WorldWideScience

Sample records for wasteforms

  1. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  2. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  3. Radionuclide Retention in Concrete Wasteforms - FY13

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  4. Performance assessment modeling of pyrometallurgical process wasteforms

    International Nuclear Information System (INIS)

    Nutt, W.M.; Hill, R.N.; Bullen, D.B.

    1995-01-01

    Performance assessment analyses have been completed to estimate the behavior of high-level nuclear wasteforms generated from the pyrometallurgical processing of liquid metal reactor (LMR) and light water reactor (LWR) spent nuclear fuel. Waste emplaced in the proposed repository at Yucca Mountain is investigated as the basis for the study. The resulting cumulative actinide and fission product releases to the accessible environment within a 100,000 year period from the various pyrometallurgical process wasteforms are compared to those of directly disposed LWR spent fuel using the same total repository system model. The impact of differing radionuclide transport models on the overall release characteristics is investigated

  5. Special wasteform lysimeter program at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Oblath, S.B.; Stone, J.A.; Wiley, J.R.

    1983-01-01

    The Special Wasteform Lysimeter project at SRL is designed to measure performance of typical production-line, low-level, solid wasteforms produced at power reactors and emplaced in a himid SLB site. The use of lysimeters permits direct measurement of migration of radioactivity from these wasteforms to provide a technical basis for evaluating how well these forms will perform in an actual burial trench, and additionally allows comparison with unencapsulated defense waste. Cement and polymer wasteforms were place into 10 lysimeters in March 1982. By March, 1983, 60 Co from both types of wasteforms had been detected in te lysimeter sumps. 134 Cs, 137 Cs, and 60 Co were found in porous cup samplers located directly below the wasteforms. Measurements in mid-summer 1983 showed that 60 Co levels were 10 to 100 times greater in lysimeters containing the cement forms than in those containing the polymer. 5 references

  6. Special wasteform lysimeters initial three-year monitoring report

    International Nuclear Information System (INIS)

    Oblath, S.B.; Grant, M.W.

    1985-01-01

    Lysimeters containing ten typical commercial power reactor low-level wsteforms are in operation at the Savannah River Plant. This ten-year program is designed to measure the leaching and migration of radionuclides from these wasteforms under realistic burial ground conditions in a humid site. The data which the lysimeters provide serves as a technical basis for evaluating the performance of the wasteforms under actual burial conditions. Three years' operation of the lysimeters has demonstrated that all of the wasteforms perform excellently, with minimal releases of radioactivity. Cement-based wasteforms appear superior at retaining strontium. Polymer-based wasteforms appear superior at retaining cobalt and cesium isotopes. The releases of activity from the lysimeters are compared to the leaching behavior in immersion tests, with several differences noted. The conclusions drawn in this study are tentative, subject to the performance of the wasteforms after the lysimeters have been in operation for a longer period of time

  7. Current ANSTO research on wasteform development

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E R; Begg, B D; Stewart, M W.A.; Moricca, S; Smith, K L; Walls, P A; Perera, D S; Day, R A; Carter, M L; McGlinn, P J; Zhang, Y; Thomas, B [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia). Materials and Engineering Science

    2003-07-01

    In 1978, Ringwood suggested ceramic assemblages of titanate minerals could be used to incorporate high-level waste from nuclear fuel reprocessing. In these assemblages waste ions are dilutely incorporated into the crystalline mineral-analogue phases. Synroc-C is one of the early titanate assemblages and it has become the archetype from which waste forms for various applications have been derived. Table 1 shows the phase constitution of synroc-C, containing 20 wt% HLW, and the radionuclides which can be incorporated in the various phases. This material was consolidated into a dense ceramic by uniaxial hot pressing at {approx} 1150 deg C. ANSTO has subsequently undertaken both contract and collaborative work on a variety of waste streams that are briefly described as well as extensive range of wasteform characterisation.

  8. Stress corrosion in a borosilicate glass nuclear wasteform

    International Nuclear Information System (INIS)

    Ringwood, A.E.; Willis, P.

    1984-01-01

    The authors discuss a typical borosilicate glass wasteform which, when exposed to water vapour and water for limited periods, exhibits evidence of stress corrosion cracking arising from the interaction of polar OH groups with stressed glass surfaces. Glass wasteforms may experience similar stress corrosion cracking when buried in a geological repository and exposed to groundwaters over an extended period. This would increase the effective surface areas available for leaching by groundwater and could decrease the lifetime of the wasteform. Conventional leach-testing methods are insensitive to the longer-term effects of stress corrosion cracking. It is suggested that specific fracture-mechanics tests designed to evaluate susceptibility to stress corrosion cracking should be used when evaluating the wasteforms for high-level nuclear wastes. (author)

  9. Special waste-form lysimeters: Arid

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.

    1987-08-01

    The release of contaminant from solidified low-level waste forms is being studied in a field lysimeter facility at the Hanford Site in southeastern Washington State. Duplicate samples of five different waste forms have been buried in 10 lysimeters since March 1984. Waste-form samples represent three different waste streams and four solidification agents (masonry cement, Portland III cement, Dow polymer /sup (a)/, and bitumen). Most precipitation at the Hanford Site arrives as winter snow; this contributes to a strong seasonal pattern in water storage and drainage observed in the lysimeters. The result is an annual range in the volumetric soil water content from 11% in late winter to 7% in the late summer and early fall, as well as annual changes in pore water velocities from approximately 1 cm/wk in early spring to less than 0.05 cm/wk in early fall. Measurable quantities of tritium and cobalt-60 are being collected in lysimeter drainage water. Approximately 30% of the original tritium inventory has been leached from two lysimeters originally containing tritium. Cobalt-60 is present in all waste forms; it is being collected in the leachate from five lysimeters. The total amount released varies, but in each case it is less than 0.1% of the original cobalt inventory of the waste sample. Nonradioactive constituents contained in the waste form, such as sodium, boron, and sulfate, are also being leached

  10. Acoustic Emission Monitoring of Cementitious Wasteforms

    International Nuclear Information System (INIS)

    Spasova, L.M.; Ojovan, M.I.

    2013-01-01

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  11. The effects of radiation on cement matrix wasteforms

    International Nuclear Information System (INIS)

    McHugh, G.; Sambell, R.A.J.; Spindler, W.E.; Mattingley, N.J.

    1987-10-01

    The effects of γ-irradiation have been investigated on a range of cement encapsulated intermediate level wastes. The majority of the wasteforms do not degrade mechanically as a result of irradiation. The exception was a wasteform containing borates, which disintegrated at doses in excess of 6 MGy. Gas evolution/absorption during irradiation has been characterised. In most cases hydrogen is evolved (G(H 2 ) approx. 0.05) and oxygen absorbed. Nitrate-bearing wastes show reduced hydrogen evolution and a tendency to oxygen evolution. The effects of radiation on the leaching of a number of radionuclides from the wasteforms have been investigated. Some effects were observed. Discussion of the results is provided within the limits of existing information. (author)

  12. Microbiological activities in a shallow-ground repository with cementitious wasteform

    International Nuclear Information System (INIS)

    Varlakova, G.A.; Dyakonova, A.T.; Netrusov, A.I.; Ojovan, M.I.

    2012-01-01

    Cementitious wasteform with immobilised nuclear power plant operational radioactive waste disposed in a near surface testing repository for about 20 years have been analysed for microbiological activities. Clean cultures were selected from the main metabolic groups expected within repository environment e.g. anaerobic de-nitrifying, fermenting, sulphur-reducing, iron-reducing, and oxidizing, thio-bacterium and mushrooms. Microbiological species were identified within cementitious wasteform, in the clayey soil near the wasteform and in the contacting water. The most populated medium was the soil with microbial populations Bacillus, Pseudomonas and Micrococcus, and densities of populations up to 3.6*10 5 colony/g. Microbial populations of generic type Bacillus, Pseudomonas, Rhodococcus, Alcaligenes, Micrococcus, Mycobacterium, and Arthrobacter were identified within cementitious wasteform. Populations of Arthrobacter, Pseudomonas, Alcaligenes, Rhodococcus, Bacillus and Flavobacterium were identified in the water samples contacting the cementitious wasteform. Microbiological species identified are potential destructors of cementitious wasteform and containers. (authors)

  13. Evaluation and performance of the special wasteform lysimeters at a humid site

    International Nuclear Information System (INIS)

    Oblath, S.B.; Hoeffner, S.L.

    1985-09-01

    The Savannah River Laboratory has been evaluating the leaching/migration behavior of commercial power reactor wasteforms by the use of lysimeters operated under field conditions at a humid site. These lysimeters model the conditions in actual burial trenches. Wasteforms comprising Portland cement, masonry cement, and vinyl ester-styrene polymer wasteforms were emplaced in the lysimeters in March 1982. Effluent water has been analyzed on a regular basis since that time. Cs-137, Sr-90, and/or Co-60 have observed in the effluent water from the lysimeters, as well as in soil moisture samples collected from the unsaturated zone beneath the wasteforms. In March of 1984, horizontal cores were taken from one of the lysimeters containing a Portland cement wasteform to determine the vertical and radial profiles of radionuclides which might not have reached the lysimeter sump. Results from all of these sampling methods are discussed and interpreted. 6 refs., 3 figs., 3 tabs

  14. Scientific basis for long-term prediction of waste-form performance under repository conditions

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1982-10-01

    This paper presents an overview of the fundamental principles involved in predicting long-term performance of waste forms by the as-low-as-reasonably-achievable approach. Repository conditions which make up the waste-form environment, the aging of the waste form, the important radionuclides in the waste form, the chemistry of repository fluids, and multicomponent interactions testing were considered in order to describe these principles. The need for confidence limits on the prediction of waste-form performance and ways of achieving a definition of the confidence limits are discussed

  15. Performance of special wasteform lysimeters and waste migration at a humid site

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1986-01-01

    The special wasteform lysimeter (SWL) program at the Savannah River Laboratory (SRL) near Aiken, South Carolina, is designed to measure leaching behavior and radionuclide migration under realistic burial conditions at a humid site. A similar program at an arid site is being conducted at Hanford near Richland, Washington. The wasteforms were placed in the lysimeters in March 1982 and represent typical low-level waste from two commercial reactors. An extensive report covering the initial three years of operation was issued in November 1985. This report updates the results of that report and includes significant observations made during the past year of operation. The Waste Migration Program at SRL included continued monitoring of 40 defense waste lysimeters, radionuclide uptake by pine trees, and measurement of total organic carbon in the groundwater of the burial ground

  16. Performance of special wasteform lysimeters and waste migration at a humid site

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1987-01-01

    The special wasteform lysimeter (SWL) program at the Savannah River Laboratory (SRL) near Aiken, South Carolina is designed to measure leaching behavior and radionuclide migration under realistic burial conditions at a humid site. A similar program at an arid site is being conducted at Hanford near Richland, Washington. The wasteforms were placed in the lysimeters in March 1982 and represent typical low-level waste from two commercial reactors. An extensive report covering the initial three years of operation was issued in November 1985. This report updates the results of that report and includes significant observations made during the past year of operation. The Waste Migration Program at SRL included continued monitoring of 40 defense waste lysimeters, radionuclide uptake by pine trees, and measurement of total organic carbon in the ground water of the burial ground. 5 references, 2 figures, 5 tables

  17. The effects of gamma irradiation on leaching of 137Cs from organic matrix wasteforms

    International Nuclear Information System (INIS)

    Burnay, S.G.; Johnson, D.I.; Phillips, D.C.; Brownsword, M.

    1987-09-01

    The effects of γ-irradiation on the leaching behaviour of 137 Cs in organic matrix wasteforms has been studied. The matrix materials used include epoxide, polyester and vinyl ester thermosetting resins and bitumen. Leaching of 137 Cs in such matrices can be described by models, based on diffusion, which take into consideration such factors as non-representative surface layers, finite sample size, and sorption effects. In many cases, the changes observed on irradiation arise from modification of the sorptive capacity of the wasteform for 137 Cs, producing changes in the experimentally observed diffusion coefficients. In samples containing wet wastes, enhanced leaching in the first few days is observed after irradiation. This arises from loss of water from the sample surfaces during irradiation producing an enhanced concentration of the radionuclide in the surface. (author)

  18. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation

    International Nuclear Information System (INIS)

    Bouniol, P.

    2004-01-01

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H 2 ' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a βγ source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H 2 production. Not likely possible in the case of an α source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  19. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    Science.gov (United States)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  20. Synthesis and characterization of brannerite wasteforms for the immobilization of mixed oxide fuel residues

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-07-01

    A possible method for the reduction of civil Pu stockpiles is the reuse of Pu in mixed oxide fuel (MOX). During MOX fuel production, residues unsuitable for further recycle will be produced. Due to their high actinide content MOX residues require immobilization within a robust host matrix. Although it is possible to immobilize actinides in vitreous wasteforms; ceramic phases, such as brannerite (UTi{sub 2}O{sub 6}), are attractive due to their high waste loading capacity and relative insolubility. A range of uranium brannerite, formulated Gd{sub x}U{sub 1-x}Ti{sub 2}O{sub 6}, were prepared using a mixed oxide route. Charge compensation of divalent and trivalent cations was expected to occur via the oxidation of U{sup 4+} to higher valence states (U{sup 5+} or U{sup 6+}). Gd{sup 3+} was added to act as a neutron absorber in the final Pu bearing wasteform. X-ray powder diffraction of synthesised specimens found that phase distribution was strongly affected by processing atmosphere (air or Ar). In all cases prototypical brannerite was formed accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. The preliminary results presented here indicate that brannerite is a promising host matrix for mixed oxide fuel residues. (authors)

  1. Electrical-conductivity measurements of leachates for the rapid assessment of wasteform corrosion resistance

    International Nuclear Information System (INIS)

    Sales, B.C.; Petek, M.; Boatner, L.A.

    1982-01-01

    Measurements of the electrical conductivity of leachate solutions as a function of time can be used as an efficient, informative means of evaluation and comparison in the development of nuclear waste forms and in the preliminary analysis of their corrosion resistance in distilled water. Three separate applications of this technique are described in this work. These are: (1) its use in the optimization of the corrosion resistance of a crystalline wasteform (monazite); (2) a study of the protective ability of the surface layer (gel layer) which forms on the nuclear waste glass Frit 21 + 20 wt % SRW in distilled water; and (3) making comparisons of the overall corrosion resistance of three different nuclear wasteforms (i.e., monazite, SYNROC, and borosilicate glass). A complete solution analysis of the borosilicate glass leachate and a straightforward analysis of the conductivity results agree to within +-20%. In the absence of a complete, time consuming solution analysis, conductivity measurements can be used to estimate reliably the total ionic concentration in the leachate to within a factor of 2

  2. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  3. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  4. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Bouniol, P.

    2014-01-01

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O 2 , strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H 2 aq → H 2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H 2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose

  5. Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M; Pugh, D; Herman, C

    2000-04-21

    The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step that controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.

  6. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  7. Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing

    Science.gov (United States)

    Chen, Tzu-Yu; Maddrell, Ewan R.; Hyatt, Neil C.; Gandy, Amy S.; Stennett, Martin C.; Hriljac, Joseph A.

    2018-01-01

    A simple method to directly convert Cs-exchanged IONSIV® IE-911 into a ceramic wasteform by hot isostatic pressing (1100 °C/190 MPa/2 hr) is presented. Two major Cs-containing phases, Cs2TiNb6O18 and Cs2ZrSi6O15, and a series of mixed oxides form. The microstructure and phase assemblage of the samples as a function of Cs content were examined using XRD, XRF, SEM and TEM/EDX. The chemical aqueous durability of the materials was investigated using the MCC-1 and PCT-B standard test methods. For HIPed Cs-IONSIV® samples, the MCC-1 normalised release rates of Cs were low rates are indicative of a safe long-term immobilisation matrix for Cs formed directly from spent IONSIV®. It was also demonstrated that the phase formation can be altered by adding Ti metal due to a controlled redox environment.

  8. Performance assessment modeling of high level nuclear wasteforms from the pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    Nutt, W.M.; Hill, R.N.; Bullen, D.B.

    1995-01-01

    Several performance assessment (PA) analyses have been completed to estimate the release to the accessible environment of radionuclides from spent light water reactor (LWR) fuel emplaced in the proposed Yucca Mountain repository. Probabilistic methods were utilized based on the complexity of the repository system. Recent investigations have been conducted to identify the merits of a pyroprocess fuel cycle. This cycle utilizes high temperature molten salts and metals to partially separate actinides and fission products. In a closed liquid metal reactor (LMR) fuel cycle, this allows recycling of nearly all of the actinides. In a once-through cycle, this isolates the actinides for storage into a wasteform which can be specifically tailored for their retention. With appropriate front-end treatment, this Process can also be used to treat LWR spent fuel

  9. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  10. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  11. Effect of composition variations on the long-term wasteform behavior of vitrified domestic waste incineration fly-ash purification residues

    International Nuclear Information System (INIS)

    Frugier, Pierre

    1999-01-01

    The effect of variations in the composition of fly-ash purification residue from incinerated domestic waste on the quality of the containment achieved by vitrification was investigated. Three main factors determine the long-term containment quality: the production of a vitrified wasteform, the occurrence of possible crystallization, and the key parameters of long-term alteration in aqueous media. Each of these aspects is described within a composition range defined by variations in the three major elements. (silicon, calcium and aluminum) and two groups of constituents (alkali metals and toxic elements). The silicon fraction in the fly-ash residue was found to be decisive: it is impossible to obtain a satisfactory vitrified wasteform below a given silicon concentration. Compounds with the lowest silica content also exhibited the greatest tendency to crystallize under the cooling conditions prevailing in industrial processes (the dominant crystallized phase is a melilite that occupies a significant fraction of the material and considerably modifies the alteration mechanisms). The initial alteration rate in pure water and the altered glass thickness measured in a closed system at an advanced stage of the dissolution reaction are both inversely related to the silicon concentration in the glass. Several types of long-term behavior were identified according to the composition range, the process conditions and the vitrified waste disposal scenario. Four distinct 'classes' of vitrified wasteform were defined for direct application in industrial processes. (author) [fr

  12. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  13. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments

    International Nuclear Information System (INIS)

    Chen, Jian; Asmussen, R. Matthew; Zagidulin, Dmitrij; Noël, James J.; Shoesmith, David W.

    2013-01-01

    Highlights: ► We investigated the corrosion behavior of a metal alloy in six reference solutions. ► Majority of rhenium used as a technetium surrogate contained within a Fe 2 Mo phase. ► This prototype alloy exhibited generally passive behavior in all environments. ► Passivity breakdown events can occur and lead to localized corrosion. - Abstract: The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99 Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe 2 Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.

  14. Waste-form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements

  15. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  16. The use of a flow test and a flow model in evaluating the durability of various nuclear waste-form materials

    International Nuclear Information System (INIS)

    Barkatt, A.; Barkatt, A.; Boroomand, M.A.

    1983-01-01

    The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, following the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions

  17. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation; Etat des connaissances sur la radiolyse de l'eau dans les colis de dechets cimentes et son approche par simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouniol, P

    2004-07-01

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H{sub 2}' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a {beta}{gamma} source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H{sub 2} production. Not likely possible in the case of an {alpha} source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  18. Study on solubility and leaching property of Iodine-129 waste-forms for geological disposal. Document prepared by other institute, based on the trust contract

    Energy Technology Data Exchange (ETDEWEB)

    Sakashita, A.; Izumi, J. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Kitao, H. [Nuclear Development Corp., Tokai, Ibaraki (Japan); Ueta, S.; Okada, K.; Nakazawa, T.; Muroi, M. [Mitsubishi Materials Corp., Tokyo (Japan)

    2002-02-01

    As concern the study on the property of Iodine-129 waste-forms, the solubilities and leachabilities of iodine-sodalite and leachabilities of apatite containing Iodine were measured last year. The results in this year are summarized as follows. 1. Solubility and Leachability of Iodine-sodalite. Leachabilities and solubilities of the synthesized iodine-sodalite by HIP method were measured by means of a long-term leach test in the solution with chloride ions and high pH (12.5). The measured solubilities were within a range of 10{sup -3} - 10{sup -2} mol/L, which were larger compare with the previous values. The leachabilities were 10{sup -6} g/cm{sup 2}/day (powder) and 10{sup -3} g/cm{sup 2}/day (block). After the leach test, the solid phases were analyzed and the alternation was not observed. 2. Leaching Property of Apatite Sample which contains Iodine adsorption medicine. Apatite sample was manufactured from apatite and zeorait which adsorbs iodine matrix by plasma-hotpress. The porosity of the samples was under 5% and release rate of iodine was about 10% at plasma-hotpress manufacturing. The leachabilities of iodine were 10{sup -4} - 10{sup -3} g/cm{sup 2}/d at 56 day soaking period. These values were 1 - 2 digits higher compare with the leachabilities of calcium. It is thought that the iodine selectively is leached from apatite sample. (author)

  19. The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Stephanie M.; Heath, Paul G. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Da Costa, Gabriel P. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Chemical Engineering & Petroleum Engineering, Universidade Federal Fluminense, Rua Passo da Patria 156, CEP 24210-240, Niteroi, RJ (Brazil); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2017-03-15

    Glass-ceramics with high glass fractions (70 wt%) were fabricated in stainless steel canisters by hot isostatic pressing (HIP), at laboratory scale. High (600 °C) and low (300 °C) temperature pre-treatments were investigated to reduce the canister evacuation time and to understand the effect on the phase assemblage and microstructure of the hot isostatically pressed product. Characterisation of the HIPed materials was performed using scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) and powder X-ray diffraction (XRD). This analysis showed the microstructure and phase assemblage was independent of the variation in pre-treatment parameters. It was demonstrated that a high temperature pre-treatment of batch reagents, prior to the HIP cycle, is beneficial when using oxide precursors, in order to remove volatiles and achieve high quality dense materials. Sample throughput can be increased significantly by utilising a high temperature ex-situ calcination prior to the HIP cycle. Investigation of glass-ceramic wasteform processing utilising a glass frit precursor, produced a phase assemblage and microstructure comparable to that obtained using oxide precursors. The use of a glass frit precursor should allow optimised throughput of waste packages in a production facility, avoiding the need for a calcination pre-treatment required to remove volatiles from oxide precursors. - Highlights: • Optimisation of pre-treatment parameters for HIP glass-ceramics was investigated. • Entrained porosity was minimised by ex-situ bake-out of oxide precursors at 600 °C. • Phase assemblage and microstructure proved independent of bake-out parameters. • Use of glass-frit precursor further improved process s throughput and simplification.

  20. The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing

    International Nuclear Information System (INIS)

    Thornber, Stephanie M.; Heath, Paul G.; Da Costa, Gabriel P.; Stennett, Martin C.; Hyatt, Neil C.

