rubescens (SAG 5.95), the Neochloris vigensis (SAG 80.80), and the Chlorococcum spec. (SAG 22.83), and higher growth rate was observed with S. rubescens. Total phosphorus removal at an initial phosphate concentration of 6-7 mg P/L in the synthetic wastewater, was 53%, 25% and 11% for N. vigensis, Chlorococcum spec., and S. rubescens, respectively. Finally, the lipid content was determined at 20th and 30th day of cultivation, and the highest amount was observed at the 20th day. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.

    Science.gov (United States)

    Khoufi, Sonia; Feki, Firas; Sayadi, Sami

    2007-04-02

    Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.

  12. Studies on adsorption of phenol from wastewater by agricultural waste.

    Science.gov (United States)

    Girish, C R; Ramachandramurty, V

    2013-07-01

    In this paper, preliminary investigation of various agricultural wastes-Rice mill residue (RM), Wheat mill reside (WM), Dall mill residue (DM) and the Banana peels (BM) was carried out to study their ability to be used as adsorbents for phenol-removal from wastewater. This study reports the feasibility of employing dal mill residue waste (DM) as an adsorbent for removing phenol from wastewater. The performance of DM was compared with the commercially available activated carbon (CAC). Batch mode experiments were conducted with activated DM to study the effects of initial concentration of phenol, pH and the temperature of aqueous solution on adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models and the isotherm data fitted well to the Freundlich isotherm with monolayer adsorption capacity of 6.189 mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first order and pseudo-second- order equation. The experimental data fitted very well with the pseudo-first-order kinetic model. The FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of phenol. Finally, the DM was found to be a promising adsorbent for phenol adsorption as compared to activated carbon.

  13. The removal of amoxicillin from wastewater using organobentonite.

    Science.gov (United States)

    Zha, Shuang xing; Zhou, Yan; Jin, Xiaoying; Chen, Zuliang

    2013-11-15

    Organobentonites used as absorbents to remove amoxicillin from wastewater have been investigated here because they are effective in removing organic pollutants. It is evident that bentonite modified with hexadecyl trimethyl ammonium (DK1) can effectively remove amoxicillin from aqueous solution. Batch experiments showed that the adsorption of amoxicillin onto DK1 fitted well to a pseudo second-order kinetic model with corresponding rate constants (0.0187 g/mg min at 20 °C). The Langmuir isotherm provided the highest adsorption capacity (26.18 mg/g at 20 °C). Our thermodynamic study suggested that the adsorption of amoxicillin onto DK1 was physisorptive and endothermic in nature. Furthermore DK1 was characterized by scanning electronic microscopy (SEM), Specific Surface Area (SSA), X-ray powder diffraction (XRD) and Fourier Transform Infrared (FTIR) spectrometer. These characterizations provided evidence of the morphological properties and how well the adsorption process performed. An adsorption mechanism including both ion-exchange and partition was proposed. Finally, DK1 was used to remove amoxicillin from wastewaters and the results showed 81.9% and 87.5% of amoxicillin was removed at 19.0 mg/L and 2.0 mg/L, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process.

    Science.gov (United States)

    Gousmi, N; Sahmi, A; Li, H Z; Poncin, S; Djebbar, R; Bensadok, K

    2016-09-01

    The treatment of synthetic oily wastewater having the characteristics of a typical petroleum refinery wastewater (PRW) by electrocoagulation (EC) using iron and aluminum electrodes was conducted in an electrolytic reactor equipped with fluid recirculation. During the treatment, the emulsion stability was followed by the measurement of Zeta potential and particle sizes. Effects of some operating conditions such as electrodes material, current density and electrolysis time on removal efficiencies of turbidity, and chemical oxygen demand (COD) were investigated in detail. The PRW purification by the EC process was found to be the most effective using aluminum as the anode and cathode, current density of 60 A/m(2) and 30 min of electrolysis time. Under these conditions, the process efficiencies were 83.52% and 99.94%, respectively, for COD and turbidity removals which correspond to final values of 96 mg O2/L and 0.5 NTU. A moderate energy consumption (0.341 kWh) was needed to treat 1 m(3) of PRW. Besides, the ecotoxicity test proved that toxic substances presented in the PRW, and those inhibiting the germination growth of whet, were eliminated by the EC technique.