    2017-01-01

    Glass-ceramics with high glass fractions (70 wt%) were fabricated in stainless steel canisters by hot isostatic pressing (HIP), at laboratory scale. High (600 °C) and low (300 °C) temperature pre-treatments were investigated to reduce the canister evacuation time and to understand the effect on the phase assemblage and microstructure of the hot isostatically pressed product. Characterisation of the HIPed materials was performed using scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) and powder X-ray diffraction (XRD). This analysis showed the microstructure and phase assemblage was independent of the variation in pre-treatment parameters. It was demonstrated that a high temperature pre-treatment of batch reagents, prior to the HIP cycle, is beneficial when using oxide precursors, in order to remove volatiles and achieve high quality dense materials. Sample throughput can be increased significantly by utilising a high temperature ex-situ calcination prior to the HIP cycle. Investigation of glass-ceramic wasteform processing utilising a glass frit precursor, produced a phase assemblage and microstructure comparable to that obtained using oxide precursors. The use of a glass frit precursor should allow optimised throughput of waste packages in a production facility, avoiding the need for a calcination pre-treatment required to remove volatiles from oxide precursors. - Highlights: • Optimisation of pre-treatment parameters for HIP glass-ceramics was investigated. • Entrained porosity was minimised by ex-situ bake-out of oxide precursors at 600 °C. • Phase assemblage and microstructure proved independent of bake-out parameters. • Use of glass-frit precursor further improved process s throughput and simplification.

  1. Miscellaneous Waste-Form FEPs

    Energy Technology Data Exchange (ETDEWEB)

    A. Schenker

    2000-12-08

    The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs.

  2. Miscellaneous Waste-Form FEPs

    International Nuclear Information System (INIS)

    Schenker, A.

    2000-01-01

    The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs

  3. Effect of composition variations on the long-term wasteform behavior of vitrified domestic waste incineration fly-ash purification residues; Influence des variations de composition des vitrifiats de refiom - residus d'epuration des fumees d'incineration d'ordures menageres - sur leur comportement a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Frugier, P.

    2000-07-01

    The effect of variations in the composition of fly-ash purification residue from incinerated domestic waste on the quality of the containment achieved by vitrification was investigated. Three main factors determine the long-term containment quality: the production of a vitrified wasteform, the occurrence of possible crystallization, and the key parameters of long-term alteration in aqueous media. Each of these aspects is described within a composition range defined by variations in the three major elements. (silicon, calcium and aluminum) and two groups of constituents (alkali metals and toxic elements). The silicon fraction in the fly-ash residue was found to be decisive: it is impossible to obtain a satisfactory vitrified wasteform below a given silicon concentration. Compounds with the lowest silica content also exhibited the greatest tendency to crystallize under the cooling conditions prevailing in industrial processes (the dominant crystallized phase is a melilite that occupies a significant fraction of the material and considerably modifies the alteration mechanisms). The initial alteration rate in pure water and the altered glass thickness measured in a closed system at an advanced stage of the dissolution reaction are both inversely related to the silicon concentration in the glass. Several types of long-term behavior were identified according to the composition range, the process conditions and the vitrified waste disposal scenario. Four distinct 'classes' of vitrified wasteform were defined for direct application in industrial processes. (author)

  4. Performance assessment of stabilised/solidified waste-forms

    OpenAIRE

    Antemir, Aurora

    2010-01-01

    A method to treat contaminated land is stabilisation/solidification (S/S), which physically encapsulates and chemically stabilises the contaminants. The current knowledge on the behaviour of S/S systems is based upon scarce and incomplete data, mostly obtained from laboratory simulations or small scale trials of the technology. The field performance of S/S soils is largely unknown.\\ud \\ud The aim of this research was to improve the understanding of the long-term performance of S/S soils, by e...

  5. Cementitious Composites for Immobilization of Radioactive Waste into Final Wasteform

    International Nuclear Information System (INIS)

    Varlakov, A.P.

    2013-01-01

    Research and development works are important on universal cementation technological processes to achieve maximal conditioning efficiency for various type wastes such as saline liquid radioactive waste (LRW), where the variants of cement composition formulations, modes of cement compounds preparation and types of equipment are minimised. This work presents the results of development of multi-component cement compositions for the complex of technological processes of different types of radioactive waste (RAW) cementation: concentrated saline LRW, concentrated boron-containing saline LRW, LRW with high surface active substances content, with residues, liquid organic radioactive waste, spent ion-exchange resins and filter-perlite powder, ash residues from solid radioactive waste (SRW) combustion, mixed closely packed and large-fragmented SRW. The research has found technological parameters of equipment and cement compositions providing reliable RAW cementation. Continuous and periodic cycle plants were developed for LRW cementation by mixing. Pouring and penetration methods were developed for SRW cementation. Based on compliance with equipment parameters, methods and cement grouts were selected for most effective technological processes of cementation. Formulations of cement compositions were developed to provide reliable preparation of cement compounds with maximal waste loading at required cement compound quality. The complex of technological processes of cementation using multi-component cement compositions allows highly efficient treatment of the wide range of RAW including problematic waste streams and wastes generated in small amounts. Rational reduction of cementation variants significantly increases economical efficiency of immobilisation. (author)

  6. Transport of nitrate from a large cement-based wasteform

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-10-01

    A two-dimensional finite element model has been developed to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith. A steady-state velocity field is also calculated, based on saturated ground water flow and Darcy's law. Model predictions are compared with data from two lysimeter field experiments begun in 1984. The model results agree very well with data from the uncapped and clay-capped monoliths. A peak concentration of 140 ppM is predicted for the uncapped case within four years; the clay-capped case shows a rather flat peak of 70 ppM occurring within approximately 20 years. The clay cap effectively reduces the groundwater velocity and dispersion coefficient adjacent to the exposed monolith surface. The cap also significantly reduces the flux of nitrate out the top surface of the monolith, in contrast to the uncapped monolith. Predictions for a landfill monolith design show a peak concentration of approximately 280 ppM occurring within 25 years. Results indicate that the 44 ppM drinking water guideline would be exceeded for over 1000 years. Alternate designs and various restrictive liners are being considered. 9 refs., 8 figs

  7. Effect of Concrete Wasteform Properties on Radionuclide Migration

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Bovaird, Chase C.; Mattigod, Shas V.; Parker, Kent E.; Ermi, Ruby M.; Wood, Marcus I.

    2008-01-01

    The objective of this investigation was to initiate numerous sets of concrete-soil half-cell tests to quantify (1) diffusion of I and Tc from concrete into uncontaminated soil after 1 and 2 years, (2) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, and (3) evaluate the moisture distribution profile within the sediment half-cell. These half-cells will be section in FY2009 and FY2010. Additionally, (1) concrete-soil half-cells initiated during FY2007 using fractured prepared with and without metallic iron, half of which were carbonated using carbonated, were sectioned to evaluate the diffusion of I and Re in the concrete part of the half-cell under unsaturated conditions (4%, 7%, and 15% by wt moisture content), (2) concrete-soil half cells containing Tc were sectioned to measure the diffusion profile in the soil half-cell unsaturated conditions (4%, 7%, and 15% by wt moisture content), and (3) solubility measurements of uranium solid phases were completed under concrete porewater conditions. The results of these tests are presented.

  8. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    Jiang, W.; Roy, D.M.

    1994-01-01

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  9. Support for DOE program in mineral waste-form development

    International Nuclear Information System (INIS)

    Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

    1982-09-01

    This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables

  10. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  11. Special waste-form lysimeters-arid: Three-year monitoring report

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.; Toste, A.P.

    1988-04-01

    Regulations governing the disposal of commercial low-level waste require all liquid waste to be solidified before burial. Most waste must be solidified into a rigid matrix such as cement or plastic to prevent waste consolidation and site slumping after burial. These solidification processes affect the rate at which radionuclides and other solutes are released into the soil. In 1983, a program was initiated at Pacific Northwest Laboratory to study the release of waste from samples of low-level radioactive waste that had been commercially solidified. The primary method used by this program is to bury sample waste forms in field lysimeters and monitor leachate composition from the release and transport of solutes. The lysimeter facility consists of 10 lysimeters, each containing one sample of solidified waste. Five different waste forms are being tested, allowing duplicate samples of each one to be evaluated. The samples were obtained from operating nuclear power plants and are actual waste forms routinely generated at these facilities. All solidification was accomplished by commercial processes. Sample size is a partially filled 210-L drum. All containers were removed prior to burial leaving the bare waste form in contact with the lysimeter soil. 11 refs., 14 figs., 16 tabs

  12. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials are tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials

  13. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  14. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials was tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials. (author)

  15. First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform

    International Nuclear Information System (INIS)

    Pickett, J.B.; Norford, S.W.; Diener, G.A.

    1998-01-01

    Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first 'Upfront Delisting' petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this 'privatization' project will be discussed

  16. Issues related to volatilization, phase alteration, and presence of unreacted feed in the borosilicate glass wasteform

    International Nuclear Information System (INIS)

    Jain, V.

    1994-01-01

    The U.S. Department of Energy's Office of Civilian Radioactive Waste Management has outlined the requirements in the Waste Acceptance Product Specifications (WAPS) that must be met before they will accept West Valley canistered vitrified waste forms for shipment to a federal depository. In this study the glass volatilization was studied using a thermogravimetric analyzer (TGA) to evaluate the absence of free gases, free liquids, explosives, pyrophorics, combustibles, and organics in the waste form. The total carbon in the samples was analyzed using a carbon determinator, phase alteration by heat-treating samples for extended periods of time (45-day) at T g -10 degrees C and T g +10 degrees C (where T g is the glass transition temperature), and the presence of unreacted feed in glass by comparing x-ray diffraction (XRD) patterns for glass and dried feed. The results of this study indicate that the West Valley vitrification process completely transforms the feed into glass. Also the TGA, XRD, and scanning transmission electron microscopy data indicates that there is no significant volatilization, redox reactions, and phase alterations in the waste form up to more than 200 degrees C above the T g . 7 refs., 1 fig., 4 tabs

  17. Waste-Form Development Program. Annual progress report, October 1981-September 1982

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-09-01

    Low-level wastes (LLW) at nuclear facilities have traditionally been solidified using portland cement (with and without additives). Urea-formaldehyde has been used for LLW solidification while bitumen (asphalt) and thermosetting polymers will be applied to domestic wastes in the near future. Operational difficulties have been observed with each of these solidification agents. Such difficulties include incompatibility with waste constitutents inhibiting solidification, premature setting, free standing water and fires. Some specific waste types have proven difficult to solidify with one or more of the contemporary agents. Similar problems are also anticipated for the solidification of new wastes, which are generated using advanced volume reduction technologies, and with the application of additional agents which may be introduced in the near future for the solidification of LLW. In the Waste Form Development program, contemporary solidification agents are being investigated relative to their potential applications to major fuel cycle and non-fuel cycle LLW streams. The range of conditions under which these solidification agents can be satisfactorily applied to specific LLW streams is being determined. These studies are primarily directed towards defining operating parameters for both improved solidification of problem wastes such as ion exchange resins, organic liquids and oils for which prevailing processes, as currently employed, appear to be inadequate, and solidification of new LLW streams including high solids content evaporator concentrates, dry solids, and incinerator ash generated from advanced volume reduction technologies. Solidified waste forms are tested and evaluated to demonstrate compliance with waste form performance and shallow land burial (SLB) acceptance criteria and transportation requirements (both as they currently exist and as they are anticipated to be modified with time)

  18. The effects of radiation on intermediate-level wasteforms: final report

    International Nuclear Information System (INIS)

    Wilding, C.R.; Phillips, D.C.; Lyon, C.E.; Burnay, S.G.; Winter, J.A.; Spindler, W.E.

    1990-10-01

    This report summarizes the results of a programme carried out on the evaluation of the effects of radiation on organic ion exchangers in cement, mixed ion exchangers in modified vinyl ester polymer, immobilised fuel hull residues in cement, incinerator ash in cement and combustible PCM in cement. Both β/γ and α irradiation experiments were carried out over a range of dose rates. Cracking and spallation can occur over a wide range of water/cement ratios at a high dose rate of 3.0 Gy s -1 for grouts based on blast furnace slag compositions. Gas pressurisation is the most likely mechanism for the damage. Cement pore water extracted from irradiated samples of combustible PCM had a pH of 9.8 after 9.0 MGy compared to 13.0 for unirradiated controls. (author)

  19. Intercomparison of leach-testing methods and the effects of waste-form composition on test type and duration

    International Nuclear Information System (INIS)

    Harvey, K.B.; Jensen, C.D.

    1982-01-01

    Several leach-testing methods were evaluated for their relevance as scoping tests appropriate to proposed Canadian conditions for the disposal of high-level nuclear waste, and a static, terminated leach test was chosen. For a particular glass composition, methods in which the leachant was replenished gave apparent leach rates up to ten times less than did the static test. Under static leaching conditions, the leach rate of a number of sodium borosilicate glasses was observed to first rise and then fall with leaching time. This behavior is explained in terms of a pH change in the leachant, which is itself a function of the glass composition. The implications of these observations on glass compositions and on leach-testing methods that are relevant to the needs of final disposal are briefly discussed

  20. Basaltic glasses from Iceland and the deep sea: Natural analogues to borosilicate nuclear waste-form glass

    International Nuclear Information System (INIS)

    Jercinovic, M.J.; Ewing, R.C.

    1987-12-01

    The report provides a detailed analysis of the alteration process and products for natural basaltic glasses. Information of specific applicability to the JSS project include: * The identification of typical alteration products which should be expected during the long-term corrosion process of low-silica glasses. The leached layers contain a relatively high proportion of crystalline phases, mostly in the form of smectite-type clays. Channels through the layer provide immediate access of solutions to the fresh glass/alteration layer interface. Thus, glasses are not 'protected' from further corrosion by the surface layer. * Corrosion proceeds with two rates - an initial rate in silica-undersaturated environments and a long-term rate in silica-saturated environments. This demonstrates that there is no unexpected change in corrosion rate over long periods of time. The long-term corrosion rate is consistent with that of borosilicate glasses. * Precipitation of silica-containing phases can result in increased alteration of the glass as manifested by greater alteration layer thicknesses. This emphasizes the importance of being able to predict which phases form during the reaction sequence. * For natural basaltic glasses the flow rate of water and surface area of exposed glass are critical parameters in minimizing glass alteration over long periods of time. The long-term stability of basalt glasses is enhanced when silica concentrations in solution are increased. In summary, there is considerable agreement between corrosion phenomena observed for borosilicate glasses in the laboratory and those observed for natural basalt glasses of great age. (With 121 refs.) (authors)

  1. Hanford waste-form release and sediment interaction: A status report with rationale and recommendations for additional studies

    International Nuclear Information System (INIS)

    Serne, R.J.; Wood, M.I.

    1990-05-01

    This report documents the currently available geochemical data base for release and retardation for actual Hanford Site materials (wastes and/or sediments). The report also recommends specific laboratory tests and presents the rationale for the recommendations. The purpose of this document is threefold: to summarize currently available information, to provide a strategy for generating additional data, and to provide recommendations on specific data collection methods and tests matrices. This report outlines a data collection approach that relies on feedback from performance analyses to ascertain when adequate data have been collected. The data collection scheme emphasizes laboratory testing based on empiricism. 196 refs., 4 figs., 36 tabs

  2. Nuclear waste-form risk assessment for US defense waste at Savannah River Plant. Annual report FY, 1982

    International Nuclear Information System (INIS)

    Cheung, H.; Edwards, L.L.; Harvey, T.F.

    1982-01-01

    A network model was developed to simulate the hydrological flow and the transport of radionuclides from a deep geological repository to the biosphere subsequent to closure. By means of very efficient computational methods for solving the fundamental differential equations, a code was developed to treat in great detail the effects of waste form characteristics and of repository designs on the repository risks. It is possible to examine near field effects heretofore not attempted. Without sacrificing the essential details of description, the code can also be applied to perform probabilistic risk analyses to high confidence levels. Analytical results showed: (1) for waste form release rates greater than approximately 5 x 10 -7 /yr, dose to man is insensitive to release rate and release rate uncertainty; (2) significant reduction in dose can be achieved through simple design modifications; (3) a basalt repository generally does not perform as well as a salt repository; and (4) disruptive events are relatively unimportant for repository safety. 82 references

  3. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    International Nuclear Information System (INIS)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.; Romero, D.A.; Smith, C.A.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiring cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process

  4. A review of methods for immobilizing iodine-129 arising from a nuclear fuel recycle plant, with emphasis on waste-form chemistry

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-07-01

    Possible methods for the separation and immobilization of iodine (mainly iodine-129) in a fuel recycle plant are reviewed, with special emphasis placed on the evaluation of waste forms. A distinction is drawn between waste forms selected by thermodynamic (solubility) or kinetic (dissolution rate) considerations. The most promising solubility-limited waste forms appear to be AgI (or AgI + AgCl) and a combination of Bi 2 O 3 and Bi 5 O 7 I. These materials use relatively scarce metals, Ag and Bi. They also have substantial chemical limitations, such as susceptibility to reductive dissolution and anion-displacement reactions; this calls for special care in the choice of a disposal site. All other organic iodides and iodates considered here and elsewhere appear to be still more limited in this respect. The most promising kinetically limited candidate waste form appears to be iodide-sodalite, but further information is needed on both the fabrication and leaching behaviour of this material. The possibility of disposal in a more soluble but isotopically dilute waste form, employing abundant raw materials, also warrants further consideration

  5. Waste immobilization process development at the Savannah River Plant

    International Nuclear Information System (INIS)

    Charlesworth, D.L.

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed

  6. Mineralogical textural and compositional data on the alteration of basaltic glass from Kilauea, Hawaii to 300 degrees C: Insights to the corrosion of a borosilicate glass waste-form

    International Nuclear Information System (INIS)

    Smith, D.K.

    1990-01-01

    Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300 degrees C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surface reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 degrees C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs

  7. Glass temperatures in free-standing canisters

    International Nuclear Information System (INIS)

    Hardy, B.J.; Hensel, S.J.

    1993-01-01

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400 degrees C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates

  8. CBP [TASK 12] experimental study of the concrete salstone two-layer system

    Energy Technology Data Exchange (ETDEWEB)

    Samson, Eric [SIMCO Technologies, Inc., Ville de Québec, QC (Canada); Protiere, Yannick [SIMCO Technologies, Inc., Ville de Québec, QC (Canada)

    2016-11-01

    This report presents the results of a study which intended to study the behavior of concrete samples placed in contact with a wasteform mixture bearing high level of sulfate in its pore solution. A setup was prepared which consisted in a wasteform poured on top of vault concrete mixes (identified as Vault 1/4 and Vault 2 mixes) cured for approximately 6 months.

  9. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs

  10. Slag-based materials for toxic metal and radioactive waste stabilization

    International Nuclear Information System (INIS)

    Langton, C.A.

    1989-01-01

    This paper discusses a salt solution that is a hazardous waste and has both corrosive and metal toxicity characteristics. Objectives of a wasteform designed to stabilize this solution are presented. Disposal site characterization studies are examined

  11. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ''rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000

  12. Evaluation of the data available for estimating release rates from commercial low-level waste packages

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Cowgill, M.G.

    1991-01-01

    In this paper, an overview of our findings concerning the distribution of activity within low-level radioactive wastes will be presented. This will begin in a general fashion and consider the distribution of the total activity by each of the following: waste class, waste stream, wasteform, and waste container. A radionuclide specific breakdown by waste class and wasteform follows. The findings are reviewed in terms of performance assessment modeling needs. Finally, we present our conclusions

  13. Naturally-occurring zirconolites - analogues for the long-term encapsulation of actinides in synroc

    International Nuclear Information System (INIS)

    Hart, K.P.; Lumpkin, G.R.; Giere, R.; Williams, C.T.; McGlinn, P.J.; Payne, T.E.

    1996-01-01

    The use of natural zirconolites to assess the effect of α-decay damage and geochemical alteration on the release of actinides from HLW wasteforms is critically examined. There is evidence that the natural zirconolites provide a good chemical and radiation damage analogy for the HLW wasteforms, but additional work is required to define the geochemical environments in which zirconolite is stable or unstable (e.g., suffering corrosion or chemical alteration, including loss of actinides). (orig.)

  14. Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Production of nuclear materials within the DOE complex has yielded large volumes of high-level waste containing hazardous species such as nitrate, nitrite, chromium, and mercury. Processes being developed for the permanent disposal of these wastes are aimed at separating the bulk of the radioactivity, primarily 137-Cs and 90-Sr, into a small volume for incorporation into a vitrified wasteform, with the remainder being incorporated into a low-level wasteform

  15. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  16. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  17. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  18. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    Science.gov (United States)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  19. De-chlorination and solidification of radioactive LiCl waste salt by using SiO_2-Al_2O_3-P_2O_5 (SAP) inorganic composite including B_2O_3 component

    International Nuclear Information System (INIS)

    Lee, Ki Rak; Park, Hwan-Seo; Cho, In-Hak; Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Han, Seung Youb; Ahn, Do-Hee

    2017-01-01

    SAP (SiO_2-Al_2O_3-P_2O_5) composite has been recently studied in KAERI to deal with the immobilization of radioactive salt waste, one of the most problematic wastes in the pyro-chemical process. Highly unstable salt waste was successfully converted into stable compounds by the dechlorination process with SAPs, and then a durable waste form with a high waste loading was produced when adding glassy materials to dechlorination product. In the present study, U-SAP composite which is SAP bearing glassy component (Boron) was synthesized to remove the adding and mixing steps of glassy materials for a monolithic wasteform. With U-SAPs prepared by a sol-gel process, a series of wasteforms were fabricated to identify a proper reaction condition. Physical and chemical properties of dechlorination products and U-SAP wasteforms were characterized by XRD, DSC, SEM, TGA and PCT-A. A U-SAP wasteform showed suitable properties as a radioactive wasteform such as dense surface morphology, high waste loading, and high durability at the optimized U-SAP/salt ratio 2.

  20. De-chlorination and solidification of radioactive LiCl waste salt by using SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} (SAP) inorganic composite including B{sub 2}O{sub 3} component

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Rak; Park, Hwan-Seo; Cho, In-Hak; Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Han, Seung Youb; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-09-15

    SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) composite has been recently studied in KAERI to deal with the immobilization of radioactive salt waste, one of the most problematic wastes in the pyro-chemical process. Highly unstable salt waste was successfully converted into stable compounds by the dechlorination process with SAPs, and then a durable waste form with a high waste loading was produced when adding glassy materials to dechlorination product. In the present study, U-SAP composite which is SAP bearing glassy component (Boron) was synthesized to remove the adding and mixing steps of glassy materials for a monolithic wasteform. With U-SAPs prepared by a sol-gel process, a series of wasteforms were fabricated to identify a proper reaction condition. Physical and chemical properties of dechlorination products and U-SAP wasteforms were characterized by XRD, DSC, SEM, TGA and PCT-A. A U-SAP wasteform showed suitable properties as a radioactive wasteform such as dense surface morphology, high waste loading, and high durability at the optimized U-SAP/salt ratio 2.

  1. Mechanisms of cement leaching and degradation - integration of neutron imaging techniques

    International Nuclear Information System (INIS)

    Payne, Timothy E.; Aldridge, Laurence P.; Brew, Daniel R.M.; McGlinn, Peter J.; De Beer, Frikkie C.; Radebe, Mabuti J.; Nshimirimana, Robert

    2012-01-01

    Cementitious material is a commonly used wasteform for low and intermediate level radioactive waste, and comprises a major part of both structural components and barriers in many repository concepts. When exposed to water, cement-based barriers and waste-forms are expected to degrade by mechanisms involving both chemical and structural changes. The research program addresses several aspects of these processes, including the leaching of the waste-forms, water transport properties, as well as the effect of high pH cement leachates on the chemical and physical properties of surrounding materials (including clay barriers and host regolith materials). Chemical leaching tests and analyses by techniques such as electron microscopy can be augmented by neutron radiography and tomography. These methods provide a useful non-destructive method of determining properties related to water transport in cementitious materials, in particular the sorptivity and pore size distribution

  2. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  3. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  4. Hot dewatering and resin encapsulation of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Rickman, J.; Birch, D.

    1985-01-01

    The chemistry of the processes involved in the hot dewatering and encapsulation of alumino-ferric hydroxide floc in epoxide resin have been studied. Pretreatment of the floc to reduce resin attack and hydrolysis and to increase the dimensional stability of the solidified wasteform has been evaluated. It has been demonstrated that removal of ammonium nitrate from the floc and control of the residual water in the resin are important factors in ensuring dimensional stability of the solidified resin. Resin systems have been identified which, together with the appropriate waste pretreatment have successfully encapsulated a simulated magnox sludge producing a stable wasteform having mechanical and physical properties comparable with the basic resin. (author)

  5. Near field and altered zone environmental report Volume I: technical bases for EBS design

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, D. G., LLNL

    1997-08-01

    This report presents an updated summary of results for the waste package (WP) and engineered barrier system (EBS) evaluations, including materials testing, waste-form characterization, EBS performance assessments, and near-field environment (NFE) characterization. Materials testing, design criteria and concept development, and waste-form characterization all require an understanding of the environmental conditions that will interact with the WP and EBS. The Near-Field Environment Report (NFER) was identified in the Waste Package Plan (WPP) (Harrison- Giesler, 1991) as the formal means for transmitting and documenting this information.

  6. Corrosion problems related to the containment of high-level nuclear waste for disposal

    International Nuclear Information System (INIS)

    Rothwell, G.P.

    1981-01-01

    The subject is examined under the headings: introduction (nature of problem; system of barriers which will initially contain the wasteform and subsequently limit the rate of transport of products from the wasteform to the external environment); environmental data (disposal in land-based repositories; disposal on or in the deep seabed); design philosophies and materials data (design; criteria for materials selection (kinetics of corrosion)); specific materials considerations (environmental parameters -temperature, pressure, heat transfer and radiation effects; single metals and alloys - steels, nickel based alloys, copper, lead, titanium, aluminium oxide); alternative approaches; an overview - information needs; summary. (U.K.)

  7. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  8. Corrosion problems related to the containment of high-level nuclear waste for disposal

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G P

    1981-10-01

    The subject is examined under the headings: introduction (nature of problem; system of barriers which will initially contain the wasteform and subsequently limit the rate of transport of products from the wasteform to the external environment); environmental data (disposal in land-based repositories; disposal on or in the deep seabed); design philosophies and materials data (design; criteria for materials selection (kinetics of corrosion)); specific materials considerations (environmental parameters -temperature, pressure, heat transfer and radiation effects; single metals and alloys - steels, nickel based alloys, copper, lead, titanium, aluminium oxide); alternative approaches; an overview - information needs; summary.

  9. Quality checking task force destructive testing of active waste forms

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-03-01

    The implications of sampling and testing of full size active packages of intermediate level wastes are summarised in this report. Sampling operations are technically feasible but a major difficulty will be the disposal of secondary waste. A literature survey indicated that destructive testing of wasteforms is not carried out as a routine operation in Europe or the USA. (author)

  10. DOE materials program supporting immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Oertel, G.K.; Scheib, W.S. Jr.

    1979-01-01

    A summary is presented of the DOE program for developing waste-form criteria, immobilization processes, and generation and evaluation of performance characterization data. Interrelationships are discussed among repository design, materials requirements, immobilization process definition, quality assurance, and risk analysis as part of the National Environmental Policy Act and regulatory processes

  11. Standard leach tests for nuclear waste materials

    International Nuclear Information System (INIS)

    Strachan, D.M.; Barnes, B.O.; Turcotte, R.P.

    1980-01-01

    Five leach tests were conducted to study time-dependent leaching of waste forms (glass). The first four tests include temperature as a variable and the use of three standard leachants. Three of the tests are static and two are dynamic (flow). This paper discusses the waste-form leach tests and presents some representative data. 4 figures

  12. Modeling the long-term durability of concrete barriers in the context of low-activity waste storage

    Directory of Open Access Journals (Sweden)

    Samson E.

    2013-07-01

    Full Text Available The paper investigates the long-term durability of concrete barriers in contact with a cementitious wasteform designed to immobilize low-activity nuclear waste. The high-pH pore solution of the wasteform contains high concentration level of sulfate, nitrate, nitrite and alkalis. The multilayer concrete/wasteform system was modeled using a multiionic reactive transport model accounting for coupling between species, dissolution/ precipitation reactions, and feedback effect. One of the primary objectives was to investigate the risk associated with the presence of sulfate in the wasteform on the durability of concrete. Simulation results showed that formation of expansive phases, such as gypsum and ettringite, into the concrete barrier was not extensive. Based on those results, it was not possible to conclude that concrete would be severely damaged, even after 5,000 years. Lab work was performed to provide data to validate the modeling results. Paste samples were immersed in sulfate contact solutions and analyzed to measure the impact of the aggressive environment on the material. The results obtained so far tend to confirm the numerical simulations.

  13. Integral migration and source term experiments on cement and bitumen waste forms

    International Nuclear Information System (INIS)

    Ewart, F.T.; Howse, R.M.; Sharpe, B.M.; Smith, A.J.; Thomason, H.P.; Williams, S.J.; Young, M.

    1986-01-01

    This is the final report of a programme of research which formed a part of the CEC joint research project into radionuclide migration in the geosphere (MIRAGE). This study addressed the aspects of integral migration and source term. The integral migration experiment simulated, in the laboratory, the intrusion of water into the repository, the leaching of radionuclides from two intermediate level wasteforms and the subsequent migration through the geosphere. The simulation consisted of a source of natural ground water which flowed over a sample of wasteform, at a controlled redox potential, and then through backfill and geological material packed in columns. The two wasteforms used here were cemented waste from the WAK plant at Karlsruhe, W. Germany and bitumenised intermediate concentrates from the Marcoule plant in France. The soluble fission products such as caesium wire rapidly released from the cemented waste but the actinides, and technetium in the reduced state, were retained in the wasteform. The release of all nuclides from the bitumenised waste was very low. (author)

  14. DUSTMS-D: DISPOSAL UNIT SOURCE TERM - MULTIPLE SPECIES - DISTRIBUTED FAILURE DATA INPUT GUIDE.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.

    2006-01-01

    Performance assessment of a low-level waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). Many of these physical processes are influenced by the design of the disposal facility (e.g., how the engineered barriers control infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This has been done and the resulting models have been incorporated into the computer code DUST-MS (Disposal Unit Source Term-Multiple Species). The DUST-MS computer code is designed to model water flow, container degradation, release of contaminants from the wasteform to the contacting solution and transport through the subsurface media. Water flow through the facility over time is modeled using tabular input. Container degradation models include three types of failure rates: (a) instantaneous (all containers in a control volume fail at once), (b) uniformly distributed failures (containers fail at a linear rate between a specified starting and ending time), and (c) gaussian failure rates (containers fail at a rate determined by a mean failure time, standard deviation and gaussian distribution). Wasteform release models include four release mechanisms: (a) rinse with partitioning (inventory is released instantly upon container failure subject to equilibrium partitioning (sorption) with

  15. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  16. Saltstone processing startup at the Savannah River Plant

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Langton, C.A.; Sturm, H.F.; Hooker, R.L.; Occhipinti, E.S.

    1988-01-01

    High-level nuclear wastes are stored in large underground tanks at the Savannah River Plant. Processing of this waste in preparation for ultimate disposal will begin in 1988. The waste will be processed to separate the high-level radioactive fraction from the low-level radioactive fraction. The separation will be made in existing waste tanks by a process combining precipitation, adsorption, and filtration. The high-level fraction will be vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) for permanent disposal in a federal repository. The low-level fraction (decontaminated salt solution) will be mixed with a cementitious slag-flyash blend. The resulting wasteform, saltstone, will be disposed of onsite by emplacement in an engineered facility. Waste properties, disposal facility details, and wasteform characteristics are discussed. In particular, details of saltstone processing, focusing on experience obtained from facility startup, are presented

  17. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  18. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  19. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  20. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    International Nuclear Information System (INIS)

    1991-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  1. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  2. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  3. Synroc for plutonium disposal

    International Nuclear Information System (INIS)

    Johnston, A.; Vance, E.R.

    1999-01-01

    A pyrochlore-rich titanate ceramic has been chosen by the US DOE for excess weapons Pu immobilisation in the USA. The development of this wasteform was based on the Synroc strategy which aims to immobilise radioactive waste in durable multiphase titanate ceramics with phases chosen to he similar to titanate minerals that exist in nature and have immobilised U and Th for billions of years. The evolution of the pyrochlore-rich ceramic for Pu immobilisation from earlier Synroc variants is described and the choice of process steps is discussed. Leaching studies demonstrate that the release rate of Pu from the wasteforms in aqueous media is very low and similar to those of U and the neutron absorbers Gd and Hf that will ensure avoidance of nuclear criticality in repository environments

  4. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  5. Rocky Flats Plant precipitate sludge surrogate vitrification demonstration. Technical Task Plan

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. The preferred disposal method would be one that is capable of consistently producing a durable leach resistant wasteform, while simultaneously minimizing disposal volumes. Vitrification, which has been declared the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment

  6. Design and operational experience of low level radioactive waste disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Grimwood, P. D.

    1997-01-01

    Low level radioactive wastes have been disposed of at the Drigg near-surface disposal site for over 30 years. These are carried out under a disposal authorization granted by the UK Environment Agency. This is augmented by a three tier comprehensive system of waste controls developed by BNFL involving wasteform specification, consignor and waste stream qualification and waste consignment verification. Until 1988 wastes were disposed of into trench facilities. However, based on a series of integrated optioneering studies, new arrangements have since been brought into operation. Central to these is a wasteform specification based principally on high force compaction of wastes, grouting within 20 m 3 steel overpack containers to essentially eliminate associated voidage and subsequent disposal in concrete lined vaults. These arrangements ensure efficient utilisation of the Drigg site capacity and a cost-effective disposal concept which meets both national and international standards. (author). 7 figs

  7. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    Science.gov (United States)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  8. EXAFS studies of metamict materials

    International Nuclear Information System (INIS)

    Greegor, R.B.; Lytle, F.W.; Ewing, R.C.; Haaker, R.F.

    1984-01-01

    An important approach in the evaluation of crystalline wasteforms for nuclear waste storage is to study the long term stabilities of closely related radioactive mineral species which have become metamict (radiation damaged) and have been exposed to weathering processes for geologic periods of time. The metamictization and alteration effects can then be used for comparison with the results of short term laboratory leaching and irradiation experiments which have been designed to simulate long term effects. Phosphates, the Ti-Nb-Ta complex oxide minerals and various selected silicates are natural analogues for phases in proposed radioactive wasteforms. Because of the geochemical similarities with wasteforms, a study of the metamict state and annealing in complex mineral phosphates, silicates and oxides will yield data that is important in evaluating the long term stability of radioactive wasteforms. The investigation reported here is an application of EXAFS and XANES spectroscopy to the study of the structure of the metamict state. The nearest neighbor environment of Ti and Ca in metamict AB 2 O 6 -type complex oxides has been examined using SSRL Beam Line VII-3 in order to evaluate the effect of alpha-recoil damage on these structures. Comparison of the EXAFS/XANES data for metamict samples with data for annealed and crystalline samples suggests minor changes in the first coordination sphere, Ca-O or Ti-O, (a slight decrease in coordination number and bond lengths, and increased distortion of the coordination polyhedron), but major disruption of the second coordination sphere, for the material in the metamict state. These data suggest a mechanism for the transition from the crystalline to the metamict state in which tilting of cation coordiantion polyhedra is a possible effect of damage caused by alpha-recoil events

  9. Microwave heating application in calcination and SYNROC formation

    International Nuclear Information System (INIS)

    Ambashta, R.D.; Wattal, P.K.; Malav, R.K.; Mallik, G.K.

    2006-01-01

    Microwave for calcination of titanate based ceramic wasteform (SYNROC) is being reported for the first time in this paper. Although major constituents in SYNROC were non microwave active, the combination with microwave active constituents rendered the mixture calcinable. Calcine was sintered at 1150 degC under hot uniaxial conditions at an applied pressure of ∼30 MPa. XRD shows presence of major phases of SYNROC in the compacted sample. (author)

  10. Natural and archaeological analogues: a review

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1987-01-01

    In this chapter natural analogues in the geomedia for various aspects of radioactive waste disposal are discussed. Particular reference is made to the Okla Natural Reactor in Gabon. Igneous contact zones are discussed and natural analogues of waste-form materials. The importance of archaeological remains and anthropogenic materials left by man, in assessing weathering conditions and serving as radioactive waste analogues, is also emphasised. (UK)

  11. A Review on the Chemically Bonded Phosphate Ceramics as a Binder of Next Generation

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Kang, K. H.; Na, S. H.; Lee, J. W.

    2010-12-01

    Phosphate ceramics which is fabricated by means of acid-base reaction is a new material that may be used in many fields. This report introduces the technology of phosphate ceramics, especially the process of magnesium phosphate ceramics fabrication and properties in detail. We expect that researchers and engineers who are seeking to develop the technology of wasteform containing spent fuel waste are referred to this document

  12. Upfront Delisting of F006 Mixed Waste

    International Nuclear Information System (INIS)

    Poulos, D.G.; Pickett, J.B.; Jantzen, C.M.

    1995-01-01

    The US DOE at the Savannah River Site will petition the US EPA to upfront delist treatment residues generated from the vitrification of approximately 650,000 gallons of a regulated mixed (hazardous and radioactive) waste. The upfront petition, based on bench-scale treatability studies and pilot-scale system data, will exclude the vitrified wasteform from hazardous waste management regulations. The EPA encourages the use of the upfront delisting method as it allows applicants prior knowledge of waste specific treatment standards, which when met will render the waste non-hazardous, before generating the final wasteform. To meet the EPA performance based treatment standards, the waste must be stabilized to control the leaching of hazardous and radioactive constituents from the final wasteform. SRS has contracted a vendor to stabilize the mixed waste in a temporary Vitrification Treatment Facility (VTF). The EPA has declared vitrification as the Best Demonstrated Available Technology for high level radioactive wastes and the DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest degree possible to ensure that the resulting wasteform meets both current and future regulatory specifications. Treatability studies conducted on a VTF pilot-scale system unit indicates that the mixed waste can be converted into a highly durable glass form, which exceeds the projected EPA performance based criteria. Upfront petitions can be processed by the EPA concurrently during facility construction or permitting activities; therefore, the SRS VTF will be capable of producing wastes which are considered non-hazardous sooner than otherwise expected. At the same time, EPA imposed conditional testing requirements to verify that the delisting levels are achieved by the fully operational VTF, ensures that only non-hazardous wastes are removed from hazardous waste management regulations. Vitrification of the (Abstract Truncated)

  13. Long-term elevated temperature leaching of solid waste forms

    International Nuclear Information System (INIS)

    Kenna, B.T.; Murphy, K.D.; Levine, H.S.

    1978-01-01

    Long-term soxhlet leaching of simulated waste glass and ceramic materials was initiated to elucidate leaching behavior of complex wasteforms. A cyclic leaching pattern was found in all systems over a 20 month period. Maxima and minima were observed in the leaching rates of all components studied with the minima coinciding. The data suggested several mechanistic features which are described, but they did not conform with reported simple leaching mechanisms

  14. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  16. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  17. Modeling by GASP-IV simulation of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Kurstedt, H.A. Jr.; DePorter, E.L.; Turek, J.L.; Funk, S.K.; Rasbach, C.E.

    1981-01-01

    High-level nuclear waste generated by defense-oriented and commercial nuclear energy activities are to be stored ultimately in underground repositories. Research continues on the waste-form and waste-form processing. DOE managers must coordinate the results of this research, the capacities and availability times of the permanent geologic storage repositories, and the capacities and availability times of interim storage facilities (pending availability of permanent repositories). Comprehensive and active DOE program-management information systems contain predicted generation of nuclear wastes from defense and commercial activities; milestones on research on waste-forms; and milestones on research and development, design, acquisition, and construction of facilities and repositories. A GASP IV simulation model is presented which interfaces all of these data. The model accepts alternate management decisions; relates all critical milestones, all research and development data, and the generation of waste nuclear materials; simulates the passage of time; then, predicts the impact of those alternate decisions on the availability of storage capacity for waste nuclear materials. 3 references, 3 figures

  18. A review and discussion of candidate ceramics for immobilization of high-level fuel reprocessing wastes

    International Nuclear Information System (INIS)

    Hayward, P.J.

    1982-08-01

    This review discusses and attempts to evaluate 11 of the leading ceramic processes for hosting the high-level and high-level plus medium-level wastes which would arise from the reprocessing of used UO 2 , (Th,Pu)O 2 and (Th,U)O 2 fuels. The wasteform materials considered include glass ceramics, supercalcine ceramics, SYNROC ceramics, 'stuffed glass', titanate ceramics, cermets, clay ceramics, cement-based materials and multibarrier wasteforms. Although no attempt has been made to rank these candidates in order of superiority, the conclusion is drawn that, of the materials proposed so far, a glass ceramic appears to be best suited to the Canadian program, taking into account durability in the potential environment of a flooded vault, ability to withstand radiation and transmutation damage without serious loss of durability, ability to accommodate variable waste compositions, and ease of processing and quality control. This conclusion does not necessarily apply to other national waste management programs. However, many of the points raised might be included in any critical assessment of alternative wasteform materials

  19. Interaction of Water with Cement Based Repository Materials - Application of Neutron Imaging

    International Nuclear Information System (INIS)

    Mcglinn, P.J.; Brew, D.R.M.; Beer, F.C. De; Radebe, M.J.; Nshimirimana, R.

    2013-01-01

    Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study, a candidate cement-based wasteform and a series of barrier materials have been investigated using neutron imaging to: 1) characterise the wasteform for disposal in a repository for radioactive materials, and 2) characterise the compositon of the barrier materials in assessing their potential to transmit water. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the wasteform samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. Macro-pore volume distributions of barrier samples, also acquired using neutron tomography, are shown to relate to water/cement ratio, composition and sorptivity data. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials. (author)

  20. A novel natural analog in situ stabilization agent

    International Nuclear Information System (INIS)

    Shaw, P.

    1995-01-01

    This report summarizes the laboratory-scale test results on a synthetic analog of natural hematite cement for potential as an in situ treatment and stabilization agent for buried hazardous and radioactive waste. The concept is based on the principle that the ideal waste isolation materials are synthetic analogs of those natural encapsulating materials (cements), which are in equilibrium with the environment in which they occur. If equilibrium is achieved, then such materials will remain intact as long as the natural environment remains unchanged. The specific waste application is long-term stabilization of transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory (INEL). Six properties of the natural analog agent and resulting wasteforms are discussed to access the agent's effectiveness and implementability: hydraulic conductivity; compressive strength; mineralogy and microstructure; compatibility with possible waste materials, nitrates, machine cutting oil, and metallic iron; leachability of hazardous metals; and field application parameters. Data indicated that the iron waste encapsulation materials tested are appropriate choices for buried waste mixed with INEL soil. Iron oxide/gypsum INEL soil wasteforms have hydraulic conductivity values close to the regulatory limit. Wasteforms with soil and wastes have compressive strength greater than the regulatory minimum. Gypsum/iron oxide removes hazardous metals from solution by adsorption and would pass Toxicity Characteristic Leaching Procedure limits for most toxic metals. It appears to be chemically and physically inert with respect to the bulk of the waste materials likely to be found at INEL, and has properties conducive to jet grouting

  1. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  2. OPC Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The study presented in this report focused on a low-activity wasteform containing a high-pH pore solution with a significant level of sulfate. The purpose of the study was to improve understanding of the complex concrete/wasteform reactive transport problem, in particular, the role of pH in sulfate attack. Paste samples prepared at three different water-to-cement ratios were tested. The mixtures were prepared with ASTM Type I cement, without additional admixtures. The samples were exposed to two different sodium sulfate contact solutions. The first solution was prepared at 0.15M Na2SO4. The second solution also incorporated 0.5M NaOH, to mimic the high pH conditions found in Saltstone. The data collected indicated that, in Na2SO4 solution, damage occurs to the pastes. In the case of the high-pH sulfate solution (Na2SO4 + NaOH), no signs of damage were observed on any of the paste mixtures. These results indicate that the high sulfate content found in the wasteform pore solution will not necessarily lead to severe damage to concrete. Good-quality mixtures could thus prove durable over the long term, and act as an effective barrier to prevent radionuclides from reaching the environment.

  3. Integral migration and source-term experiments on cement and bitumen waste forms

    International Nuclear Information System (INIS)

    Ewart, F.T.; Howse, R.M.; Sharpe, B.M.; Smith, A.J.; Thomason, H.P.; Williams, S.J.; Young, M.

    1986-01-01

    This is the final report of a programme of research which formed a part of the CEC joint research project into radionuclide migration in the geosphere (MIRAGE). This study addressed the aspects of integral migration and source term. The integral migration experiment simulated, in the laboratory, the intrusion of water into the repository, the leaching of radionuclides from two intermediate-level waste-forms and the subsequent migration through the geosphere. The simulation consisted of a source of natural ground water which flowed over a sample of waste-form, at a controlled redox potential, and then through backfill and geological material packed in columns. The two waste forms used here were cemented waste from the WAK plant at Karlsruhe in the Federal Republic of Germany and bitumenized intermediate concentrates from the Marcoule plant in France. The soluble fission products such as caesium were rapidly released from the cemented waste but the actinides, and technetium in the reduced state, were retained in the waste-form. The released of all nuclides from the bitumenized waste was very low

  4. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    Energy Technology Data Exchange (ETDEWEB)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  5. Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials

    International Nuclear Information System (INIS)

    Lindle, Dennis W.; Shuh, David K.

    2005-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements

  6. Evaluation of final waste forms and recommendations for baseline alternatives to grout and glass

    International Nuclear Information System (INIS)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT ampersand E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT ampersand E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the

  7. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  8. Utilization of the national Portland cement for immobilizing radioactive wastes - Physical characteristics

    International Nuclear Information System (INIS)

    Rzyski, B.M.; Suarez, A.A.

    1988-01-01

    This paper shows the results obtained in the study of the national Portland cement, P320, as matrix for radioactive nitric waste incorporation. Cement use practice in other countries is common for this purposes and demonstrates to be cheap and accessible when low and medium level wastes are immobilized. Some of physical characteristics as: homogeneity,mechanical strenght, setting and porosity are analysed due to water-cement ratio and salt contents. Those characteristics which are proper of the final product, must be controlled in such way to assure a long time integrity of the wasteform. The establishment of process and quality control criteria are based in such kind of data. (author) [pt

  9. Lessons Learned from an External Review of the Savannah River Site Saltstone Performance Assessment Program

    International Nuclear Information System (INIS)

    Cook, J.R.