  15. Design of zeolite ion-exchange columns for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1991-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of wastewater containing parts-per-billion levels of {sup 90}Sr and {sup 137}Cs. Treatability studies indicate that such zeolites can remove trace amounts of {sup 90}Sr and {sup 137}Cs from wastewater containing high concentrations of calcium and magnesium. These studies who that zeolite system efficiency is dependent on column design and operating conditions. Previous results with bench-scale, pilot-scale, and near-full-scale columns indicate that optimized design of full-scale columns could reduce the volume of spent solids generation by one-half. The data indicate that shortcut scale-up methods cannot be used to design columns to minimize secondary waste generation. Since the secondary waste generation rate is a primary influence on process cost effectiveness, a predictive mathematical model for column design is being developed. Equilibrium models and mass-transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange (Ca, Mg, Na, Cs, and Sr). Mathematical models of these data to determine the breakthrough curves for different column configurations and operating conditions will be used to optimize the final design of full-scale treatment plant. 32 refs., 6 figs., 3 tabs.

  16. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  17. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Study on acute toxicity of amoxicillin wastewater to Zebrafish

    Science.gov (United States)

    Xie, Weifang; Shen, Hongyan

    2017-12-01

    The main research in this paper is to obtain the effect of pharmaceutical wastewater on the acute toxicity of Zebrafish. The experimental method of exposure is used in this research. Experiments were carried out with different groups of pharmaceutical wastewater. Zebrafish was cultivated in a five liter fish tank. In the experiment, according to mortality, initially a 96h preliminary test was carried out at exposure concentrations to determine if the amoxicillin wastewater was toxic and to define the concentration range (24h LC100, 96h LC0) to be employed in the definitive tests. Based on the half lethal concentration of Zebrafish, the acute toxicity of amoxicillin wastewater to Zebrafish was calculated and the toxicity grade of wastewater was determined. In the experiment, the Zebrafish was exposed with amoxicillin wastewater during 96h. The 24h, 48h, 72h and 96h LC50 of amoxicillin wastewater on the Zebrafish were 63.10%, 53.70%, 41.69% and 40.74%, respectively. At 96h, the test time is the longest, and the value of LC50 is the smallest. In the observation period of 96 hours, the LC50 of amoxicillin wastewater were in the range of 40% ~ 60% and the value of Tua is 1 ~ 2. It indicates amoxicillin wastewater is low toxic wastewater when the experimental time is shorter than 48h, amoxicillin wastewater is moderate toxicity wastewater when the experimental time is higher than 48h. According to the experimental data, with the exposure time and the volume percentage of amoxicillin wastewater increases, the mortality rate of Zebrafish is gradually increased and the toxicity of amoxicillin wastewater increases. It indicates that the toxicity of amoxicillin wastewater is the biggest and the effect of wastewater on Zebrafish is greatest. In some ways, the toxicity of amoxicillin wastewater can be affected by the test time.

  19. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives

    DEFF Research Database (Denmark)

    Gracia-Lor, Emma; Castiglioni, Sara; Bade, Richard

    2017-01-01

    The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about...... and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed....

  20. General Characteristics and Treatment Possibilities of Dairy Wastewater - A Review

    National Research Council Canada - National Science Library

    Aleksandar Kolev Slavov

    2017-01-01

    ... attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described...

  1. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  2. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    2000) Wastewater treatment by pond systems: experi- ences in Catalonia, Spain. Water Sci. Technol. 42 (10-11) 35-42. STANDARD METHODS (1995) Standard Methods for the Examination of Water and Wastewater (19th edn.) ...

  3. Determination of Wastewater Acids from Chromium Plating and Electropolishing Solutions

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1995-01-01

    ... Laboratories vessel plating program. The chemical literature provides offline laboratory detection of chromic acid from chromium plating wastewater solutions, as well as phosphoric and sulfuric acids from electropolishing wastewater solutions...

  4. Towards a national policy on wastewater reuse in Kenya | Kaluli ...

    African Journals Online (AJOL)

    Towards a national policy on wastewater reuse in Kenya. ... This implied that Nairobi sewage needed to be treated for the removal of BOD, turbidity and ... allowable levels of pesticides, herbicides, and heavy metals in wastewater reuse.

  5. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2011-01-01

    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  6. Potential of constructed wetlands as an alternative for wastewater ...

    African Journals Online (AJOL)

    surface flow Constructed Wetland (HSSFCW) system in polishing pre-treated wastewater in the UPward Flow Anaerobic sludge Blanket (UASB) reactor plant as a potential wastewater treatment system that can meet the requirement for ...