    2006-01-01

    The Savannah River National Laboratory is actively working on a total revision of the Saltstone Performance Assessment. 'Lessons Learned' from the review are being applied to this effort. Examples of the areas in which significant new work is being done are development of a methodology to do probabilistic uncertainty analyses, employing quantitative analytical tools to represent long-term chemical degradation of both concrete and the Saltstone wasteform, and then using those tools to come to a better understanding of how changes in the vault and Saltstone will affect the performance of the overall disposal system over long periods of time. (authors)

  10. Compatibility of technologies with regulations in the waste management of H-3, I-129, C-14, and Kr-85. Part I. Initial information base

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Vandegrift, G.F.; Kolba, V.M.; Steindler, M.J.

    1983-08-01

    This report summarizes the information base that was collected and reviewed in preparation for carrying out an analysis of the compatibility with regulations of waste management technologies for disposal of H-3, I-129, C-14, and Kr-85. Based on the review of this literature, summaries are presented here of waste-form characteristics, packaging, transportation, and disposal methods. Also discussed are regulations that might apply to all operations involved in disposal of the four nuclides, including the processing of irradiated fuel in a fuel reprocessing plant, packaging, storage, transport, and final disposal. The compliance assessment derived from this information is reported in a separate document. 309 references

  11. Building flexibility into the design of a pilot plant for the immobilisation of Pu containing residues and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Scales, C R; Maddrell, E R [NNL, Havelock Rd, Workington, CA14 3YQ (United Kingdom); Hobbs, J; Stephen, R [Sellafield Ltd, Sellafield, CA20 1 PG (United Kingdom); Moricca, S; Stewart, M W A [ANSTO, New Illawara Road, Lucas Heights 2234 (Australia)

    2013-07-01

    NNL and ANSTO on behalf of Sellafield Ltd have developed a process for the immobilisation of a range of Pu containing wastes and residues. Following the inactive demonstration of the technology the project is now focusing on the design of an active pilot plant capable of validating the technology and ultimately immobilising a waste inventory containing around 100 kg plutonium. The diverse wastes from which it is uneconomic to recover Pu, require a flexible process with a wide product envelope capable of producing a wasteform suitable for disposal in a UK repository. Ceramics, glass ceramics and metal encapsulated waste-forms can be delivered by the process line which incorporates size reduction and heat treatment techniques with the aim of feeding a hot isostatic pressing process designed to deliver the highly durable waste-forms. Following a demonstration of feasibility, flowsheet development is progressing to support the design which has the aim of a fully flexible facility based in NNL's Central Laboratory on the Sellafield site. Optimisation of the size reduction, mixing and blending operations is being carried out using UO{sub 2} as a surrogate for PuO{sub 2}. This work is supporting the potential of using an enhanced glass ceramic formulation in place of the full ceramic with the aim of simplifying glove box operations. Heat treatment and subsequent HIPing strategies are being explored in order to eliminate any carbon from the feeds without increasing the valence state of the uranium present in some of the inventory which can result in an unwanted increase in wasteform volumes. The HIP and ancillary systems are being specifically designed to meet the requirements of the Sellafield site and within the constraints of the NNL Central Laboratory. The HIP is being configured to produce consolidated product cans consistent with the requirements of ongoing storage and disposal. With the aim of one cycle per day, the facility will deliver its mission of

  12. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report is the first revision to ''Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0

  13. Thermal analyses for a nuclear-waste repository in tuff using USW-G1 borehole data

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1982-10-01

    Thermal calculations using properties of tuffs obtained from the USW-G1 borehole, located near the SW margin of the Nevada Test Site (NTS), have been completed for a nuclear waste repository sited in welded tuff below the water table. The analyses considered two wasteforms, high level waste and spent fuel, emplaced at two different, gross thermal loadings, 50 and 75 kW/Acre (20.24 and 30.36 kW/ha). Calculations were made assuming that no boiling of the groundwater occurs; i.e., that the hydrostatic head potential was reestablished soon after waste emplacement. 23 figures, 2 tables

  14. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  15. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  16. The Integrated Data Base program: An executive-level data base of spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Klein, J.A.

    1987-01-01

    The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. As such, it should be as convenient to utilize as is practical. Examples of summary-level tables and figures are presented, as well as more-detailed graphics describing waste-form distribution by site and line charts illustrating historical and projected volume (or mass) changes. This information is readily accessible through the annual IDB publication. Other presentation formats are also available to the DOE community through a simple request to the IDB Program

  17. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  18. Radiation damage in nuclear waste ceramics

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.; Rusin, J.M.; Wald, J.W.

    1982-01-01

    The text contains a number of specific observations about the radiation-induced changes in glass, glass-ceramic, and supercalcine nuclear waste forms. Other, more general conclusions can be summarized: Radiation-induced property changes follow an exponential ingrowth curve to saturation. Actinide host phases in both crystalline waste forms become X-ray amorphous. The magnitudes of the waste-form density changes observed could not be directly related to observed changes in the primary actinide phases. Although large crystal-structure changes occur in the materials studied, obvious physical degradation was not observed

  19. Plasma vitrification of waste materials

    Science.gov (United States)

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  20. Radiological assessments of land disposal options: recent model developments

    International Nuclear Information System (INIS)

    Fearn, H.S.; Pinner, A.V.; Hemming, C.R.

    1984-10-01

    This report describes progress in the development of methodologies and models for assessing the radiological impact of the disposal of low and intermediate level wastes by (i) shallow land burial in simple trenches (land 1), (ii) shallow land burial in engineered facilities (land 2), and (iii) emplacement in mined repositories or existing cavities (land 3/4). In particular the report describes wasteform leaching models, for unconditioned and cemented waste, the role of engineered barriers of a shallow land burial facility in reducing the magnitude of doses arising from groundwater contact and a detailed consideration of the interactions between radioactive carbon and various media. (author)

  1. Plasma vitrification of waste materials

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs

  2. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    International Nuclear Information System (INIS)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  3. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  4. Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, N.C., E-mail: n.c.hyatt@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Schwarz, R.R.; Bingham, P.A.; Stennett, M.C.; Corkhill, C.L.; Heath, P.G.; Hand, R.J. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); James, M.; Pearson, A. [Sellafield Ltd., Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Morgan, S. [Sellafield Ltd., Hinton House, Risley, Warrington WA3 6GR (United Kingdom)

    2014-01-15

    Graphical abstract: Storage of 200 L drums of PCM waste at the Sellafield site, UK. Abstract: Four waste simulants, representative of Plutonium Contaminated Materials (PCMs) at the Sellafield site, were vitrified through additions of Ground Granulated Blast-furnace Slag (GGBS). Ce (as a Pu surrogate) was effectively partitioned into the slag product, enriched in an amorphous CaO–Fe{sub 2}O{sub 3}–Al{sub 2}O{sub 3}–SiO{sub 2} phase when other crystalline phases were also present. Ce L{sub 3} edge XANES data demonstrated Ce to be present as trivalent species in the slag fraction, irrespective of the waste type. Estimated volume reductions of ca. 80–95% were demonstrated, against a baseline of uncompacted 200 L PCM waste drums. The dissolution behaviour of PCM slag wasteforms was investigated at 50 °C in saturated Ca(OH){sub 2} solution under N{sub 2} atmosphere, to simulate the hyperalkaline anoxic environment of a cementitious UK Geological Disposal Facility for Intermediate Level Waste (ILW). These experiments demonstrated the performance of the slag wasteforms to be comparable to that of other vitrified ILW materials considered potentially suitable for geological disposal.

  5. Nuclear waste immobilisation in SYNROC

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1984-04-01

    SYNROC is a crystalline titanate ceramic designed to immobilise the elements occurring in high level wastes. It has been demonstrated that the great majority of elements present in high level wastes can be incorporated within the crystalline lattices of the SYNROC minerals. In this state they are extremely resistant to attack by aqueous solutions. Extensive experimental data demonstrates that SYNROC is 1,000 to 10,000 times more resistant to leaching than borosilicate glass wasteforms at 100 - 200 deg C. SYNROC displays exceptional stability at higher temperatures where glasses disintegrate rapidly. The essential minerals of SYNROC occur in nature where they have demonstrated their capacity to survive in a wide range of geological and geochemical environments for periods of 10 8 - 10 9 years. These characteristics, in combination with the experimental studies, demonstrate that SYNROC offers important advantages over borosilicate glass as a wasteform, both in terms of performance and capacity to achieve public acceptability. Studies of the properties of ancient naturally occurring SYNROC minerals containing uranium and thorium which have received very large cumulative radiation doses demonstrate that the capacity of these minerals to retain waste elements is not substantially retarded by radiation damage. Process technology for the production of SYNROC on a large scale is now under development. A novel method employing uniaxial hot pressing of SYNROC powder contained in free sanding steel bellows at 1150 deg C yields a fully dense product. Production costs are estimated to be in the same range as for borosilicate glass

  6. Characteristics of dechlorination for LiCl salt by the surface temperature-controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Hak [Chungnam National University, Daejeon (Korea, Republic of); Park, Hwan Seo; Ahn, Soo Na; Eun, Hee Chul; Kim, In Tae; Cho, Yong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Molten salt waste is generated from a pyrochemical process to separate reusable U and TRU elements from a spent nuclear fuel. The spent lithium chloride waste is highly soluble in water and contains volatile radioactive elements such as Cs. However, these wastes are difficult to directly immobilize into durable matrix such as glass or ceramic wasteform for final disposal. ANL(Argonne National Laboratory) suggested the conversion of metal chloride into a sodalite for the immobilization of a chloride waste, glass-bonded sodalite, which was fabricated at about 915 .deg. C after mixing the salt-loaded zeolite and borosilicate glass powder. Although this wasteform shows high leach-resistance, the waste volume greatly increases. The previous study was to treat metal chloride wastes by using SAP(SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) materials. By using this method, the final waste volume reduced and leach-resistance was good. In this study, characteristics of dechlorination reaction of LiCl with an inorganic composite, SAP, was investigated by using a specific surface temperature-controlled reactor

  7. Selection of models to calculate the LLW source term

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1991-10-01

    Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab

  8. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-08-01

    Approximately 400 x 10 6 L of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of Cs + and Sr +2 , followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic wasteform. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with the Class F flyash used in saltstone as a functional extender to control heat of hydration and reduce permeability. (Class F flyash is also locally available at SRP.) A monolithic wasteform is produced by the hydration of the slag and flyash. Soluble ion release (NO 3- ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes because these species are chemically reduced to a lower valence state by ferrous iron in the slag and are precipitated as relatively insoluble phases, such as Cr(OH) 3 and TcO 2 . 3 refs., 3 figs., 2 tabs

  9. Status of microwave process development for RH-TRU [remote-handled transuranic] wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in-drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. The microwave fields are uniform in one dimension to reduce the formation of hot spots on the microwaved wasteform. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 1 fig., 1 tab

  10. Technical bases for the DWPF testing program

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the first production facility in the United States for the immobilization of high-level nuclear waste. Production of DWPF canistered wasteforms will begin prior to repository licensing, so decisions on facility startup will have to be made before the final decisions on repository design are made. The Department of Energy's Office of Civilian Radioactive Waste Management (RW) has addressed this discrepancy by defining a Waste Acceptance Process. This process provides assurance that the borosilicate-glass wasteform, in a stainless-steel canister, produced by the DWPF will be acceptable for permanent storage in a federal repository. As part of this process, detailed technical specifications have been developed for the DWPF product. SRS has developed detailed strategies for demonstrating compliance with each of the Waste Acceptance Process specifications. An important part of the compliance is the testing which will be carried out in the DWPF. In this paper, the bases for each of the tests to be performed in the DWPF to establish compliance with the specifications are described, and the tests are detailed. The results of initial tests relating to characterization of sealed canisters are reported

  11. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  12. Evolution in performance assessment modeling as a result of regulatory review

    Energy Technology Data Exchange (ETDEWEB)

    Rowat, J.H.; Dolinar, G.M.; Stephens, M.E. [AECL Chalk River Labs., Ontario (Canada)] [and others

    1995-12-31

    AECL is planning to build the IRUS (Intrusion Resistant Underground Structure) facility for near-surface disposal of LLRW. The PSAR (preliminary safety assessment report) was subject to an initial regulatory review during mid-1992. The regulatory authority provided comments on many aspects of the safety assessment documentation including a number of questions on specific PA (Performance Assessment) modelling assumptions. As a result of these comments as well as a separate detailed review of the IRUS disposal concept, changes were made to the conceptual and mathematical models. The original disposal concept included a non-sorbing vault backfill, with a strong reliance on the wasteform as a barrier. This concept was altered to decrease reliance on the wasteform by replacing the original backfill with a sand/clinoptilolite mix, which is a better sorber of metal cations. This change lead to changes in the PA models which in turn altered the safety case for the facility. This, and other changes that impacted performance assessment modelling are the subject of this paper.

  13. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  14. State-of-the-art review of materials properties of nuclear waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Nelson, R.D.; Turcotte, R.P.; Gray, W.J.; Merz, M.D.; Roberts, F.P.; Weber, W.J.; Westsik, J.H. Jr.; Clark, D.E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability

  15. A neutron and synchrotron investigation of the electronic structure of lanthanide zirconates

    International Nuclear Information System (INIS)

    Clements, Richard; Kennedy, Brendan; Ling, Chris; Stampfl, Anton P.J.

    2009-01-01

    Full text: The lanthanide zirconates are of interest for use in inert matrix fuels and nuclear wasteforms. A variety of studies have been performed to determine the suitability of a material as an inert matrix or wasteform. For use in these applications, the material's structure must be resistant to radiation damage and its thermal, thermodynamic and mechanical properties must be known. The structure's ability to incorporate an actinide host into the lattice vacancy must also be known. These properties may be better understood by investigating the f-electronic structure, which has historically proved difficult to model. We have undertaken a synthesis of the full range of lanthanide zirconate series using solid state techniques. We have performed neutron powder diffraction on a selection of the series in conjunction with the following measurements using synchrotron radiation: powder x-ray diffraction, VUV photoluminescence spectra, x-ray photoemission spectroscopy (XPS) and x-ray absorption near edge spectroscopy (XANES) The results are to be analysed using OFT modeling techniques. These results will be presented, along with details of the analysis and synthetic techniques used.

  16. Leaching of saltstone: Laboratory and field testing and mathematical modeling

    International Nuclear Information System (INIS)

    Grant, M.W.; Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wallace, R.M.; Wilhite, E.L.; Yau, W.W.F.

    1987-01-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a wasteform, saltstone, and disposed of in surface vaults. Laboratory and field leach testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet the design objective, which is to meet drinking water standards in shallow groundwater at the disposal area boundary. Diffusion is the predominant mechanism for release of contaminants to the environment. Leach testing in unsaturated soil, at soil moisture levels above 1 wt %, has shown no difference in leach rate compared to leaching in distilled water. Field leach testing of three thirty-ton blocks of saltstone in lysimeters has been underway since January 1984. Mathematical models were applied to assess design features for saltstone disposal. One dimensional infinite-composite and semi-infinite analytical models were developed for assessing diffusion of nitrate from saltstone through a cement barrier. Numerical models, both finite element and finite difference, were validated by comparison of model predictions with the saltstone lysimeter results. Validated models were used to assess the long-term performance of the saltstone stored in surface vaults. The maximum concentrations of all contaminants released from saltstone to shallow groundwater are predicted to be below drinking water standards at the disposal area boundary. 5 refs., 11 figs., 5 tabs

  17. Developing ceramic based technology for the immobilisation of waste on the Sellafield site - 16049

    International Nuclear Information System (INIS)

    Scales, C.R.; Maddrell, E.R.; Dowson, Mark

    2009-01-01

    National Nuclear Laboratory, in collaboration with the Australian Nuclear Science and Technology Organisation, is developing hot isostatic press (HIP) based ceramic technology for the immobilisation of a diverse range of wastes arising from nuclear fuel processing activities on the Sellafield site. Wasteform compositions have been identified and validated for the immobilisation of these plutonium containing wastes and residues in glass-ceramic and ceramic forms. A full scale inactive facility has been constructed at NNL's Workington Laboratory to support the demonstration of the technology. Validation of the inactive wasteform development using plutonium has been carried out at ANSTO's Lucas Heights facility. A feasibility study has been conducted to evaluate the construction and operation of a plutonium active pilot facility which would demonstrate the immobilisation of actual residues in the NNL Central Lab. This could form the basis of a facility to treat the plutonium wastes and residues in their entirety. The technology is being explored for the immobilisation of additional wastes arising on the Sellafield site taking advantage of the investment already made in skills and facilities. (authors)

  18. Uranium soils integrated demonstration: Soil characterization project report

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP

  19. Evaluation of engineered barrier materials for surface disposal facilities. Appendix 2: Brazil

    International Nuclear Information System (INIS)

    Endo, L.S.

    2001-01-01

    Full text: In practice, those nuclear installations that generate most wastes in Brazil often have interim storage facilities at the same site. They can also accommodate wastes from small users that have no suitable place to manage their wastes. The forecast at the time of the CRP for Brazilian waste generation due to all nuclear and radioactive activities by the year 2010 is to be about 5000 m 3 , not including the waste of 3500 m 3 from Goiania accident. With the impact of the accident on the public opinion, the quest for a safe disposal facility became more urgent, especially the siting and licensing a disposal facility which could receive the Goiania waste. Although the construction of a national repository was a matter of future decision at the time of the CRP, research programmes were being developed and carried out by the research institutes of the Brazilian National Commission of Nuclear Energy. The R and D programmes were primarily intended to establish required technical capability in dealing with the subject especially in terms of issues related to the evaluation of disposal facility performance and lifetime. Some activities of the programmes were within the scope of the CRP, namely: study of diffusion through cementitious materials; degradation of concrete due to chemical corrosion and microbiological attack; evaluation of additives for the improvement of structural concrete and cemented wasteform quality. In the work relating to the improvement of wasteforms and concrete, silica-fume was being evaluated as an admixture in the cementation process. Ion-exchange resins, a typical power reactor waste, and simulated liquid waste from fission production were used as reference wastes. The performance of the produced wasteforms was evaluated by measuring four properties of interest: setting time; heat developed during hydration process, compressive strength, and leachability. Results showed that the addition of silica-fume increased the compressive strength

  20. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    Science.gov (United States)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  1. Heavy metal immobilization in mineral phases

    International Nuclear Information System (INIS)

    Apblett, A.

    1993-01-01

    A successful waste form for toxic or radioactive metals must not only have the ability to chemically incorporate the elements but it must also be extremely stable in the geological environment. Thus, ceramic wasteforms are sought which mimic those minerals that have sequestered the hazardous metals for billions of years. One method for producing ceramics, metal organic deposition (MOD) is outstanding in its simplicity, versatility, and inexpensiveness. The major contribution that the MOD process can make to ceramic waste forms is the ability to mix the toxic metals at a molecular level with the elements which form the ceramic matrix. With proper choice of organic ligands, the inclusion of significant amounts of alkali metals in the ceramic and, hence, their detrimental effect on durability may be avoided. In the first stage of our research we identified thermally-unstable ligands which could fulfill the role of complexing toxic metal species and allowing their precipitation or extraction into nonaqueous solvents

  2. Behaviour of bituminized radioactive wastes under irradiation

    International Nuclear Information System (INIS)

    Camaro, S.; Gilardi, T.; Vistoli, P.P.

    2000-01-01

    Studies are carried out by the CEA in order to predict the behaviour of bituminized radioactive wastes under self irradiation. Bitumen radiolysis produces gas (mainly H 2 ) which diffuses in the organic matrix. If the hydrogen yield is higher than the diffusion flux through the free surface, hydrogen concentration increases and exceeds its solubility in bitumen. Beyond saturation, bubbles are formed and gas is also evacuated by bubbles drift. The aim of these studies is to evaluate the evacuation capacity of radiolytic gas produced in function of initial bituminized wasteform characteristics. A model was developed to achieve this purpose, by calculating the evolution of bubbles population considering all elementary mechanisms of gas evacuation. (authors)

  3. The treatment and packaging of waste plutonium and waste actinides for disposal

    International Nuclear Information System (INIS)

    Taylor, R.F.

    1988-07-01

    The objectives of this work have been to review the current state of knowledge on the treatment and packaging of unusable or surplus plutonium and other waste actinides for disposal and to identify any gaps in data essential for the development of a preferred route. The exercise was based on published data which said the quantity currently to be disposed of was 50 tonnes in oxide form. A literature review over the period 1978 to 1988 was carried out and a computerised database specific to the exercise was created. From this it is concluded that there are no insuperable problems to the formulation of a disposal route although there is none currently proven. The preferred wasteform would be a glass or synthetic rock. The major complication lies in the fissile nature of plutonium which dictates limits to the package size and places restrictions on the production and disposal routes. Additional work necessary to permit a final decision is listed. (author)

  4. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  5. Current status of waste package designs for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1989-07-01

    Conceptual designs for waste packages containing spent fuel or high-level waste glass have been developed for use in a repository at Yucca Mountain. The basis for these designs reflects the unique nature of the expected service environment associated with disposal in welded tuff in the unsaturated zone. In addition to a set of reference designs, alternative design concepts are being considered that would contain and isolate the waste radionuclides in a more aggressive service environment. Consideration is also being given to the feasibility of a concept known as ''heat tailoring'' that employs the thermal energy released by the wasteforms to enhance and extend the performance of the containers. 5 refs., 3 figs

  6. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  7. Natural analogs for Yucca Mountain

    International Nuclear Information System (INIS)

    Murphy, W.M.

    1995-01-01

    High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece

  8. Assessment of methods for immobilizing reprocessed radioactive waste

    Science.gov (United States)

    Murthy, M. K.; Baranyi, A. D.

    1980-05-01

    Nuclear waste forms presently used for the disposal of high level wastes and other potential waste forms under development were studied. The following waste forms were considered: Borosilicate glass, high silica glass, glassceramics, supercalcine ceramics, synroc ceramics, borosilicate glass beads in a metal matrix, supercalcine and synroc ceramics in a metal matrix and coated ceramics. The best developed wasteform, both in terms of overall product quality and process development, is monolithic borosilicate glass. However, hydrothermal instability is a major concern. Borosilicate glass in metal matrix waste form has better properties than monolithic borosilicate glass waste form. The process was proven on a pilot scale. Hence, it is considered very close to monolithic glass in terms of overall development. The product qualities of the other waste forms are better than borosilicate glass. However, process development for these alternative waste forms is still in a conceptual stage.

  9. Design and performance assessment of radioactive waste forms: what can we learn from natural analogues

    International Nuclear Information System (INIS)

    Petit, J.C.

    1991-01-01

    In this review, we specify the role of natural analogues for the development of solid radioactive waste-forms. Numerous works have been carried out on the major matrices proposed or actually in use for both high-level (glasses, spent fuel, ceramics) and low- or intermediate-level wastes (cement-based materials, bitumens, resins) as well as for metallic containers. We show that some natural, historical or archaeological materials can be considered as good analogues. We suggest that their use has been quite limited in the past for the design of matrices but that both qualitative and quantitative information of great interest (and in some cases unique) have been already inferred for assessing their long-term performance. 14 figs., 1 tab., 72 refs

  10. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  11. Pilot scale vitrification studies on hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Bennert, D.M.; Overcamp, T.J.; Compton, K.L.; Sargent, T.N. Jr.; Resce, J.L.