  7. Balance in Training for Latin American Water and Wastewater Utilities

    Science.gov (United States)

    Carefoot, Neil F.

    1977-01-01

    Using a Peru case study, this article examines the problem of training imbalance for water and wastewater operators. Guidelines towards achieving adequate training for all water and wastewater personnel are suggested. (Author/MA)

  8. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  9. Control of wastewater using multivariate control chart

    Science.gov (United States)

    Nugraha, Jaka; Fatimah, Is; Prabowo, Rino Galang

    2017-03-01

    Wastewater treatment is a crucial process in industry cause untreated or improper treatment of wastewater may leads some problems affecting to the other parts of environmental aspects. For many kinds of wastewater treatments, the parameters of Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and the Total Suspend Solid (TSS) are usual parameters to be controlled as a standard. In this paper, the application of multivariate Hotteling T2 Individual was reported to control wastewater treatment. By using wastewater treatment data from PT. ICBP, east Java branch, while the fulfillment of quality standards are based on East Java Governor Regulation No. 72 Year 2013 on Standards of Quality of Waste Water Industry and / or Other Business Activities. The obtained results are COD and TSS has a correlation with BOD values with the correlation coefficient higher than 50%, and it is is also found that influence of the COD and TSS to BOD values are 82% and 1.9% respectively. Based on Multivariate control chart Individual T2 Hotteling, it is found that BOD-COD and BOD-TSS are each one subgroup that are outside the control limits. Thus, it can be said there is a process that is not multivariate controlled, but univariately the variables of BOD, COD and TSS are within specification (standard quality) that has been determined.

  10. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  11. Wastewater treatment alternatives for a vegetable and seafood cannery

    OpenAIRE

    Grassiano, James W.

    1990-01-01

    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  12. Nitrogen Removal From Dairy Manure Wastewater Using Sequencing Batch Reactors

    OpenAIRE

    Whichard, David P

    2001-01-01

    The purpose of this research was to characterize a flushed dairy manure wastewater and to develop the kinetic and stoichiometric parameters associated with nitrogen removal from the wastewater, as well as to demonstrate experimental and simulated nitrogen removal from the wastewater. The characterization showed that all the wastewaters had carbon to nitrogen ratios large enough for biological nitrogen removal. Analysis of carbon to phosphorus ratios showed that enough carbon is available fo...

  13. Investigation of Irrigation Influence by Domestic Wastewater on Soil Characteristics

    OpenAIRE

    Fayaz Aghayari; Hossein Hassanpour Darvishi

    2012-01-01

    To investigate the beneficial impacts of wastewater on soil properties, we conducted an experiment in the lysimeter by measuring certain features essentially related to soil characteristics. Our objectives in this study were (i) the wastewater infiltration by soil and (ii) the effect of wastewater on soil properties. In this experiment, 9 lysimeter were used, 1, 2 and 3 lysimeters irrigated by domestic wastewater. Then, first drainage water accumulated from these lysimeters and 4, 5 and 6 lys...

  14. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....

  15. Optimizing potassium ferrate for textile wastewater treatment by RSM

    OpenAIRE

    Maryam Moradnia; Masoud Panahifard; Kavoos Dindarlo; Hamzeh Ali Jamali

    2016-01-01

    Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD) and response surface methodology (RSM) to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a p...

  16. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  17. Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater

    Directory of Open Access Journals (Sweden)

    Zulema Borjas

    2015-12-01

    Full Text Available Microbial electrochemical technologies (METs constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC followed in time by a microbial fuel cell (MFC to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.

  18. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    Science.gov (United States)

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Impact of influent characteristics on a partial nitritation SBR treating high nitrogen loaded wastewater.

    Science.gov (United States)

    Ganigué, R; Volcke, E I P; Puig, S; Balaguer, M D; Colprim, J

    2012-05-01

    The Anammox process allows a sustainable treatment of wastewater with high nitrogen content. Partial oxidation of ammonium to nitrite is a previous and crucial step. Given the variability on wastewater composition, the operation of sequencing batch reactors (SBR) for partial nitritation (PN) is very challenging. This work assessed the combined influence of influent characteristics and process loading rate. Simulation results showed that wastewater composition - Total nitrogen as ammonia (TNH) and total inorganic carbon (TIC) - as well as nitrogen loading rate (NLR) govern the outcomes of the reactor. A suitable effluent can be produced when treating wastewater with different ammonia levels, as long as the TIC:TNH influent molar ratio is around 1:1 and extreme NLR are avoided. The influent pH has a key impact on nitrite conversion by governing the CO(2)-bicarbonate-carbonate equilibrium. Finally, results showed that oxidation of biodegradable organic matter produces CO(2), which acidifies the media and limits process conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  1. SEM analysis of particle size during conventional treatment of CMP process wastewater.