    1993-01-01

    Over the past 30 years, the Department of Energy has committed extensive resources to the development of technologies suitable for the stabilization of high level radioactive waste. The objective of this work is to produce a vitreous wasteform capable of retaining the radioactive fractions in a leach resistant form. In an effort to further the development of technologies based within the DOE Complex, the DOE is making efforts to promote technical transfer initiatives that will bring these technologies to the private sector. To this end, the Department of Energy through the Savannah River Site is working with Clemson University's Environmental Systems Engineering Department to establish a laboratory dedicated to vitrification research. The laboratory is part of a cooperative effort between Westinghouse Savannah River Company, Clemson University, and their industrial partners EnVitCo, Inc., and Stir Melter, Inc

  12. Information on Coordinated Research Project: Behaviours of Cementitious Materials in Multipurpose Packaging for Transportation, Long Term Storage and Disposal

    International Nuclear Information System (INIS)

    Meyer, W.

    2013-01-01

    cement matrix binds poorly with the organic phase. The absorption of organics such as TBP and oil onto Nochar polymer systems has been demonstrated to be successful with no loss in activity. It has also been demonstrated that after the encapsulation of the polymer (absorbed with organics such as oil or TBP) into the selected cementitious grout, no leaching of radionuclides were observed. The tensile and compression strength of this matrix was improved with the addition of PVA fibres. In this research the effectiveness of chemically bonded phosphate ceramic (CBPCs) stabilisation technologies as alternatives to conventional waste immobilisation technologies was investigated for the immobilisation of 129 I (using 131 I as a surrogate) and 14 C. Performance tests (sorptivity, porosity and leaching tests) were used to determine waste-form durability. The results of this research indicate that the properties of the CBPC waste-forms when compared to the current cement matrix used at Vaalputs are superior. Excellent retainment of iodine in the phosphate ceramic matrices was observed using the ANSI/ANS 16.1 leaching procedure tests, yielding an effective diffusivity rate as low as 10 - 15 cm 2 s -1 . The excellent performance results of the newly created Zn-P ceramic as an anionic radionuclide immobilisation waste-form implies that this waste-form may also be considered for other 'problematic' radionuclides such as 99 Tc, 14 C and 36 Cl. (author)

  13. Uranium soils integrated demonstration: Soil characterization project report

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  14. Alternative waste form development - low-temperature pyrolytic carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Although several chemical vapor deposition (CVD) - coated waste forms have been successfully produced, some major disadvantages associated with the high-temperature fluidized-bed CVD coating process exist. To overcome these disadvantages, the Pacific Northwest Laboratory has initiated the development of a pyrolytic carbon CVD coating system to coat large waste-form particles at temperatures ranging from 400 to 500/degree/C. This relatively simple system has been used to coat kilogram quantities of simulated waste-glass marbles. Further development of this system could result in a viable process to coat bulk quantities of both glass and ceramic waste forms. This paper discusses various aspects of the development work, including coating techniques, parametric study, and coater equipment. 10 refs

  15. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  16. Large-scale demonstration of waste solidification in saltstone

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Oblath, S.B.; Wilhite, E.L.

    1988-05-01

    The saltstone lysimeters are a large scale demonstration of a disposal concept for decontaminated salt solution resulting from in-tank processing of defense waste. The lysimeter experiment has provided data on the leaching behavior of large saltstone monoliths under realistic field conditions. The results also will be used to compare the effect of capping the wasteform on contaminant release. Biweekly monitoring of sump leachate from three lysimeters has continued on a routine basis for approximately 3 years. An uncapped lysimeter has shown the highest levels of nitrate and 99 Tc release. Gravel and clay capped lysimeters have shown levels equivalent to or slightly higher than background rainwater levels. Mathematical model predictions have been compared to lysimeter results. The models will be applied to predict the impact of saltstone disposal on groundwater quality. 9 refs., 5 figs., 3 tabs

  17. Demonstration Results on the Effects of Mercury Speciation on the Stabilization of Wastes

    International Nuclear Information System (INIS)

    Conley, T.B.; Hulet, G.A.; Morris, M.I.; Osborne-Lee, I.W.

    1999-01-01

    Mercury-contaminated wastes are currently being stored at approximately 19 Department of Energy sites, the volume of which is estimated to be about 16m(sup)3. These wastes exist in various forms including soil, sludges, and debris, which present a particular challenge regarding possible mercury stabilization methods. This reports provides the test results of three vendors, Allied Technology Group, IT Corporation, and Nuclear Fuel Services, Inc., that demonstrate the effects of mercury speciation on the stabilization of the mercury wastes. Mercury present in concentrations that exceed 260 parts per million must be removed by extraction methods and requires stabilization to ensure that the final wasteforms leach less than 0.2mg/L of mercury by the Toxicity Characteristic Leaching Procedure or 0.025 mg/L using the Universal Treatment Standard

  18. A survey of possible microbiological effects within shallow land disposal sites designed to accept intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Rushbrook, P.E.

    1985-01-01

    A literature survey was conducted to assess the current knowledge on microbial activity that may occur within a shallow intermediate-level waste disposal trench. Relatively little published information exists that is directly based on intermediate radioactive wasteforms, but relevant work was identified from other scientific fields. The likely environmental conditions within a disposal trench and their influence on microbial activity are considered. Also discussed are specific microbiological effects on waste packagings, backfill materials and concrete structures. Overall, it is unlikely that there will be extensive activity within the trenches and little evidence exists to suggest microbiologically-enhanced radionuclide migration,. The quantitative effect of microbial action is not possible to ascertain from the literature, but the general impression is that it will be low. Physical or chemical degradation processes are likely to predominate over those of a microbiological nature. Areas where further research would be valuable are also recommended. (author)

  19. Vitrification development for mixed wastes

    International Nuclear Information System (INIS)

    Merrill, R.; Whittington, K.; Peters, R.

    1995-02-01

    Vitrification is a promising approach to waste-form immobilization. It destroys hazardous organic compounds and produces a durable and highly stable glass. Vitrification tests were performed on three surrogate wastes during fiscal year 1994; 183-H Solar Evaporation Basin waste from Hanford, bottom ash from the Oak Ridge TSCA incinerator, and saltcrete from Rocky Flats. Preliminary glass development involved melting trials followed by visual homogeneity examination, short-duration leach tests on glass specimens, and long-term leach tests on selected glasses. Viscosity and electrical conductivity measurements were taken for the most durable glass formulations. Results for the saltcrete are presented in this paper and demonstrate the applicability of vitrification technology to this mixed waste

  20. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  1. Low Temperature Waste Immobilization Testing Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  2. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  3. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    Science.gov (United States)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  4. Geopolymers and their potential applications in the nuclear waste management field. A bibliographical study

    International Nuclear Information System (INIS)

    Cantarel, Vincent; Motooka, Takafumi; Yamagishi, Isao

    2017-06-01

    After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the wasteform is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments. (author)

  5. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC

  6. Selection of appropriate conditioning matrices for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Vance, E.R.

    2002-01-01

    The selection of appropriate solid conditioning matrices or wasteforms for the safe disposal of radioactive waste is dictated by many factors. The overriding issue is that the matrix incorporating the radionuclides, together with a set of engineered barriers in a near-surface or deep geological repository, should prevent significant groundwater transport of radionuclides to the biosphere. For high-level waste (HLW) from nuclear fuel reprocessing, the favored matrices are glasses, ceramics and glass-ceramics. Borosilicate glasses are presently being used in some countries, but there are strong scientific arguments why ceramics based on assemblages of natural minerals are advantageous for HLW. Much research has been carried out in the last 40 years around the world, and different matrices are more suitable than others for a given waste composition. However a major stumbling block for HLW immobilisation is the mall number of approved geological repositories for such matrices. The most appropriate matrices for Intermediate and low-level wastes are contentious and the selection criteria are not very well defined. The candidate matrices for these latter wastes are cements, bitumen, geopolymers, glasses, glass-ceramics and ceramics. After discussing the pros and cons of various candidate matrices for given kinds of radioactive wastes, the SYNROC research program at ANSTO will be briefly surveyed. Some of the potential applications of this work using a variety of SYNROC derivatives will be given. Finally the basic research program at ANSTO on radioactive waste immobilisation will be summarised. This comprises mainly work on solid state chemistry to understand ionic valences and co-ordinations for the chemical design of wasteforms, aqueous durability to study the pH and temperature dependence of solid-water reactions, radiation damage effects on structure and solid-water reactions. (Author)

  7. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  8. Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5(SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification

    International Nuclear Information System (INIS)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun

    2012-01-01

    Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of Fe 2 O 3 into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP(Fe=0.1). The experimental results indicated that the addition of Fe 2 O 3 increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing B 2 O 3 into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3 - 4 g of wasteform for final disposal. The final volume would be about 3 - 4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

  9. WIPP [Waste Isolation Pilot Plant]/SRL in situ tests: Part 2, Pictorial history of MIIT [Materials Interface Interactions Tests] and final MIIT matrices, assemblies, and sample listings

    International Nuclear Information System (INIS)

    Wicks, G.G.; Weinle, M.E.; Molecke, M.A.

    1987-01-01

    In situ testing of Savannah River Plant [SRP] waste glass is an important component in ensuring technical and public confidence in the safety and effective performance of the wasteforms. Savannah River Laboratory [SRL] is currently involved in joint programs involving field testing of SRP waste in Sweden, Belgium, and the United Kingdom. Most recently, this in situ effort has been expanded to include the first field tests to be conducted in the United States, involving burial of a variety of simulated nuclear waste systems. This new effort, called the Materials Interface Interactions Tests or MIIT, is a program jointly conducted by Sandia National Laboratory/Waste Isolation Pilot Plant [WIPP] and SRL. Over 1800 samples, supplied by the United States, France, West Germany, Belgium, Canada, Japan, and the United Kingdom, were buried approximately 650m below the earth's surface in the salt geology at WIPP, near Carlsbad, New Mexico. The MIIT program is one of the largest cooperative efforts ever undertaken in the waste management field; the data produced from these tests are designed to benefit a wide cross-section of the waste management community. An earlier document provided an overview of the WIPP MIIT program and described its place in the waste glass assessment program at Savannah River. This document represents the second in this series and its objectives include: (1) providing a pictorial history of assembly and installation of wasteforms, metals, and geologic samples in WIPP; (2) providing 'finalized and completed' sample matrices for the entire 7-part MIIT program; (3) documenting final sample assemblies by the use of schematic drawings, including each sample, its orientation, and its environment; and (4) providing a complete listing of all samples and the means for managing analyses and resulting data

  10. Acceptance issues for large items and difficult waste

    International Nuclear Information System (INIS)

    Palmer, J.; Lock, Peter

    2002-01-01

    Peter Lock described some particular cases which had given rise to difficult acceptance issues at NIREX, ranging from large size items to the impacts of chemicals used during decontamination on the mobility of radionuclides in a disposal facility: The UK strategy for intermediate level and certain low level radioactive waste disposal is based on production of cementitious waste-forms packaged in a standard range of containers as follows: 500 litre Drum - the normal container for most operational ILW (0.8 m diameter x 1.2 m high); 3 m"3 Box - a larger container for solid wastes (1.72 m x 1.72 m plan x 1.2 m high); 3 m"3 Drum - a larger container for in-drum mixing and immobilisation of sludge waste-forms (1.72 m diameter x 1.2 m high); 4 m Box - for large items of waste, especially from decommissioning (4.0 m x 2.4 m plan x 2.2 m high); 2 m LLW Box - for higher-density wastes (2.0 m x 2.4 m plan x 2.2 m high). In addition the majority of LLW is packaged by supercompaction followed by grouting in modified ISO freight containers (6 m x 2.5 m x 2.5 m). Some wastes do not fit easily into this strategy. These wastes include: very large items, (too big for the 4 m box) which, if dealt with whole, pose transport and disposal problems. These items are discussed further in Section 2; waste whose characteristics make packaging difficult. Such wastes are described in more detail in Section 3

  11. Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal.

    Science.gov (United States)

    Liao, Chang-Zhong; Liu, Chengshuai; Su, Minhua; Shih, Kaimin

    2017-08-21

    Zirconolite-based glass-ceramic is considered a promising wasteform for conditioning minor actinide-rich nuclear wastes. Recent studies on this wasteform have sought to enhance the partitioning ratio (PR) of minor actinides in zirconolite crystal. To optimize the PR in the SiO 2 -Al 2 O 3 -CaO-TiO 2 -ZrO 2 system, a novel conceptual approach, which can be derived from the chemical composition and quantity of zirconolite crystal in glass-ceramic, was introduced based on the results of Rietveld quantitative X-ray diffraction analysis and transmission electron microscopy energy dispersive X-ray spectroscopy. To verify this new conceptual approach, the influences of the crystallization temperature, the concentration of additives, and ionic radii on the PR of various surrogates (Ce, Nd, Gd, and Yb) in zirconolite were examined. The results reveal that the PR of Nd 3+ in zirconolite can be as high as 41%, but it decreases as the crystallization temperature increases. The quantities of all phases (including crystalline and amorphous) remained nearly constant when increasing the loading of Nd 2 O 3 in glass-ceramic products crystallized at 1050 °C for 2 h. Correspondingly, the PR of Nd 3+ decreases in a linear fashion with the loading contents of Nd 2 O 3 . The radius of ions also has a great influence on the PR, and an increase in the ionic radius leads to a decrease in the PR. This new approach will be an important tool to facilitate the exploration of a glass-ceramic matrix for the disposal of minor actinide-rich nuclear wastes.

  12. Accelerated weathering of composite cements used for immobilisation

    International Nuclear Information System (INIS)

    Borges, P. H. R.; Milestone, N. B.; Streatfield, R. E.

    2008-01-01

    Trying to estimate the long-term durability of cemented waste-forms is a difficult task as the cement matrix is a reactive medium and interactions can occur with the encapsulated waste as well as with the environment. There are few studies of samples that have been stored under controlled conditions for more than 10-15 years. waste-forms are now being expected to last hundreds of years, much of that likely to be in some form of storage where sample integrity is important. There is also the concern that results from any long-term samples may only be indicative as both formulations and materials change with time. This paper discusses changes in physical properties that occur in composite cements when some of the short-term accelerated procedures employed in construction testing are applied to encapsulating matrices. Changes after increased temperature of curing, wetting/drying and accelerated carbonation are discussed. Many of the encapsulating formulations currently used are composite cements where large replacement levels of OPC with supplementary cementing materials (SCMs) such as PFA or BFS are made, primarily to reduce heat output. Accelerating the exposure conditions, either by increasing temperature or through wetting/drying has the effect of changing the hydration pattern of the composite cement by generating more hydration in the SCMs than would normally occur. The large amount of porosity that occurs because of limited hydration allows intrusion of gases and ready movement of water, so the samples subjected to accelerated testing do not appear as durable as expected if stored at ambient. (authors)

  13. Development of a combined soil-wash/in-furnace vitrification system for soil remediation at DOE sites

    International Nuclear Information System (INIS)

    Pegg, I.L.; Guo, Y.; Lahoda, E.J.; Lai, Shan-Tao; Muller, I.S.; Ruller, J.; Grant, D.C.

    1993-01-01

    This report addresses research and development of technologies for treatment of radioactive and hazardous waste streams at DOE sites. Weldon Spring raffinate sludges were used in a direct vitrification study to investigate their use as fluxing agents in glass formulations when blended with site soil. Storm sewer sediments from the Oak Ridge, TN, Y-12 facility were used for soil washing followed by vitrification of the concentrates. Both waste streams were extensively characterized. Testing showed that both mercury and uranium could be removed from the Y-12 soil by chemical extraction resulting in an 80% volume reduction. Thermal desorption was used on the contaminant-enriched minority fraction to separate the mercury from the uranium. Vitrification tests demonstrated that high waste loading glasses could be produced from the radioactive stream and from the Weldon Spring wastes which showed very good leach resistance, and viscosities and electrical conductivities in the range suitable for joule-heated ceramic melter (JHCM) processing. The conceptual process described combines soil washing, thermal desorption, and vitrification to produce clean soil (about 90% of the input waste stream), non-radioactive mercury, and a glass wasteform; the estimated processing costs for that system are about $260--$400/yd 3 . Results from continuous melter tests performed using Duratek's advanced JHCM (Duramelter) system are also presented. Since life cycle cost estimates are driven largely by volume reduction considerations, the large volume reductions possible with these multi-technology, blended waste stream approaches can produce a more leach resistant wasteform at a lower overall cost than alternative technologies such as cementation

  14. Cementitious materials for radioactive waste management within IAEA coordinated research project - 59021

    International Nuclear Information System (INIS)

    Drace, Zoran; Ojovan, Michael I.

    2012-01-01

    The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, waste-forms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and non-destructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements;and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious

  15. Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}(SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of Fe{sub 2}O{sub 3} into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP(Fe=0.1). The experimental results indicated that the addition of Fe{sub 2}O{sub 3} increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing B{sub 2}O{sub 3} into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3 - 4 g of wasteform for final disposal. The final volume would be about 3 - 4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

  16. Chemical aspects of actinides in the geosphere: towards a rational nuclear materials management

    International Nuclear Information System (INIS)

    Allen, P; Sylwester, E

    2001-01-01

    A complete understanding of actinide interactions in the geosphere is paramount for developing a rational Nuclear and Environmental Materials Management Policy. One of the key challenges towards understanding the fate and transport of actinides is determining their speciation (i.e., oxidation state and structure). Since an element's speciation directly dictates physical properties such as toxicity and solubility, this information is critical for evaluating and controlling the evolution of an actinide element through the environment. Specific areas within nuclear and environmental management programs where speciation is important are (1) waste processing and separations; (2) wasteform materials for long-term disposition; and (3) aqueous geochemistry. The goal of this project was to develop Actinide X-ray Absorption Spectroscopy ( U S ) as a core capability at LLNL and integrate it with existing facilities, providing a multi-technique approach to actinide speciation. XAS is an element-specific structural probe which determines the oxidation state and structure for most atoms. XAS can be more incisive than other spectroscopies because it originates from an atomic process and the information is always attainable, regardless of an element's speciation. Despite the utility, XAS is relatively complex due to the need for synchrotron radiation and significant expertise with data acquisition and analysis. The coupling of these technical hurdles with the safe handling of actinides at a general user synchrotron facility such as the Stanford Synchrotron Radiation Facility (SSRL) make such experiments even more difficult. As a result, XAS has been underutilized by programs that could benefit by its application. We achieved our project goals by implementing key state-of-the-art Actinide XAS instrumentation at SSRL (Ge detector and remote positioning equipment), and by determining the chemical speciation of actinides (Th, U, and Np) in aqueous solutions, wasteform cements, and

  17. Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste

    International Nuclear Information System (INIS)

    Esh, D.W.; Ridge, A.C.; Thaggard, M.

    2006-01-01

    drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)

  18. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  19. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  20. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  1. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  2. CEA - Nuclear Energy Division. Report on Sustainable Radioactive Waste Management

    International Nuclear Information System (INIS)

    2012-12-01

    The Sustainable Radioactive Waste Management Act of June 28, 2006, specified clear guidelines for spent nuclear fuel management. It states two complementary principles: - The policy of treating and recycling spent nuclear fuel is valid for reducing the quantity and toxicity of suitably packaged ultimate radioactive waste-forms. - The reference process for high-activity and long-lived ultimate waste is deep geological disposal. The report prepared by the CEA in response to these requirements was completed after several years of work in cooperation with the other French actors in this field (EDF, AREVA) and with contribution of the CNRS and Andra. It addresses the following topics in several volumes: n guidelines for research on 4. generation systems, and a description of the various systems examined; - the results of research coordinated by the CEA on partitioning and transmutation of long-lived radioactive elements; - choices proposed for the Astrid integrated technology demonstrator - a sodium-cooled fast reactor (SFR) - and a reasonable timetable for its construction; - a review of research conducted around the world on 4. generation systems based on fast neutron reactors (FNRs). The principal results and findings compiled by the CEA from these studies are summarized in this document

  3. Lysimeter study of vegetative uptake from saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.

    1990-06-08

    At the Savannah River Site, liquid, low-level nuclear waste will be disposed of by incorporating the waste in concrete, a wasteform called saltstone. Saltstone monoliths will then be buried in the earth. To study the potential uptake of radionuclides by trees and other plants growing in the soil in the area containing buried saltstone, a lysimeter study has been in progress since 1984. Thirty two lysimeters were designed, constructed, and filled with soil. Saltstone samples, containing the liquid, low-level supernate from the tank 50 in-tank precipitation demonstration, were buried in some of the lysimeters. Other lysimeters, not containing saltstone, were used as controls. Crops, grass, and trees were planted in the lysimeters and sampled periodically to determine radionuclide concentrations. Water samples were also collected from the lysimeter sumps and analyzed for radionuclide content. This report documents the results of vegetative and lysimeter sump water measurements from the beginning of the project in November of 1984 through September of 1989. 6 refs., 22 figs., 6 tabs.

  4. Group 4. Containment

    International Nuclear Information System (INIS)

    McCauley, V.S.; Keiser, J.R.

    1992-01-01

    This paper summarizes the findings of the Containment Working Group which met at the Workshop on Radioactive, Hazardous, and/or Mixed Waste Sludge Management. The Containment Working Group (CWG) examined the problems associated with providing adequate containment of waste forms from both short- and long-term storage. By its nature, containment encompasses a wide variety of waste forms, storage conditions, container types, containment schemes, and handling activities. A containment system can be anything from a 55-gal drum to a 100-ft-long underground vault. Because of the diverse nature of containment systems, the CWG chose to focus its limited time on broad issues that are applicable to the design of any containment system, rather than attempting to address problems specific to a particular containment system or waste-form type. Four major issues were identified by the CWG. They relate to: (1) service conditions and required system performance; (2) ultimate disposition; (3) cost and schedule; and (4) acceptance criteria, including quality assurance/quality control (QA/QC) concerns. All of the issues raised by the group are similar in that they all help to define containment system requirements

  5. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  6. Preliminary formulation studies for a ''hydroceramic'' alternative waste form for INEEL HLW

    International Nuclear Information System (INIS)

    Siemer, D.D.; Gougar, M.L.D.; Grutzeck, M.W.; Scheetz, B.E.