    Science.gov (United States)

    Roth, Gary A; Neu-Baker, Nicole M; Brenner, Sara A

    2015-03-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Removal of organic compounds during treating printing and dyeing wastewater of different process units.

    Science.gov (United States)

    Wang, J; Long, M C; Zhang, Z J; Chi, L N; Qiao, X L; Zhu, H X; Zhang, Z F

    2008-03-01

    Wastewater in Shaoxing wastewater treatment plant (SWWTP) is composed of more than 90% dyeing and printing wastewater with high pH and sulfate. Through a combination process of anaerobic acidogenic [hydraulic retention time (HRT) of 15h], aerobic (HRT of 20h) and flocculation-precipitation, the total COD removal efficiency was up to 91%. But COD removal efficiency in anaerobic acidogenic unit was only 4%. As a comparison, the COD removal efficiency was up to 35% in the pilot-scale upflow anaerobic sludge bed (UASB) reactor (HRT of 15h). GC-MS analysis showed that the response abundance of these wastewater samples decreased with their removal of COD. A main component of the raw influent was long-chain n-alkanes. The final effluent of SWWTP had only four types of alkanes. After anaerobic unit at SWWTP, the mass percentage of total alkanes to total organic compounds was slightly decreased while its categories increased. But in the UASB, alkanes categories could be removed by 75%. Caffeine as a chemical marker could be detected only in the effluent of the aerobic process. Quantitative analysis was given. These results demonstrated that GC-MS analysis could provide an insight to the measurement of organic compounds removal.

  3. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. T. Amin

    2014-01-01

    Full Text Available The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. Nanotechnology-based multifunctional and highly efficient processes are providing affordable solutions to water/wastewater treatments that do not rely on large infrastructures or centralized systems. The aim of the present study is to review the possible applications of the nanoparticles/fibers for the removal of pollutants from water/wastewater. The paper will briefly overview the availability and practice of different nanomaterials (particles or fibers for removal of viruses, inorganic solutes, heavy metals, metal ions, complex organic compounds, natural organic matter, nitrate, and other pollutants present in surface water, ground water, and/or industrial water. Finally, recommendations are made based on the current practices of nanotechnology applications in water industry for a stand-alone water purification unit for removing all types of contaminants from wastewater.

  4. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  5. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  6. Multi-bioindicators to assess soil microbial activity in the context of an artificial groundwater recharge with treated wastewater: a large-scale pilot experiment.

    Science.gov (United States)

    Michel, Caroline; Joulian, Catherine; Ollivier, Patrick; Nyteij, Audrey; Cote, Rémi; Surdyk, Nicolas; Hellal, Jennifer; Casanova, Joel; Besnard, Katia; Rampnoux, Nicolas; Garrido, Francis

    2014-06-28

    In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

  7. Use of Chlorella vulgaris for bioremediation of textile wastewater.

    Science.gov (United States)

    Lim, Sing-Lai; Chu, Wan-Loy; Phang, Siew-Moi

    2010-10-01

    The potential application of Chlorella vulgaris UMACC 001 for bioremediation of textile wastewater (TW) was investigated using four batches of cultures in high rate algae ponds (HRAP) containing textile dye (Supranol Red 3BW) or TW. The biomass attained ranged from 0.17 to 2.26 mg chlorophyll a/L while colour removal ranged from 41.8% to 50.0%. There was also reduction of NH(4)-N (44.4-45.1%), PO(4)-P (33.1-33.3%) and COD (38.3-62.3%) in the TW. Supplementation of the TW with nutrients of Bold's Basal Medium (BBM) increased biomass production but did not improve colour removal or reduction of pollutants. The mechanism of colour removal by C. vulgaris is biosorption, in accordance with both the Langmuir and Freundlich models. The HRAP using C. vulgaris offers a good system for the polishing of TW before final discharge. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.

    Science.gov (United States)

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G

    2017-09-01

    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  9. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The use of urban wastewater in agriculture is a centuries-old practice that is receiving renewed attention with the increasing scarcity of fresh water resources in many arid and semi-arid regions of the world. Driven by rapid urbanization and growing wastewater volumes, wastewater is widely used as a low-cost alternative to ...

  10. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended ni...

  11. Sustainable Approach to Wastewater Management in the Federal ...

    African Journals Online (AJOL)

    Proper disposal of wastewater still remains a major concern in developing countries. As population grows and urbanization increases, more wastewater is generated and there is great awareness on the health and environmental implication of poorly disposed wastewater. This research work develops a sustainable ...

  12. Fertigation with domestic wastewater: Uses and implications | Silva ...

    African Journals Online (AJOL)

    The use of wastewater in agriculture is an alternative means of reducing wastewater release into water sources. This process, known as fertigation is an opportunity to make use of organic matter and other nutrients in wastewater for agricultural productivity. The presence of organic matter in these effluents serves as ...

  13. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  14. Extraction of volatile fatty acids from fermented wastewater

    NARCIS (Netherlands)

    Reyhanitash, Ehsan; Zaalberg, Bart; Kersten, Sascha R.A.; Schuur, Boelo

    2016-01-01

    Valorization of wastewater streams can be done by fermentation to produce volatile fatty acids (VFAs) which are applied as platform chemicals for synthesis of value-added chemicals. Since VFA concentration in fermented wastewater is very low (∼1 wt%) and fermented wastewater contains considerable

  15. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment.

  16. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Sarıçay River water and Tekel wastewater, respectively. In P. vulgaris which was treated with Dardanel wastewater, the total protein amount increased by 84% compared to control plants. After the wastewater treatment, the peroxidase activity decreased in all plants. The largest peroxidase decrease.

  17. Status, Restrictions and Suggested Approaches in Wastewater Management in Rural Areas of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2012-08-01

    Full Text Available Please cite this article as: Fahiminia M, Farrokhi M, Talebi M, Memary G, Fazlzadeh Davil M. Status, restrictions and suggested approaches in wastewater management in rural areas of Iran. Arch Hyg Sci 2012;1(1:12-9. Aims of the Study: The objective of this study was to appraise wastewater management approaches in rural areas of Iran, restrictions, effects on environment and also definition of suitable management approaches in wastewater for future. Materials & Methods: This descriptive study was performed in 2010 in rural areas of Iran. A questionnaire was prepared with subjects such as available management approaches on wastewater, suggested approaches on collecting wastewater and its final disposal and was sent to rural area’s wastewater companies in each province. Study results of 4588 rural areas of Iran (with above 200 families were collected. Results were analyzed using mean and percentage. Results: The current available management systems were mainly based on absorption wells. The main problem in this system was high ground water levels, and low permeability of soil. The most important current problem of the absorbing wells was considerable damaging effects on surface and ground water. Conclusions: The current wastewater management in rural areas especially in the field of wastewater collection was improper and undesirable. To overcome the current problem, it is necessary to use collecting methods relative to that of region. Considerable attention is required for the application of reused wastewater in agriculture. References: 1. Wilderer PA, Schreff D. Decentralized and centralized wastewater management: a challenge for technology developers. Wat Sci Tech 2000; 41(1:1-8. 2. Jackson HB. Global needs and developments in urban sanitation. in: Mara D, editor. Low-Cost sewerage. Chichester, UK: John Wiley & Sons; 1996. p. 77-90. 3. UNEP/GPA. Strategy options for sewage management to protect the marine environment. The Netherlands: UNEP

  18. Cultivation of microalgae in industrial wastewaters

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson

    that has many potential uses. Unfortunately, the current high costs of cultivation have limited the development and exploitation of such systems, resulting in only a few full-scale algae wastewater treatment installations and a small industry based mostly around food and pigments. This thesis contributes...... to autotrophic controls. Industrial wastewater was used as cultivation medium of Chlorella sorokiniana. The culture was able to grow at high rates upto a density of 4 g L-1. The deceleration-stat technique was used to create a series of pseudo-steady states to give information about the expected results...... to a growing body of knowledge with the aim to make algae cultivation viable for the production of sustainable products. Specific contributions include: improvement in the methods of screening the growth potential of different microalgae species; identification of an industrial wastewater that allows good...

  19. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  20. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.