    1999-01-01

    Herein the authors discuss scoping studies performed to develop an efficient way to prepare the Idaho National Engineering and Environmental Laboratory (INEEL) nominally high-level (∼40 W/m 3 ) calcined radioactive waste (HLW) and liquid metal (sodium) reactor coolants for disposal. The investigated approach implements the chemistry of Hanford's cancrinite-making clay reaction process via Oak Ridge National Laboratory's (ORNL's) formed-under-elevated-temperatures-and-pressures concrete monolith-making technology to make hydroceramics (HCs). The HCs differ from conventional Portland cement/blast furnace slag (PC/BFS) grouts in that the binder minerals formed during the curing process are hydrated alkali-aluminosilicates (feldspathoids-sodalites, cancrinites, and zeolites) rather than hydrated calcium silicates (CSH). This is desirable because (a) US defense-type radioactive wastes generally contain much more sodium and aluminum than calcium; (b) sodalites/cancrinites do a much better job of retaining the anionic components of real radioactive waste (e.g., nitrate) than do calcium silicates; (c) natural feldspathoids form from glasses (and therefore are more stable) in that region of the United States where a repository for this sort of waste could be sited; and (d) if eventually deemed necessary, feldspathoid-type concrete wasteforms could be hot-isostatically-pressed into even more durable materials without removing them from their original canisters

  7. Radiolytic gas production during long-term storage of nuclear wastes

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-01-01

    Gases produced by in situ radiolysis of sealed solidified nuclear wastes during long-term storage could conceivably breach containment. Therefore, candidate waste forms (matrices containing simulated nuclear wastes) were irradiated with 60 Co-γ and 244 Cm-α radiation. These forms were: cement containing simulated fission product sludges, vermiculite containing organic liquids, and cellulosics contaminated with α-emitting transuranic isotopes. For cement waste forms exposed to γ-radiolysis, an equilibrium hydrogen pressure was reached that was dose rate dependent. For α-radiolysis, equilibrium was not reached. With organic wastes (n-octane on vermiculite), H 2 and traces of CO 2 and CH 4 were produced, and O 2 was consumed with both radiations. Only energy absorbed by the organic material was effective in producing H 2 . At low dose rates with both α- and γ-irradiations, G(H 2 ) was 4.5 and G(-O 2 ) was 5.0. Also, equilibrium was not obtained. For cellulosic material, H 2 , CO 2 , and CO were produced in the ratio of 1.0:0.7:0.3, and O 2 was consumed. With α-radiolysis, G(gas) was dose dependent; measured values ranged from 2.2 to 0.6 as the dose increased. Implications of all these results on long-term storage of radioactive waste are discussed. Some data from an actual nuclear wasteform are also presented

  8. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Van Luik, A.E.; Williford, R.E.; Doctor, P.G.; Pacific Northwest Lab., Richland, WA; Roy F. Weston, Inc./Rogers and Assoc. Engineering Corp., Rockville, MD)

    1984-01-01

    Part of a strategy for evaluating the compliance of geologic repositories with Federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilitistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative released from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  9. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  10. Hydrodynamic dispersion in a single fracture: final report on CRNL experiment

    International Nuclear Information System (INIS)

    Lever, D.A.; Evans, G.V.; Novakowski, K.S.; Raven, K.G.

    1988-01-01

    One of the options under consideration for the safe long-term disposal of radioactive waste is deep burial in stable fractured rock formations. The most probable way by which radionuclides from the waste could return to the biosphere is by leaching and dissolution of the waste-form, and then water-borne transport by the ground water. In-situ tracer experiments are an important element in developing an understanding of the physical processes that determine the migration of radionuclides through the rock. Unfortunately, there are few field studies presented in the literature to date, which corroborate existing laboratory studies and provide data for theoretical models of transport through fractured rock. The objective of this study was to design and conduct a tracer experiment in which a single fracture was isolated and tested under advective flow conditions with a conservative tracer. During the summer of 1983 a joint AECL-CEC field test was carried out at the Chalk River test site in Canada. Two experiments were conducted, using 82 Br as the conservative tracer, on a discrete fracture identified by hydraulic interference tests at approximately 100 m depth in moderately-fractured monzonitic gneiss. The selected fracture intersects two boreholes in a relatively horizontal attitude over a distance of about 10 m

  11. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  12. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  13. Grout for closure of waste-disposal vaults at the US DOE Hanford Site

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Ernzen, J.J.; McDaniel, E.W.; Voogd, J.

    1991-01-01

    For permanent disposal of radioactive wastes from reprocessing, the US Department of Energy (DOE) has chosen to grout wastes in concrete vaults within a subsurface multiple-barrier system. The subject of this research is the non-radioactive, or ''cold cap'' grout, which fills the upper 120 cm of these vaults, and provides support for overlying barriers. Because of the heat evolved by the wasteform, this void-filling grout must perform at temperatures higher than those of usual large-volume grouting operations. It must have: low potential for thermal expansion and heat retention; a low modulus to withstand thermal and mechanical stresses without cracking; strength adequate to support overlying barrier-system components; and minimal potential for shrinkage. In addition, it must be pumpable, self-leveling, and non-segregating. Materials for formulation included a large percentage of Class F fly ash, and coarsely ground oil-well cement. Grout development included chemical and physical characterization, and physical and thermal modeling

  14. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  15. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  16. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  17. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Doctor, P.G.; Williford, R.E.; Van Luik, A.E.

    1984-11-01

    Part of a strategy for evaluating the compliance of geologic repositories with federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative releases from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  18. Special waste form lysimeters-arid. Annual report, 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1985-09-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes. 2 refs

  19. Los Alamos National Laboratory simulated sludge vitrification demonstration

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. This project plans to demonstrate vitrification of simulated wastes that are considered representatives of wastes found throughout the DOE complex. For the most part, the primary constituent of the wastes is flocculation aids, such as Fe(OH) 3 , and natural filter aids, such as diatomaceous earth and perlite. The filter aids consist mostly of silica, which serves as an excellent glass former; hence, the reason why vitrification is such a viable option. LANL is currently operating a liquid waste processing plant which produces an inorganic sludge similar to other waste water treatment streams. Since this waste has characteristics that make it suitable for vitrification and the likelihood of success is high, it shall be tested at CU. The objective of this task is to characterize the process behavior and glass product formed upon vitrification of simulated LANL sludge. The off-gases generated from the production runs will also be characterized to help further develop vitrification processes for mixed and low level wastes

  20. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  1. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  2. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  3. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  4. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  5. The Product Composition Control System at Savannah River: The statistical process control algorithm

    International Nuclear Information System (INIS)

    Brown, K.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, South Carolina, will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. (In a separate facility, the soluble salts are disposed of as low-level waste in a mixture of cement, slag, and flyash.) In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass tit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The repository requires that the glass wasteform be resistant to leaching by underground water that might contact it. In addition, there are processing constraints on melt viscosity, liquidus temperature, and waste solubility

  6. Research needs in cement-based waste forms

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Spence, R.D.; Tallent, O.K.

    1990-01-01

    Cement-based waste forms are one of the most widely used waste disposal options, yet definitive knowledge of the fate of the waste species inside the waste form is lacking. A fundamental understanding of the chemistry and microstructure of the waste forms would lead to a better understanding of the mass transfer of the waste species, more confidence in predicting and extrapolating waste form performance, and design of better waste forms. Better and cheaper leach tests would lead to quicker and more cost effective screening of waste form alternatives. In addition, assessment of durability may be important to predicting waste form performance in the field. It should be noted that the research needs discussed in this report are from the perspective of investigators working in applied waste management areas, while the proposed investigations are fundamental or basic. Details as to experimental methods and tools to be used in achieving the objectives of the proposed are research beyond the scope of this paper and are better filled in by others. In broad terms, the research topics discussed are correlation of cement-based waste form physical properties to performance, waste-form fundamental chemistry and microstructure, and product performance testing

  7. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen

    International Nuclear Information System (INIS)

    Libert, M.F.; Walczak, I.

    2000-01-01

    Bitumen is employed as an embedding matrix for low and medium level radioactive wastes. An high impermeability and a great resistance against most of chemicals are two of main bitumen properties. These characteristics of bitumen confinement properties may be modified under environmental parameters during intermediate storage or deep repository such as radiations or the presence of water. The radio-oxidation induces an increase of the quantity of leached organic matter. The evolution of the soluble organic species release seems to be linear with the irradiation dose, as soon as the dose is higher than 20 kGy, and seems to be no dependant of the dose rate. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. An increase of the quantity of leached organic matter is also observed in presence of alkaline solutions. Identified molecules, by GC/MS analysis, are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. (authors)

  8. Properties of slag concrete for low-level waste containment

    International Nuclear Information System (INIS)

    Langton, C.A.; Wong, P.B.

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 x 100 x 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10 -7 cm/sec; and effective nitrate, chromium and technetium diffusivities of 10 -8 , 10 -12 and 10 -12 cm 2 /sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr +6 to Cr +3 and Tc +7 to Tc +4 and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site

  9. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  10. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    International Nuclear Information System (INIS)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-01-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF 3 medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  11. Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-01-01

    The nation's first, and the world's largest, facility to immobilize high-level nuclear waste in durable borosilicate glass has started operation at the Savannah River Site (SRS) in Aiken, South Carolina. The product specifications on the glass wasteform produced in the Defense Waste Processing Facility (DWPF) required extensive characterization of the glass product before actual production began and for continued characterization during production. To aid in this characterization, a glass durability (leach) test was needed that was easily reproducible, could be performed remotely on highly radioactive samples, and could yield results rapidly. Several standard leach tests were examined with a variety of test configurations. Using existing tests as a starting point, the DWPF Product Consistency Test (PCT was developed in which crushed glass samples are exposed to 90 ± 2 degree C deionized water for seven days. Based on extensive testing, including a seven-laboratory round robin and confirmatory testing with radioactive samples, the PCT is very reproducible, yields reliable results rapidly, and can be performed in shielded cell facilities with radioactive samples

  12. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-18

    Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HL W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.

  13. Alternative strategies to reduce cost and waste volume in HEPA filtration using metallic filter media - 59348

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The disposal costs of contaminated HEPA and THE filter elements have been proved to be disproportionately high compared with the cost of the elements themselves. Work published elsewhere (Moore, et el 1992; Bergman et al 1997) suggests that the cost of use of traditional, panel type, glass fibre HEPA filtration trains to the DOE was, during that period, $29.5 million, based on a five year life cycle, and including installation, testing, removal and disposal life cycle costs being based on estimates dating from 1987-1990. Within that cost estimate, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Clearly, if the $4, 450 component could be reduced, tremendous saving could ensue, in addition to the reduction of the legacy burden of waste volume. This issue exists for operators in both the US and in Europe. If HEPA filters could be cleaned to a condition where they could either be re-used or decontaminated to the extent that they could be stored as a lower cost wasteform or if HEPA/THE filter elements were available without any organic content likely to give rise to flammable or explosive decomposition gases during long term storage this would also reduce the costs and monitoring necessary in storage. (author)

  14. The product composition control system at Savannah River: Statistical process control algorithm

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in an geologic repository. Described here is the Product Composition Control System (PCCS) process control algorithm. The PCCS is the amalgam of computer hardware and software intended to ensure that the melt will be processable and that the glass wasteform produced will be acceptable. Within PCCS, the Statistical Process Control (SPC) Algorithm is the means which guides control of the DWPF process. The SPC Algorithm is necessary to control the multivariate DWPF process in the face of uncertainties arising from the process, its feeds, sampling, modeling, and measurement systems. This article describes the functions performed by the SPC Algorithm, characterization of DWPF prior to making product, accounting for prediction uncertainty, accounting for measurement uncertainty, monitoring a SME batch, incorporating process information, and advantages of the algorithm. 9 refs., 6 figs

  15. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    International Nuclear Information System (INIS)

    Blundy, R.F.; Zionkowki, P.G.

    1997-01-01

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy's (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment

  16. Performance of surrogate high-level waste glass in the presence of iron corrosion products

    International Nuclear Information System (INIS)

    Jain, V.; Pan, Y.M.

    2004-01-01

    Radionuclide release from a waste package (WP) is a series of processes that depend upon the composition and flux of groundwater contacting the waste-forms (WF); the corrosion rate of WP containers and internal components made of Alloy 22, 316L SS, 304L SS and carbon steel; the dissolution rate of high-level radioactive waste (HLW) glass and spent nuclear fuel (SNF); the solubility of radionuclides; and the retention of radionuclides in secondary mineral phases. In this study, forward reaction rate measurements were made on a surrogate HLW glass in the presence of FeCl 3 species. Results indicate that the forward reaction rate increases with an increase in the FeCl 3 concentration. The addition of FeCl 3 causes the drop in the pH due to hydrolysis of Fe 3+ ions in the solution. Results based on the radionuclide concentrations and dissolution rates for HLW glass and SNF indicate that the contribution from glass is similar to SNF at 75 deg C. (authors)

  17. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  18. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  19. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  20. Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling

    International Nuclear Information System (INIS)

    Crovisier, J.-L.; Honnorez, J.; Fritz, B.; Petit, J.-C.

    1992-01-01

    Subglacial hyaloclastites from Iceland with ages ranging from 2 ka to 2.2 Ma have been studied from a mineralogical and geochemical standpoint. The chemical composition of palagonite (alteration crust formed on the surface of the glass) is almost identical with that of the clayey material filling the intergranular spaces of the rock. The clayey material is made up of two particle populations: the first is Si-, Mg-and Ca-rich with a smectite structure, while the second is amorphous, Fe-, Ti- and Al-rich, and has a smectite-like morphology. It is suggested that these two types of particles can be formed simultaneously, in the same solution, such that it is not necessary to explain their existence by local or temporary equilibria. The mineralogical sequences observed in natural samples were reproduced using the geochemical computer code DISSOL. The geochemical mass balances calculated with DISSOL also fit quite well with those calculated from Icelandic samples, illustrating the predictive capability of such a calculation code and give us confidence in applying a similar approach to nuclear waste-form glass problems. (author)

  1. Grout to meet physical and chemical requirements for closure at Hanford grout vaults. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    The US Army Engineer Waterways Experiment Station (WES) developed a grout based on portland cement, Class F fly ash, and bentonite clay, for the Hanford Grout Vault Program. The purpose of this grout was to fill the void between a wasteform containing 106-AN waste and the vault cover blocks. Following a successful grout development program, heat output, volume change, and compressive strength were monitored with time in simulated repository conditions and in full-depth physical models. This research indicated that the cold-cap grout could achieve and maintain adequate volume stability and other required physical properties in the internal environment of a sealed vault. To determine if contact with 106-AN liquid waste would cause chemical deterioration of the cold-cap grout, cured specimens were immersed in simulated waste. Over a period of 21 days at 150 F, specimens increased in mass without significant changes in volume. X-ray diffraction of reacted specimens revealed crystallization of sodium aluminum silicate hydrate. Scanning electron microscopy used with X-ray fluorescence showed that clusters if this phase had formed in grout pores, increasing grout density and decreasing its effective porosity. Physical and chemical tests collectively indicate a sealing component. However, the Hanford Grout Vault Program was cancelled before completion of this research. This report summarizes close-out Waterways Experiment Station when the Program was cancelled

  2. Grout for closure of the demonstration vault at the US DOE Hanford Facility. Final report

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Ernzen, J.J.

    1992-08-01

    The Waterways Experiment Station (WES) developed a grout to be used as a cold- (nonradioactive) cap or void-fill grout between the solidified low-level waste and the cover blocks of a demonstration vault for disposal of phosphate-sulfate waste (PSW) at the US Department of Energy (DOE) Hanford Facility. The project consisted of formulation and evaluation of candidate grouts and selection of the best candidate grout, followed by a physical scale-model test to verify grout performance under project-specific conditions. Further, the project provided data to verify numerical models (accomplished elsewhere) of stresses and isotherms inside the Hanford demonstration vault. Evaluation of unhardened grout included obtaining data on segregation, bleeding, flow, and working time. For hardened grout, strength, volume stability, temperature rise, and chemical compatibility with surrogate wasteform grout were examined. The grout was formulated to accommodate unique environmental boundary conditions (vault temperature = 45 C) and exacting regulatory requirements (mandating less than 0.1% shrinkage with no expansion and no bleeding); and to remain pumpable for a minimum of 2 hr. A grout consisting of API Class H oil-well cement, an ASTM C 618 Class F fly ash, sodium bentonite clay, and a natural sand from the Hanford area met performance requirements in laboratory studies. It is recommended for use in the DOE Hanford demonstration PSW vault

  3. Proceedings of the symposium on Scientific Basis for Nuclear Waste Management XXX

    International Nuclear Information System (INIS)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    2007-01-01

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complex issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation

  4. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  5. In situ vitrification demonstration for the stabilization of buried wastes at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jacobs, G.K.; Spalding, B.P.; Carter, J.G.; Koegler, S.S.

    1987-01-01

    A demonstration of In Situ Vitrification (ISV) technology for the stabilization of radioactively contaminated soil sites at the Oak Ridge National Laboratory (ORNL) was successfully completed during July 1987. This demonstration is the first application of the ISV process not performed at the Hanford Site, where the technology was developed and patented by Pacific Northwest Laboratory (PNL). The joint ORNL-PNL pilot-scale demonstration was performed on a 3/8-scale trench (2 m deep x 1 m wide x 10 m long) that was constructed to simulate a typical seepage trench used for liquid low-level radioactive waste disposal at ORNL from 1951 to 1966. In the ISV process, electrodes are inserted around a volume of contaminated soil, power is applied to the electrodes, and the entire mass is melted from the surface of the soil down through the contaminated zone, thus making a glassy-to-microcrystalline waste form that incorporates the contaminants. Gases produced during the melting are collected, treated, monitored, and released through an off-gas process trailer. In the ORNL demonstration, a 25-t mass of melted rock approximately 1.2 m thick x 2.1 m wide x 4.9 m long was formed during 110 h of operation that consumed approximately 29 MWh of power. Data obtained on the operational performance of the test and waste-form durability will be used to assess the feasibility of applying the ISV technology to an actual waste trench

  6. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Simonson, S.A.; Suen, C.J.

    1995-08-01

    Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K d that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K d models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems

  7. Alternative waste form development: low-temperature pyrolytic-carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Large simulted waste-forms can be coated with PyC in screw-agitated coater (SAC) at low temperatures. Higher coating rates are obtained using Ni(CO) 4 as a catalyst rather than Fe(CO) 5 or Co(AcAc) 2 ; coating quality and deposition rates are improved when C 2 H 2 is used as carbon-source gas rather than methane, propane, heptane and toluene; H 2 is a better carrier gas than Ar or N 2 . Improved coating quality and deposition rates are obtained with H 2 ; deposition rates increase with Ni(CO) 4 concentration, C 2 H 2 concentration and reaction temperature. Increasing the Ni(CO) 4 and C 2 H 2 concentrations reduces the quality of the coatings; however, better adhesion of the coating to the substrate is obtained as temperature is increased; highest quality catalyzed PyC coatings have been obtained using 0.001 and 0.01 mole % Ni(CO) 4 , 1.5 to 3.0 mole % C 2 H 2 , and the balance H 2 at 425 and 525 0 C; and deposition rates are higher in the fluidized bed coater than the SAC

  8. Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report

    International Nuclear Information System (INIS)

    Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

    1981-06-01

    The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented

  9. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  10. United Kingdom. Development plan for the eventual closure of the UK Drigg nuclear surface low level waste disposal facility

    International Nuclear Information System (INIS)

    2001-01-01

    The Drigg site, owned and operated by BNFL, is the UK's principal site for the disposal of low level radioactive waste. The site has operated since 1959 and receives wastes from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. The standardised wasteform consists of high force compacted (or non-compactable) waste immobilised within 20 m 3 steel overpack containers by the addition of cementitious grout. Larger items of wastes are grouted directly, in situ in the vault. The disposal trenches have been completed with an interim cap, as will the vaults when filled. It is currently estimated that sufficient capacity remains at Drigg for disposals to continue until at least 2050. Post-operations it is planned that the site will enter a phase including shut down of operational facilities, emplacement of long term site closure features including a final closure cap and then to an institutional management phase. Planning has therefore been carried out as to the strategy for eventual closure of the site. This closure strategy is also underpinned by an engineering evaluation studies programme to develop and evaluate appropriate closure measures including assessment of the long term performance of such measures. This appendix summarizes some of this work

  11. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Schwartz, D.T.

    1998-01-01

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na + and 0.0001 M Cs + , the film intercalates 40% as much Cs + as when loaded from pure 1 M Cs + containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  12. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-01-01

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO 2 ) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO 2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO 2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  13. An assessment of methods for immobilizing reprocessed radioactive waste

    International Nuclear Information System (INIS)

    Murthy, M.K.; Baranyi, A.D.

    1980-05-01

    Nuclear waste forms presently used for the disposal of high-level wastes and other potential waste forms under development were studied using information available in the literature and by visits to the laboratories. The following waste forms were considered: Borosilicate glass, high-silica glass, glassceramics, supercalcine ceramics, synroc ceramics, borosilicate glass beads in a metal matrix, supercalcine and synroc ceramics in a metal matrix and coated ceramics. The following conclusions have been reached: To date the best developed wasteform, both in terms of overall product quality and process development, is monolithic borosilicate glass. However, hydrothermal instability is a major concern. Borosilicate glass in metal matrix waste form has better properties than monolithic borosilicate glass waste form. The process has been proven on a pilot scale. Hence, it is considered very close to monolithic glass in terms of overall development. The product qualities of the other waste forms are better than borosilicate glass. However, process development for these alternative waste forms is still in a conceptual stage. The technological basis for processing ceramic waste forms exists in a well developed state. Nevertheless, adaptation of the technology to continuous hot-cell operation, although feasible, has not been demonstrated. In view of the product potential of ceramic waste forms it is felt that their development should be given emphasis at this time. (auth)

  14. Conceptual process for immobilizing defense high level wastes in SYNROC-D

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    It is believed that the immobilization of defense wastes in SYNROC-D possesses important advantages over an alternative process which involves immobilizing the sludges in borosilicate glass. (1) It is possible to immobilize about 3 times the weight of sludge in a given volume of SYNROC-D as compared to borosilicate glass. The costs of fabrications, transport and ultimate geologic storage are correspondingly reduced; (2) the mineral assemblage of SYNROC-D is vastly more stable in the presence of groundwaters than are borosilicate glasses. The long-lived actinide elements, in particular, are immobilized much more securely in SYNROC-D than in glass; and (3) SYNROC-D is composed of thermodynamically compatible phases which possess crystal structures identical to those of natural minerals which are known to have survived in geological environments at elevated pressures and temperatures for periods of 500 to 2000 million years and to have retained radioactive elements quantitatively for these periods despite strong radiation damage. It is this evidence, provided by nature herself, which can demonstrate to the community that the shorter times required for radwaste immobilization under the much less extreme pressure, temperature conditions present in a suitable geological repository can be successfully achieved. Glass, as a waste-form, is intrinsically incapable of providing this assurance

  15. Regulation of waste packaging in the absence of a repository development programme

    International Nuclear Information System (INIS)

    Bennett, D.; Williams, C.R.

    2000-01-01

    The UK has a wide range of intermediate level wastes stored at a number of locations. There are various projects in place, or envisaged by operators, to retrieve, treat and condition these wastes for interim storage and eventual disposal. Currently UK government policy for the long-term management of intermediate level wastes (ILW) is under review following the rejection, in 1997, of a planning application for the establishment of an underground rock characterisation facility. Consequently there is currently considerable uncertainty on the future fate of these wastes - a position that will not change for several years. The recent loss of a repository development programme and consequent uncertainty on the timing and requirements for long term disposal is causing particular difficulties where operators are looking to make decisions in the short term on conditioned wasteforms. This paper discusses the problems caused by these uncertainties and the steps being taken by the Environment Agency to ensure so far as is practicable, having regard to the requirements for safe long-term storage, that future disposability of wastes is not jeopardised by actions taken in the short term. (author)

  16. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    International Nuclear Information System (INIS)

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, 244 Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined

  17. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  18. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  19. Phenix Power Plant Decommissioning Project. Treatment of the Primary Cold Trap

    International Nuclear Information System (INIS)

    Deluge, M.

    2008-01-01

    Phenix is a sodium-cooled fast neutron reactor located at the CEA's Rhone Valley Center where it was commissioned in 1974. It has an electric power rating of 250 MW and is operated jointly by the CEA and EDF. Its primary role today is to investigate the transmutation of long-lived radioactive waste into shorter-lived wasteform. Its final shutdown is scheduled for the beginning of 2009. In this context the Phenix Power Plant Decommissioning Project was initiated in 2003. It covers the definitive cessation of plant operation and the dismantling (D and D) operations together with the final shutdown preparatory phase. The final shutdown phase includes the operations authorized within the standard operating methodological framework. The dismantling phase also comprises treatment of sodium-bearing waste and dismantling of the nuclear facilities (reactor block, shielded cells, etc.). Treatment of the Phenix primary cold trap is scheduled to begin in 2016. The analysis program includes the following steps: - Accurately determine the contamination in the trap by carrying out gamma spectrometry measurement campaigns from 2007 to 2013 (the remaining difficulty will be to accurately determine the distribution of the contamination). - Validate the safety studies for the ELA facility. This work is currently in progress; ELA will be commissioned following inactive qualification testing. - Proceed with cutting tests on the knit mesh filter, which are scheduled to begin in 2008

  20. First results of in-can microwave processing experiments for radioactive liquid wastes at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. Conductivity cell measurements suggest that the microwave energy heats near the surface of the surrogate over a wide range of temperatures. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 3 figs., 1 tab

  1. Special Waste Form Lysimeters-Arid: annual report 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1986-01-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes

  2. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  3. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  4. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  5. Utilisation of heat and pressure through the whole fuel cycle

    International Nuclear Information System (INIS)

    Eddowes, T.; Moricca, S.; Webb, N.

    2003-01-01

    Full text: The existence of the earth around us is a result of heat and pressure combined to form the very crust we stand on. With such a good model, scientists working throughout the nuclear fuel cycle have used these principles to optimise each particular step. From the fabrication of fuel rods and running of reactors to the final storage of the waste generated; heat and pressure have proved to be vital resources. At ANSTO the concepts of using heat and pressure to consolidate the waste produced for the nuclear fuel cycle have been extensively investigated. Working with collaborators, it has been demonstrated that the intermediate to high level waste can be incorporated into a ceramic or glass-ceramic matrix and immobilised therein, using heat and pressure via the means of a Hot Isostatic Press. This paper touches on how following the simple principles of heat and pressure utilised in the operation of this planet every day, the nuclear fuel cycle can be most efficient. The main focus has been the utilisation of Hot Isostatic Pressing for the production of various durable wasteforms at ANSTO for both Australian and international wastes

  6. Variability Of KD Values In Cementitious Materials And Sediments

    International Nuclear Information System (INIS)

    Almond, P.; Kaplan, D.; Shine, E.

    2012-01-01

    Measured distribution coefficients (K d values) for environmental contaminants provide input data for performance assessments (PA) that evaluate physical and chemical phenomena for release of radionuclides from wasteforms, degradation of engineered components and subsequent transport of radionuclides through environmental media. Research efforts at SRNL to study the effects of formulation and curing variability on the physiochemical properties of the saltstone wasteform produced at the Saltstone Disposal Facility (SDF) are ongoing and provide information for the PA and Saltstone Operations. Furthermore, the range and distribution of plutonium K d values in soils is not known. Knowledge of these parameters is needed to provide guidance for stochastic modeling in the PA. Under the current SRS liquid waste processing system, supernate from F and H Tank Farm tanks is processed to remove actinides and fission products, resulting in a low-curie Decontaminated Salt Solution (DSS). At the Saltstone Production Facility (SPF), DSS is mixed with premix, comprised of blast furnace slag (BFS), Class F fly ash (FA), and portland cement (OPC) to form a grout mixture. The fresh grout is subsequently placed in SDF vaults where it cures through hydration reactions to produce saltstone, a hardened monolithic waste form. Variation in saltstone composition and cure conditions of grout can affect the saltstone's physiochemical properties. Variations in properties may originate from variables in DSS, premix, and water to premix ratio, grout mixing, placing, and curing conditions including time and temperature (Harbour et al. 2007; Harbour et al. 2009). There are no previous studies reported in the literature regarding the range and distribution of K d values in cementitious materials. Presently, the Savannah River Site (SRS) estimate ranges and distributions of K d values based on measurements of K d values made in sandy SRS sediments (Kaplan 2010). The actual cementitious material K d

  7. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text

  8. Fundamental Science-Based Simulation of Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  9. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  10. Pirm wastes: permanent isolation in rock-forming minerals

    International Nuclear Information System (INIS)

    Smyth, J.R.; Vidale, R.J.; Charles, R.W.

    1977-01-01

    The most practical system for permanent isolation of radioactive wastes in granitic and pelitic environments may be one which specifically tailors the waste form to the environment. This is true because if recrystallization of the waste form takes place within the half-lives of the hazardous radionuclides, it is likely to be the rate-controlling step for release of these nuclides to the ground-water system. The object of the proposed waste-form research at Los Alamos Scintific Laboratory (LASL) is to define a phase assemblage which will minimize chemical reaction with natural fluids in a granitic or pelitic environment. All natural granites contain trace amounts of all fission product elements (except Tc) and many contain minor amounts of these elements as major components of certain accessory phases. Observation of the geochemistry of fission-product elements has led to the identification of the natural minerals as target phases for research. A proposal is made to experimentally determine the amounts of fission product elements which can stably be incorporated into the phases listed below and to determine the leachability of the assemblage this produced using fluids typical of the proposed environments at the Nevada Test Site. This approach to waste isolation satisfies the following requirements: (1) It minimizes chemical reaction with the environment (i.e., recrystallization) which is likely to be the rate-controlling step for release of radionuclides to groundwater; (2) Waste loading (hence temperature) can be easily varied by dilution with material mined from the disposal site; (3) No physical container is required; (4) No maintenance is required (permanent); (5) The environment acts as a containment buffer. It is proposed that such wastes be termed PIRM wastes, for Permanent Isolation in Rock-forming Minerals

  11. Release modes and processes relevant to source-term calculations at Yucca Mountain

    International Nuclear Information System (INIS)

    Apted, M.J.

    1994-01-01

    The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers (e.g. man-made materials, such as vitrified waste forms, corrosion-resistant containers), while the far-field includes the natural barriers (e.g. host rock, hydrologic setting). Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power

  12. Development of the DWPF canister temporary shrink-fit seal

    International Nuclear Information System (INIS)

    Kelker, J.W. Jr.

    1986-04-01

    The Defense Waste Processing Facility is being constructed at The Savannah River Plant for the containerization of high-level nuclear waste in a wasteform for eventual permanent disposal. The waste will be incorporated in molten glass and solidified in type 304L stainless steel canisters, 2-feet in diameter x 9-feet 10-inches long, containing a flanged 6-in.-diam pipe fill-nozzle. The canisters have a minimum wall thickness of 3/8 in. Utilizing the heat from the glass filling operation, a shrink-fit seal for a plug in the end of the canister fill nozzle was developed that: will withstand the radioactive environment; will prevent the spread of contamination, and will keep moisture and water from entering the canister during storage and decontamination of the canister by wet-frit blasting to remove smearable and oxide-film fixed radioactive nuclides; is removable and can be replaced by a new oversize plug in the event the seal fails the pressure decay leakage test ( -4 atm cc/sec helium); will keep the final weld closure clean and free of nuclear contamination; will withstand being pressed into the nozzle without exposing external contamination or completely breaking the seal; is reliable; and is easily installed. The seal consists of: a removable sleeve (with a tapered bore) which is shrink-fitted into the nozzle bore during canister fabrication; and a tapered plug which is placed into the sleeved nozzle after the canister is filled with radioactive molten glass. A leak-tight shrink-fit seal is formed between the nozzle, sleeve, and plug upon temperature equilibrium. The temporarily sealed canister is transferred from the Melt cell to the Decon cell, and the surface is decontaminated. Next it is transferred to the Weld/Test cell where the temporary seal is pressed down into the nozzle, revealing a clean cavity where the canister final closure weld is made

  13. Qualification of a Vitrified High Level Waste Product to Support Used Nuclear Fuel Recycling in the US

    International Nuclear Information System (INIS)

    Murray, P.; Bailly, F.; Strachan, D.; Senentz, G.; Veyer, C.

    2009-01-01

    As part of the Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP), AREVA formed the International Nuclear Recycling Alliance (INRA) consisting of recognized world-leading companies in the area of used nuclear fuel (UNF) recycling,. The INRA team, consisting of AREVA, Mitsubishi Heavy Industries (MHI), Japan Nuclear Fuel Ltd (JNFL), Batelle Memorial Institute (BMI), URS Washington Division and Babcock and Wilcox (B and W), prepared a pre-conceptual design for an upgradable engineering-scale recycling plant with a nominal through put of 800 tHM/y. The pre-conceptual design of this leading-edge facility was based upon the extensive experience of the INRA team in recycling plant design and real world 'lessons learned' from actually building, commissioning, and operating recycling facilities in both France and Japan. The conceptual flowsheet, based upon the COEX TM separations process, separates the useful products for recycling into new fuel and sentences all the remaining fission products and minor actinides (MA) to the high level waste, (HLW) for vitrification. The proposed vitrified waste product will be similar to that currently produced in recycling plants in France. This wasteform has been qualified in France by conducting extensive studies and demonstrations. In the US, the qualification of vitrified glass products has been conducted by the US National Laboratories for the Defence Waste Processing Facility (DWPF), the West Valley Demonstration Plant (WVDP), and the Waste Treatment Plant (WTP). The vitrified waste product produced by recycling is sufficiently different from these current waste forms to warrant additional trials and studies. In this paper we review the differences in the vitrified waste forms previously qualified in the US with that produced from recycling of UNF in France. The lessons learned from qualifying a vitrified waste form in Europe is compared to the current US process for vitrified waste qualification including waste

  14. Verification of the integrity of barriers using gas diffusion

    International Nuclear Information System (INIS)

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days

  15. Waste Isolation Pilot Plant (WIPP) research and development program: in situ testing plan, March 1982

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Christensen, C.L.; Hunter, T.O.; Molecke, M.A.; Munson, D.E.

    1982-12-01

    The WIPP in southeast New Mexico is being developed as an R and D facility to demonstrate the safe disposal of radioactive defense wastes in bedded salt. The tests are done first without radioactive materials and then with transuranic (TRU) waste and Defense High-Level Waste (DHLW). The thermal/structural itneraction experiments include (a) geomechanical evaluations of access drifts, vertical shafts, and isothermal TRU disposal rooms during the Site and Preliminary Validation Program, (b) tests that represent the reference DHLW room configuraton (5.5 m x 5.5 m) and areal thermal loading of 12 W/m 2 , (c) an overtest of the DHLW congfiguration heated to about four times the reference thermal loading; (d) geomechanical evaluations of various room widths up to 9.1 m, variable pillar widths, and a long-drift intersection, (e) an 11-m-dia axisymmetric heated pillar test, and (f) miscellaneous tests to determine stress field and clay seam sliding resistance. The plugging and sealing experiments include (a) salt permeability tests, (b) tests to determine effects of size and scale on behavior of plugs and to determine backfill material behavior and emplacement techniques, and (c) a plug test matrix to evaluate candidate sealing materials. Waste package interaction experiments include (a) simulated-waste package tests that use several design options and engineered barrier materials under reference and accelerated DHLW environments, (b) confirmatory brine migration tests, (c) TRU drum durability tests in dry and wet conditions, (d) options for radiation-source tests using cesium capsules, and (e) actual DHLW tests using up to 40 canisters for technical demonstrations and for addressing concerns of wasteform chemistry, leaching, and near-field radionuclide migration

  16. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS/ PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2006-01-01

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns

  17. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  18. Dechlorination/Solidification of LiCl waste by using a synthetic inorganic composite with different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na Young; Cho, In Hak; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of Al{sub 2}O{sub 3} or B{sub 2}O{sub 3} as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

  19. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens; Determination des produits organiques d'alterations chimiques et radiochimiques du bitume. Applications aux enrobes bitumes

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, I

    2000-01-27

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The {mu}-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  20. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.

    Science.gov (United States)

    Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea

    2017-09-20

    Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.

  1. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  2. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens

    International Nuclear Information System (INIS)

    Walczak, I.

    2000-01-01

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The μ-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  3. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens; Determination des produits organiques d'alterations chimiques et radiochimiques du bitume. Applications aux enrobes bitumes

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, I

    2000-01-27

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The {mu}-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  4. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  5. Vitrification of HLLW Surrogate Solutions Containing Sulfate in a Direct-Induction Cold Crucible Melter

    International Nuclear Information System (INIS)

    Tronche, E.; Lacombe, J.; Ledoux, A.; Boen, R.; Ladirat, C.H.

    2009-01-01

    Efforts were made in the People's Republic of China to solidify legacy high level liquid waste (HLLW) by the Liquid-Fed Ceramic Melter process (LFCM) in the 1990's. This process was to be a continuous process with high throughput as in the French Marcoule Vitrification Plant (AVM) or the LFCM. In this context, the CEA (Commissariat a l'Energie Atomique is a French government-funded technological research organization) suggests the Cold Crucible Induction Melter (CCIM) technology that has been developed by the CEA since the 1980's to improve the performance of the vitrification process. In this context a series of vitrification tests has been carried out in a CCIM. CEA and AREVA have designed an integrated platform based on the CCIM technology on a sufficient scale to be used for demonstration programs of the one-step process. In 2003 a test was carried out at Marcoule in southern France on simulated HLLW with high sulfur content. In order to ensure the tests performed at Marcoule were consistent with the Chinese waste-forms, the glass frit was supplied by a Chinese Industry. The CCIM facility is described in detail, including process instrumentation. The test run is also described, including how the solution was directly fed on the surface of the molten glass. A maximum capacity was determined according to the applied process parameters including the high operating temperature. The electrical power supply characteristics are detailed and a glass mass balance is also presented covering more than seven hundred kilograms of glass produced in a sixty-hour test run. (authors)

  6. Radionuclide separations in the nuclear fuel cycle development and application of micro and meso porous inorganic ion-exchangers

    International Nuclear Information System (INIS)

    Griffith, C.S.; Luca, V.

    2006-01-01

    Full text: Full text: From the mining of uranium-containing ores to the reprocessing of spent nuclear fuel, separations technologies play a crucial role in determining the efficiency and viability of the nuclear fuel cycle. With respect to proposed Advanced Nuclear Fuel Cycles (ANFC), the integral role of separations is no different with solvent extraction and pyroelectrometalurgical processing dominating efforts to develop a sustainable and publicly acceptable roadmap for nuclear power in the next 100 years. An often forgotten or overlooked separation technology is ion-exchange, more specifically, inorganic ion-exchangers. This is despite the fact that these materials offer the potential advantages of process simplicity; exceptional selectivity against high background concentrations of competing ions; and the possibility of a simple immobilization route for the separated radionculides. ANSTO's principal interest in inorganic ion-exchange materials in recent years has been the development of an inorganic ion-exchanger for the pretreatment of acidic legacy 9 Mo production waste to simultaneously remove radiogenic cesium and strontium. Radiogenic cesium and strontium comprise the majority of activity in such waste and may offer increased ease in the downstream processing to immobilise this waste in a Synroc wasteform. With the reliance on separations technologies in all current ANFC concepts, and the recent admission of ANSTO to the European Commissions EUROPART project, the development of new inorganic ion-exchangers has also expanded within our group. This presentation will provide a background of the fundamentals of inorganic and composite inorganic-organic ion-exchange materials followed by specific discussion of some selected inorganic and composite ion-exchange materials being developed and studied at ANSTO. The detailed structural and ion-exchange chemistry of these materials will be discussed and note made of how such materials could benefit any of the

  7. Thermal gradient brine inclusion migration in salt study: gas-liquid inclusions, preliminary model

    International Nuclear Information System (INIS)

    Olander, D.R.; Machiels, A.J.

    1979-10-01

    Natural salt deposits contain small cubical inclusions of brine distributed through the salt. Temperature gradients, resulting from storing heat-generating wastes in the salt, can cause the inclusions to move through the salt. Prediction of the rate and amount of brine-inclusion migration is necessary for the evaluation of bedded or domed salts as possible media for waste repositories. Inclusions filled exclusively with liquid migrate up the temperature gradient towards the heat source. The solubility of salt in the brine inclusion increases with temperature. Consequently, salt dissolves into the inclusion across the hot surface and crystallizes out at the cold surface. Diffusion of salt within the liquid phase from the hot to the cold faces causes the inclusions to move in the opposite direction. In so doing, they change shape and eventually become rectangular parallelipipeds with a width (dimension perpendicular to the thermal gradient) much larger than the thickness (dimension in the direction of the thermal gradient). The inclusions may also contain a gas phase predominantly consisting of water vapor. These entities are termed two-phase or gas-liquid inclusions. The two-phase inclusions usually migrate down the temperature gradient away from the heat source remaining more-or-less cubical. A two-phase inclusion also forms when an all-liquid inclusion reaches the waste package; upon opening up at the salt-package interface, the brine partially evaporates and the inclusion reseals with some insoluble gas trapped inside. These gas-liquid inclusions proceed to move down the temperature gradient, in the opposite sense of the all-liquid inclusions. The gas-liquid inclusions phenomenon provides a pathway by which radionuclides leached from the wasteform by the brine can be transported away from the waste package and thus might have greater access to the biosphere

  8. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin A., E-mail: ctayl105@vols.utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Patel, Maulik K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Aguiar, Jeffery A. [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Material Science Center, National Renewable Energy Laboratory, Golden, CO 80220 (United States); Zhang, Yanwen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Crespillo, Miguel L. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Wen, Juan [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Xue, Haizhou [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Wang, Yongqiang [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Weber, William J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-10-15

    Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo α-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd{sub 2}Ti{sub 2}O{sub 7} over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd{sub 2}Ti{sub 2}O{sub 7} implanted with 2 × 10{sup 16} He/cm{sup 2}, even after post-implantation irradiations with 7 MeV Au{sup 3+} at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd{sub 2}Ti{sub 2}O{sub 7} and pristine Gd{sub 2}Ti{sub 2}O{sub 7}, respectively, after implantation of 2 × 10{sup 17} He/cm{sup 2}. The critical He concentration for bubble nucleation in Gd{sub 2}Ti{sub 2}O{sub 7} is estimated to be 6 at.% He. - Highlights: • He bubbles not formed in amorphous Gd{sub 2}Ti{sub 2}O{sub 7} implanted with 2 × 10{sup 16} He/cm{sup 2}, even after additional irradiation at 300 to 700 K. • He bubbles, 1.5 and 2.1 nm diameter, respectively, observed in amorphous and pristine Gd{sub 2}Ti{sub 2}O{sub 7} implanted to 2 × 10{sup 17} He/cm{sup 2}. • The critical He dose for bubble nucleation is estimated to be 6 at.% He.

  9. Short-time leaching behaviour of a cement-matrix incorporating soluble radioactive aggregates

    International Nuclear Information System (INIS)

    Daniels, H.; Kalitz, C.; Kuhne, L.; Steinhardt, T.; Caspary, G.; Printz, R.; Scherer, U.W.

    2015-01-01

    As the chemical characterisations of certain cement-based radioactive waste-forms produced by the Nuclear-Services of Juelich Research Centre were not yet fully available, a related study was conducted. In this work the interaction of a specific cement-matrix with incorporated radioactive aggregates, so-called drum-dryer product, was investigated. Therefore, representative cement-samples containing the radioactive waste were taken. The main focus was laid on these samples' behaviour under leaching conditions to quantify soluble and insoluble compounds. Additionally, possible chemical interactions of cement components with drum-dryer product were evaluated. For these purposes, chemical analytics as well as physical methods for characterisation and structural evaluation of the waste-form' s behaviour were used. The leaching experiments lasted for up to 39 days. A comparison of the results of the elementary and ion-chromatographic analysis before and after leaching of the samples was carried out. This lead to the deduction that the majority of the drum-dryer product is not incorporated in the cement matrix in the form of insoluble compounds like a solid solution. Although structural examinations showed the formation of an Apatite-phase that is not characteristic for portland cement, they also supported the measured overall high leachability of the cemented drum-dryer products. It can be concluded that the chemical interaction between the cement matrix and drum-dryer product during and after cementation plays a subordinate, yet not negligible, role with respect to solubility of the drum dryer product under aqueous leaching conditions. Additionally, it can be postulated that the drum-dryer product did not undergo substantial chemical alteration in the environment created by the cement-matrix and the respective leaching experiments. (authors)

  10. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  11. Long-term criticality safety concerns associated with surplus fissile material disposition

    International Nuclear Information System (INIS)

    Choi, J.S.

    1995-01-01

    A substantial inventory of surplus fissile material would result from ongoing and planned dismantlement of US and Russian nuclear weapons. This surplus fissile material could be dispositioned by irradiation in nuclear reactors, and the resulting spent MOx fuel would be similar in radiation characteristics to regular LWR spent UO2 fuel. The surplus fissile material could also be immobilized into high-level waste forms, such as borosilicate glass, synroc, or metal-alloy matrix. The MOx spent fuel, or the immobilized waste forms, could then be directly disposed of in a geologic repository. Long-term criticality safety concerns arise because the fissile contents (i.e., Pu-239 and its decay daughter U-235) in these waste forms are higher than in LWR spent UO2 fuel. MOx spent fuel could contain 3 to 4 wt% of reactor-grade plutonium, compared to only 0.9 wt% of plutonium in LWR spent UO2 fuel. At some future time (tens of thousand of years), when the waste forms had deteriorated due to intruding groundwater, the water could mix with the long-lived fissile materials to form into a critical system. If the critical system is self-sustaining, somewhat like the natural-occurring reactor in OKLO, fission products produced could readily be available for dissolution and release out to the accessible environment, adversely affecting public health and safety. This paper will address ongoing activities to evaluate long-term criticality safety concerns associated with disposition of fissile material in a geologic setting. Issues to be addressed include the identification of a worst-case water-intrusion scenario and waste-form geometries which present the most concern for long-term criticality safety; and suggests of technical solutions for such concerns

  12. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  13. Effect of iron and carbonation on the diffusion of iodine and rhenium in waste encasement concrete and soil fill material under hydraulically unsaturated conditions

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Parker, Kent E.; Powers, Laura; Whyatt, Greg A.; Clayton, Libby N.; Mattigod, Shas V.; Wood, Marcus I.

    2008-01-01

    Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half cells. Results indicate the behavior of Re and I release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of I and Re was 1-3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of Fe in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both I and Re. This suggests that in the presence of Fe, I and Re are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of I and Re was greatest from Fe-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of Fe on the retention of I and Re within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of Fe, which provide preferential paths for contaminant migration. Although the release of I and Re were greatest from carbonated concrete monoliths containing Fe, the migration of I and Re within a given half cell is dependent on the moisture content, soil diffusivity, and diffusing species

  14. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  15. Synthesis, structure elucidation and redox properties of 99Tc complexes of lacunary Wells Dawson polyoxometalates: insights into molecular 99Tc - metal oxide interactions

    International Nuclear Information System (INIS)

    McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Lukens, Wayne W. Jr; Bian, Fang; Mausolf, Edward; Poineau, Frederic; Czerwinski, Kenneth R; Francesconi, Lynn C.

    2011-01-01

    The isotope 99 Tc (β max : 250 keV, half-life: 2 x 10 5 year) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at Hanford and Savannah River. Understanding and controlling the extensive redox chemistry of 99 Tc is important to identify tunable strategies to separate 99 Tc from spent fuel and from waste tanks and once separated, to identify and develop an appropriately stable waste-form for 99 Tc. Polyoxometalates (POMs), nanometer sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated 99 Tc. In this study, 99 Tc complexes of the (α 2 -P 2 W 17 O 61 ) 10- and (α 1 -P 2 W 17 O 61 ) 10- isomers were prepared. Ethylene glycol was used as a 'transfer ligand' to minimize the formation of TcO 2 · xH 2 O. The solution structures, formulations, and purity of Tc V O(α 1 /α 2 -P 2 W 17 O 61 ) 7- were determined by multinuclear NMR. X-ray Absorption Spectroscopy of the complexes are in agreement with the formulation and structures determined from 31 P and 183 W NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the Tc V O(α 1 -P 2 W 17 O 61 ) 7- species compared to the Tc V O(α 2 -P 2 W 17 O 61 ) 7- analog. The α 1 -defect is unique in that a basic oxygen atom is positioned toward the α 1 -site and the Tc V O center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the Re V analogs are about 200 mV more difficult to reduce in accordance with periodic trends.

  16. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  17. Development of geopolymers as candidate materials for low/intermediate level highly alkaline nuclear waste

    International Nuclear Information System (INIS)

    Perera, D.S.; Vance, E.R.; Kiyama, S.; Aly, Z.; Yee, P.

    2006-01-01

    for immobilisation of ILW/LLW. It should be noted that there is no standard test for wasteforms for ILW

  18. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    International Nuclear Information System (INIS)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey; Lawter, Amanda R.; Stephenson, John R.; Lukens, Wayne W.; Westsik, Joseph H.

    2015-01-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99 Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99 Tc. (900 pCi/L). Recent relatively short-term (63 day

  19. Initial waste package interaction tests: status report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bradley, D.J.

    1980-12-01

    This report describes the results of some initial investigations of the effects of rock media on the release of simulated fission products from a sngle waste form, PNL reference glass 76-68. All tests assemblies contained a minicanister prepared by pouring molten, U-doped 76-68 glass into a 2-cm-dia stanless steel tube closed at one end. The tubes were cut to 2.5 to 7.5 cm in length to expose a flat glass surface rimmed by the canister wall. A cylindrical, whole rock pellet, cut from one of the rock materials used, was placed on the glass surface then both the canister and rock pellet were packed in the same type of rock media ground to about 75 μm to complete the package. Rock materials used were a quartz monzonite basalt and bedded salt. These packages were run from 4 to 6 weeks in either 125 ml digestion bombs or 850 ml autoclaves capable of direct solution sampling, at either 250 or 150 0 C. Digestion bomb pressures were the vapor pressure of water, 600 psig at 250 0 C, and the autoclaves were pressurized at 2000 psig with an argon overpressure. In general, the solution chemistry of these initial package tests suggests that the rock media is the dominant controlling factor and that rock-water interaction may be similar to that observed in some geothermal areas. In no case was uranium observed in solution above 15 ppB. The observed leach rates of U glass not in contact with potential sinks (rock surfaces and alteration products) have been observed to be considerably higher. Thus the use of leach rates and U concentrations observed from binary leach experiments (waste-form water only) to ascertain long-term environmental consequences appear to be quite conservative compared to actual U release in the waste package experiments. Further evaluation, however, of fission product transport behavior and the role of alteration phases as fission product sinks is required

  20. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, W.

    2005-08-30

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project

  1. NATURAL ANALOGUE SYNTHESIS REPORT

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature along with results of quantitative studies conducted specifically for the Yucca Mountain Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement-drift degradation, waste-form degradation, waste-package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated-zone (SZ) transport, impact of radionuclide release on the biosphere

  2. Assessment of nuclear power scenarios allowing for matrix behavior in radiological impact modeling of disposal scenarios

    International Nuclear Information System (INIS)

    Tronche, E.; Boussier, H.

    2000-01-01

    Under the provisions of the 1991 French radioactive waste management law, various fuel cycle scenarios will be assessed and compared in terms of feasibility, flexibility, cost, and ultimate waste radio-toxic inventory. The latter criterion may be further broken down into 'potential radio-toxic inventory' (the radio-toxic inventory of all the radionuclides produced) and 'residual radio-toxic inventory' (the radionuclide fraction reaching the biosphere after migration from the repository). The innovative scientific contribution of this study is to consider a third type of radio-toxic inventory: the potential radio-toxic inventory after conditioning, i.e. taking into account the containment capacity of the radionuclide conditioning matrices. The matrix fraction subjected to alteration over time determines the potential for radionuclide release, hence the notion of the potential radio-toxic inventory after conditioning. An initial comparison of possible scenarios is proposed by considering orders of magnitude for the radionuclide containment capacity of the disposal matrices and for their mobilization potential. All the scenarios investigated are normalized to the same annual electric power production so that a legitimate comparison can be established for the ultimate wasteform produced per year of operation. This approach reveals significant differences among the scenarios considered that do not appear when only the raw potential radio-toxic inventory is taken into account. The matrix containment performance has a decisive effect on the final impact of a given scenario or type of scenario. Pu recycling scenarios thus reduce the potential radio-toxicity by roughly a factor of 50 compared with an open cycle; the gain rises to a factor of about 300 for scenarios in which Pu and the minor actinides are recycled. Interestingly, the results obtained by the use of a dedicated containment matrix for the minor actinides in a scenario limited to Pu recycling were comparable to

  3. Leaching behaviour of low Ca:Si ratio CaO–SiO2–H2O systems

    International Nuclear Information System (INIS)

    Swanton, S.W.; Heath, T.G.; Clacher, A.

    2016-01-01

    A dynamic leaching study of the dissolution of low calcium to silicon ratio (C/S) calcium–silicate–hydrate (C–S–H) systems with initial C/S ranging from 0.2 to 0.6 has been undertaken. Dissolution was studied in demineralised water at 25 °C to a degree of leaching of 2.5 m 3 kg −1 . These C–S–H gels show remarkably similar behaviour during early leaching stages, giving an equilibrated pH of ~ 9.9 and a solution phase C/S of ~ 0.29. Over longer times, C–S–H gels with C/S > 0.29 evolve, on leaching, towards a congruent dissolution point with a solid C/S close to 0.84 (consistent with tobermorite) and pH ~ 10.8. C–S–H gels with C/S < 0.29 become increasingly silica-rich on leaching but maintain an alkaline pH > 9.5 down to at least C/S = 0.07 (the lowest ratio reached). For C/S < 0.7, chemical modelling and X-ray diffraction data support an explanation of the incongruent dissolution behaviour of the low C/S C–S–H gels based on the congruent dissolution of distinct amorphous silica and tobermorite-like C–S–H phases. Above C/S of 0.7, the dissolution data are well described by an ideal solid solution model for the C–S–H phases. These results are of relevance to the consideration of the disposal of silica-rich vitrified intermediate-level radioactive wastes in cement-based concepts for geological disposal, where maintenance of alkaline pH values forms a key component of the chemical barrier to radionuclide migration. The implications are that the long-term pH buffering capacity provided by cementitious backfill materials would not be significantly affected by interactions with silica-rich wasteforms, which may lower the net C/S ratio of C–S–H phases, due to the natural tendency of these systems to restore congruent dissolution at pH 10.8.

  4. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lukens, Wayne W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 (99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively

  5. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    International Nuclear Information System (INIS)

    Jaros, W.

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project (YMP) administrative procedures as they

  6. The KNOO research consortium: work package 3 - an integrated approach to waste immobilisation and management - 16375

    International Nuclear Information System (INIS)

    Biggs, Simon; Fairweather, Michael; Young, James; Grimes, Robin W.; Milestone, Neil; Livens, Francis

    2009-01-01

    (using atomic scale, thermodynamic and process scale models), the engineering properties of waste (linking microscopic and macroscopic behaviour, and transport and rheology), and waste reactivity (considering waste hosts and wasteforms, generation IV wastes, and waste interactions). (authors)

  7. Implementation of a geological disposal facility (GDF) in the UK by the NDA Radioactive Waste Management Directorate (RWMD): the potential for interaction between the co-located ILW/LLW and HLW/SF components of a GDF - 16306

    International Nuclear Information System (INIS)

    Towler, George; Hicks, Tim; Watson, Sarah; Norris, Simon

    2009-01-01

    In June 2008 the UK government published a 'White Paper' as part of the 'Managing Radioactive Waste Safety' (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK's higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). This paper presents an overview of a study undertaken to assess the implications of co-location by identifying the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions that might occur during both the operational and post-closure phases, and their consequences for GDF design, performance and safety. The MRWS programme is currently seeking expressions of interest from communities to host a GDF. Therefore, the study was required to consider a wide range of potential GDF host rocks and consistent, conceptual disposal system designs. Two example disposal concepts (i.e. combinations of host rock, GDF design including wasteform and layout, etc.) were carried forward for detailed assessment and a third for qualitative analysis. Dimensional and 1D analyses were used to identify the key interactions, and 3D models were used to investigate selected interactions in more detail. The results of this study show that it is possible

  8. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    Energy Technology Data Exchange (ETDEWEB)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to

  9. Transport of nuclear waste flows - a modelling and simulation approach - 59136

    International Nuclear Information System (INIS)

    Adams, Jonathan F.W.; Biggs, Simon R.; Fairweather, Michael; Yao, Jun; Young, James

    2012-01-01

    The task of implementing safer and more efficient processing and transport techniques in the handling of nuclear wastes made up of liquid-solid mixtures provides a challenging and interesting area of research. The radioactive nature of nuclear waste means that it is difficult to perform experimental studies of its transport. In contrast, the use of modelling and simulation techniques can help to elucidate the physics that underpin such flows and provide valuable insights into common problems associated with their transport, as well as assisting in the focusing of experimental research. Two phase solid-liquid waste-forms are commonplace within the nuclear reprocessing industry. Currently, there is waste, e.g., in the form of a solid-liquid slurry in cooling ponds and liquid flows containing suspensions of solid particles feature heavily in the treatment and disposal of this waste. With nuclear waste in the form of solid-liquid sludges it is important to understand the nature of the flow, with particular interest in the settling characteristics of the particulate waste material. Knowledge of the propensity of pipe flows to form solid beds is important in avoiding unwanted blockages in pipelines and pumping systems. In cases where the formation of a solid bed is unavoidable, it is similarly important to know how the modified cross-sectional area of the pipe, due to the presence of a bed, will affect particle behaviour through the creation of secondary flows effects that are also common to square duct flows. A greater understanding of particle deposition in square ducts and pipes of circular cross-section is also of significant and broad industrial relevance, with flows containing particulates prevalent throughout the nuclear, pharmaceutical, chemical, mining and agricultural industries. A greater understanding of particle behaviour in square ducts and circular pipes with variable bed height is the focus of this current work. The more computationally expensive but

  10. The Tournemire industrial analogue: reactive-transport modelling of cement-clay interfaces

    International Nuclear Information System (INIS)

    Watson, C.; Wilson, J.; Benbow, S.; Savage, D.; Walker, C.; Norris, S.

    2012-01-01

    Document available in extended abstract form only. In a number of concepts for geological disposal facilities (GDFs) for radioactive waste, cement-based materials are used for a variety of purposes including mechanical support, backfilling of cavities, grouting of fractures in the host rock, and immobilisation of radionuclides in waste-forms. Such facilities will ultimately re-saturate with encroaching groundwater, at which point leaching of the cement components is likely to give rise to an alkaline pore fluid, regardless of cement type. This pore fluid will be in disequilibrium with both the host rock and other engineered barrier system (EBS) materials used in the construction of the facility, such as bentonite. The interaction of the pore fluid could lead, for example, to the reduction in the swelling capacity of the clay, alteration of porosity and permeability both in the host rock and in EBS materials, and reduction of sorption capacities. Analogue systems can provide information about hyper-alkaline alteration that it is not possible to obtain from short-term experimental studies alone, because they have evolved in situ over many tens, hundreds or thousands of years. These systems can be used to improve scientific understanding and consequently mathematical models, which in turn can be used to simulate the performance of the engineered and natural materials over the lifetime of the GDF. Industrial analogues provide a kind of 'halfway house' between natural analogues and laboratory experimental studies; the initial and boundary conditions are often better understood than natural analogues, and the timescales involved, whilst much shorter than natural analogues, are generally of much greater duration than laboratory studies. One such analogue can be found at Tournemire, southern France, where a tunnel excavated in the 1880's had several exploration boreholes drilled into its basement in the 1990's. These boreholes were then filled with concrete and cement

  11. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01

    waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

  12. Real world industrial solutions to cost and waste volume reduction using metallic HEPA/THE filtration together with an examination of effective HEPA Pre-Filtration Preventing the Blinding Solids from reaching the HEPA/THE filters and recovering the blinding solids for disposal, reducing both waste volume and cost

    International Nuclear Information System (INIS)

    Chadwick, Ch.

    2008-01-01

    The disposal costs of contaminated HEPA and THE filter elements have been proved to be disproportionately high compared with the cost of the elements themselves. If HEPA filters could be cleaned to a condition where they could either be re-used or decontaminated to the extent that they could be stored as a lower cost wasteform or if HEPA/THE filter elements were available without any organic content likely to give rise to flammable or explosive decomposition gases during long term storage this would also reduce the costs and monitoring necessary in storage. Using current state-of-the-art metallic filter media, it is possible to provide robust, completely inorganic, cleanable HEPA/THE filter elements to meet any duty already met by traditional glass-fibre HEPA/THE elements, within the same space limitations and with equivalent pressure loss. Additionally, traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry. The paper will address several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes, conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the technology, development, performance characteristics, filtration efficiency, flow/differential pressure character, cleanability and cost of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented. In addition, the paper will also address the economic case for installing self cleaning pre

  13. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.

    1998-01-01

    Vitrification is the technology that has been chosen to solidify approximately 15,500 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty. The K-65 residues contain radium, uranium, uranium daughter products, and heavy metals such as lead and barium.The K-65 waste leaches lead at greater than 100 times the allowable Environmental Protection Agency (EPA) Resource, Conservation, and Recovery Act (RCRA) concentration limits when tested by the Toxic Characteristic Leaching Procedure (TCLP). Vitrification was chosen by FEMP as the preferred technology for the Silos 1, 2, 3 wastes because the final waste form met the following criteria: controls radon emanation, eliminates the potential for hazardous or radioactive constituents to migrate to the aquifer below FEMP, controls the spread of radioactive particulates, reduces leachability of metals and radiological constituents, reduces volume of final wasteform for disposal, silo waste composition is favorable to vitrification, will meet current and proposed RCRA TCLP leaching criteria Glasses that melt at 1350 degrees C were developed by Pacific Northwest National Laboratory (PNNL) and glasses that melt between 1150-1350 degrees C were developed by the Vitreous State Laboratory (VSL) for the K-65 silo wastes. Both crucible studies and pilot scale vitrification studies were conducted by PNNL and VSL. Subsequently, a Vitrification Pilot Plant (VPP) was constructed at FEMP capable of operating at temperatures up to 1450

  14. Secondary Waste Form Down-Selection Data Package—DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.

    2011-09-15

    This data package developed for the DuraLith wasteform includes information available in the open literature and from data obtained from testing currently underway. DuraLith is an alkali-activated geopolymer waste form developed by the Vitreous State Laboratory at The Catholic University of America (VSL-CUA) for encapsulating liquid radioactive waste. A DuraLith waste form developed for treating Hanford secondary waste liquids is prepared by alkali-activation of a mixture of ground blast furnace slag and metakaolinite with sand used as a filler material. Based on optimization tests, solid waste loading of {approx}7.5% and {approx}14.7 % has been achieved using the Hanford secondary waste S1 and S4 simulants, respectively. The Na loading in both cases is equivalent to {approx}6 M. Some of the critical parameters for the DuraLith process include, hydrogen generation and heat evolution during activator solution preparation using the waste simulant, heat evolution during and after mixing the activator solution with the dry ingredients, and a working window of {approx}20 minutes to complete the pouring of the DuraLith mixture into molds. Results of the most recent testing indicated that the working window can be extended to {approx}30 minutes if 75 wt% of the binder components, namely, blast furnace slag and metakaolin are replaced by Class F fly ash. A preliminary DuraLith process flow sheet developed by VSL-CUA for processing Hanford secondary waste indicated that 10 to 22 waste monoliths (each 48 ft3 in volume) can be produced per day. There are no current pilot-scale or full-scale DuraLith plants under construction or in operation; therefore, the cost of DuraLith production is unknown. The results of the non-regulatory leach tests, EPA Draft 1313 and 1316, Waste Simulant S1-optimized DuraLith specimens indicated that the concentrations of RCRA metals (Ag, Cd, Cr, Hg, and Pb) in the leachates were well below the Universal Treatment Standard limits in 40 CFR 268

  15. Development of an Insight Model for Post-closure Radiological Risks from the Disposal of High-level Waste and Spent Fuel

    Science.gov (United States)

    Kelly, M.; Carter, A.; Bailey, L.; Wellstead, M.

    2012-04-01

    Geological disposal is the UK policy for the long-term management of higher activity radioactive wastes. The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal in the UK. The approach adopted for building confidence in long-term safety of the GDF is to use multiple barriers to isolate and contain the wastes. NDA-RWMD proposes to develop a safety case based on varied and different lines of reasoning, including both quantitative aspects and qualitative safety arguments. This paper describes the development of a simplified model for high-level waste (HLW) and spent fuel (SF). Assessments of HLW and SF disposals need to reflect a number of physical and chemical processes that govern the release and transport of the disposed wastes. Physical processes include container failure, release of radionuclides from the wasteform, diffusion through bentonite barriers and transport in fractured rock. Chemical processes include solubility limitation and sorption. HLW and SF assessments are generally based on numerical models of these processes, implemented in software tools such as GoldSim. The results of such assessments can be complex to understand, especially in situations where no single release or transport process is dominant. A simplified model of the release and transport of radionuclides for disposals of HLW and SF has been developed. The objectives of the model are to identify the key physical and chemical processes that govern radiological risk, and to enable numerical estimates of risk (and other intermediate quantities) to be made. The model is based on the notion that the properties of the time-dependent model outputs can be characterised in terms of "moments". The moments are easy to compute since they are related in a simple way to the Laplace transforms of the functions under consideration. The Laplace transform method is a standard technique for

  16. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    stream without dilution and to minimize the volume of the final wasteform. This work examined the impact of high ionic strength, high density, and high viscosity if higher concentration LAW feed solution is used. Perrhenate (ReO4-) has been shown to be a good nonradioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin, and the performance bias is well established. Equilibrium contact testing with 7.8 M [Na+] average simulant concentrations indicated that the SuperLig® 639 resin average perrhenate distribution coefficient was 368 mL/g at a 100:1 phase ratio. Although this indicates good performance at high ionic strength, an equilibrium test cannot examine the impact of liquid viscosity, which impacts the diffusivity of ions and therefore the loading kinetics. To get an understanding of the effect of diffusivity, modeling was performed, which will be followed up with column tests in the future.

  17. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

  18. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    Science.gov (United States)

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  19. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    regulations enable the free release of small amounts of radioactive waste either to the municipal sewage system or for delivering to a municipal dumpsite. Identified issues. It is not possible for the SSI to conduct more than a limited number of inspections. SSI relies on the licensee to inform the SSI when the source is no longer in use. An incitement for this is the annual fee mentioned above. Sources with activity below 500 megaBq from facilities with a summary licence are not accounted for separately and can therefore be difficult to control. The only radioactive waste facility (recognised waste facility) with the capacity and the authorisation for taking care of disused radioactive sources and other forms of radioactive waste from Non-Power applications is Studsvik AB. The future costs for final disposal of this waste is unclear because of the lack of final repository. Studsvik has to make sure that future costs are covered by the fee they charges for taking care of radioactive waste. As the only recognised waste facility Studsvik can freely set the fee for taking care of radioactive waste. If the fee is set too high there's a risk that waste from some unserious license-holder will be lost' or kept in storage. Studsvik has no formal responsibility for taking care of used radioactive sources. It's not unrealistic that Studsvik in the future decides not to accept a specific waste-form. Commercial products: Approximately there are 10 millions fireguards containing about 40 kBq Am-241 in Sweden. The average lifetime of the fireguards is 10 years and implicates that about one million fireguards are disposed of each year. SSI has issued regulations stating that private persons are allowed to occasionally throw a fireguard on municipal dump-sites. Companies are allowed to throw up to five fireguards each month. Identified issues: An assumption for the regulations was that the fireguards were not disposed at the same time nor at the same place. A dilution was anticipated

  20. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling

  1. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative

  2. Recent outputs of the Oklo (Gabon) natural analogue study to nuclear waste disposal

    International Nuclear Information System (INIS)

    Michaud, V.; Trotignon, L.; Louvat, D.

    2000-01-01

    study of the long-term evolution of spent fuel and the long-term behavior of geological materials with respect to the containment of actinides and fission products. The Oklo natural analogue displays a number of specific features that make it unique in the world. The Oklo basin is characterized by the occurrence of meter scale uraninite lenses, that were affected by nuclear fission 2 billion years ago. These ''reactor zones'' exist in three sites: Oklo, Okelobondo and Bagombe. By analogy with a repository system, they are considered as representative of the 'Source' term. Numerous isotopic and geochemical tracers are thus available in order to restrict the migration or retention processes of actinides and fission products present in these zones. The near environment of the reactor zones, called ''Near field'' by analogy, is mainly composed of clayey materials (i.e. chlorite, illite, kaolinite). Reactor zones are found at present from the surface (Bagombe under oxidizing and acid conditions, with supergene weathering) to deep (Okelobondo under reducing conditions, with a low groundwater dynamics) conditions. Some reactor zones, e.g. R.Z. 13 in Oklo mine, have been subjected to strong hydrothermal disturbances (with temperatures above 350 deg C), linked to the geological history of the Franceville basin. On the other hand, the old age of the Oklo reactors (2 Ga) implies that pressure, temperature and chemical conditions have evolved during a long geological history, with associated basin scale movements of fluids. The Oklo-natural analogue Phase II project compiled useful information and tools for persons involved in Performance Assessment of waste disposal, wasteform conception or long term behavior [10] in four main areas corresponding to major investigation fields: 1/ ''Source'' term evolution, 2/ Long term containment properties of geological materials, 3/ Migration and retention of actinides and fission or end products, and 4/Geochemical and transport modeling. The

  3. New Fragment Separation Technology for Superheavy Element Research

    International Nuclear Information System (INIS)

    Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W; Patin, J B; Stoyer, M A; Stoyer, N J; Wild, J F; Wilk, P A

    2008-01-01

    This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of ±0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the 244 Pu+ 48 Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that

  4. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples