WorldWideScience

Sample records for waste-heat based cooling

  1. A Feasibility Study on District Heating and Cooling Business Using Urban Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Byoung Youn; Lee, Kyoung Ho; Lee, Jae Bong [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yoo, Jae In; Yoon, Jae Ho; Oh, Myung Do; Park, Moon Su; Kang, Han Kee; Yoo, Kyeoung Hoon; Bak, Jong Heon; Kim, Sun Chang; Park, Heong Kee; Bae, Tae Sik [Korea Academy of Industrial Technology, Seoul (Korea, Republic of)

    1996-12-31

    Investigation of papers related to waste heat utilization using heat pump. Estimate of various kinds of urban waste heat in korea. Investigation and study on optimal control of district heating and cooling system. Prediction of energy saving and environmental benefits when the urban waste heat will be used as heat source and sink of heat pump for district heating and cooling. Estimation of economic feasibility on district heating and cooling project utilizing urban waste heat. (author). 51 refs., figs

  2. Study on a waste heat-driven adsorption cooling cum desalination cycle

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Saha, Bidyut Baran; Chakraborty, Anutosh

    2012-01-01

    This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption-desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model

  3. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  4. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  5. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  6. Electrical Energy Harvesting from Cooker’s Wasted Heat with Using Conduction Cooling

    Directory of Open Access Journals (Sweden)

    Amouzard Mahdiraji Wincent Ghafour

    2018-01-01

    Full Text Available In order meet the demand of electricity in current era, the need for new sources of energy even in very minimal amount, could be done with proper research and technology advancement in order to convert as much wasted energy as possible. Collecting and analyses cooker’s wasted heat as a main wasted energy source become the main interest for this research. This application can be installed either in household usage or commercial usage. Based on majority stove in household datasheet it shown that the efficiency of the stove is approximately 50%. With half of the efficiency turn into wasted heat, this application is suitable for thermoelectric generator (TEG to harvest the heat. The objective of this research is to determine whether the thermoelectric generator (TEG would able to power the 3V LED light as a small lighting system in household. Several designs with five TEGs in series circuit are tested to the application to analyses which method generated a better result. Since this research only focus in using a conduction cooling, aluminum heat sink will be utilized either for heat absorption or heat rejection. The maximum temperature differences between hot side and cold side is 209.83 °C with average power approximately 0.1 W.

  7. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  8. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    International Nuclear Information System (INIS)

    Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R.

    2012-01-01

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COP T ) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COP T and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  9. Potential weather modification caused by waste heat release from large dry cooling towers

    International Nuclear Information System (INIS)

    Lee, J.

    1979-01-01

    A numerical model of a cooling tower plume is employed to study the possible atmospheric effects of thermal plumes from natural draft dry cooling towers. Calculations are performed for both single and multiple towers, each of which can dissipate the waste heat from a nominal 1000 MWe power generating unit, and the results are compared with those for wet cooling towers associated with plants of the same generating capacity. Dry cooling tower plumes are found to have a higher potential for inducing convective clouds than wet cooling tower plumes, under most summertime meteorological conditions. This is due to the fact that both the sensible heat and momentum fluxes from a dry tower in summer are approximately one order of magnitude larger than those from a wet cooling tower

  10. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  11. An improved CO_2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO_2-based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO_2’s specific heat capacity. The supercritical property of CO_2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  12. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  13. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  14. Study on a waste heat-driven adsorption cooling cum desalination cycle

    KAUST Repository

    Ng, Kim Choon

    2012-05-01

    This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption-desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model is developed using isotherm characteristics of the adsorbent/adsorbate pair (silica gel and water), energy and mass balances for the each component of the cycle. The cycle is analyzed using key performance parameters namely (i) specific cooling power (SCP), (ii) specific daily water production (SDWP), (iii) the coefficient of performance (COP) and (iv) the overall conversion ratio (OCR). The numerical results of the adsorption cycle are validated using experimental data. The parametric analysis using different hot and chilled water temperatures are reported. At 85°C hot water inlet temperature, the cycle generates 3.6 m 3 of potable water and 23 Rton of cooling at the produced chilled water temperature of 10°C. © 2012 Elsevier Ltd and IIR. All rights reserved.

  15. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    /or selected. This dissertation focuses on the chemical product and process systems used for waste heat recovery. Here, chemical products are working fluids, which are under continuous development and screening to fulfill regulatory environmental protection and safe operation requirements. Furthermore......, for the recovery of low-grade waste heat, new fluids and processes are needed to make the recovery technically and economically feasible. As the chemical product is influential in the design of the process system, the design of novel chemical products must be considered with the process system. Currently, state...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  16. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  17. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  18. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  19. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Xia, Jiaxi; Wang, Jiangfeng; Lou, Juwei; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A combined cooling and power system was proposed for engine waste heat recovery. • Effects of key parameters on thermodynamic performance of the system were studied. • Exergoeconomic parameter analysis was performed for the system. • A single-objective optimization by means of genetic algorithm was carried out. - Abstract: A combined cooling and power (CCP) system is developed, which comprises a CO 2 Brayton cycle (BC), an organic Rankine cycle (ORC) and an ejector refrigeration cycle for the cascade utilization of waste heat from an internal combustion engine. By establishing mathematical model to simulate the overall system, thermodynamic analysis and exergoeconomic analysis are conducted to examine the effects of five key parameters including the compressor pressure ratio, the compressor inlet temperature, the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure on system performance. What’s more, a single-objective optimization by means of genetic algorithm (GA) is carried out to search the optimal system performance from viewpoint of exergoeconomic. Results show that the increases of the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure are benefit to both thermodynamic and exergoeconimic performances of the CCP system. However, the rises in compressor pressure ratio and compressor inlet temperature will lead to worse system performances. By the single-objective optimization, the lowest average cost per unit of exergy product for the overall system is obtained.

  20. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat

    International Nuclear Information System (INIS)

    Sun, Wenqiang; Yue, Xiaoyu; Wang, Yanhui

    2017-01-01

    Highlights: • ORC-ARC and ORC-ERC driven by low-temperature waste heat are investigated. • Thermodynamic models of basic ORC, ORC-ARC, and ORC-ERC are developed. • Exergy efficiencies of ORC, ORC-ARC, and ORC-ERC are parametrically simulated. • Suitable application conditions of ORC-ARC and ORC-ERC are reported. - Abstract: There is large amount of waste heat resources in industrial processes. However, most low-temperature waste heat is directly discharged into the environment. With the advantages of being energy-efficient, enabling investment-savings and being environmentally friendly, the Organic Rankine Cycle (ORC) plays an important role in recycling energy from low-temperature waste heat. In this study, the ORC system driven by industrial low-temperature waste heat was analyzed and optimized. The impacts of the operational parameters, including evaporation temperature, condensation temperature, and degree of superheat, on the thermodynamic performances of ORC system were conducted, with R113 used as the working fluid. In addition, the ORC-based cycles, combined with the Absorption Refrigeration Cycle (ARC) and the Ejector Refrigeration Cycle (ERC), were investigated to recover waste heat from low-temperature flue gas. The uncoupled ORC-ARC and ORC-ERC systems can generate both power and cooling for external uses. The exergy efficiency of both systems decreases with the increase of the evaporation temperature of the ORC. The net power output, the refrigerating capacity and the resultant exergy efficiency of the uncoupled ORC-ARC are all higher than those of the ORC-ERC for the evaporation temperature of the basic ORC >153 °C, in the investigated application. Finally, suitable application conditions over other temperature ranges are also given.

  1. Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

    Science.gov (United States)

    Silverstein, Abe

    1939-01-01

    Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.

  2. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw

    2016-06-13

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes or renewable energy with temperatures ranging from 55 °C to 85 °C. The cycle is capable of producing two useful effects, namely cooling power and high-grade potable water, simultaneously. This article discusses a low temperature, waste heat-powered adsorption (AD) cycle that produces cooling power at two temperature-levels for both dehumidification and sensible cooling while providing high-grade potable water. The cycle exploits faster kinetics for desorption process with one adsorber bed under regeneration mode while full utilization of the uptake capacity by adsorbent material is achieved employing two-stage adsorption via low-pressure and high-pressure evaporators. Type A++ silica gel with surface area of 863.6 m2/g and pore volume of 0.446 cm3/g is employed as adsorbent material. A comprehensive numerical model for such AD cycle is developed and the performance results are presented using assorted hot water and cooling water inlet temperatures for various cycle time arrangements. The cycle is analyzed in terms of key performance indicators i.e.; the specific cooling power (SCP), the coefficient of performance (COP) for both evaporators and the overall system, the specific daily water production (SDWP) and the performance ratio (PR). Further insights into the cycle performance are scrutinized using a Dühring diagram to depict the thermodynamic states of the processes as well as the vapor uptake behavior of adsorbent. In the proposed cycle, the adsorbent materials undergo near saturation conditions due to the pressurization effect from the high pressure evaporator while faster kinetics for desorption process is exploited, subsequently providing higher system COP, notably up to 0.82 at longer cycle time while the

  3. Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney

    International Nuclear Information System (INIS)

    Chen, Kai; Wang, Jiangfeng; Dai, Yiping; Liu, Yuqi

    2014-01-01

    Highlights: • A low grade waste heat recovery system based on the concept of solar chimney is proposed. • The effects of three key factors on the system performance are examined. • Thermodynamics analysis is to find a better way to utilize low grade heat source efficiently. - Abstract: The utilization of low-temperature waste heat draws more and more attention due to serious energy crisis nowadays. This paper proposes a low-temperature waste heat recovery system based on the concept of solar chimney. In the system, low-temperature waste heat is used to heat air to produce an air updraft in the chimney tower. The air updraft propels a turbine fixed at the base of the chimney tower to convert waste heat into electricity. The mathematical model of the system is established based on first law and second law of thermodynamics. Hot water is selected as the representative of low-temperature waste heat sources for researching. The heat source temperature, ambient air temperature and area of heat transfer are examined to evaluate their effects on the system performance such as velocity of updraft, mass flow rate of air, power output, conversion efficiency, and exergy efficiency. The velocity of air demonstrates a better stability than the mass flow rate of air and the pressure difference when temperature of heat source, ambient air temperature or area of heat transfer changes

  4. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Mohan, Gowtham; Dahal, Sujata; Kumar, Uday; Martin, Andrew; Kayal, Hamid

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  5. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  6. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  7. Phase transformation based pyroelectric waste heat energy harvesting with improved practicality

    International Nuclear Information System (INIS)

    Jo, Hwan Ryul; Lynch, Christopher S

    2016-01-01

    In 2014, almost 60% of thermal energy produced in the United States was lost to the environment as waste heat. Ferroelectric based pyroelectric devices can be used to convert some of this waste heat into usable electrical energy using the Olsen cycle, an ideal thermodynamic cycle, but there are a number of barriers to its realization in a practical device. This study uses the Olsen cycle to benchmark a less efficient thermodynamic cycle that is more easily implemented in devices. The ferroelectric pyroelectric material used was (Pb 0.97 La 0.02 )(Zr 0.55 Sn 0.32 Ti 0.13 )O 3 ceramic, a ferroelectric material that undergoes a temperature driven phase transformation. A net energy density of 0.27 J cm −3 per cycle was obtained from the ferroelectric material using the modified cycle with a temperature change between 25°C and 180°C. This is 15.5% of the Olsen cycle result with the same temperature range and 1–8 MV m −1 applied electric field range. The power density was estimated to 13.5 mW cm −3 with given experimental conditions. A model is presented that quantitatively describes the effect of several parameters on output energy density and can be used to design ferroelectric based pyroelectric energy converters. The model indicates that optimization of material geometry and heating conditions can increase the output power by an order or magnitude. (paper)

  8. Thermodynamic investigation of waste heat driven desalination unit based on humidification dehumidification (HDH) processes

    International Nuclear Information System (INIS)

    He, W.F.; Xu, L.N.; Han, D.; Gao, L.; Yue, C.; Pu, W.H.

    2016-01-01

    Highlights: • HDH desalination system powered by waste heat is proposed. • Performance of the desalination unit and the relevant heat recovery effect is calculated. • Sensitive analysis of the performance for the HDH desalination system is investigated. • Mathematical model based on the first and second laws of thermodynamics is established. - Abstract: Humidification dehumidification (HDH) technology is an effective pattern to separate freshwater from seawater or brackish water. In this paper, a closed-air open-water (CAOW) desalination unit coupled with plate heat exchangers (PHEs) is applied to recover the waste heat from the gas exhaust. Sensitivity analysis for the HDH desalination unit as well as the PHEs from the key parameters including the top and initial temperature of the seawater, operation pressure, and the terminal temperature difference (TTD) of the PHEs are accomplished, and the corresponding performance of the whole HDH desalination system is calculated and presented. The simulation results show that the balance condition of the dehumidifier is allowed by the basic thermodynamic laws, followed by a peak value of gained-output-ratio (GOR) and a bottom value of total specific entropy generation. It is concluded that excellent results including the system performance, heat recovery effect and investment of the PHEs can be simultaneously obtained with a low top temperature, while the obtained desalination performance and the heat recovery effect from other measures are always conflicting. Different from other parameters of the desalination unit, the terminal temperature difference of the PHEs has little influences on the final value of GOR.

  9. An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.

    2013-01-01

    A detailed exergoeconomic analysis is performed for a combined cycle in which the waste heat from the Gas Turbine-Modular Helium Reactor (GT-MHR) is recovered by an ammonia–water power/cooling cogeneration system. Parametric investigations are conducted to evaluate the effects of decision variables on the performances of the GT-MHR and combined cycles. The performances of these cycles are then optimized from the viewpoints of first law, second law and exergoeconomics. It is found that, combining the GT-MHR with ammonia–water cycle not only enhances the first and second law efficiencies of the GT-MHR, but also it improves the cycle performance from the exergoeconomic perspective. The results show that, when the optimization is based on the exergoeconomics, the unit cost of products is reduced by 5.4% in combining the two mentioned cycles. This is achieved with a just about 1% increase in total investment cost rate since the helium mass flow in the combined cycle is lower than that in the GT-MHR alone. - Highlights: • Application of exergetic cost theory to the combined GT-MHR/ammonia–water cycle. • Enhanced exergoeconomic performance for the combined cycle compared to the GT-MHR. • Comparable investment costs for the combined cycle and the GT-MHR alone

  10. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    Science.gov (United States)

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  12. Comparative assessment of alternative cycles for waste heat recovery and upgrade

    International Nuclear Information System (INIS)

    Little, Adrienne B.; Garimella, Srinivas

    2011-01-01

    Thermally activated systems based on sorption cycles, as well as mechanical systems based on vapor compression/expansion are assessed in this study for waste heat recovery applications. In particular, ammonia-water sorption cycles for cooling and mechanical work recovery, a heat transformer using lithium bromide-water as the working fluid pair to yield high temperature heat, and organic Rankine cycles using refrigerant R245fa for work recovery as well as versions directly coupled to a vapor compression cycle to yield cooling are analyzed with overall heat transfer conductances for heat exchangers that use similar approach temperature differences for each cycle. Two representative cases are considered, one for smaller-scale and lower temperature applications using waste heat at 60 o C, and the other for larger-scale and higher temperature waste heat at 120 o C. Comparative assessments of these cycles on the basis of efficiencies and system footprints guide the selection of waste heat recovery and upgrade systems for different applications and waste heat availabilities. Furthermore, these considerations are used to investigate four case studies for waste heat recovery for data centers, vehicles, and process plants, illustrating the utility and limitations of such solutions. The increased implementation of such waste heat recovery systems in a variety of applications will lead to decreased primary source inputs and sustainable energy utilization. -- Highlights: → Sorption and mechanical pathways for the conversion of waste heat streams to work, cooling, and temperature boosting were investigated. → Waste heat sources including 300 W of energy at 60 o C and 1 kW of energy at 120 o C were analyzed. → Up to about seventy percent of the input waste heat can be converted to cooling. → Up to about ten percent can be converted to work. → Up to about 47 percent can be upgraded to a higher temperature.

  13. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  14. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  15. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  16. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Shu, Gequn; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2015-01-01

    Highlights: • Three ORC-based combined systems for ICE exhaust waste heat recovery are studied. • A parametric investigation is conducted under several typical engine conditions. • Performance is evaluated considering six thermodynamic, techno-economic indexes. • DORC distinguishes among other solutions for its highest energy recovery capacity. • TEG–ORC system becomes attractive when exhaust temperature is relatively low. - Abstract: In this paper, various combined power systems which regard organic Rankine cycle (ORC) as bottoming cycle to recover engine’s high temperature exhaust heat are proposed. The topping recovery cycle includes steam Rankine cycle (RC), Brayton cycle (BC) and thermoelectric generator (TEG). Comprehensive evaluations are conducted under five typical engine conditions, ranging from high load to low load, and system performance is assessed in terms of many thermodynamic indexes, such as net output power, thermal efficiency, recovery efficiency and exergy efficiency. Besides that, the irreversibility of each component is also discussed in detail. R123, R245fa and R600a for ORC system are considered to analyze the influence of working fluids. Considering the system techno-economy, the turbine size parameter (SP) and heat transfer capacity (UA) are chosen as key indicators. The results show that compared with the other two investigated approaches, dual-loop ORC (DORC) possesses the highest energy exploitation capacity under the whole operating region, with a 5.57% increase of fuel economy under the rated condition, but its values of SP and UA are large as well. TEG–ORC becomes appealing while under the relatively low load

  17. Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2014-01-01

    Highlights: • Employing the thermodynamic analysis and a heat-transfer method, an ORC optimization is presented. • An optimal objective parameter evaluation of six working fluids is presented. • Refrigerants with superior thermodynamic properties do not necessary have excellent performance. • Cylinder jacket water temperature strongly affects optimal evaporation temperature. - Abstract: In this study, six working fluids with zero ozone depletion potential and low global warming potential are used in an organic Rankine cycle (ORC) system to recover waste heat from cylinder jacket water of large marine diesel engines. Thermodynamic analysis and a finite-temperature-difference heat-transfer method are developed to evaluate the thermal efficiency, total heat-exchanger area, objective parameter, and exergy destruction of the ORC system. The optimal evaporation and condensation temperatures for achieving the maximal objective parameter, the ratio of net power output to the total heat-transfer area of heat exchangers, of an ORC system are investigated. The results show that, among the working fluids, R600a performs the best in the optimal objective parameter evaluation followed by R1234ze, R1234yf, R245fa, R245ca, and R1233zd at evaporation temperatures ranging from 58 °C to 68 °C and condensation temperatures ranging from 35 °C to 45 °C. The optimal operating temperatures and corresponding thermal efficiency and exergy destruction are proposed. Furthermore, the influences of inlet temperatures on cylinder jacket water and cooling water in the ORC are presented for recovering waste heat. The results of this work were verified with theoretical solutions and experimental results in the literature and it was revealed that they were consistent with them

  18. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  19. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw; Saha, Bidyut Baran; Chua, Kian Jon; Ng, Kim Choon

    2016-01-01

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes

  20. Electricity from waste heat

    Science.gov (United States)

    Larjola, Jaakko; Lindgren, Olli; Vakkilainen, Esa

    In industry and in ships, large amounts of waste heat with quite a high release temperature are produced: examples are combustion gases and the exhaust gases of ceramic kilns. Very often they cannot be used for heating purposes because of long transport distances or because there is no local district heating network. Thus, a practical solution would be to convert this waste heat into electric power. This conversion may be carried out using an ORC-plant (Organic Rankine Cycle). There are probably some twenty ORC-plants in commercial use in the world. They are, however, usually based on conventional power plant technology, and are rather expensive, complicated and may have significant maintenance expenses. In order to obviate these problems, a project was started at Lappeenranta University of Technology at the beginning of 1981 to develop a high-speed, hermetic turbogenerator as the prime mover of the ORC. With this new technology the whole ORC-plant is quite simple, with only one moving part in the power system. It is expected to require very little maintenance, and the calculations made give for it significantly lower specific price than for the conventional technology ORC-plant. Two complete prototypes of the new technology ORC-plant have been built, one to the laboratory, other to industrial use. The nominal output of both is 100 kW electricity. Calculated amortization times for the new ORC-plant range from 2.1 to 6.

  1. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  2. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  3. Thermoelectricity from wasted heat of integrated circuits

    KAUST Repository

    Fahad, Hossain M.

    2012-05-22

    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  4. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  5. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    Science.gov (United States)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  6. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  7. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Jian; Tian, Hua; Liang, Xingyu; Wei, Haiqiao

    2012-01-01

    The paper analyzes the combined TEG-ORC (thermoelectric generator and organic rankine cycle) used in exhaust heat recovery of ICE (internal combustion engine) theoretically. A theoretical model is proposed to calculate the optimal parameters of the bottoming cycle based on thermodynamic theory when net output power and volumetric expansion ratio are selected as objective functions, which affect system performance and size. The effects of relative TEG flow direction, TEG scale, highest temperature, condensation temperature, evaporator pressure and efficiency of IHE (internal heat exchanger) on system performance are investigated. R123 is chosen among the fluids whose decomposition temperature exceeds 600 K to avoid fluid resolving and resulting in wet stroke when expansion process ends. The thermodynamic irreversibility that occurs in evaporator, turbine, IHE, condenser, pump and TEG is revealed at target working areas. The results indicate a significant increase of system performance when TEG and IHE are combined with ORC bottoming cycle. It is also suggested that TEG-ORC system is suitable to recovering waste heat from engines, because TEG can extend the temperature range of heat source and thereby improve the security and fuel economy of engines. -- Highlights: ► Development of a TEG-ORC system using R123 as working fluid for WHR of engines. ► Performance of the developed cycle was investigated theoretically. ► Optimization of configurations and parameters can be obtained. ► Irreversibility in the evaporator, turbine, IHE, condenser, pump and TEG is revealed. ► Optimal net power and indicated efficiency is 27 kW and 45.7%, respectively.

  8. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  9. Energetical and economical assessment of the waste heat problem

    International Nuclear Information System (INIS)

    Demicheli, U.; Voort, E. van der; Schneiders, A.; Zegers, P.

    1977-01-01

    Electrical power plants produce large quantities of low grade heat that remain unused. For ecological reasons this waste heat must be dispersed by means of expensive cooling devices. Waste heat could be used in acquacultural and agricultural complexes this replacing large amounts of primary energy. Energetical and economical aspects are discussed. The state of the art of these and other utilisations is outlined. A different approach to the problem is to reduce the production of waste heat. Various strategies to achieve this challenge are outlined and their actual state and possible future developments are discussed. Finally, the various most promising utilizations are examined from an energetical point of view

  10. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  11. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  12. Optimum length of finned pipe for waste heat recovery

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2008-01-01

    A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system

  13. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  14. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  15. Performance Analysis of Waste Heat Driven Pressurized Adsorption Chiller

    KAUST Repository

    LOH, Wai Soong

    2010-01-01

    This article presents the transient modeling and performance of waste heat driven pressurized adsorption chillers for refrigeration at subzero applications. This innovative adsorption chiller employs pitch-based activated carbon of type Maxsorb III (adsorbent) with refrigerant R134a as the adsorbent-adsorbate pair. It consists of an evaporator, a condenser and two adsorber/desorber beds, and it utilizes a low-grade heat source to power the batch-operated cycle. The ranges of heat source temperatures are between 55 to 90°C whilst the cooling water temperature needed to reject heat is at 30°C. A parametric analysis is presented in the study where the effects of inlet temperature, adsorption/desorption cycle time and switching time on the system performance are reported in terms of cooling capacity and coefficient of performance. © 2010 by JSME.

  16. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  17. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  18. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  19. Feasibility analysis and performance characteristics investigation of spatial recuperative expander based on organic Rankine cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Han, Yongqiang; Li, Runzhao; Liu, Zhongchang; Tian, Jing; Wang, Xianfeng; Kang, Jianjian

    2016-01-01

    Highlights: • A new concept of spatial recuperative expander for waste heat recovery is proposed. • Simulation model of spatial recuperative expander is established and verified. • The performance characteristics of spatial recuperative expander are investigated. • Comparison between spatial recuperative expander and traditional one is performed. • Spatial recuperative expander achieves better performance than traditional one. - Abstract: This paper proposes a new concept of spatial recuperative expander which injects cold refrigerant during exhaust stroke as a measure of direct contact heat transfer. The commercial simulation tool GT-SUIT 7.4 is employed to model and verify the feasibility of spatial recuperative expander. The research contents are comprised of the following aspects: Firstly, the principles and performance characteristics between traditional reciprocating piston expander and spatial recuperative expander have been investigated. Secondly, the potential of spatial recuperation by adjusting cold refrigerant injection timing has been studied. Thirdly, the relation between expander performance and variable expansion ratio under constant operating condition has been discussed. Fourthly, the thermodynamic performance of spatial recuperative expander under various operating conditions has been examined. The simulation results indicate that: Firstly, the torque per unit mass, thermal efficiency, exergetic efficiency, isentropic efficiency and recuperative efficiency of optimum spatial recuperative expander are 51.00%, 6.74%, 20.79%, 5.68% and 11.36% higher than traditional reciprocating piston expander respectively. Secondly, the cold refrigerant injection timing has little influence on recuperative efficiency because the recuperation process can complete within 16.67 ms. Thirdly, different operating conditions correspond to particular optimal expansion ratio. Fourthly, increasing the pump pressure and maintaining appropriate superheated degree

  20. Performance Analysis of Waste Heat Driven Pressurized Adsorption Chiller

    KAUST Repository

    LOH, Wai Soong; SAHA, Bidyut Baran; CHAKRABORTY, Anutosh; NG, Kim Choon; CHUN, Won Gee

    2010-01-01

    This article presents the transient modeling and performance of waste heat driven pressurized adsorption chillers for refrigeration at subzero applications. This innovative adsorption chiller employs pitch-based activated carbon of type Maxsorb III

  1. Utilization of waste heat from Vienna waste incinerators for the operation of a district cooling grid. Effects on the primary energy efficiency of district heating and district cooling in Vienna; Nutzung der Abwaerme aus den Wiener Abfallverbrennungsanlagen fuer den Betrieb eines Fernkaeltenetzes. Auswirkungen auf die Primaerenergieeffizienz der Fernwaerme und Fernkaelte in Wien

    Energy Technology Data Exchange (ETDEWEB)

    Schindelar, F.; Wallisch, A. [Fernwaerme Wien GmbH, Vienna (Austria)

    2007-07-01

    The need of coldness increases and has to be covered efficiently as well as ecologically. At optimal constellation and mode of operation, the establishment of refrigeration plants from absorption refrigerators and compression refrigerators seems to be economically more competitive than decentralized plants. The optimal constellation is present, if: (a) ecologically and economically favourable waste heat are available; (b) Electricity from the domestic production with waste energy is present; (c) Resources-conserving recirculation cooling possibilities exist; (d) cooling water tanks and/or hot water tanks are available for top coverage; (e) a high grid density exists; (f) in-building station corresponds to the technical conditions. If these fundamental conditions are present, then the district coldness offers a good chance for waste incineration plants to use a safe heat consumer also in summer and to utilize optimally the existing energy.

  2. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  3. Waste heat utilization in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1983-01-01

    The Proceedings contain 17 papers presented at meetings of the Working Group for Waste Heat Utilization of the Committee of the European Society of Nuclear Methods in Agriculture of which 7 fall under the INIS scope. The working group met in May 1980 in Brno, Czechoslovakia, in October 1981 in Aberdeen, Scotland and in September 1982 in Brno. (Z.M.)

  4. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery

    International Nuclear Information System (INIS)

    Wang, Yufei; Tang, Qikui; Wang, Mengying; Feng, Xiao

    2017-01-01

    Highlights: • Comparison between ORC and Kalina cycles (KC) for multi-stream waste heat recovery. • Divide waste heat into straight, convex and concave based on its composite curve. • Use heat ratio and temperature of the most point to show the feature of waste heat. • KC is suitable for straight and most concave heat, while ORC for convex one. - Abstract: Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.

  5. 车用生物燃气工程范例余热定量评估及可利用性分析%Quantitive estimation and availability analysis of waste heat from vehicle biogas plant

    Institute of Scientific and Technical Information of China (English)

    张佳; 邢涛; 孙永明; 孔晓英; 康溪辉; 吕鹏梅; 王春龙; 李金平

    2017-01-01

    after decarburization results in low utilization rate of waste heat. It also reveals that the main parts of the waste heat in the system are made up of 5 types, i.e. waste heat from stripper top gas for decarburization, CO2-poor MEA liquid waste heat after decarburization, waste heat of cooling water from compressor, waste heat in biogas slurry and waste heat of boiler exhaust gas. Besides, the low-grade waste heat has the characteristics of enormous quantity and stabilization. The main parts of heat required include the heat of the fermentation liquid, the heat of maintaining high-temperature anaerobic digestion and the heat of decarburization. The calculation of requirement of heat shows that the quantity of total heat required is 7.85×104MJ/d in the coldest month, and 6.48×104MJ/d in the hottest month. The calculation of waste heat indicates that the potential of total waste heat is respectively 5.87×104MJ/d in the coldest month, and 4.79×104MJ/d in the hottest month. The corresponding maximum energy-saving rate is 74.81% and 73.92%, respectively. The energy-saving potential of each part of waste heat in descending order of quantity is: waste heat of biogas slurry > waste heat of CO2-poor MEA liquid after decarburization > waste heat of stripper top gas for decarburization >waste heat of cooling water from compressor > waste heat of boiler exhaust gas. Additionally, the analysis of waste heat proves that waste heat from this project can be more effectively utilized and preferably collected. Based on the analysis above, we propose some suggestions about the utilization of waste heat: 1) It is recommended that the waste heat of stripper top gas is collected to drive heat pump rather than cycle in system. 2) Waste heat of CO2-poor MEA liquid can be used to warm the low-temperature CO2-rich MEA liquid via the heat exchanger. 3) We recommend the waste heat of compressor cooling water is adopted to produce hot water by the heat pump, which will be regarded as domestic

  6. Use of photovoltaics for waste heat recovery

    Science.gov (United States)

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  7. Waste-heat recovery potential in Turkish textile industry. Case study for city of Bursa

    Energy Technology Data Exchange (ETDEWEB)

    Pulat, E.; Etemoglu, A.B.; Can, M. [Uludag University, Faculty of Engineering and Architecture, Mechanical Engineering Department, Gorukle, TR-16059, Bursa (Turkey)

    2009-04-15

    Textile sector of Turkey has a large production capacity and it is one of the important sectors. Many industrial heating processes generate waste energy in textile industry. Therefore, there is a tremendous waste-heat potential to utilize in textile applications. This study assesses the potential of waste-heat obtained from particularly dyeing process at textile industry in Bursa where textile center of Turkey. Energy consumptions could be decreased by using of waste-heat recovery systems (WHRSs). A thermodynamic analysis is performed in this study. An exergy-based approach is performed for optimizing the effective working conditions for WHRSs with water-to-water shell and tube heat exchanger. The payback period is found to be less than 6 months. The variations of the parameters which affect the system performance such as waste-water inlet temperature, mass flow rate, cooling water inlet pressure and dead state conditions are examined respectively. The results of the analysis show that the exergy destruction rate and economical profit increase with increasing of mass flow rate of the waste water. Similarly, exergy destruction rate, effectiveness and economical profit increase while the second law efficiency decreases as the waste-water inlet temperature increases. (author)

  8. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery

    Science.gov (United States)

    Wang, Weiguang; Shu, Gequn; Tian, Hua; Zhu, Xiuping

    2018-06-01

    A stationary and a transient two-dimensional models, based on the universal conservation laws and coupled with electrochemical reactions, are firstly applied to describe a single thermally-regenerative ammonia-based flow battery (TR-AFB), and emphasis is placed on studying the effects of reactant concentrations, physical properties of the electrolyte, flow rates and geometric parameters of flow channels on the battery performance. The model includes several experimental parameters measured by cyclic voltammetry (CV), chronoamperometry (CA) and Tafel plot. The results indicate that increasing NH3 concentration has a decisive effect on the improvement of power production and is beneficial to use higher Cu2+ concentrations, but the endurance of membrane and self-discharge need to be considered at the same time. It is also suggested that appropriately reducing the initial Cu(NH3)42+ concentration can promote power and energy densities and mitigate cyclical fluctuation. The relation between the energy and power densities is given, and the models are validated by some experimental data.

  9. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  10. The cadastre of waste heat in the Upper Rhine Valley

    International Nuclear Information System (INIS)

    Bartholomaei, G.; Kinzelbach, W.

    1980-04-01

    The cadastre of waste heat provides the distribution in space and time of anthropogeneous waste heat emissions on a 2 x 2 km 2 grid. In the case of the Upper Rhine Valley it serves as a basis for the numerical evaluations of climatic changes caused by man. Such a cadastre also allows to analyse the distribution of pollutant emissions and the heat or energy supply, respectively, of the region. In a close approximation the distribution of waste heat is equal to the distribution of energy consumption. As there are generally difficulties in obtaining data about the consumption of the types of energy on the grid level, methods were developed which allow to determine the local energy consumption by using the relevant structural data. The methods used for the Federal Republic of Germany and neighbouring countries and the results for the Upper Rhine Valley, obtained by these methods, are presented. The cadastre of waste heat is based on data of the year 1973 which was a time of great energy consumption. Only in 1978 this energy consumption was exceeded. To be able to estimate the change in the influence of the anthropogeneous waste heat during the next 20 years, the cadastre was extrapolated until the year 2000. (orig.) [de

  11. Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic Rankine cycle (DORC)

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Gao, Yuanyuan; Shu, Gequn; Zhao, Mingru; Yan, Nanhua

    2017-01-01

    Highlights: • Various mixtures based on siloxanes used in the DORC system are proposed. • Thermo-economic analysis is conducted to explore mixtures’ application potential. • Cycle performances of D4/R123 (0.3/0.7) and MD2M/R123 (0.35/0.65) are superior. - Abstract: Siloxanes are usually used in the high temperature organic Rankine cycle (ORC) for engine waste heat recovery, but their flammability limits the practical application. Besides, blending siloxanes with retardants often brings a great temperature glide, causing the large condensation heat and the reduction in net output power. In view of this, the zeotropic mixtures based on siloxanes used in a dual-loop organic Rankine cycle (DORC) system are proposed in this paper. Three kinds of binary zeotropic mixtures consisting of R123 and various siloxanes (octamethylcyclotetrasiloxane ‘D4’, octamethyltrisiloxane ‘MDM’, decamethyltetrasiloxane ‘MD2M’), represented by D4/R123, MDM/R123 and MD2M/R123, are selected as the working fluid of the high temperature (HT) cycle. Meanwhile, R123 is always used in the low temperature (LT) cycle. The net output power and utilization of heat source are considered as the evaluation indexes to select the optimal mixture ratios for further analysis. Based on the thermodynamic and economic model, net output power, thermal efficiency, exergy efficiency, exergy destruction and electricity production cost (EPC) of the DORC system using the selected mixtures have been investigated under different operating parameters. According to the results, the DORC based on D4/R123 (0.3/0.7) shows the best thermodynamic performance with the largest net power of 21.66 kW and the highest thermal efficiency of 22.84%. It also has the largest exergy efficiency of 48.6% and the smallest total exergy destruction of 19.64 kW. The DORC using MD2M/R123 (0.35/0.65) represents the most economic system with the smallest EPC of 0.603 $/kW h. Besides, the irreversibility in the internal heat

  12. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  13. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  14. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Science.gov (United States)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  15. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  16. Control of automotive waste heat recovery systems with parallel evaporators

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rascanu, G.C.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    In this paper, Model Predictive Control (MPC) is applied to control a Waste Heat Recovery system for a highly dynamic automotive application. As a benchmark, a commonly applied control strategy is used that consists of a feedforward based on engine conditions and of two PI controllers that

  17. Design, empirical modelling and analysis of a waste-heat recovery system coupled to a traditional cooking stove

    International Nuclear Information System (INIS)

    Sakdanuphab, Rachsak; Sakulkalavek, Aparporn

    2017-01-01

    Highlights: • WHR system was implemented to utilise the waste heat from a stove. • The empirical modelling by RSM can be used to predict the generated TEG power. • The total conversion efficiency of the WHR system was more than 80%. • The stove efficiency decreased less than 5% when the WHR system was attached. - Abstract: In this work, a waste-heat recovery (WHR) system was designed and implemented to utilise the waste heat from a cooking stove. The WHR system was designed to preserve maximum thermal energy efficiency, use passive cooling, and produce a system that did not alter the body of the cooking stove. The thermal energy from the cooking stove was converted into electrical energy by a thermoelectric generator (TEG) and used in a waste-heat hot water boiler. The cold side of the TEG was cooled by heat pipes immersed in a water box that offers a high heat transfer rate. The heated water can be used for domestic purposes. Dependent variables were the heater temperature and the volume of water. The heater temperature was varied between 130 and 271 °C, and 4.2–9.5 L of water was investigated. At equilibrium, response surface methodology based on a central composite design was used to empirically model the influence of the heater temperature and the volume of water on the electrical power generation and the hot water temperature. Experimental results of the system efficiency showed that the heater temperature was more influential than was the volume of water. The total efficiency of the WHR system was more than 80%. Thermal contact resistance was analysed to improve the WHR system performance. Finally, the thermal efficiency of a cooking stove, both with and without the WHR system, was measured. Results showed that the thermal efficiency of the cooking stove decreased by less than 5% when the WHR system was attached.

  18. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  19. Utilization of waste heat from aluminium electrolytic cell

    Science.gov (United States)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  20. Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants

    Directory of Open Access Journals (Sweden)

    Feng Zhen

    2018-06-01

    Full Text Available Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of heat pump integration technology. Optimal results for the heat exchange network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point temperature of 50 °C, a minimum heating utility load of 234.02 kW and a minimum cooling utility load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW (19.75%, whilst the introduction of new heat pump integration technology would afford further energy savings of 95.55 kW (16.25%. The combined energy saving value of 211.63 kW corresponds to a total energy saving of 36%, with economic analysis revealing that these reforms would give annual savings of 103,300 USD. The installation costs required to introduce these process modifications are predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout time based on predicted annual energy savings.

  1. Capturing the Invisible Resource. Analysis of Waste Heat Potential in Chinese Industry and Policy Options for Waste Heat to Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    This study analyzed the theoretical maximum potential and practical potential of waste heat in the cement, iron, and steel, and glass sectors in China, based on thermal energy modeling, expert interviews, and literature reviews.

  2. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  3. The second generation turbosteamer.Vehicle integration as a key for an effective utilization of waste heat; Der Turbosteamer der 2. Generation. Fahrzeugintegration als Schluessel zur effizienten Abwaermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Horst, Tilmann Abbe; Seifert, Marco; Schmidt, Christian [BMW Forschung und Technik GmbH, Muenchen (Germany); Zuck, Bernhard [BMW AG, Muenchen (Germany); Spliethoff, Hartmut [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2012-11-01

    Waste heat recovery is a promising approach for achieving further reductions in fuel consumption and, as a result, exhaust emissions. In 2005, the potential of a system based on the Rankine cycle was demonstrated for the first time with the BMW Turbosteamer. For the second generation, the system design has been thoroughly simplified. In the current setup, heat is taken in from the exhaust gas of the engine and the heat from condensation is transferred to the existing cooling system. Steam expansion is accomplished by an impulse turbine with high power density. Integration of this system into the thermal management of the engine poses a great challenge. Interactions between the exhaust system, the cooling system and the waste heat recovery system have to be considered to enable efficient operation in a passenger car. For example, the operation range is limited by the exhaust gas backpressure that is generated in the evaporator. Another consideration is that additional heat rejection to the cooling system may not affect the thermal safety of the engine. In this paper, the second generation Turbosteamer and the latest findings regarding system design, development of the key components and vehicle integration are presented. Analysis of the interactions with the engine thermal management leads to a recommendation for the optimal operating range and strategy of the waste heat recovery system. The influence of the integration effects on the system efficiency are evaluated on this basis. (orig.)

  4. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  5. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  6. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... of using ORC units for maritime applications, and the relevance of this technology for new-building projects. Firstly, an evaluation of the waste heat resources available on board Mærsk containers fleet, and an estimation of the potential energy recovery by means of the ORC technology was performed...

  7. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  8. Use of waste heat from a dairy for heating of a community house

    Energy Technology Data Exchange (ETDEWEB)

    Rehn, C

    1976-01-01

    In a dairy, a lot of cooling capacity is needed. This article describes how this waste heat can be used for heating a community house including a sport establishment and producing hot water for that house. Four different technical solutions are discussed; (1) floor heat, (2) heat transfer connected to the ventilation, (3) regenerative heat exchanger, and (4) use of heat pumps.

  9. Making the most of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    1975-09-26

    Two papers to the first PEMEC conference on plant maintenance held in London, Sept. 1975, are reported. J. O'Shea (Integrated Energy Systems) discussed the financial savings possible in recovering waste heat from diesel engines, smoke-tube and water-tube boilers and gas turbines. He estimates that use of all the waste heat sources from a diesel engine would return a cost of 0.623 p/kWh. R. Aston described a conventional diesel generator standby power installation at Connolly's (Blackley) Manchester works, expressing doubts as to the economy of the peak-lopping operation, with the favorable tariffs they were getting from Norway.

  10. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  11. Modeling and simulation of an activated carbon–CO2 four bed based adsorption cooling system

    International Nuclear Information System (INIS)

    Jribi, Skander; Saha, Bidyut Baran; Koyama, Shigeru; Bentaher, Hatem

    2014-01-01

    Highlights: • A transient mathematical model of a 4-bed adsorption chiller is proposed. • The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. • The desorption pressure has a big influence in the performances. • With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1. - Abstract: In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 (T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications

  12. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  13. Influence of working fluids on Organic Rankine Cycle for waste heat recovery applications

    Energy Technology Data Exchange (ETDEWEB)

    Struzyna, Ralf; Eifler, Wolfgang; Steinmill, Jens [Bochum Univ. (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2012-11-01

    More than 50% of the energy contained in fuel is lost due to the loss of heat content to the exhaust gas, the cooling water or the charge air cooler medium. Therefore, one of the most promising attempts to further increase the efficiency of internal combustion engines is waste heat recovery by means of a combined process. The Organic Rankine Cycle (ORC) is a promising process for waste heat recovery systems. The main purpose is to identify suitable working fluids to achieve best system performance. Therefore an analysis of the influence of different working fluids on system output is required. (orig.)

  14. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  15. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  16. Energy need, energy production, waste heat quantities - the present state and a look into the future

    International Nuclear Information System (INIS)

    Schikarski, W.

    1975-01-01

    The possibilities and methods to keep the waste heat low in our society so dependent on energy, are manifold and they affect many aspects of our economic and social life. A society which shows concern for its environment will not hesitate to explore all possible avenues and to realize them. Nevertheless, one has to start from the assumption that the energy consumption, which is closely connected with the standard of living, will increase in the near future. Thus, we have to reckon with more waste heat. Therefore, on a medium-term basis, the amount of waste heat we will be confronted with and its distribution in the environment is to be investigated carefully in order that on the one hand hydrosphere and atmosphere, the limit load of which is given, are not burdened in excess, and that on the other hand the media taking up waste heat are utilized in an optimal way (cooling management). On a long-term basis, the limits of waste heat discharge into water and atmosphere have to be determined carefully, something which can probably be done on the basis of climatological consequences. (orig.) [de

  17. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  18. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  19. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Tian, Hua; Liang, Xingyu; Wei, Haiqiao; Liu, Lina

    2013-01-01

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  20. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  1. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

    International Nuclear Information System (INIS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Fang, Chun-Jen; Yao, Da-Jeng

    2016-01-01

    Highlights: • The waste heat recovery system is modeled by three-dimensional thermal resistance. • This is a time-saving and efficient method to estimate power generation from TEGs. • Relations between power generation and varied factors can be rapidly revealed. • TEGs positions and uniformity of velocity profile should be considered together. • Power generation is more sensitive to either internal or external flow velocity. - Abstract: Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts – a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power

  2. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  3. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  4. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  5. Device for district heating with utilization of waste heat from power plants

    International Nuclear Information System (INIS)

    Korek, J.

    1976-01-01

    In order to utilize the waste heat developing in power plants - especially in nuclear power plants - the author suggests to lead the waste heat of the coolers for oil (which the bearings are lubricated with), hydrogen (which serves for the stator rotor-cooling), and the stator cooling water to the circulating district heating water and to arrange these heat exchangers one behind another or parallel to each other in the water circuit of the district heating system. The oil cooler of the engine transformer is also connected with the circulation of the district heating water. The runback water of the district heating network could thus be heated from approx. 40 0 C up to 65 0 C. (UA) [de

  6. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  7. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  8. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  9. Energetic and exergetic analysis of waste heat recovery systems in the cement industry

    International Nuclear Information System (INIS)

    Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E.

    2013-01-01

    In a typical cement producing procedure, 25% of the total energy used is electricity and 75% is thermal energy. However, the process is characterized by significant heat losses mainly by the flue gases and the ambient air stream used for cooling down the clinker (about 35%–40% of the process heat loss). Approximately 26% of the heat input to the system is lost due to dust, clinker discharge, radiation and convection losses from the kiln and the preheaters. A heat recovery system could be used to increase the efficiency of the cement plant and thus contribute to emissions decrease. The aim of this paper is to examine and compare energetically and exergetically, two different WHR (waste heat recovery) methods: a water-steam Rankine cycle, and an Organic Rankine Cycle (ORC). A parametric study proved that the water steam technology is more efficient than ORC in exhaust gases temperature higher than 310 °C. Finally a brief economic assessment of the most efficient solution was implemented. WHR installations in cement industry can contribute significantly in the reduction of the electrical consumptions operating cost thus being a very attractive investment with a payback period up to 5 years. - Highlights: • This paper presents waste heat recovery as a way to gain energy from the exhaust gases in a cement plant. • Water steam cycle and ORC has been analyzed for waste heat recovery. • The energetic and exergetic evaluation of the two waste heat recovery processes is presented and compared

  10. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  11. Study of waste-heat recovery and utilization at the Farmington Municipal Power Plant. Final report, December 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, G.G.; Edgel, W.R.; Feldman, K.T. Jr.; Moss, E.J.

    1982-03-01

    An examination was made of the technical and economc feasibility of utilizing waste heat from the Farmington Municipal Power Plant. First, the production cycles of the natural-gas-fired plant were assessed to determine the quantity and quality of recoverable waste heat created by the plant during its operation. Possibilities for utilizing waste heat from the exhaust gases and the cooling water were then reviewed. Hot water systems that can be used to retrieve heat from hot flue gases were investigated; the heated water can then be used for space heating of nearby buildings. The potential use of waste heat to operate a refrigeration plant was also analyzed. The use of discharged cooling water for hydroelectric generation was studied, as well as its application for commercial agricultural and aquaculture enterprises.

  12. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  13. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  14. Waste Heat Recovery from a High Temperature Diesel Engine

    Science.gov (United States)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the

  15. Study on thermal electric conversion system for FBR plant. Investigation for effective EVST waste heat recovery system

    International Nuclear Information System (INIS)

    Maekawa, Isamu; Kurata, Chikatoshi

    2004-02-01

    Recently, it has been important to reuse discharged heat energy from present nuclear plant, especially from sodium cooled FBR, which are typical high temperature system, in the view of reduction of environmental burden and improvement of heat efficiency for plant. The thermal electric conversion system can work only the temperature difference and has been applied to the limited fields such as space or military, however, that results show good merits for reliability, maintenance free, and so on. Recently, the development of new thermal electric conversion elements has made remarkable progress. In this study, for the effective utilization of waste heat from Monju', the prototype plant of FBR, we made an investigation of electric power generating system maintaining the cooling faculty by applying the thermal electric conversion system to sodium cooling line of EVST. Using the new type iron based thermal electric conversion elements, which are plentiful, economical and good for environmental harmonization, we have calculated the amount of heat exchange and power generation from sodium cooling line of EVST, and have investigated the module sizing, cost and subject to be settled. The results were , (1)The amount of power generation from sodium cooling line of EVST is smaller about one figure than motive power of sodium cooler fan. However, if Seebeck coefficient and heat conductivity of iron based thermal electric conversion elements shall be improved, power from sodium cooling line shall be able to cover the motive power. (2) The amount of heat released from sodium cooling line after the installation of thermal electric conversion module covers the necessity to maintain the sodium cooling faculty. (3) In case of the installation of module to the sodium cooler, it should be reconstructed because of tube arrangement modification. In case of the installation of module to the sodium connecting line, air ventilation system is needed to suppress the room temperature. (4) As

  16. Electronic cooling using an automatic energy transport device based on thermomagnetic effect

    International Nuclear Information System (INIS)

    Xuan Yimin; Lian Wenlei

    2011-01-01

    Liquid cooling for thermal management has been widely applied in electronic cooling. The use of mechanical pumps often leads to poor reliability, high energy consumption and other problems. This paper presents a practical design of liquid cooling system by mean of thermomagnetic effect of magnetic fluids. The effects of several structure and operation factors on the system performance are also discussed. Such a device utilizes an earth magnet and the waste heat generated from a chip or other sources to maintain the flow of working fluid which transfers heat to a far end for dissipation. In the present cooling device, no additional energy other than the waste heat dissipated is consumed for driving the cooling system and the device can be considered as completely self-powered. Application of such a cooling system to a hot chip results in an obvious temperature drop of the chip surface. As the heat load increases, a larger heat dissipation rate can be realized due to a stronger thermomagnetic convection, which indicates a self-regulating feature of such devices. - Research highlights: → Automatic electronic cooling has been realized by means of thermomagnetic effect. → Application of the cooling system to a hot chip results in an obvious surface temperature drop. → The system possesses a self-regulating feature of cooling performance.

  17. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  18. A review of waste heat recovery technologies for maritime applications

    International Nuclear Information System (INIS)

    Singh, Dig Vijay; Pedersen, Eilif

    2016-01-01

    Highlights: • Major waste heat sources available on ships have been reviewed. • A review of suitable waste heat recovery systems was conducted for marine vessels. • Technologies have been compared for their potential and suitability for marine use. • Kalina cycle offers the highest potential for marine waste heat recovery. • Turbo compound system most suitable for recovering diesel exhaust pressure energy. - Abstract: A waste heat recovery system produces power by utilizing the heat energy lost to the surroundings from thermal processes, at no additional fuel input. For marine vessels, about 50 percent of the total fuel energy supplied to diesel power-plant aboard is lost to the surroundings. While the total amount of wasted energy is considerable, the quality of this energy is quite low due to its low temperature and has limited potential for power production. Effective waste heat recovery systems use the available low temperature waste heat to produce mechanical/electrical power with high efficiency value. In this study a review of different waste heat recovery systems has been conducted, to lay out the potential recovery efficiencies and suitability for marine applications. This work helps in identifying the most suitable heat recovery technologies for maritime use depending on the properties of shipboard waste heat and achievable recovery efficiencies, whilst discussing the features of each type of system.

  19. Optimal waste heat recovery and reuse in industrial zones

    International Nuclear Information System (INIS)

    Stijepovic, Mirko Z.; Linke, Patrick

    2011-01-01

    Significant energy efficiency gains in zones with concentrated activity from energy intensive industries can often be achieved by recovering and reusing waste heat between processing plants. We present a systematic approach to target waste heat recovery potentials and design optimal reuse options across plants in industrial zones. The approach first establishes available waste heat qualities and reuse feasibilities considering distances between individual plants. A targeting optimization problem is solved to establish the maximum possible waste heat recovery for the industrial zone. Then, a design optimization problem is solved to identify concrete waste heat recovery options considering economic objectives. The paper describes the approach and illustrates its application with a case study. -- Highlights: → Developed a systematic approach to target waste heat recovery potentials and to design optimal recovery and reuse options across plants in industrial zones. → Five stage approach involving data acquisition, analysis, assessment, targeting and design. → Targeting optimization problem establishes the maximum possible waste heat recovery and reuse limit for the industrial zone. → Design optimization problem provides concrete waste heat recovery and reuse network design options considering economic objectives.

  20. Potential of waste heat in Croatian industrial sector

    Directory of Open Access Journals (Sweden)

    Bišćan Davor

    2012-01-01

    Full Text Available Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU and United Nations Framework Convention on Climate Change (UNFCCC. Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed. [Acknoledgment. The authors would like to acknowledge the financial support provided by the UNITY THROUGH KNOWLEDGE FUND (UKF of the Ministry of Science, Education and Sports of the Republic of Croatia and the World Bank, under the Grant Agreement No. 89/11.

  1. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  2. Prediction of dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management

    International Nuclear Information System (INIS)

    Horst, Tilmann Abbe; Tegethoff, Wilhelm; Eilts, Peter; Koehler, Juergen

    2014-01-01

    Highlights: • Method for evaluating fuel saving potential of vehicle waste heat recovery systems. • Analysis of interactions between waste heat recovery system and vehicle. • Evaluation of fuel saving potential in dynamic motorway driving scenario. • Parameter study for increasing fuel saving potential of integrated system. - Abstract: Waste heat recovery (WHR) by means of a Rankine Cycle is a promising approach for achieving reductions in fuel consumption and, as a result, exhaust emissions of passenger car engines. To find the best compromise between complexity and fuel saving potential, methods for predicting the WHR performance for different system configurations and stationary as well as dynamic driving scenarios are needed. Since WHR systems are usually not included in today’s car concepts, they are mostly designed as add-on systems. As a result their integration may lead to negative interactions due to increased vehicle weight, engine backpressure and cooling demand. These effects have to be considered when evaluating the fuel saving potential. A new approach for predicting WHR performance and fuel saving potential was developed and is presented in this paper. It is based on simple dynamic models of a system for recovering exhaust gas waste heat and its interfaces with the vehicle: the exhaust system for heat input, the on-board electric system for power delivery and the engine cooling system for heat rejection. The models are validated with test bench measurements of the cycle components. A study of fuel saving potential in an exemplary dynamic motorway driving scenario shows the effect of vehicle integration: while the WHR system could improve fuel economy by 3.4%, restrictions in power output due to the architecture of the on-board electric system, package considerations, increased weight, cooling demand and exhaust gas backpressure lead to a reduction of fuel saving potential by 60% to 1.3%. A parameter study reveals that, in addition to weight

  3. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  4. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  5. Waste-heat disposal from US geothermal power plants: An update

    Science.gov (United States)

    Robertson, R. C.

    1982-05-01

    Some of the more interesting and significant methods that are currently being studied in the US for reducing waste heat dissipation system costs and water consumption are: (1) allowing plant power output to vary with ambient conditions; (2) use of ammonia to transport waste heat from the turbine condenser to air-cooled coils; (3) development of a plastic-membrane type wet/dry tower; (4) marketing of steam turbines that can tolerate a wider range of back pressure; (5) use of circulating water storage to delay heat dissipation until more favorable conditions exist; (6) development of tubes with enhanced heat transfer surfaces to reduce condenser capital costs; and (7) use of evaporative condensers to reduce costs in binary cycles. Many of these projects involve large scale tests that are now fully installed and producing some preliminary data.

  6. Energy consumption analysis and simulation of waste heat recovery technology of ceramic rotary kiln

    Science.gov (United States)

    Chen, Zhiguang; Zhou, Yu; Qin, Chaokui; Zhang, Xuemei

    2018-03-01

    Ceramsite is widely used in the construction industry, insulation works and oil industry in China, and the manufacture equipment is mainly industrial kiln. In this paper, energy consumption analysis had been carried out through experimental test of a Ceramsite kiln in Henan province. Results showed that the discharge temperature of Ceramsite was about 1393K, and the waste heat accounted for 22.1% of the total energy consumption. A structure of cyclone preheater which recovered waste heat of the high temperature Ceramsite by blast cooling was designed. Then, using Fluent software, performance of the unit was simulated. The minimum temperature that Ceramsite could reach, heat dissipating capacity of Ceramsite, temperature at air outlet, wall temperature of the unit and pressure loss were analyzed. Performance of the designed unit under different inlet velocity was analyzed as well.

  7. Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles

    International Nuclear Information System (INIS)

    Yue, Chen; Han, Dong; Pu, Wenhao; He, Weifeng

    2015-01-01

    This study proposes and investigates a novel VCES (Vehicle power and cooling/heating Cogeneration Energy System), including a topping vehicle engine subsystem, and a bottoming waste-heat recovery subsystem which uses the zeotropic working fluid. The various grade exhaust and coolant waste-heat of the topping subsystem are cascade recovered by the bottoming subsystem, and slide-temperature thermal match in waste heat recovery heat exchangers and the condenser is considered also, obtaining power output and cooling/heating capacity. Based on the experimental data from an actual vehicle's energy demands and its waste-heat characteristics, the proposed VCES (vehicle cogeneration energy system) model is built and verified. Using ammonia-water as working fluid of the bottoming subsystem, integrated thermodynamic performances of the VCES are discussed through introducing three variables: an ambient temperature, the vehicle's velocity and the number of seated occupants. The influence of above three variables on the proposed VCES′ overall thermodynamic performance is analyzed by comparing it to a conventional VCES, and suitable operation conditions are recommended under cooling and heating conditions. - Highlights: • A novel vehicle cogeneration energy system is proposed. • Slide-temperature thermal match at two levels are considered. • Integration of the topping vehicle engine and bottoming waste heat recovery cycle is designed. • The cogeneration system model is built and verified based on experimental data. • Energy-saving potential of the proposed system is investigated

  8. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung

    2015-01-01

    Graphical abstract: Schematic diagram of the CWHRS for a marine diesel engine. - Highlights: • The economic optimization of a CWHRS of a marine engine is investigated. • The environmental protection refrigerant, R1234yf is used as the working fluid of the TRC system. • The optimal analysis and comparison of three models for waste heat recovering have been carried out. • The optimization of payback periods, CO_2 emission reducing and diesel oil saving are reported. - Abstract: The aim of this study is to investigate the economic performance of a novel compact waste heat recovering system for the marine diesel engine. The transcritical Rankine cycle is employed to convert the waste heat resources to useful work with R1234yf. To evaluate the utilizing efficiency and economic performance of waste heat resources, which are exhaust gas, cylinder cooling water and scavenge air cooling water, three operating models of the system are investigated and compared. The levelized energy cost, which represents the total cost per kilo-watt power, is employed to evaluate the economic performance of the system. The economic optimization and its corresponding optimal parameters of each operating model in the compact waste heat recovering system are obtained theoretically. The results show that the minimal levelized energy cost of the proposed system operated in Model I is the lowest of the three models, and then are Model II and Model III, which are 2.96% and 9.36% lower for, respectively. Similarly, the CO_2 emission reduction is the highest for Model I of the three models, and 21.6% and 30.1% lower are obtained for Model II and Model III, respectively. The compact waste heat recovering system operated in Model I has superiority on the payback periods and heavy diesel oil saving over the others. Finally, the correlations using specific work of working fluid and condensation temperature as parameters are proposed to assess the optimal conditions in economic performance

  9. Thermoelectrics for waste heat recovery and climate control in automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Maranville, Clay W. [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford Forschungszentrum Aachen GmbH, Aachen (Germany)

    2011-07-01

    Thermoelectric (TE) devices have received renewed attention in the past decade for use in light-duty automotive applications. Governmental organizations and private corporations world-wide are sponsoring research at both the basic materials level, as well as for applied research and technology demonstrations. This funding has led to measurable improvement in TE device cost and efficiency, as well as spurring the emergence and growth of a vertically-integrated TE industry. The two broad categories of applications that have been considered for thermoelectrics are power generation through waste-heat recovery and cabin climate control through the use of TE heat pumps. Neither of these uses of TE devices has ever been commercialized in large-scale vehicle applications, in large part due to the challenges of low device efficiency and high costs. While it is still not clear that TEs will emerge as a winner in the marketplace in the near-term, there are several new developments which provide justification for this renewed interest. Among these reasons are increasing electrification of the vehicle fleet, demands from governments and consumers for improvement in fuel economy and reduction in tailpipe CO{sub 2} emissions, and a greater emphasis on occupant comfort. With governments and industry around the world placing substantial financial bets on the promise of this technology to help address national and global concerns for reducing CO{sub 2} and hydrocarbon consumption, it makes sense for the automotive industry to leverage this investment and to re-evaluate TE-based technology for use in vehicles. In this paper, we will present an overview of Ford Motor Company's current and upcoming research efforts into TE technology. This effort is focused on the use of TE waste heat recovery systems in a vehicle exhaust; and the use of TE HVAC systems in hybrid vehicles. We will discuss the role of the automotive OEM in establishing guidelines and targets for cost, power density

  10. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  11. Utilization of waste heat from nuclear power plants in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1981-01-01

    The development of nuclear power will result in the relative and absolute increase in the amount of waste heat which can be used in agriculture for heating greenhouses, open spaces, for fish breeding in heated water, for growing edible mushrooms, growing algae, for frost protection of orchards, air conditioning of buildings for breeding livestock and poultry, and for other purposes. In addition of the positive effect of waste heat, the danger increases of disease, weeds and pests. Pilot plant installations should be build in Czechoslovakia for testing the development of waste heat utilization. (Ha)

  12. Waste heat recovering device for reactors

    International Nuclear Information System (INIS)

    Sonoda, Masanobu; Shiraishi, Tadashi; Mizuno, Hiroyuki; Sekine, Yasuhiro.

    1982-01-01

    Purpose: To enable utilization of auxiliary-equipment-cooling water from a non-regenerative heat exchanger as a heat source, as well as prevent radioactive contamination. Constitution: A water warming device for recovering the heat of auxiliary equipment cooling water from a non-regenerative heat exchanger is disposed at the succeeding stage of the heat exchanger. Heat exchange is performed in the water warming device between the auxiliary equipment cooling water and a heat source water set to a higher pressure and recycled through the water warming device. The heat recovered from the auxiliary equipment cooling water is utilized in the heat source water for operating relevant equipments. (Aizawa, K.)

  13. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    International Nuclear Information System (INIS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-01-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper. (paper)

  14. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    Science.gov (United States)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  15. A review on waste heat recovery from exhaust in the ceramics industry

    Science.gov (United States)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  16. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  17. The relationship among CPU utilization, temperature, and thermal power for waste heat utilization

    International Nuclear Information System (INIS)

    Haywood, Anna M.; Sherbeck, Jon; Phelan, Patrick; Varsamopoulos, Georgios; Gupta, Sandeep K.S.

    2015-01-01

    Highlights: • This work graphs a triad relationship among CPU utilization, temperature and power. • Using a custom-built cold plate, we were able capture CPU-generated high quality heat. • The work undertakes a radical approach using mineral oil to directly cool CPUs. • We found that it is possible to use CPU waste energy to power an absorption chiller. - Abstract: This work addresses significant datacenter issues of growth in numbers of computer servers and subsequent electricity expenditure by proposing, analyzing and testing a unique idea of recycling the highest quality waste heat generated by datacenter servers. The aim was to provide a renewable and sustainable energy source for use in cooling the datacenter. The work incorporates novel approaches in waste heat usage, graphing CPU temperature, power and utilization simultaneously, and a mineral oil experimental design and implementation. The work presented investigates and illustrates the quantity and quality of heat that can be captured from a variably tasked liquid-cooled microprocessor on a datacenter server blade. It undertakes a radical approach using mineral oil. The trials examine the feasibility of using the thermal energy from a CPU to drive a cooling process. Results indicate that 123 servers encapsulated in mineral oil can power a 10-ton chiller with a design point of 50.2 kW th . Compared with water-cooling experiments, the mineral oil experiment mitigated the temperature drop between the heat source and discharge line by up to 81%. In addition, due to this reduction in temperature drop, the heat quality in the oil discharge line was up to 12.3 °C higher on average than for water-cooled experiments. Furthermore, mineral oil cooling holds the potential to eliminate the 50% cooling expenditure which initially motivated this project

  18. Feasibility assessment of refinery waste heat-to-power conversion using an organic Rankine cycle

    International Nuclear Information System (INIS)

    Jung, H.C.; Krumdieck, Susan; Vranjes, Tony

    2014-01-01

    Highlights: • Kerosene enthalpies were estimated at different temperatures using samples and simulations. • Numerical ORC and financial models were developed to assess feasibility of waste heat-to-power conversion. • Six pure fluids and two mixtures were investigated for selecting optimum fluid. • It is technically and economically feasible to install a 250 kW ORC unit to capture kerosene waste heat. - Abstract: Industrial waste heat is a large potential resource for generation of carbon-free electricity. This study investigates the technical and economic feasibility of converting waste heat from a stream of liquid kerosene which must be cooled down to control the vacuum distillation temperature. The process conditions were determined for a simple 250 kW organic Rankine cycle (ORC) with a heat extraction loop. The pinch point technique was adopted to determine the optimum evaporation and condensation temperatures and assess the influence of the kerosene temperature at the evaporator exit on net power output. The operating conditions and performance of the ORC system were evaluated with eight potential refrigerants and refrigerant mixtures such as R123, R134a, R245fa, isobutane, butane, pentane, an equimolar mixture of butane and pentane, and a mixture of 40% isobutane and 50% butane on a mole basis. A financial model was established for the total plant cost. Results show that isobutane, of the pure fluids, yields the best plant efficiency of 6.8% with approximately half of the kerosene flow available, and the efficiency can be increased up to 7.6% using the butane/pentane mixture. The optimum kerosene temperature at the evaporator outlet is estimated to be 70 °C for all the fluid, except the butane/pentane mixture, which meets the design constraint not to disturb the existing distillation process. A capital cost target of $3000/kW could be achieved with a payback period of 6.8 years and the internal rate of return (IRR) of 21.8%. Therefore, if the detailed

  19. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H.

    2011-01-01

    Organic Rankine Cycle (ORC) could be used to recover low-grade waste heat. When a vehicle is running, the engine exhaust gas states have a wide range of variance. Defining the operational conditions of the ORC that achieve the maximum utilization of waste heat is important. In this paper the performance of different working fluids operating in specific regions was analyzed using a thermodynamic model built in Matlab together with REFPROP. Nine different pure organic working fluids were selected according to their physical and chemical properties. The results were compared in the regions when net power outputs were fixed at 10 kW. Safety levels and environmental impacts were also evaluated. The outcomes indicate that R11, R141b, R113 and R123 manifest slightly higher thermodynamic performances than the others; however, R245fa and R245ca are the most environment-friendly working fluids for engine waste heat-recovery applications. The optimal control principle of ORC under the transient process is discussed based on the analytical results. -- Highlights: → R11, R141b, R113 and R123 manifest the best thermodynamic performances. → R245fa and R245ca are the most environment-friendly working fluids for the engine waste heat-recovery application. → The condensing temperature has more important effect than the evaporating pressure to the performance of ORC. → The optimal control principle of ORC under the transient process was defined according to the calculation results for the vehicle engine waste heat-recovery application. → ORC thermodynamic model was built in Matlab together with REFPROP.

  20. Management of waste heat at nuclear power plants: Its potential impact on the environment and its possible economic use

    International Nuclear Information System (INIS)

    Tsai, Y.H.

    1987-01-01

    The efficacy of the disposal of waste heat from nuclear power plants by means of once-through and closed-cycle cooling systems is examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) are identified. Examples of thermal standards established for once-through cooling on open coastal waters are presented. The design and general layout of various types of cooling systems are reviewed. The advantages and disadvantages of each of the cooling systems are presented, with particular emphasis on the discussion of potential environmental impacts. Modeling techniques available for impact assessment are presented. Proper selection and application of the models depend on the availability of site characteristics and understanding of the modeling techniques. Guidelines for choosing an appropriate model are presented. Various methods have been developed for the beneficial use of waste heat largely dissipated to the environment. Examples and associated problems of waste-heat utilization are discussed for agricultural, industrial, aquacultural, and residential uses

  1. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  2. The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2018-06-01

    Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.

  3. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  4. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  5. Drying of bio fuel utilizing waste heat; Torkning av biobraenslen med spillvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Inge; Larsson, Sara; Wennberg, Olle [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-10-01

    Many industries today have large sources of low grade heat (waste heat), however this energy is mainly lost with effluents to air and water. The aim of this study has been to investigate the technical and economical aspects of utilizing this low grade heat to dry biofuel. The project has been mainly focused towards the forest industry since they have both large amounts of biofuel and waste heat available. Drying of biofuel could generate added revenue (or reduced purchase costs) and through that also create larger incentives for further energy saving modifications to the main process. Due to the higher moisture content together with the risk of frozen bark in the winter time, additional fuels (such as oil) to combust bark in the existing boiler. This is mainly the case when mechanical dewatering is not available. Drying of bark results in an added energy value, which makes it possible to combust the bark without additional fuel. The primary energy demand, in the form of electricity and optional additional heating at load peaks, is low when waste heat is used for the drying process. In this way it is possible to increase the biofuel potential, since the primary energy input to the drying process is essentially lower then the increased energy value of the fuel. Drying also decreases the biological degradation of the fuel. Taking all the above into consideration, waste heat drying could result in a 25 % increase of the biofuel potential in the forest industry in Sweden, without additional cutting of wood. A survey has been done to state which commercial technologies are available for biofuel drying with waste heat. An inquiry was sent out to a number of suppliers and included a few different cases. Relations for approximating investment cost as well as electric power demand were created based on the answers from the inquiry. These relations have then been used in the economical evaluations made for a number of cases representing both sawmills and pulp and paper mills

  6. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  7. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  8. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  9. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  10. NASA 50 amp hour nickel cadmium battery waste heat determination

    Science.gov (United States)

    Mueller, V. C.

    1980-01-01

    A process for determining the waste heat generated in a 50-ampere-hour, nickel cadmium battery as a function of the discharge rate is described and results are discussed. The technique involved is essentially calibration of the battery as a heat transfer rate calorimeter. The tests are run at three different levels of battery activity, one at 40-watts of waste heat generated, one at 60, and one at 100. Battery inefficiency ranges from 14 to 18 percent at discharge rates of 284 to 588 watts, respectively and top-of-cell temperatures of 20 C.

  11. A Muon Collider scheme based on Frictional Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv University, Tel Aviv (Israel); Caldwell, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Galea, R. [Nevis Laboratories, Columbia University, Irvington, NY (United States)]. E-mail: galea@nevis.columbia.edu; Schlenstedt, S. [DESY, Zeuthen (Germany)

    2005-07-11

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling.

  12. A Muon Collider scheme based on Frictional Cooling

    International Nuclear Information System (INIS)

    Abramowicz, H.; Caldwell, A.; Galea, R.; Schlenstedt, S.

    2005-01-01

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling

  13. Environmental effluents from waste heat rejection

    International Nuclear Information System (INIS)

    Becker, C.D.; Thatcher, T.O.

    1974-01-01

    The occurrence of chemicals in the cooling water discharge from nuclear power plants is discussed. Chemicals associated with nuclear power plants are tabulated. In one table they are classified under the following headings: corrosion and scale inhibitors; corrosion products; cleaning and neutralizing compounds; and biocides. In a second table they are classified as follows: acids; acrolein; arsenates and arsenites; ammonia, amines, and related compounds; boron; carbonates; chlorine and bromine; chlorinated and phenylated phenols; chromates; cyanurates and cyanides; hydrazine compounds; hydroxides; metals and their salts; nitrites and nitrates; potassium compounds; phosphates; silicates; and sulfates and sulfides. (U.S.)

  14. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume I. Executive summary

    International Nuclear Information System (INIS)

    1978-11-01

    A preliminary feasibility study of capturing energy ejected in hot water at the Savannah River Plant (SRP) is presented. The cooling water, drawn from the river or a pond at the rate of 500,000 gallons per minute, is typically heated 80 0 F to about 150 0 F and is then allowed to cool in the atmosphere. The energy added to the water is equivalent to 20 million barrels of oil a year. This study reports that the reject heat can be used directly in an organic Rankine cycle system to evaporate fluids which drive electric generators. The output of one reactor can produce 45,000 kilowatts of electricity. Since the fuel is waste heat, an estimated 45% savings over conventional electric costs is possible over a thirty year period

  15. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  16. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  17. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    Highlights: • A dual loop ORC system is designed for engine waste heat recovery. • The two loops are coupled via a shared heat exchanger. • The influence of the HT loop condensation parameters on the LT loop is evaluated. • Pinch point locations determine the thermal parameters of the LT loop. - Abstract: This paper presents a dual loop Organic Rankine Cycle (ORC) system consisting of a high temperature (HT) loop and a low temperature (LT) loop for engine waste heat recovery. The HT loop recovers the waste heat of the engine exhaust gas, and the LT loop recovers that of the jacket cooling water in addition to the residual heat of the HT loop. The two loops are coupled via a shared heat exchanger, which means that the condenser of the HT loop is the evaporator of the LT loop as well. Cyclohexane, benzene and toluene are selected as the working fluids of the HT loop. Different condensation temperatures of the HT loop are set to maintain the condensation pressure slightly higher than the atmosphere pressure. R123, R236fa and R245fa are chosen for the LT loop. Parametric analysis is conducted to evaluate the influence of the HT loop condensation temperature and the residual heat load on the LT loop. The simulation results reveal that under different condensation conditions of the HT loop, the pinch point of the LT loop appears at different locations, resulting in different evaporation temperatures and other thermal parameters. With cyclohexane for the HT loop and R245fa for the LT loop, the maximum net power output of the dual loop ORC system reaches 111.2 kW. Since the original power output of the engine is 996 kW, the additional power generated by the dual loop ORC system can increase the engine power by 11.2%.

  18. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  19. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  20. Optimal control of diesel engines with waste heat recovery systems

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue

  1. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  2. Coupled simulation of a system for the utilization of exhaust heat and cooling of the interior of commercial vehicles; Gekoppelte Simulation eines Abgaswaermenutzungs- und Fahrzeugkuehlsystems im Nutzfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Ambros, Peter; Fezer, Axel; Kapitel, Julian [TheSys GmbH, Kirchentellinsfurt (Germany)

    2012-11-01

    Based on a simulation software called GT-Suite by Gamma Technology, a one-dimensional model of a waste-heat recovery system with utility vehicle boundary conditions was developed. Using this model, it is possible to simulate stationary operating points of this type WHR. A Clausius-Rankine cycle is used in the power-heat cogeneration. The Clausius-Rankine cycle is linked to the exhaust system by two boilers. The first boiler is installed in the main exhaust steam, the second boiler is implemented in the exhaust gas recirculation. Besides the waste-heat recovery system, the integrated cooling system of the vehicle is also modeled. (orig.)

  3. Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold

    International Nuclear Information System (INIS)

    Sung, Taehong; Kim, Kyung Chun

    2016-01-01

    Highlights: • A novel dual ORC system is designed for engine waste heat and LNG cold. • Exhaust gas and jacket cooling water are considered as heat sources. • LNG and boil-off gas are considered as heat sinks. • ORC loops are optimized to produce the maximum net work output. - Abstract: The marine sector produces a large portion of total air pollution, so the emissions of the engines used must be improved. This can be achieved using a new eco-friendly engine and waste-heat recovery system. A dual-fuel (DF) engine has been introduced for LNG carriers that is eco-friendly and has high thermal efficiency since it uses natural gas as fuel. The thermal efficiency could be further improved with the organic Rankine cycle (ORC). A novel dual-loop ORC system was designed for DF engines. The upper ORC loop recovers waste heat from the exhaust gas, and the bottom ORC loop recovers waste heat from the jacket cooling water and LNG cold. Both ORC loops were optimized to produce the maximum net work output. The optimum simple dual-loop ORC with n-pentane and R125 as working fluids produces an additional power output of 729.1 kW, which is 4.15% of the original engine output. Further system improvement studies were conducted using a recuperator and preheater, and the feasibility of using boil-off gas as a heat sink was analyzed. Optimization of the system configuration revealed that the preheater and recuperator with n-pentane and R125 as working fluids increase the maximum net work output by 906.4 kW, which is 5.17% of the original engine output.

  4. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  5. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  6. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  7. A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization

    International Nuclear Information System (INIS)

    Shu, Gequn; Yu, Guopeng; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • The MA-ES provides comprehensive valuations on ORC used for waste heat utilization. • The MA-ES covers energetic, exergetic and economic evaluations of typical ORCs. • The MA-ES is a general assessing method without restriction to specific ORC condition. • Two ORC cases of ICE waste-heat-recovery are exemplified applying the MA-ES. - Abstract: A Multi-Approach Evaluation System (MA-ES) is established in this paper providing comprehensive evaluations on Organic Rankine Cycles (ORC) used for waste heat utilization. The MA-ES covers three main aspects of typical ORC performance: basic evaluations of energy distribution and system efficiency based on the 1st law of thermodynamics; evaluations of exergy distribution and exergy efficiency based on the 2nd law of thermodynamics; economic evaluations based on calculations of equipment capacity, investment and cost recovery. The MA-ES is reasonably organized aiming at providing a general method of ORC performance assessment, without restrictions to system configurations, operation modes, applications, working fluid types, equipment conditions, process parameters and so on. Two ORC cases of internal combustion engines’ (ICEs) waste-heat-recovery are exemplified to illustrate the applications of the evaluation system. The results clearly revealed the performance comparisons among ORC configurations and working fluids referred. The comparisons will provide credible guidance for ORC design, equipment selection and system construction

  8. Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology

    Science.gov (United States)

    Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.

    2017-05-01

    Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.

  9. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  10. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  11. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  12. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  13. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  14. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    Science.gov (United States)

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  15. Air conditioning using waste heat from fuel cells; Konzeptstudie: Klimatisierung durch Abwaermenutzung aus Brennstoffzellen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gantenbein, P.; Luzzi, A.; Spirig, M. [Hochschule fuer Technik Rapperswil (HSR), Institut fuer Solartechnik (SPF), Rapperswil (Switzerland); Schuler, A.; Nerlich, V. [Hexis AG, Winterthur (Switzerland)

    2007-07-01

    This concept study for the Swiss Federal Office of Energy (SFOE) reports on work done at the University of Applied Sciences in Rapperswil, Switzerland on possibilities of using the waste heat from fuel cell stacks to provide heating and, in the summertime, cooling using an absorption refrigeration system. The study evaluates the technical, economical and market-relevant aspects of such systems. The methods used in making comparisons with conventional reference systems, including reviews of existing information and expert questioning, are discussed. The results obtained are presented and the results of sensitivity analyses are discussed. These include electricity feed-in tariffs and gas prices, pay-back times, capital interest rates, etc. Further, barriers encountered such as patents and other market hindrances are discussed. The report is completed with a comprehensive appendix.

  16. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  17. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byunghee

    2015-01-01

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration

  18. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  19. Nuclear power plant waste heat utilization

    International Nuclear Information System (INIS)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2 0 F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60 0 F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability

  20. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine

    International Nuclear Information System (INIS)

    Wang, Xuan; Shu, Gequn; Tian, Hua; Liu, Peng; Jing, Dongzhan; Li, Xiaoya

    2017-01-01

    Highlights: • The performance of DORC under five typical engine working conditions is analyzed. • The control object of superheat degree in LT ORC can be much lower than that in HT ORC. • The DORC has excellent working condition adaptability. • Enlarging the HT cooling water mass flux can enhance the DORC power, but not obviously. - Abstract: Natural gas internal combustion engines for electric generating are important primary movers in distributed energy systems. However, more than half of the energy is wasted by exhaust, jacket water and so on. Therefore, it is very meaningful to recover the waste heat, especially the exhaust heat. The DORC (Double loop ORC) is regarded as a suitable way to recover exhaust heat and it can produce electric required by users all the year around. As the waste heat recovery system of the engine, it often works under different working conditions owing to the varying energy demand of users. However, there is few study on the part-load performance of the DORC under different working conditions. Consequently, the dynamic math model of the DORC for waste heat recovery of a natural gas engine with 1000 kW rated power is established by Simulink in this work. With the PID control of the system, the static performance and dynamic behavior of the DORC under five typical engine working conditions are simulated and analyzed. Besides, the effects of the mass flow rate of the HT (high temperature) cooling water which is the connection between the two loops on the DORC performance are researched as well. The results illustrate that the DORC can improve the efficiency of the combined system quite well from 100% to 60% engine working condition, showing good working condition adaptability. Besides, enlarging the mass flow rate of the HT cooling water can enhance the output power of the DORC system, but not very obviously.

  1. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  2. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  3. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  4. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  5. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  6. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  7. Waste-heat usage in agricultural biogas installations; Abwaermenutzung in landwirtschaftlichen Biogasanlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, S.

    2009-01-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the use of the heat generated in agricultural biogas installations. The author notes that a considerable amount of excess heat is available after internal use and heating requirements of the farm have been met. The article deals with the potential offered by this heat and its possible uses. The methods used in the study are discussed and the boundary conditions for the operation of agricultural biogas installations are examined. The costs incurred when providing an infrastructure for the use, storage and transport of the waste heat are looked at. An economical review of the costs involved in the use of the heat is made and compared with reference systems based on oil-fired heating systems and a number of cold generation systems based on various technologies. Also, electrical power generation using the Organic Rankine Cycle and Kalina processes is looked at. Finally, the various possible uses of the waste heat are evaluated.

  8. Thermodynamic feasibility of harvesting data center waste heat to drive an absorption chiller

    International Nuclear Information System (INIS)

    Haywood, Anna; Sherbeck, Jon; Phelan, Patrick; Varsamopoulos, Georgios; Gupta, Sandeep K.S.

    2012-01-01

    Highlights: ► We propose an alternative data center cooling architecture that is heat driven. ► Our primary source of thermal energy is the heat dissipated by the CPUs. ► Supplementary external heat sources such as solar thermal are included as well. ► We develop a comprehensive model that leads to a potentially realizable value of less than one. - Abstract: More than half the energy to run a data center can be consumed by vapor-compression equipment that cools the center. To reduce consumption and recycle otherwise wasted thermal energy, this paper proposes an alternative cooling architecture that is heat driven and leads to a more efficient data center in terms of power usage effectiveness (PUE). The primary thermal source is waste heat produced by CPUs on each server blade. The main challenge is capturing enough of this high-temperature heat to energize an absorption unit. The goal is to capture a high fraction of dissipated thermal power by using a heat capture scheme with water as the heat transfer fluid. To determine if the CPU temperature range and amount of heat are sufficient for chiller operation, we use server software, validation thermocouples, and chip specifications. We compare these results to required values from a simulator tool specific to our chiller model. One challenge is to simultaneously cool the data center and generate enough exergy to drive the cooling process, regardless of the thermal output of the data center equipment. We can address this by adding phase change latent heat storage to consistently deliver the required heat flow and, if necessary, a solar heat source. Even with zero solar contribution, the results show that the number of CPUs we have is sufficient and our PUE indicates a very efficient data center. Adding solar contribution, the steady-state model proposed leads to a potentially realizable PUE value of less than one.

  9. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  10. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Aladayleh, Wail; Alahmer, Ali

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  11. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  12. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  13. Utilisation of diesel engine waste heat by Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Kölsch, Benedikt; Radulovic, Jovana

    2015-01-01

    In this paper, three different organic liquids were investigated as potential working fluids in an Organic Rankine Cycle. Performance of Methanol, Toluene and Solkatherm SES36 was modelled in an ORC powered by a diesel engine waste heat. The ORC model consists of a preheater, evaporator, superheater, turbine, pump and two condensers. With variable maximum cycle temperatures and high cycle pressures, the thermal efficiency, net power output and overall heat transfer area have been evaluated. Methanol was found to have the best thermal performance, but also required the largest heat transfer area. While Toluene achieved lower thermal efficiency, it showed great work potential at high pressures and relatively low temperatures. Our model identified the risks associated with employing these fluids in an ORC: methanol condensing during the expansion and toluene not sufficiently superheated at the turbine inlet, which can compromise the cycle operation. The best compromise between the size of heat exchanger and thermodynamic performance was found for Methanol ORC at intermediate temperatures and high pressures. Flammability and toxicity, however, remain the obstacles for safe implementation of both fluids in ORC systems. - Highlights: • ORC powered by diesel-engine waste heat was developed. • Methanol, Toluene and Solkatherm were considered as working fluids. • Methanol was selected due to the best overall thermal performance. • Optimal cycle operating parameters and heat exchanger area were evaluated

  14. EMISSION AND TRENDS IN RECLAIMING WASTE HEAT IN INDUSTRIAL INSTALATIONS

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis of waste heat emission in a typical industrial installation. On the basis of the process monitoring system, periodic analyses of fumes composition, installation process manual and the conducted measurements of the heat fluxes from individual sources emitting heat on the way of natural convection from the devices’ coats and forced convection in the fumes flux were calculated. According to the authors the heat of temperature 140–155 °C and surface power density 860–970 W/m2 emitted by devices’ covers can be reclaimed in ORC techniques, Peltier’s modules and the systems realising Stirling cycle. Part of the waste heat included in fumes, which makes c.a. 76% of the total emission from the installation, should be returned to the process of fuel oxidation, what will reduce the emission by c.a. 18% and the volume of consumed fuel by c.a. 25 m3 CH4/h, according to the presented calculations.

  15. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  16. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  17. A feasibility analysis of waste heat recovery systems for marine applications

    International Nuclear Information System (INIS)

    Baldi, Francesco; Gabrielii, Cecilia

    2015-01-01

    The shipping sector is today facing challenges which require a larger focus on energy efficiency and fuel consumption. In this article, a methodology for performing a feasibility analysis of the installation of a WHR (waste heat recovery) system on a vessel is described and applied to a case study vessel. The method proposes to calculate the amount of energy and exergy available for the WHR systems and to compare it with the propulsion and auxiliary power needs based on available data for ship operational profile. The expected exergy efficiency of the WHR system is used as an independent variable, thus allowing estimating the expected fuel savings when a detailed design of the WHR system is not yet available. The use of the proposed method can guide in the choice of the installation depending on the requirements of the owner in terms of payback time and capital investment. The results of the application of this method to the case study ship suggest that fuel savings of 5%–15% can realistically be expected, depending on the sources of waste heat used and on the expected efficiency of the WHR system. - Highlights: • Method for simple estimation of benefits from WHR on ships. • High detail account of ship operational profile is included in the analysis. • Detailed knowledge of the WHR system is not required; its exergy efficiency is used as independent variable

  18. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery

    International Nuclear Information System (INIS)

    Xi, Huan; Li, Ming-Jia; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    In the present study, we proposed a graphical criterion called CE diagram by achieving the Pareto optimal solutions of the annual cash flow and exergy efficiency. This new graphical criterion enables both working fluid selection and thermodynamic system comparison for waste heat recovery. It's better than the existing criterion based on single objective optimization because it is graphical and intuitionistic in the form of diagram. The features of CE diagram were illustrated by studying 5 examples with different heat-source temperatures (ranging between 100 °C to 260 °C), 26 chlorine-free working fluids and two typical ORC systems including basic organic Rankine cycle(BORC) and recuperative organic Rankine cycle (RORC). It is found that the proposed graphical criterion is feasible and can be applied to any closed loop waste heat recovery thermodynamic systems and working fluids. - Highlights: • A graphical method for ORC system comparison/working fluid selection was proposed. • Multi-objectives genetic algorithm (MOGA) was applied for optimizing ORC systems. • Application cases were performed to demonstrate the usage of the proposed method.

  19. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  20. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  1. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  2. Design optimization of ORC systems for waste heat recovery on board a LNG carrier

    International Nuclear Information System (INIS)

    Soffiato, Marco; Frangopoulos, Christos A.; Manente, Giovanni; Rech, Sergio; Lazzaretto, Andrea

    2015-01-01

    Highlights: • ORC systems are one of the most promising options to recover low temperature heat. • Design of ORC systems on board a LNG carrier is optimized using the Heatsep method. • Simple, regenerative and two-stage, subcritical and supercritical ORCs are considered. • Three engine cooling systems layouts are found to supply heat to the ORCs. • The highest net power output is achieved by the two-stage ORC configuration. - Abstract: Organic Rankine Cycle (ORC) technology may represent an interesting way to exploit the low grade waste heat rejected by the ship power generation plant. This option is investigated here to recover the heat available from three of the four engines of a real electrically driven Liquefied Natural Gas (LNG) carrier. A detailed analysis of the engines operation is first performed to evaluate all thermal streams released by the engines. Heat associated with the jacket water, lubricating oil and charge air cooling of the engines is found to be available for the ORC, while the heat from the exhaust gases is already used to generate low pressure steam for ship internal use. Simple, regenerative and two-stage ORC configurations are compared using six different organic fluids that are selected as the most suitable for this application. The thermal matching that maximizes the net power output of the total system composed by engine cooling circuits and ORC cycle is then found by searching for the optimum heat transfer between thermal streams independently of the structure/number of the heat exchangers. Three layouts of the engine cooling systems are compared. Results show that the maximum net power output (820 kW) achieved by the two-stage ORC configuration almost doubles the simple cycle and regenerative ones (430–580 kW), but structure complexity and reliability issues may give different indications in terms of economic feasibility

  3. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    Sulphation of metal oxides has an important role in many industrial processes. In different applications sulphation reactions have different aims and characteristics. In the flash smelting process sulphation of oxidic flue dust is a spontaneous and inevitable phenomena, which takes place in the waste heat boiler (WHB) when cooling down hot dust laden off-gases from sulphide smelters. Oxidic dust particles (size 0 - 50 {mu}m) react with O{sub 2} and SO{sub 2} or SO{sub 3} in a certain temperature range (500 - 800 deg C). Sulphation reactions are highly exothermic releasing large amount of heat, which affects the gas cooling and thermal performance of the boiler. Thermodynamics and kinetics of the system have to be known to improve the process and WHB operation. The rate of sulphation is affected by the prevailing conditions (temperature, gas composition) and particle size and microstructure (porosity, surface area). Some metal oxides (CuO) can react readily with SO{sub 2} and O{sub 2} and act as self-catalysts, but others (NiO) require the presence of an external catalyst to enhance the SO{sub 3} formation and sulphation to proceed. Some oxides (NiO) sulphate directly, some (CuO) may form first intermediate phases (basic sulphates) depending on the reaction conditions. Thus, the reaction mechanisms are very complex. The aim of this report was to search information about the factors affecting the dust sulphation reactions and suggested reaction mechanisms and kinetics. Many investigators have studied sulphation thermodynamics and reaction kinetics and mechanisms of macroscopical metal oxide pieces, but only few articles have been published about sulphation of microscopical particles, like dust. All the found microscale studies dealt with sulphation reactions of calcium oxide, which is not present in the flash smelting process, but used as an SO{sub 2} absorbent in the combustion processes. However, also these investigations may give some hints about the sulphation

  4. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  5. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  6. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  7. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  8. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; de Jager, A.G.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  9. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  10. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  11. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Li, Maoqing; Dai, Yiping

    2013-01-01

    Highlights: • Multi-objective optimization of an ORC is conducted to obtain optimum performance. • NSGA-II is employed to solve this multi-objective optimization problem. • The effects of parameters on the exergy efficiency and capital cost are examined. - Abstract: Organic Rankine cycle (ORC) can effectively recover low grade waste heat due to its excellent thermodynamic performance. Based on the examinations of the effects of key thermodynamic parameters on the exergy efficiency and overall capital cost, multi-objective optimization of the ORC with R134a as working fluid is conducted to achieve the system optimization design from both thermodynamic and economic aspects using Non-dominated sorting genetic algorithm-II (NSGA-II). The exergy efficiency and overall capital cost are selected as two objective functions to maximize the exergy efficiency and minimize the overall capital cost under the given waste heat conditions. Turbine inlet pressure, turbine inlet temperature, pinch temperature difference, approach temperature difference and condenser temperature difference are selected as the decision variables owing to their significant effects on the exergy efficiency and overall capital cost. A Pareto frontier obtained shows that an increase in the exergy efficiency can increase the overall capital cost of the ORC system. The optimum design solution with their corresponding decision variables is selected from the Pareto frontier. The optimum exergy efficiency and overall capital cost are 13.98% and 129.28 × 10 4 USD, respectively, under the given waste heat conditions

  12. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  13. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  14. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...

  15. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    Science.gov (United States)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  16. Using waste heat of ship as energy source for an absorption refrigeration system

    International Nuclear Information System (INIS)

    Salmi, Waltteri; Vanttola, Juha; Elg, Mia; Kuosa, Maunu; Lahdelma, Risto

    2017-01-01

    Highlights: • A steady-state thermodynamic model is developed for absorption refrigeration in a ship. • Operation profile of B.Delta37 bulk carrier is used as an initial data. • Suitability of water-LiBr and ammonia-water working pairs were validated. • Coefficient of performance (COP) was studied in ISO and tropical conditions. • Estimated energy savings were 47 and 95 tons of fuel every year. - Abstract: This work presents a steady-state thermodynamic model for absorption refrigeration cycles with water-LiBr and ammonia-water working pairs for purpose of application on a ship. The coefficient of performance was studied with different generator and evaporator temperatures in ISO and tropical conditions. Absorption refrigeration systems were examined using exhaust gases, jacket water, and scavenge air as energy sources. Optimal generator temperatures for different refrigerant temperatures were found using different waste heat sources and for the absorption cycle itself. Critical temperature values (where the refrigeration power drops to zero) were defined. All of these values were used in order to evaluate the cooling power and energy production possibilities in a bulk carrier. The process data of exhaust gases and cooling water flows in two different climate conditions (ISO and tropical) and operation profiles of a B. Delta37 bulk carrier were used as initial data in the study. With the case ship data, a theoretical potential of saving of 70% of the electricity used in accommodation (AC use) compressor in ISO conditions and 61% in tropical conditions was recognized. Those estimates enable between 47 and 95 tons of annual fuel savings, respectively. Moreover, jacket water heat recovery with a water-LiBr system has the potential to provide 2.2–4.0 times more cooling power than required during sea-time operations in ISO conditions, depending on the main engine load.

  17. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  18. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  19. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  20. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  2. Optimizing Waste Heat Recovery for Class A Biosolids Production from a Combined Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Soroushian, Fred

    2003-07-01

    The City of Corona serves a rapidly growing area of Southern California, The City operates three wastewater treatment plants (WWTPs) that produce reclaimed water for unrestricted reuse. The sludge from the three WWTPs is transported to a central sludge treatment facility located at WWTP No. 1. The sludge treatment facility consists of sludge receiving, thickening, anaerobic digestion, and dewatering. In the year 2000, the City was faced with two crises. First, the California power shortage and escalating cost of power severely impacted the industry and businesses. Second, bans on Class B biosolids land application and the shutdown of a local privatized composting facility where the bulk of the City's biosolids were processed or reused forced the City to transport bulk waste a much greater distance. To cost-effectively respond to these crises, the City decided to start generating and supplying power to its constituents by constructing a nominal 30-megawatt (MW) power plant. The feasibility study proved that locating the power plant at the City's largest WWTP produced significant synergies. The reclaimed water from the WWTP could be used for power plant cooling, the waste heat from the power plant could be recovered and used in Class A biosolids processes, the digester gas could be used for supplementing the fuel needs of the sludge dryer, and the combined facilities operation was more efficient than physically separate facilities. This paper presents the results of this analysis as well as the construction and operational aspects of the project. (author)

  3. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  4. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  5. Colored cool colorants based on rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sreeram, Kalarical Janardhanan; Aby, Cheruvathoor Poulose; Nair, Balachandran Unni; Ramasami, Thirumalachari [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020 (India)

    2008-11-15

    Colored pigments with high near infrared reflectance and not based on toxic metal ions like cadmium, lead and cobalt are being sought as cool colorants. Through appropriate doping two pigments Ce-Pr-Mo and Ce-Pr-Fe have been developed to offer a reddish brown and reddish orange color, respectively. These pigments have been characterized and found to be highly crystalline with an average size of 300 nm. A shift in band gap energy from 2.21 to 2.18 eV has been observed when Li{sub 2}CO{sub 3} was used as a mineralizer. Scanning electron microscope-energy dispersive X-ray analysis (SEM-EDAX) measurement indicate a uniform grind shape and distribution of metal ion, with over 65% reflectance in the NIR region, these pigments can well serve as cool colorants. (author)

  6. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  7. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications

    International Nuclear Information System (INIS)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Lee, Dong Hyun; Usman, Muhammad; Heo, Manki

    2014-01-01

    Highlights: • Thermo-economic optimization of regenerative ORC is performed. • Optimization is performed using multi objective genetic algorithm. • Objective function is maximum cycle efficiency and minimum specific investment. • Evaporation pressure, pinch point and superheat are decision variables. • Sensitivity analysis is performed to investigate effect of decision variables. - Abstract: Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal

  8. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  9. Performance analysis of a miniature free piston expander for waste heat energy harvesting

    International Nuclear Information System (INIS)

    Champagne, C.; Weiss, L.

    2013-01-01

    Highlights: • A novel free piston expander is experimentally analyzed for waste heat retrieval. • A variety of variables are analyzed using three separate experiments. • Lubrication of device is optimized with lower viscosity lubricants. • Circular cross sectional pistons show increased repeatability and sealing. - Abstract: Initial experimental analysis of a small-scale Free Piston Expander (FPE) is presented. In final form, the FPE will be a MEMS-based device capable of operation from low temperature waste heat sources. Currently, a millimeter scale device is constructed and tested to yield insight into critical operational parameters for use in later design and testing. Operating conditions are examined to increase operational performance. Piston stroke length and repeatability are considered. Optimized variables include piston length and mass, FPE shape and size, input pressure, and lubrication. Construction of this testbed device is via concentric copper tubing, allowing an effective baseline study of these determining parameters. Results show that, while thick lubricants seal well in static configurations, piston motion is decreased in dynamic testing, indicating leakage. By contrast, reduced viscosity lubricants prove ineffective as sealing agents during static conditions, however, yield increased piston motion in dynamic testing with little leakage around critical piston sealing surfaces. The trends established by the study of varying viscosity lubricants hold true for pistons of increasing mass and length as well. A mixture of isopropanol and water performed well in these tests, and represented a low viscosity sealing fluid, which was used in later repeatability tests. Repeatability tests were performed in a closed dynamic environment on FPE designs with multiple cross sectional shapes and areas. Results from these tests show that circular FPE’s are more precise than square FPE’s. The final closed system tests yield a pressure–volume curve

  10. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  11. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle

    International Nuclear Information System (INIS)

    Eller, Tim; Heberle, Florian; Brüggemann, Dieter

    2017-01-01

    The organic Rankine cycle (ORC) and the Kalina cycle (KC) are potential thermodynamic concepts for decentralized power generation from industrial waste heat at a temperature level below 500 °C. The aim of this work is to investigate in detail novel zeotropic mixtures as working fluid for the KC and compare to sub- and supercritical ORC based on second law efficiency. Heat source temperature is varied between 200 °C and 400 °C. The results show that second law efficiency of KC can be increased by applying alcohol/alcohol mixtures as working fluid instead of ammonia/water mixtures; especially for heat source temperatures above 250 °C. Efficiency increase is in the range of 16% and 75%. Despite this efficiency improvements, ORC with zeotropic mixtures in sub- and supercritical operation mode proves to be superior to KC in the examined temperature range. Second law efficiency is up to 13% higher than for KC. A maximum second law efficiency of 59.2% is obtained for supercritical ORC with benzene/toluene 36/64 at 400 °C heat source temperature. The higher level of efficiency and the lower complexity of ORC in comparison to KC indicate that ORC with zeotropic mixtures offers the greater potential for waste heat recovery. - Highlights: • Kalina Cycle with novel alcohol mixtures as working fluid is investigated. • Results are compared to ammonia/water-Kalina Cycle and ORC. • Second law efficiency of Kalina Cycle can be increased by novel alcohol mixtures. • Efficiency increase is in the range of 16% and 75%. • ORC with zeotropic mixtures proves to be superior to Kalina Cycle.

  12. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  13. Recouping the thermal-to-electric conversion loss by the use of waste heat

    International Nuclear Information System (INIS)

    Bradley, W.J.

    1976-01-01

    This paper looks at ways to recoup the thermal-to-electric conversion loss of our thermal power generating stations. These stations now produce twice as much low-grade waste heat as they do electricity. We can improve the situation in two ways: by improving the station efficiency, and by utilizing the low-grade heat beneficially. The following options are examined: N 2 O 4 turbines condensing at 10 deg C; power from moderator waste heat; 50 MW heat pump for district heating; industrial parks with integrated waste heat upgrading station. (author)

  14. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  15. Advanced Waste Heat Recovery Systems within Hybrid Powertrains

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2018-01-01

    Full Text Available A waste heat recovery system (WHRS is very well known to provide no advantage during the cold start driving cycles, such as the New European Driving Cycle (NEDC, which are used for certification of emissions and assessment of fuel economy. Here, we propose a novel integrated WHRS using the internal combustion engine (ICE coolant passages and an exchanger on the exhaust working as pre-heater / boiler / super-heater of a Rankine cycle. The expander is connected to an electric generator unit (GU, and the pump is connected to an electric motor unit (MU. The vehicle is also fitted with an electric, kinetic energy recovery system (KERS. The expander and condenser are bypassed during the first part of the NEDC when the vehicle covers the four ECE-15 (Economic Commission for Europe - 15 - UDC (Urban Drive Cycle segments where the engine warms-up.  Only after the engine is fully warmed up, during the last part of the NEDC, the extra urban driving cycle (EUDC segment, the expander and condenser are activated to recover part of the coolant and exhaust energy.

  16. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  17. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  18. Structural optimization of a microjet based cooling system for high power LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Liu; Zhiyin Gan [Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan (China); Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); Jianghui Yang [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China); Xiaobing Luo [Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2008-08-15

    Based on the previous experiments and simulations reported by the present authors, it was found the cooling system could be optimized to obtain better performance. In this paper, the microjet cooling systems with three different microjet structures were numerically investigated. The numerical model was proven by the experiments. The optimization results demonstrate that the microjet structure with one single inlet but two outlets can achieve better cooling performance. The simulation results show that the maximum temperature of the LED substrate cooled by the optimized microjet cooling device was 23 K lower than that of the LED substrate cooled by the present experimental cooling system. (author)

  19. Opportunities for Waste Heat Recovery at Contingency Bases

    Science.gov (United States)

    2016-04-01

    are polymer electrolyte mem- brane fuel cells ( PEMFC ) and solid oxide fuel cells (SOFCs). The biggest drawback to fuel cell CHP systems are their high...Rankine Cycle ORNL Oak Ridge National Laboratory OSHA Occupational Safety and Health Administration PAX Personnel PCM Phase Change Material PEMFC

  20. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  1. Risk Based Inspection of Gas-Cooling Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2017-09-01

    Full Text Available On October 2013, Pertamina Hulu Energi Offshore North West Java (PHE – ONWJ platform personnel found 93 leaking tubes locations in the finfan coolers/ gas-cooling heat exchanger. After analysis had been performed, the crack in the tube strongly indicate that stress corrosion cracking was occurred by chloride. Chloride stress corrosion cracking (CLSCC is the cracking occurred by the combined influence of tensile stress and a corrosive environment. CLSCC is the one of the most common reasons why austenitic stainless steel pipework or tube and vessels deteriorate in the chemical processing, petrochemical industries and maritime industries. In this thesis purpose to determine the appropriate inspection planning for two main items (tubes and header box in the gas-cooling heat exchanger using risk based inspection (RBI method. The result, inspection of the tubes must be performed on July 6, 2024 and for the header box inspection must be performed on July 6, 2025. In the end, RBI method can be applicated to gas-cooling heat exchanger. Because, risk on the tubes can be reduced from 4.537 m2/year to 0.453 m2/year. And inspection planning for header box can be reduced from 4.528 m2/year to 0.563 m2/year.

  2. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  3. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-01-01

    solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows

  4. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  5. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  6. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery

    International Nuclear Information System (INIS)

    Dai Yiping; Wang Jiangfeng; Gao Lin

    2009-01-01

    Organic Rankine cycles for low grade waste heat recovery are described with different working fluids. The effects of the thermodynamic parameters on the ORC performance are examined, and the thermodynamic parameters of the ORC for each working fluid are optimized with exergy efficiency as an objective function by means of the genetic algorithm. The optimum performance of cycles with different working fluids was compared and analyzed under the same waste heat condition. The results show that the cycles with organic working fluids are much better than the cycle with water in converting low grade waste heat to useful work. The cycle with R236EA has the highest exergy efficiency, and adding an internal heat exchanger into the ORC system could not improve the performance under the given waste heat condition. In addition, for the working fluids with non-positive saturation vapor curve slope, the cycle has the best performance property with saturated vapor at the turbine inlet

  7. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  8. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  9. Update Knowledge Base for Long-term Core Cooling Reliability

    International Nuclear Information System (INIS)

    Agrell, Maria; Sandervag, Oddbjoern; Amri, Abdallah; ); Bang, Young S.; Blomart, Philippe; Broecker, Annette; Pointner, Winfried; Ganzmann, Ingo; Lenogue, Bruno; Guzonas, David; Herer, Christophe; Mattei, Jean-Marie; Tricottet, Matthieu; Masaoka, Hideaki; Soltesz, Vojtech; Tarkiainen, Seppo; Ui, Atsushi; Villalba, Cristina; Zigler, Gilbert

    2013-11-01

    This revision of the Knowledge Base for Emergency Core Cooling System Recirculation Reliability (NEA/CSNI/R (95)11) describes the current status (late 2012) of the knowledge base on emergency core cooling system (ECCS) and containment spray system (CSS) suction strainer performance and long-term cooling in operating power reactors. New reactors, such as the AP1000, EPR and APR1400 that are under construction in some Organization for Economic Co-operation and Development (OECD) member countries, are not addressed in detail in this revision. The containment sump (also known as the emergency or recirculation sump in pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs) or the suppression pools or wet wells in boiling water reactors (BWRs)) and associated ECCS strainers are parts of the ECCS in both reactor types. All nuclear power plants (NPPs) are required to have an ECCS that is capable of mitigating a design basis accident (DBA). The containment sump collects reactor coolant, ECCS injection water, and containment spray solutions, if applicable, after a loss-of-coolant accident (LOCA). The sump serves as the water source to support long-term recirculation for residual heat removal, emergency core cooling, and containment atmosphere clean-up. This water source, the related pump suction inlets, and the piping between the source and inlets are important safety-related components. In addition, if fibrous material is deposited at the fuel element spacers, core cooling can be endangered. The performance of ECCS/CSS strainers was recognized many years ago as an important regulatory and safety issue. One of the primary concerns is the potential for debris generated by a jet of high-pressure coolant during a LOCA to clog the strainer and obstruct core cooling. The issue was considered resolved for all reactor types in the mid-1990s and the OECD/NEA/CSNI published report NEA/CSNI/R(95)11 in 1996 to document the state of knowledge of ECCS performance

  10. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system

    International Nuclear Information System (INIS)

    Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng

    2017-01-01

    Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.

  11. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  12. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison....... The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power....

  13. Preliminary result of a three dimensional numerical simulation of cloud formation over a cooling pond

    International Nuclear Information System (INIS)

    Yamada, T.

    1978-01-01

    Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere

  14. Amelioration of the cooling load based chiller sequencing control

    International Nuclear Information System (INIS)

    Huang, Sen; Zuo, Wangda; Sohn, Michael D.

    2016-01-01

    Highlights: • We developed a new approach for the optimal load distribution for chillers. • We proposed a new approach to optimize the number of operating chillers. • We provided a holistic solution to address chiller sequencing control problems. - Abstract: Cooling Load based Control (CLC) for the chiller sequencing is a commonly used control strategy for multiple-chiller plants. To improve the energy efficiency of these chiller plants, researchers proposed various CLC optimization approaches, which can be divided into two groups: studies to optimize the load distribution and studies to identify the optimal number of operating chillers. However, both groups have their own deficiencies and do not consider the impact of each other. This paper aims to improve the CLC by proposing three new approaches. The first optimizes the load distribution by adjusting the critical points for the chiller staging, which is easier to be implemented than existing approaches. In addition, by considering the impact of the load distribution on the cooling tower energy consumption and the pump energy consumption, this approach can achieve a better energy saving. The second optimizes the number of operating chillers by modulating the critical points and the condenser water set point in order to achieve the minimal energy consumption of the entire chiller plant that may not be guaranteed by existing approaches. The third combines the first two approaches to provide a holistic solution. The proposed three approaches were evaluated via a case study. The results show that the total energy consumption saving for the studied chiller plant is 0.5%, 5.3% and 5.6% by the three approaches, respectively. An energy saving of 4.9–11.8% can be achieved for the chillers at the cost of more energy consumption by the cooling towers (increases of 5.8–43.8%). The pumps’ energy saving varies from −8.6% to 2.0%, depending on the approach.

  15. A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines

    International Nuclear Information System (INIS)

    Amicabile, Simone; Lee, Jeong-Ik; Kum, Dongsuk

    2015-01-01

    One of the most promising approaches to recover the waste heat from internal combustion engines is the Organic Rankine Cycle owing to its efficiency and reliability. The design optimization of ORC, however, is nontrivial because there exist many design variables and practical considerations. The present paper proposes a comprehensive design methodology to optimize the Organic Rankine Cycles (ORC) considering a wide range of design variables as well as practical aspects such as component limitations and costs. The design process is comprised of three steps: heat source selection, candidate fluid selection, and thermodynamic cycle optimization. In order to select the best waste heat source, the available energy and other practical considerations of various heat sources have been compared. Among others, the Exhaust Gas Recirculation (EGR) cooler is found to be the best heat source, and thus used for the rest of this study. Based on a systematic working fluid analysis, Ethanol, Pentane, and R245fa are selected as three candidate fluids. For the comprehensive ORC optimization, four types of cycle layouts are considered; 1) subcritical cycle without a recuperator, 2) subcritical cycle with a recuperator, 3) supercritical without a recuperator, and 4) supercritical cycle with a recuperator. Four cycle layouts coupled with three candidate fluids give a total of twelve cycle analyses. Results show that the best performance is provided by the regenerative subcritical cycle with Ethanol, while the solution with minimum capital cost is the subcritical cycles with Ethanol but without a recuperator. - Highlights: • Selection of the best waste heat source of a diesel engine for a heat recovery system. • Screening process to identify the most suitable working fluids for the system. • Comprehensive ORC optimization is introduced for four types of cycle layouts. • Pay Back Time investigation to present the economic analysis of the cycles

  16. Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Hu, Dapeng; Li, Zhiyi

    2014-01-01

    In this paper, a new water distillation system, which consists of either a single- or multi-effect distiller combined with an open absorption heat transformer (OAHT), has been proposed. The new integrated system can be used for distilling waste water with high amounts of SiO 2 from heavy oil production, and the resultant distilled water can be supplied to steam boilers to produce high quality steam which in turn is injected into oil reservoirs to assist with heavy oil recovery. The thermodynamic cycle performances for these new integrated distillation systems were simulated based on the thermodynamic properties of the aqueous solution of LiBr as well as the mass and energy balance of the system. The results indicate that combined with OAHT, the waste heat at 70 °C can be elevated to 125 °C and thereby produce steam at 120 °C in the absorber, which is able to drive a four-effect distiller to produce distilled water. For a single-effect and four-effect distiller, the coefficients of performance (COP) are approximately 1.02 while the performance ratios are 2.19 and 5.72, respectively. Therefore, the four-effect distillation system combined with an OAHT is more thermally effective and is an ideal option to process the waste water in oilfields. -- Highlights: • A new absorption vapor compression distillation was proposed in present research. • An open absorption heat transformer has a coupled thermally evaporator and absorber. • Distillation of waste water with high content of SiO 2 from heavy oil production. • The waste heat of 70 °C can be elevated up to 125 °C and generate steam of 120 °C. • The waste heat is able to drive four-effect distillation to produce distilled water

  17. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  18. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  19. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  20. Using the adsorption chillers for waste heat utilisation from the CCS installation

    Science.gov (United States)

    Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina

    2018-06-01

    Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.

  1. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  2. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  3. Design and operation of hybrid cooling towers

    International Nuclear Information System (INIS)

    Alt, W.

    1987-01-01

    The first hybrid cooling tower at a coal-fired power station with a waste heat output of 550 MW has been in operation since the middle of 1985. Experience during the construction stage and the initial period of operation has confirmed the correctness of the design standards and of the design itself and, of course, also offers a wealth of knowledge to be observed on future construction projects. A second cooling tower of similar design is being erected at the present time. This cooling tower serves a power station unit with 2500 MW of waste heat output. The programme for this cooling tower offers the possibility for all the accumulated and evaluated experience to be of influence both on the design and also on the method of operation. This paper reports on the details. (orig.) [de

  4. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q.

    2015-01-01

    Graphical abstract: A new automotive exhaust-based thermoelectric generator and its “four-TEGs” system are constructed, and the performance characteristics of system are discussed through road test and revolving drum test. - Highlights: • The automotive thermoelectric generator system was constructed and studied. • Road test and revolving drum test were used to measure the output power. • A performance of 201.7 V (open circuit voltage)/944 W obtained. - Abstract: Thermoelectric power generators are one of the promising green energy sources. In this case study, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) has been constructed. The test bench is developed to analysis the performance of TEG system characteristics, which are undertaken to assess the feasibility of automotive applications. Based on the test bench, a new system called “four-TEGs” system is designed and assembled into prototype vehicle called “Warrior”, through the road test and revolving drum test table, characteristics of the system such as hot-side temperature, cold-side temperature, open circuit voltage and power output are studied, and a maximum power of 944 W was obtained, which completely meets the automotive application. The present study shows the promising potential of using this kind of thermoelectric generator for low-temperature waste heat recovery vehicle

  5. The Effects of Doping and Processing on the Thermoelectric Properties of Platinum Diantimonide Based Materials for Cryogenic Peltier Cooling Applications

    Science.gov (United States)

    Waldrop, Spencer Laine

    The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing

  6. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  7. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    OpenAIRE

    Amin Mahmoudzadeh Andwari; Apostolos Pesiridis; Vahid Esfahanian; Ali Salavati-Zadeh; Apostolos Karvountzis-Kontakiotis; Vishal Muralidharan

    2017-01-01

    In this study the influence of utilization of two Waste Heat Recovery (WHR) strategies, namely organic Rankine cycle (ORC) and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power) in terms of Brake Specific Fuel Consumptions (BSFC) at various engine speeds and Brake Mean Effective Pressures (BMEP). The model of a 6-cylinder turbocharged engine (Holset HDX55V) was calibrated using an experimental BSFC map to...

  8. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  9. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  10. Collection of low-grade waste heat for enhanced energy harvesting

    International Nuclear Information System (INIS)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-01-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  11. Collection of low-grade waste heat for enhanced energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng [Toyota Research Institute, Toyota Motor Engineering & Manufacturing North America, Ann Arbor, Michigan 48105 (United States); Nomura, Tsuyoshi [Toyota Central Research and Development Laboratories, Inc., Nagakute 480-1192 (Japan)

    2016-05-15

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  12. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  13. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2011-01-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone. (orig.)

  14. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  15. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...... air an improvement of 37% was achieved. The cooling demand should be minimized in the design phase as a priority and then the resulting cooling load should be addressed with the most energy efficient cooling strategy. The floor cooling coupled with a ground heat exchanger was shown to be an effective...

  16. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  17. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  18. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  19. Applying the principles of thermoeconomics to the organic Rankine Cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Xiao, F.; Lilun, Q.; Changsun, S.

    1989-01-01

    In this paper, thermoeconomic principle is used to study the selection of working fluids and the option of the cycle parameters in the organic Rankine cycle of low temperature waste heat recovery. The parameter ξ, the product of the ratio of waste heat recovery and real cycle thermal efficiency, is suggested as a unified thermodynamic criterion for the selection of the working fluids. The mathematical expressions are developed to determine the optimal boiling temperature and the optimal pin point temperature difference in the heat recovery exchanger by way of thermoeconomic principle

  20. Waste heat discharges in the aquatic environment -- impact and monitoring 2

    International Nuclear Information System (INIS)

    Kamath, P.R.

    1980-01-01

    Studies on ecological impacts, on fishes in particular, of waste heat discharges in the aquatic environment are briefly reviewed. These studies cover the susceptibility of fishes to disease and predation, population biology, parasite proliferation and its impact on fishes, synergistic effects due to heat and other stresses such as chemicals, pollutant, lowering of saturation limit of dissolved oxygen at elevated temperature and radioactivity. Experiences of monitoring waste heat discharges at the Rajasthan Atomic Power Station (RAPS) and the Tarapur Atomic Power Station (TAPS) are presented. Entrainment losses and impingement losses are also reviewed. Requirements for thermal monitoring are mentioned. (M.G.B.)

  1. Potential of district cooling in hot and humid climates

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Rashid, K. A. Bin Abdul; Romagnoli, A.

    2017-01-01

    Efficiently utilizing energy that is currently being wasted can significantly increase energy efficiency of the system, as well as reduce the carbon footprint. In hot climates with large cooling demands, excess waste heat can be utilized via absorption chillers to generate cold. Moreover, cold from...... liquefied natural gas gasification process can further provide energy source for meeting the cold demand. In order to connect the large sources of waste heat and cold energy with customers demanding the cold, a significant investment in district cooling grid is a necessity. In order to deal...

  2. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid

    International Nuclear Information System (INIS)

    Le, Van Long; Kheiri, Abdelhamid; Feidt, Michel; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150 °C and pressure of 5 bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20 °C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50 kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding ORCs using zeotropic working fluids, 0.05 and 0.1 R245fa mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using R245fa represents the least profitable system. - Highlights: • Thermoeconomic optimization is carried out for a subcritical ORC. • Exergy efficiency and Levelized Cost of Electricity are optimized. • R245fa, n-Pentane and their mixtures are used as ORC working fluid. • CO 2 emissions can be substantially reduced by waste heat recovery using an ORC

  3. Solar assisted liquid desiccant cooling using clay based membranes

    Directory of Open Access Journals (Sweden)

    Priya S. Shanmuga

    2018-01-01

    Full Text Available The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.

  4. A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling

    International Nuclear Information System (INIS)

    Bradley, D.I.; Guenault, A.M.; Keith, V.; Miller, I.E.; Pickett, G.R.; Bradshaw, T.W.; Locke-Scobie, B.G.

    1982-01-01

    The design philosophy, design, construction and performance of a dilution refrigerator specifically intended for nuclear cooling experiments in the submillikelvin regime is described. Attention has been paid from the outset to minimizing sources of heat leaks, and to achieving a low base temperature and relatively high cooling power below 10 mK. The refrigerator uses sintered silver heat exchangers similar to those developed at Grenoble. The machine has a base temperature of 3 mK or lower and can precool a copper nuclear specimen in 6.8 T to 8 mK in 70 h. The heat leak to the innermost nuclear stage is < 30 pW after only a few days' running. (author)

  5. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  6. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  7. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  8. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  9. Energy saving and waste heat recovery within the refrigeration and cold storage sector in Lithuania. Final report for fact finding mission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This is the final report for the Fact Finding Mission, which is the first part of the demonstration project in Energy Saving and Waste Heat recovery within the Refrigeration and Cold Storage Sector in Lithuania. The purpose of this first part of the project, The Fact Finding Mission, is the identification and recommendation of one (possibly two) companies for implementation of a demonstration project. The recommendation is based partly on the strictly technical possibilities of implementation of a demonstration project within Energy Saving and Waste Heat Recovery, but also on the interest of the companies in the implementation of this type of measures as well as their possibilities of financing. The result of The Fact Finding Mission is a recommendation for the implementation of a demonstration project at the slaughtering and meat processing company `Taurage Maistas`, for which it is estimated that there are good possibilities of implementing measures for reduction of the energy consumption and utilisation of the generated waste heat. Also, the company is considered by the authorities to be a financially well functioning company. For examples a privatisation process has already been carried out and within a few years the company has turned a deficit to a profit and increased the turnover by approx. 33%. (EG)

  10. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-02-01

    Full Text Available The Organic Rankine Cycle (ORC has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs. Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle (MC/ORC system model by interconnecting the component models, which allows the prediction of system off-design behavior. The sliding pressure control method is applied to balance the variation of system parameters and evaporating pressure is chosen as the operational variable. The effect of operational variable and engine load on system performance is analyzed from the aspects of energy and exergy. The results show that with the drop of engine load, the MC/ORC system can always effectively recover waste heat, whereas the maximum net power output, thermal efficiency and exergy efficiency decrease linearly. Considering the contributions of components to total exergy destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of the evaporator and condenser decrease with the drop of engine load.

  11. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Mingru; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Organic Rankine Cycle (ORC) on-board is a solution for vehicles to save energy and reduce emission. Considering the characteristics of waste heat from vehicle, the criterions of the suitable working fluid are very strict. R123 and R245fa have been widely used in companies and labs, however, the difference of their properties under different engine conditions still requires further study. During this research, a series of experiments have been done to compare the performance of these two working fluids, what's more, to determine under which engine conditions they are suitable separately. These experimental comparisons are new and important for the targeting design of ORC for vehicles. The result shows that, considering the difference of thermodynamic properties and the limited cooling capacity on board, R123 shows its advantage for the waste heat recovery at heavy duty, while R245fa is more suitable at light-and-medium duty. These properties make R123 suitable for the ORC designed for long-haul heavy-duty truck, while R245fa is suggested for city bus. The following performance test of R123 for waste heat recovery from heavy-duty diesel engine shows that the maximum fuel consumption improvement can be as much as 2.8%. - Highlights: • R123 is more suitable for heavy duty and steady working condition. • R245fa shows its advantage at light-and-medium duty and varying working condition. • R123 suits better for long-haul heavy-duty truck, while R245fa for city bus. • The maximum fuel consumption improvement is as much as 2.8%.

  12. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  13. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  14. An Innovative VHTR Waste Heat Integration with Forward Osmosis Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    The integration concept implies the coupling of the waste heat from VHTR with the draw solute recovery system of FO process. By integrating these two novel technologies, advantages, such as improvement of total energy utilization, and production of fresh water using waste heat, can be achieved. In order to thermodynamically analyze the integrated system, the FO process and power conversion system of VHTR are simulated using chemical process software UNISIM together with OLI property package. In this study, the thermodynamic analysis on the VHTR and FO integrated system has been carried out to assess the feasibility of the concept. The FO process including draw solute recovery system is calculated to have a higher GOR compared to the MSF and MED when reasonable FO performance can be promised. Furthermore, when FO process is integrated with the VHTR to produce potable water from waste heat, it still shows a comparable GOR to typical GOR values of MSF and MED. And the waste heat utilization is significantly higher in FO than in MED and MSF. This results in much higher water production when integrated to the same VHTR plant. Therefore, it can be concluded that the suggested integrated system of VHTR and FO is a very promising and strong system concept which has a number of advantages over conventional technologies.

  15. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, Jeroen; Jager, de A.G.; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  16. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  17. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  18. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  19. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  20. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Directory of Open Access Journals (Sweden)

    Saadon S.

    2018-01-01

    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.

  1. Control of a waste heat recovery system with decoupled expander for improved diesel engine efficiency

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2015-01-01

    In this paper, a switching Model Predictive Control strategy is proposed for a Waste Heat Recovery system in heavy-duty automotive application. The objective is to maximize the WHR system output power while satisfying the output constraints under highly dynamic engine variations. For control design,

  2. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand...

  3. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; de Jager, A.G.; Willems, F.P.T.

    This paper presents an integrated energy and emission management strategy, called Integrated Powertrain Control (IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO2–NOxCO2–NOx trade-off by minimizing the operational costs associated with

  4. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  5. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  6. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  7. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  8. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  9. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    OpenAIRE

    Mushtaq Ismael Hasan

    2017-01-01

    In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25...

  10. Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator

    Science.gov (United States)

    Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2017-05-01

    Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.

  11. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  12. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  13. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  14. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  15. A geothermal recycling system for cooling and heating in deep mines

    International Nuclear Information System (INIS)

    Guo, Pingye; He, Manchao; Zheng, Liange; Zhang, Na

    2017-01-01

    Highlights: • A geothermal recycling system for cooling and heating was presented in coal mines. • The COP of this cooling subsystem is 30% higher than that of others. • The COP is 20% higher with the parallel running of cooling and heating systems. - Abstract: In the operation of deep coal mines, cooling systems must be built (in most cases) because of the high-temperature working environment within such mines. Once the coal is mined, it is often used to supply heat for buildings and domestic hot water. In either instance, the energy consumed can create environmental pollution. As a potential solution to this problem, we present a geothermal recycling system for mines (GRSM) for parallel mine cooling and surface heating. The performance of this system is investigated based on the observed data. Compared with traditional cooling systems, the most obvious feature of this system is the removal of a cooling tower, which contributes to a 30% increase in performance. Moreover, the parallel running of cooling and heating systems can effectively recover waste heat, improving energy efficiency by 20%.

  16. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  17. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Song, Songsong; Bei, Chen; Wang, Hongjin; Wang, Enhua

    2015-01-01

    In this paper, the ORC (Organic Rankine cycle) technology is adopted to recover the exhaust waste heat of diesel engine. The thermodynamic, economic and optimization models of the ORC system are established, respectively. Firstly, the effects of four key parameters, including evaporation pressure, superheat degree, condensation temperature and exhaust temperature at the outlet of the evaporator on the thermodynamic performances and economic indicators of the ORC system are investigated. Subsequently, based on the established optimization model, GA (genetic algorithm) is employed to solve the Pareto solution of the thermodynamic performances and economic indicators for maximizing net power output and minimizing total investment cost under diesel engine various operating conditions using R600, R600a, R601a, R245fa, R1234yf and R1234ze as working fluids. The most suitable working fluid used in the ORC system for diesel engine waste heat recovery is screened out, and then the corresponding optimal parameter regions are analyzed. The results show that thermodynamic performance of the ORC system is improved at the expense of economic performance. Among these working fluids, R245fa is considered as the most suitable working fluid for the ORC waste heat application of the diesel engine with comprehensive consideration of thermoeconomic performances, environmental impacts and safety levels. Under the various operating conditions of the diesel engine, the optimal evaporation pressure is in the range of 1.1 MPa–2.1 MPa. In addition, the optimal superheat degree and the exhaust temperature at the outlet of the evaporator are mainly influenced by the operating conditions of the diesel engine. The optimal condensation temperature keeps a nearly constant value of 298.15 K. - Highlights: • Thermoeconomic multi-objective optimization of an ORC (Organic Rankine cycle) system is conducted. • Sensitivity analysis of the decision variables is performed. • Genetic algorithm

  18. Report on feasibility study of district energy-saving and waste heat utilization for City of Iwai; Iwai-shi chiiki sho energy hainetsu riyo kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As part of the (district energy-saving visions for City of Iwai), the feasibility study is implemented for citizen community facilities which utilize waste heat discharged from factories in the city. More concretely, those items studied include a heated pool, other community facilities and botanical garden of tropical plants which utilize waste heat of exhaust gas cooling water heated to around 70 degrees C by a desulfurization unit at a pulp factory. Case 1 includes the citizen community facilities (e.g., heated pool and bath facilities), and Case 2 includes a green house botanical garden, involving studies on facility scales, requirements of heat and recycling water, hot water supply, air conditioning, bath systems, and heating systems for green houses. It is estimated that the citizen community facilities have an energy saving effect of 640kL/y as fuel oil, which corresponds to saving of around 29 million yen/y, and CO2 abatement effect of 471t/y as carbon, and that the green house botanical garden has an energy saving effect of 669kL/y as fuel oil, which corresponds to saving of around 30 million yen/y, and CO2 abatement effect of 492t/y as carbon. (NEDO)

  19. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process...

  20. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  1. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  2. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  3. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy

    OpenAIRE

    Dolz Ruiz, Vicente; Novella Rosa, Ricardo; García Martínez, Antonio; Sánchez Serrano, Jaime

    2012-01-01

    This paper describes the study of different bottoming Rankine cycles with water-steam and/or ORC configurations in classical and innovative setups such as a waste heat recovery system in a Heavy Duty Diesel (HDD) Engine. This work has been divided in two parts. This first part describes the model of the studied HDD engine and the available waste energy sources in this HDD Engine. The waste energy sources are studied from the standpoint of energy analysis to determine which are the most approp...

  4. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  5. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  6. Adsorbate-driven cooling of carbene-based molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Foti, Giuseppe; Vázquez, Héctor

    2017-01-01

    Roč. 8, Oct (2017), s. 2060-2068 ISSN 2190-4286 R&D Projects: GA ČR GA15-19672S EU Projects: European Commission(XE) 702114 - HEATEXMOL Institutional support: RVO:68378271 Keywords : adsorbate * carbene * current-induced heating and cooling * molecular junction * vibrations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  7. A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries

    International Nuclear Information System (INIS)

    Yu, Haoshui; Feng, Xiao; Wang, Yufei; Biegler, Lorenz T.; Eason, John

    2016-01-01

    Highlights: • Multiple waste heat streams in refinery are recovered for an ORC using a hot water intermediate. • WHCC and GCC are used to identify opportunities to save utility and/or upgrade waste heat. • The methods consider the interaction between the HEN and ORC in an integrated manner. - Abstract: Organic Rankine cycles (ORCs) convert low temperature waste heat into power. When there are multiple waste heat sources in a refinery, operability and safety considerations may make it more practical to use hot water as the medium to recover waste heat. The hot water stream can then release the heat to the organic working fluid in an ORC system. In this paper, how to customize an efficient ORC for a heat exchanger network (HEN) to optimally recover multiple strands of waste heat is investigated. Because the heat exchanger network structure, the hot water loop, and ORC system interact with each other, the coordination and synthesis of these systems ought to be considered simultaneously to maximize the energy performance. A methodology is proposed using the waste heat composite curve (WHCC) and grand composite curve (GCC) to diagnose inefficiencies in an existing heat exchanger network. In addition, the WHCC can be used to solve the problem of the tradeoff between waste heat quality and quantity recovered with an intermediate stream. WHCCs are classified into two types, and procedures for designing the recovery network for each type are presented while considering the interaction with working fluid selection. The methods proposed in this paper can help engineers diagnose problems with the original heat exchanger network, and determine the flowrate of hot water, the structure of the waste heat recovery network, the best working fluid and the operating conditions of ORC system in an integrated manner. The ideas are applied to an illustrative case study in collaboration with Sinopec. The case study shows the effectiveness of this method and compares different

  8. Adsorption Machine & Desiccant Wheel based SOLAR COOLING in a Second Law perspective

    OpenAIRE

    Bivona, Santo

    2011-01-01

    This thesis work is intended to investigate energy and exergy performance of a low power prototype solar air conditioning system based on sorption materials. Its performance is analyzed in the light of both the First and Second Law of Thermodynamics and compared with conventional HVAC systems as well as with a further solar cooling technology based on desiccant wheels (Solar DEC). The adsorption machine based solar cooling plant was thoroughly designed and its thermal performance analysed ...

  9. Direct electronic measurement of Peltier cooling and heating in graphene

    NARCIS (Netherlands)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of

  10. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys

    Directory of Open Access Journals (Sweden)

    Mahmoud Khaled

    2015-03-01

    Full Text Available This work discusses a waste heat recovery system (WHRS applied to chimneys for heating water in residential buildings. A prototype illustrating the suggested system is implemented and tested. Different waste heat scenarios by varying the quantity of burned firewood (heat input are experimented. The temperature at different parts of the WHRS and the gas flow rates of the exhaust pipes are measured. Measurements showed that the temperature of 95 L tank of water can be increased by 68 °C within one hour. Obtained results show that the convection and radiation exchanges at the bottom surface of the tank have a considerable impact on the total heat transfer rate of the water (as high as 70%.

  11. Low temperature industrial waste heat utilization in the area 'Speyer-Ludwigshafen-Frankenthal-Worms'

    International Nuclear Information System (INIS)

    Nunold, K.; Krebs, A.

    1982-01-01

    The aim of the study is the elaboration of reliable facts whether and under which conditions low temperature industrial waste heat systems can be economically utilized for heating purposes. The source of the waste heat are power- and industrial plants. In order to obtain reliable results, investigations have been carried out in the area Speyer-Ludwigshafen-Frankenthal and Worms. These investigations showed a number of application possibilities for heat pumps and it became moreover evident that there is a high variaiton of the heat requirement due to social components and the different type of building structures of the consumers. The economic results showed that the application of this heating system can under certain conditions supplement resp. replace other heating systems. (orig.) [de

  12. Soil warming for utilization and dissipation of waste heat from power generation in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.

    1977-01-01

    The purpose of this paper is to describe the Penn State research project, which studies the soil warming by circulation of heated power plant discharge water through a buried pipe network. Waste heat can be utilized by soil warming for increased crop growth in open fields with proper selection of crops and cropping systems. Dissipation of waste heat from a buried pipe network can be predicted using either of two steady-state conduction equations tested. Accurate predictions are dependent upon estimates of the pipe outer-surface temperatures, soil surface temperatures in heated soil and soil thermal conductivity. The effect of economic optimization on soil-warming land area requirements for a 1500 MWe power plant in Pennsylvania is presented. (M.S.)

  13. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi-objective......This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi....... Findings indicate that using the power production, the volume of the recuperator and the net present value as objective functions the optimal pressure ratio (2.52) and the exhaust gas temperature (178.8 °C) differ from the values (2.80 and 145.5 °C) calculated using the theory of the power maximization...

  14. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  15. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  16. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  17. Producing drinking water with the aid of waste heat or solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A method developed in Finland for the production of drinking water is described. The energy required comes either from the waste heat of nuclear power plants or from solar installations. The method has been tested in a pilot plant with an output of 120 m/sup 3/ drinking water per day. The construction of plants with an output of 500 m/sup 3/ per day is still in the planning stage.

  18. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  19. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells

    International Nuclear Information System (INIS)

    Zhang, Houcheng; Kong, Wei; Dong, Feifei; Xu, Haoran; Chen, Bin; Ni, Meng

    2017-01-01

    Highlights: • Cascading thermoelectric devices are proposed to recover waste heat from SOFCs. • A theoretical model is developed to analyze the new hybrid system performance. • Performance parameters for evaluating the hybrid system are specified. • Feasibility and effectiveness of the proposed system are demonstrated. • Effects of some important parameters on the system performance are discussed. - Abstract: Besides electricity generation, solid oxide fuel cells (SOFCs) produce a significant amount of waste heat, which needs to be immediately removed to ensure the normal operation of SOFCs. If the waste heat is recovered through bottoming thermal devices, the global efficiency of SOFCs can be improved. In this study, a new hybrid system mainly consisting of a thermoelectric generator, a thermoelectric cooler and an SOFC is proposed to recover the waste heat from SOFC for performance enhancement. The thermodynamic and electrochemical irreversible losses in each component are fully considered. An analytical relationship between the SOFC operating current density and the thermoelectric devices dimensionless electric current is derived, from which the range of SOFC operating current density that permits the thermoelectric devices to effectively work is determined. The equivalent power output and efficiency for the hybrid system are specified under different operating current density regions. The feasibility and effectiveness are illustrated by comparing the proposed hybrid system with the stand-alone SOFC. It is found that the power density and efficiency of the proposed system allow 2.3% and 4.6% larger than that of the stand-alone SOFC, respectively. Finally, various parametric analyses are performed to discuss the effects of some design and operation parameters on the hybrid system performance.

  20. Performance evaluation and experiment system for waste heat recovery of diesel engine

    International Nuclear Information System (INIS)

    Wenzhi, Gao; Junmeng, Zhai; Guanghua, Li; Qiang, Bian; Liming, Feng

    2013-01-01

    In this paper, a waste heat recovery system is proposed where a high speed turbocharged diesel engine acts as the topper of a combined cycle with exhaust gases used for a bottoming Rankine cycle. The paper describes a mathematical model to evaluate the performance of Rankine cycle system with a reciprocating piston expander. The paper focuses on the performance evaluation and parameter selection of the heat exchanger and reciprocating piston expander that are suitable to waste heat recovery of ICE (internal combustion engine). The paper also describes the experimental setup and the preliminary results. The simulation results show that a proper intake pressure should be 4–5 MPa at its given mass flow rate of 0.015–0.021 kg/s depending on the waste heat recovery of a turbocharged diesel engine (80 kW/2590 rpm). The net power and net power rise rate at various ICE rotation speeds are calculated. The result shows that introducing heat recovery system can increase the engine power output by 12%, when diesel engine operates at 80 kW/2590 rpm. The preliminary experimental results indirectly prove the simulation model by two negative work loops in the P–V curve, under a low intake pressure and steam flow rate condition. - Highlights: • We investigate waste heat recovery through secondary fluid power cycle. • We establish a thermodynamic model of reciprocating steam engine. • We conduct the performance evaluation and experimental system development. • Primary parameters of the heat exchangers and expander are determined

  1. Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  2. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  3. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    Science.gov (United States)

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  4. Fluidized-bed incineration plant equipped with waste heat boilers. Developed for mid-size municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Hitoshi

    1988-01-20

    A fluidized bed incineration plant with a waste heat boiler was installed to dispose wastes in Sakura City on March, 1987 and has waste disposing capacity of 120tons/d. Sands are fluidized in the furnace at 700-800/sup 0/C and wastes are burned completely for a short time. The waste heat boiler is used to utilize waste heat to send steam to aquiculturing farms and hot water to the community plaza and further supplies steam to two 90kW back pressure turbines for driving forced draft fan used for the incineration plant. Harmful gases in waste gas are removed by the harmful gas eliminator to lower HCl to 120ppm or less and K value of SOx to 9.0 or less and then cleaned gas is exhausted through the electostatic precipitator and the chimney. Dust and fly ash are transferred to a reservior through a superior seal tight air transportation system, pelletized and disposed for land fill. Bulk waste disposing capacity is 50 tons/d and harmful wastes, magnetic materials, unburnable and burnable wastes are classified and separated. Separated iron purity is 95% or more. (4 figs, 2 photos)

  5. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  6. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Sprouse, Charles; Depcik, Christopher

    2013-01-01

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  7. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  8. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    International Nuclear Information System (INIS)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai; Li, Zhuguo

    2016-01-01

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  9. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai, E-mail: fengkai@sjtu.edu.cn; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    2016-06-15

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  10. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... of the unit is expected to be around 250 ton. The air bottoming cycle without intercooling is also a possible alternative due to its low weight (76 ton) and low investment cost (8.8 M$). However, cycle performance and profitability index are poorer, 12.1% and 0.75. Furthermore, the results suggest...

  11. Data gathering in support of phase O program for waste heat utilization from nuclear enrichment facilities, Ohio

    International Nuclear Information System (INIS)

    1978-01-01

    The gathering of demographic, community development, and economic data for the region impacted by the Pikeville (Ohio) Nuclear Enrichment Facility is described. These data are to be used for establishing possible community uses, e.g., space heating, domestic water heating, and industrial uses, of waste heat from the facility. It was concluded that although the economic feasibility of such waste heat utilization remains to be proven, the community would cooperate in a feasibility demonstration program

  12. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m"2) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  13. Profitability considerations for photovoltaics-based solar cooling systems; Wirtschaftlichkeitsbetrachtungen fuer photovoltaik-basierte solare Kuehlsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenbach, Paul [Beuth Hochschule fuer Technik, Berlin (Germany). Fachbereich VIII

    2016-07-01

    In the present article it is studied, under which boundary conditions the application of photovoltaics-based cooling systems is presently economically meaningful. A comparison with a net-drived cold-water set (100 kW{sub r} 5000 full hours/year) as reference system is made. As influence quantity the levelized cost of cooling energy (LCCE) is defined. Following options were studied: - PV system is directly conducted to the cooling facility by means of physical cable connection - PV system is separately fed into the current network and payed back via feeding compensation. Additionally sensitivity analyses of selected parameters on the refrigeration costs were studied.

  14. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  15. Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part A – Thermodynamic evaluations

    International Nuclear Information System (INIS)

    Shu, Gequn; Yu, Guopeng; Tian, Hua; Wei, Haiqiao; Liang, Xingyu; Huang, Zhiyong

    2016-01-01

    Highlights: • A novel C-ORC system was proposed for recovering waste heat from a diesel engine. • Thermodynamic evaluations were conducted to explore C-ORC’s practical benefits. • C-ORC has significant heat-recovery capacities and efficiency-promotion potential. • Up to 16.0% of engine efficiency can be improved combining with C-ORC. - Abstract: A novel transcritical cascade-Organic Rankine Cycle (C-ORC) system was proposed to recover multi-grade waste heat from a typical heavy-duty diesel engine. The C-ORC comprises of a high-temperature ORC loop (HT-Loop) and a low temperature ORC loop (LT-Loop) to recover waste heat from an engine’s exhaust gas (EG), exhaust gas recirculation (EGR), jacket water (JW) and charge air (CA) in a cascaded pattern. In order to reveal the full performance of the C-ORC system, with due consideration to diesel’s complex practical running conditions, multi-approach evaluations were conducted containing two parts: Part A – thermodynamic evaluations of the energy and exergy aspects and Part B – techno-economic evaluations on costs and benefits aspects. This paper shows the Part A – evaluations of the C-ORC, focusing on indexes including recovered waste heat, net power output, thermal efficiencies and exergy efficiencies. First of all, distributions of the engine’s multi-grade waste heat were studied to reveal the characteristics and utilization potential of waste energy. The comparison and screening of working fluids were carried out next to find the best fluids for the HT-Loop and LT-Loop respectively based on the rated engine condition. Toluene, decane, cyclohexane and D4 were four proper alternatives for the HT-Loop while R143a, R125, R218 and R41 were four proper alternatives for the LT-Loop. Comparisons indicated that toluene and R143a made the perfect match for the C-ORC with the highest net power output (33.9 kW), thermal efficiency (9.9%) and exergy efficiency (39.1%). The rankings of the two groups of

  16. Simulation-based prediction of hot-rolled coil forced cooling

    Energy Technology Data Exchange (ETDEWEB)

    Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran)

    2008-09-15

    Hot-rolled coils take a long time to cool under normal storehouse conditions due to their high mass. Hotter seasons will lead to even longer storage times and, thus, to shortage of space. Forced cooling methods such as water-immersion and water-spray can be employed to reduce hot-rolled coil cooling time. In this paper, a mathematical model of the thermal behavior of coils is developed to predict and to evaluate the results expected from employing these methods before any real changes can be made on the ground. The results obtained from the model were compared with those from various experiments to verify the model's accuracy. The cooling time was then computed based on changes effected in the boundary conditions appropriate to each of the forced cooling methods employed. Moreover, the savings in storage times were compared to identify the best cooling method. Predictions showed that water immersion at the beginning of cooling cycle was more effective and that the cycle should not exceed 1 h for cost efficiency considerations. When using nozzles to spray it was found that spraying water on end surfaces of coils would be the optimum option resulting in savings in time, water and energy, and with restricted temperature gradient. (author)

  17. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  18. Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-11-01

    Full Text Available As the living standards of Chinese people have been improving, the energy demand for cooling and heating, mainly in the form of electricity, has also expanded. Since an integrated cooling, heating and power supply system (CCHP will serve this demand better, the government is now attaching more importance to the application of CCHP energy systems. Based on the characteristics of the combined cooling heating and power supply system, and the method of levelized cost of energy, two calculation methods for the evaluation of the economical efficiency of the system are employed when the energy production in the system is dealt with from the perspective of exergy. According to the first method, fuel costs account for about 75% of the total cost. In the second method, the profits from heating and cooling are converted to fuel costs, resulting in a significant reduction of fuel costs, accounting for 60% of the total cost. Then the heating and cooling parameters of gas turbine exhaust, heat recovery boiler, lithium-bromide heat-cooler and commercial tariff of provincial capitals were set as benchmark based on geographic differences among provinces, and the economical efficiency of combined cooling heating and power systems in each province were evaluated. The results shows that the combined cooling heating and power system is economical in the developed areas of central and eastern China, especially in Hubei and Zhejiang provinces, while in other regions it is not. The sensitivity analysis was also made on related influencing factors of fuel cost, demand intensity in heating and cooling energy, and bank loans ratio. The analysis shows that the levelized cost of energy of combined cooling heating and power systems is very sensitive to exergy consumption and fuel costs. When the consumption of heating and cooling energy increases, the unit cost decreases by 0.1 yuan/kWh, and when the on-grid power ratio decreases by 20%, the cost may increase by 0.1 yuan

  19. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  20. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Smith, Robin

    2016-01-01

    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  1. Air and water cooled modulator

    Science.gov (United States)

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  2. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  3. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  4. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  5. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  6. Uses of the waste heat from the interim fuel storage facility

    International Nuclear Information System (INIS)

    Wehrum, A.

    It was the objective of this study to investigate the possibilities of a convenient use of the waste heat from the designed interim fuel storage at Ahaus. In this sense the following possibilities have been investigated: district heating, heat for industrial processes, fish-production, green house-heating, production of methane from original waste, agrotherm (agricultur field heating). It has been shown, that an economical behaviour for nearly all variations is not given without the financial help of the government, because of the high costs for heat transport and out-put. The most economical project is the intensive fish production plant. (orig.) [de

  7. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    International Nuclear Information System (INIS)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-01-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  8. Heating a school by means of waste heat from an ice hall

    International Nuclear Information System (INIS)

    2001-01-01

    As the first building in Norway, Gimle school in Halden can be heated by means of a special combination system that gives up waste heat from a nearby ice hall and earth heat. This system will reduce the expenses of the municipality with the equivalent of USD 30 000 per year, or 618 000 kWh. 308 000 kWh comes from the refrigeration plant of the ice hall and 310 000 kWh from the ground. Although the system is both environmentally friendly end energy conserving, financial state support has been refused

  9. A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines

    International Nuclear Information System (INIS)

    Chen, Tao; Zhuge, Weilin; Zhang, Yangjun; Zhang, Lei

    2017-01-01

    Highlights: • A confluent cascade expansion ORC (CCE-ORC) system is proposed. • Cyclopentane is considered as the most suitable fluid for this system. • The CCE-ORC system performance under full operating conditions is analyzed. • The BSFC of diesel engine can be reduced by 9.2% with the CCE-ORC system. • Performance comparison of CCE-ORC and dual-loop ORC is conducted. - Abstract: Waste heat recovery (WHR) of engines has attracted increasingly more concerns recently, as it can improve engine thermal efficiency and help truck manufacturers meet the restrictions of CO_2 emission. The organic Rankine cycle (ORC) has been considered as the most potential technology of WHR. To take full advantage of waste heat energy, the waste heat in both exhaust gases and the coolant need to be recovered; however, conventional multi-source ORC systems are too complex for vehicle applications. This paper proposed a confluent cascade expansion ORC (CCE-ORC) system for engine waste heat recovery, which has simpler architecture, a smaller volume and higher efficiency compared with conventional dual-loop ORC systems. Cyclopentane is analyzed to be regarded as the most suitable working fluid for this novel system. A thermodynamic simulation method is established for this system, and off-design performance of main components and the working fluid side pressure drop in the condenser have been taken into consideration. System performance simulations under full engine operating conditions are conducted for the application of this system on a heavy-duty truck diesel engine. Results show that the engine peak thermal efficiency can be improved from 45.3% to 49.5% where the brake specific fuel consumption (BSFC) decreases from 185.6 g/(kW h) to 169.9 g/(kW h). The average BSFC in the frequently operating region can decrease by 9.2% from 187.9 g/(kW h) to 172.2 g/(kW h). Compared with the conventional dual-loop ORC system, the CCE-ORC system can generate 8% more net power, while the

  10. Intelligent design of waste heat recovery systems using thermoelectric generators and optimization tools

    DEFF Research Database (Denmark)

    Goudarzi, A. M.; Mozaffari, Ahmad; Samadian, Pendar

    2014-01-01

    design to maximize the electricity demand of Damavand power plant as the biggest thermal system in Middle East sited in Iran. The idea of designing is laid behind applying a number of thermoelectric modules within the condenser in order to recover the waste heat of the thermal systems. Besides......Optimal design of thermal systems that effectively use energy resources is one of the foremost challenges that researchers almost confront. Until now, several researches have been made to enhance the performance of major thermal systems. In this investigation, the authors try to make a conceptual...

  11. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  12. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  13. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  14. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  15. Evaluación de un recuperador de calor en una industria frigorífica//Evaluation of waste heat recovery in frigorific industry

    Directory of Open Access Journals (Sweden)

    Josué Imbert‐González

    2014-01-01

    Full Text Available La recuperación de calor forma parte de las medidas propuestas para el empleo adecuado del amoniaco en países tropicales. Este artículo analiza un sistema de recuperación de calor instalado en una instalación de refrigeración industrial. En el análisis, que parte de las lecturas comparativas de parámetros de operación de la instalación, se determinó la efectividad del intercambio térmico, el incremento en laeficiencia del sistema de refrigeración, así como el combustible ahorrado por concepto de calentamiento del agua en la industria. Los resultados obtenidos reportaron que el diseño térmico basado en intercambio de calor en espacios anulares, permite un ahorro importante de recursos y un elevado índice de aprovechamiento térmico.Palabras claves: recuperación de calor, instalación frigorífica, ahorro de energía.________________________________________________________________________________AbstractThe waste heat recovery by heat pipes is accepted as an excellent way of saving energy and preventing global warming. This article assesses the impact of the use of a heat exchanger used as a heat recovery in the refrigeration industry. Elements are evaluated from the point of view of heat transfer, evaluating the quality of heat exchange process. Is calculated increase in the efficiency of the cooling system. The heated water is used in the steam generation system of the industry. Is calculated fuel consumption savings resulting from this warming. The findings provide elements that show the enormous potential of this technique in the refrigeration industry.Key words: waste heat recovery, Industrial refrigeration, saving energy.

  16. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  17. Open absorption heat pump for waste heat utilization in the forest industry. A study of technical and economic potential; Oeppen absorptionsvaermepump foer uppgradering av spillvaerme fraan skogsindustrin. Studie av teknisk och ekonomisk potential

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, Mats; Vidlund, Anna

    2006-02-15

    Waste heat from the forest industry is mainly humid air or humid flue gases with somewhat too low dew point for direct use as district heating or for other qualified purposes. Upgrading of the temperature by heat pumps is thus often necessary for the full use of the waste heat. This study evaluates an open absorption heat, based on hygroscopic condensation. The hygroscopic condenser has the potential to replace mechanical heat pumps or conventional absorption heat pumps (based on lithium bromide) for the upgrading of heat from humid gases. The goal for the project is to evaluate technology and potential for an open absorption heat pump for heat recovery from humid gases in the forest industry. In an open heat pump the humid gas is brought in direct contact with the hygroscopic liquid (whereas a conventional heat pump uses an intermediate circuit with evaporation of water in the evaporator). The direct contact makes it possible to recover the heat at a higher temperature than the dew point of the humid gas without the use of evaporator. The target group for the study is the forest industry and its suppliers of technology and knowledge. The study has been carried out in cooperation with representatives from the forest industry and from suppliers of equipment. The study shows that the forest industry has good potential to upgrade waste heat from humid air to district heating. The waste heat can be extracted from various humid gases such as exit air from paper machines, wood driers, green liquid quenchers and flue gases from soda boilers, mesa kilns, bark-fired boilers and gas engines. Hygroscopic condensation is considered to give economic and environmental advantages compared to conventional absorption heat pumps due to much less consumption of driving heat. An interesting special case is the regeneration of the hygroscopic medium by direct contact with hot flue gases and for this application a patent application has been filed. Upgrading of waste heat to process

  18. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  19. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle

    International Nuclear Information System (INIS)

    Xie, Hui; Yang, Can

    2013-01-01

    Highlights: • Waste heat recovery behavior of the RCS during driving cycle was investigated. • Four operating modes were defined to describe the operating process of the RCS under driving cycle. • The operating mode switching is the crucial reason for on-road inefficiency. • The dry and isentropic fluids are superior to the wet ones on the adaptability to unsteady ExGE. • The effects of the vapor parameters on RCT-E and power mode percentage are opposite. - Abstract: The RCS (Rankine cycle system) used to recover the WHE (waste heat energy) from engines has been regarded as one of the most potential ways of achieving higher efficiency. However, it is of great challenge to keep the RCS still in good performance under driving cycle. This paper tries to reveal and explain its on-road inefficiency. The operating process of the RCS under driving cycle was analyzed in advance. Afterwards, four basic operating modes were defined, including startup mode, turbine turning mode, power mode and protection mode. Then, a RCS model was established and operating performances of the RCS under an actual driving cycle were discussed based on this model. The results indicate that the on-road RCS-E (Rankine cycle system efficiency) is as low as 3.63%, which is less than half of the design RCS-E (7.77%) at the rated operating point. Despite the inevitable vapor state fluctuation, it is the operating mode switching during the driving cycle that leads to the on-road inefficiency. Further investigations indicate that the expander safety temperature and its safety margin affected by the working fluids, designed superheat degree and evaporating pressure are the main factors determining the operating mode switching. Finally, the effects of the working fluids, designed superheat degree and evaporating pressure on the operating mode switching and RC (Rankine cycle) efficiencies were profoundly investigated. The study shows that the dry and isentropic fluids are superior to the wet

  20. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    A new hybrid system consisting of a PEMFC (proton exchange membrane fuel cell) subsystem and a TREC (thermally regenerative electrochemical cycle) subsystem is proposed to convert the waste heat produced by the PEMFC system into electricity. The performance of the hybrid system and its corresponding subsystems is analyzed. Results reveal that there exists optimal current densities of the PEMFC and TREC systems leading to the maximum power output of the hybrid system. With the maximum power output as the objective function, an optimization of the hybrid system based on genetic algorithm method is conducted under different operating temperatures of the PEMFC subsystem. The power output of the hybrid system is 6.85%–20.59% larger than that of the PEMFC subsystem. And the total electrical efficiency is improved by 2.74%–8.27%. The corresponding electrical efficiency of the TREC is 4.56%–13.81%. The hybrid system proposed in this paper could contribute to utilizing the fuel energy more efficiently and sufficiently. - Highlights: • A hybrid power system consisting of a PEMFC and a TREC subsystems is proposed. • Parameters' impacts on performance of the hybrid system have been analyzed. • The maximum power output of the hybrid system is investigated based on genetic algorithm. • Total power output of the hybrid system is 7.63%–18.84% larger than that of the PEMFC subsystem.

  1. Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Shu, Gequn; Shi, Lingfeng

    2017-01-01

    Highlights: • A systematic optimization methodology is presented for carbon dioxide power cycle. • Adding the regenerator is a significant means to improve the system performance. • A decision making based on the optimization results is conducted in depth. • Specific optimal solutions are selected from Pareto fronts for different demands. - Abstract: In this paper, a systematic multi-objective optimization methodology is presented for the carbon dioxide transcritical power cycle with various configurations used in engine waste heat recovery to generate more power efficiently and economically. The parametric optimization is performed for the maximum net power output and exergy efficiency, as well as the minimum electricity production cost by using the genetic algorithm. The comparison of the optimization results shows the thermodynamic performance can be most enhanced by simultaneously adding the preheater and regenerator based on the basic configuration, and the highest net power output and exergy efficiency are 25.89 kW and 40.95%, respectively. Meanwhile, the best economic performance corresponding to the lowest electricity production cost of 0.560$/kW·h is achieved with simply applying an additional regenerator. Moreover, a thorough decision making is conducted for a further screening of the obtained optimal solutions. A most preferred Pareto optimal solution or a representative subset of the Pareto optimal solutions is obtained according to additional subjective preferences while a referential optimal solution is also provided on the condition of no additional preference.

  2. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  3. Development of thermoacoustic engine operating by waste heat from cooking stove

    Science.gov (United States)

    Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.

    2012-06-01

    There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

  4. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  5. Data that warms: Waste heat, infrastructural convergence and the computation traffic commodity

    Directory of Open Access Journals (Sweden)

    Julia Velkova

    2016-12-01

    Full Text Available This article explores the ways in which data centre operators are currently reconfiguring the systems of energy and heat supply in European capitals, replacing conventional forms of heating with data-driven heat production, and becoming important energy suppliers. Taking as an empirical object the heat generated from server halls, the article traces the expanding phenomenon of ‘waste heat recycling’ and charts the ways in which data centre operators in Stockholm and Paris direct waste heat through metropolitan district heating systems and urban homes, and valorise it. Drawing on new materialisms, infrastructure studies and classical theory of production and destruction of value in capitalism, the article outlines two modes in which this process happens, namely infrastructural convergence and decentralisation of the data centre. These modes arguably help data centre operators convert big data from a source of value online into a raw material that needs to flow in the network irrespective of meaning. In this conversion process, the article argues, a new commodity is in a process of formation, that of computation traffic. Altogether data-driven heat production is suggested to raise the importance of certain data processing nodes in Northern Europe, simultaneously intervening in the global politics of access, while neutralising external criticism towards big data by making urban life literally dependent on power from data streams.

  6. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  7. Methods of Thermal Calculations for a Condensing Waste-Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Rączka Paweł

    2014-12-01

    Full Text Available The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms. The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.

  8. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  9. Performance and availability of seawater distiller with heat pipe utilizing low grade waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Dae; Chung, Kyung Yul [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Tanaka, Hiroshi [Department of Mechanical Engineering, Ulsan (Korea, Republic of)

    2013-01-15

    Exhaust gas from a small portable electric generator is simply exhausted to the surroundings because the capacity and quality of the waste heat of this gas is generally not sufficient to recover and utilize. We have proposed a seawater distiller utilizing the thermal energy of waste gas from an electric generator. The distiller recovers heat from the waste gas by means of a heat pipe and uses it effectively through a multiple effect diffusion type structure. We constructed an experimental apparatus with a vertical single effect still having a 4 stroke 50cc generator engine and found that the experimental results for distillate productivity show good agreement with the theoretical predictions. The results show that the distiller can recover 52W of waste heat from the gas at 171.deg.C, and {approx}85%, of the recovered heat can be utilized for distillation to produce 70g/h of fresh water. This is equivalent to a productivity of 500g/h in the case of a 10 effect still. Therefore, the proposed distiller should be useful in remote areas where electricity and water grids are inadequate.

  10. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  11. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

  12. System and method for regulating EGR cooling using a rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  13. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  14. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  15. Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-07-01

    Full Text Available The Organic Rankine Cycle (ORC is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

  16. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  17. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    . In particular, a model of a PCM-based heat exchanger was developed in this work by using the programming language Modelica. This device was designed to store cold energy during night-time and release it during daytime through the water circuit. Results for a typical office building model showed...... that the integration of free cooling devices can significantly reduce the primary energy use of the novel HVAC system. In particular, the thermal plant configuration including the PCM-based heat exchanger made it possible to almost completely avoid the use of mechanical cooling, leading to annual primary energy......This article presents a simulation-based study that estimates the primary energy use of a novel HVAC system for different configurations of a thermal plant. The main characteristic of the system is its ability to provide simultaneous heating and cooling to buildings by using a single hydronic...

  18. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    Science.gov (United States)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  19. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    Directory of Open Access Journals (Sweden)

    Mushtaq Ismael Hasan

    2017-04-01

    Full Text Available In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25% as a cooling fluid instead of pure transformer oil. Paraffin wax is used as a phase change material to make the suspension, in addition to the ability of heat absorption due to melting, the paraffin wax considered as a good electrical insulator. Results obtained show that, using of MEPCM suspension instead of pure transformer oil lead to improve the cooling performance of transformer by reducing its temperature and as a consequence increasing its protection against the breakdown. The melting fraction increased with increasing outside temperature up to certain temperature after which the melting fraction reach maximum constant value (MF = 1 which indicate that, the choosing of PCM depend on the environment in which the transformer is used.

  20. Lower limit on the achievable temperature in resonator-based sideband cooling

    Science.gov (United States)

    Grajcar, M.; Ashhab, S.; Johansson, J. R.; Nori, F.

    2009-03-01

    A resonator with eigenfrequency φr can be effectively used as a cooler for another linear oscillator with a much smaller frequency φmφr. A huge cooling effect, which could be used to cool a mechanical oscillator below the energy of quantum fluctuations, has been predicted by several authors. However, here we show that there is a lower limit T^* on the achievable temperature, given by T^* = Tm; φm/ φr, that was not considered in previous work and can be higher than the quantum limit in realistic experimental realizations. We also point out that the decay rate of the resonator, which previous studies stress should be small, must be larger than the decay rate of the cooled oscillator for effective cooling. M. Grajcar, S. Ashhab, J.R. Johansson, F. Nori, Lower limit on the achievable temperature in resonator-based sideband cooling, Phys. Rev. B 78, 035406 (2008). URL: http://link.aps.org/abstract/PRB/v78/e035406

  1. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    Directory of Open Access Journals (Sweden)

    Qiang Miao

    2012-12-01

    Full Text Available As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  2. Cloud Study Investigators: Using NASA's CERES S'COOL in Problem-Based Learning

    Science.gov (United States)

    Moore, Susan; Popiolkowski, Gary

    2011-01-01

    1This article describes how, by incorporating NASA's Students' Cloud Observations On-Line (S'COOL) project into a problem-based learning (PBL) activity, middle school students are engaged in authentic scientific research where they observe and record information about clouds and contribute ground truth data to NASA's Clouds and the Earth's…

  3. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity

    Science.gov (United States)

    Rahimi, Mohammad; Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce E.

    2018-01-01

    Thermally regenerative ammonia batteries (TRABs) have shown great promise as a method to convert low-grade waste heat into electrical power, with power densities an order of magnitude higher than other approaches. However, previous TRABs based on copper electrodes suffered from unbalanced anode dissolution and cathode deposition rates during discharging cycles, limiting practical applications. To produce a TRAB with stable and reversible electrode reactions over many cycles, inert carbon electrodes were used with silver salts. In continuous flow tests, power production was stable over 100 discharging cycles, demonstrating excellent reversibility. Power densities were 23 W m-2-electrode area in batch tests, which was 64% higher than that produced in parallel tests using copper electrodes, and 30 W m-2 (net energy density of 490 Wh m-3-anolyte) in continuous flow tests. While this battery requires the use a precious metal, an initial economic analysis of the system showed that the cost of the materials relative to energy production was 220 per MWh, which is competitive with energy production from other non-fossil fuel sources. A substantial reduction in costs could be obtained by developing less expensive anion exchange membranes.

  4. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  5. Alternative Muon Cooling Options based on Particle-Matter-Interaction for a Neutrino Factory

    CERN Document Server

    Stratakis, D; Alekou, A; Pasternak, J

    2013-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the momentum and strong solenoids for focusing the beam. Such a lattice is an essential feature of most designs for Neutrino Factories and Muon Colliders. Here, we explore three different approaches for designing ionization cooling channels based on periodic solenoidal focusing. Key parameters such as the engineering constraints arising from the length and separation between the solenoidal coils are systematically examined. In addition, we propose novel approaches for reducing the peak magnetic field inside the rf cavities, for example, by using bucked coils for focusing. Our lattice designs are numerically examined against two independent codes: The ICOOL and G4BL code. The performance of our proposed cooling channels is examined by implementing those to the front-end of a Neutrino Factory.

  6. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  7. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)

    1998-12-31

    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  8. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  9. Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2010-01-01

    The gas turbine-modular helium reactor (GT-MHR) is currently being developed by an international consortium. In this power plant, circulating helium that has to be compressed in a single or two successive stages cools the reactor core. For thermodynamic reasons, these compression stages require pre-cooling of the helium to about 26 deg. C through the use of intercooler and pre-cooler in which water is used to cool the helium. Considerable thermal energy (∼300 MWth) is thus dissipated in these components. This thermal energy is then rejected to a heat sink. For different designs, the temperature ranges of the helium in the intercooler and pre-cooler could be about 100 and 150 deg. C, respectively. These are ideal energy sources to be used in an organic Rankine cycles for power generation. This study examines the performance of a gas-cooled nuclear power plant with closed Brayton cycle (CBC) combined with two organic Rankine cycles (ORC). More attention was paid to the irreversibilities generated in the combined cycle. Individual models are developed for each component through applications of the first and second laws of thermodynamics. The effects of the turbine inlet temperature, compressor pressure ratio, evaporator temperature and temperature difference in the evaporator on the first- and second-law efficiencies and on the exergy destruction rate of the combined cycle were studied. Finally the combined cycle was optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on identical operating conditions, a comparison between the GT-MHR/ORC and a simple GT-MHR cycle is also made. It was found that both the first- and second-law efficiencies of GT-MHR/ORC cycle are about 3%-points higher than that of the simple GT-MHR cycle. Also, the exergy destruction rate for GT-MHR/ORC cycle is about 5% lower than that of the GT-MHR cycle.

  10. Scalp cooling successfully prevents alopecia in breast cancer patients undergoing anthracycline/taxane-based chemotherapy.

    Science.gov (United States)

    Vasconcelos, Ines; Wiesske, Alexandra; Schoenegg, Winfried

    2018-04-13

    Chemotherapy for breast cancer induces alopecia, representing a major source of patient distress. This study assesses whether a scalp-cooling device is effective in reducing chemotherapy-induced alopecia, and assesses adverse treatment effects. A prospective observational study including women with breast cancer undergoing chemotherapy and scalp cooling using a Paxman device. The primary efficacy end points were: successful hair preservation (no hair loss; <30% hair loss not requiring a wig; or <50% hair loss not requiring a wig) at the completion of chemotherapy. Secondary end points included adverse effects such as headache, pain, nausea or dizziness. The study enrolled 131 participants. Mean patient age was 49.8 years; 74% received anthracycline/taxane-based chemotherapy and 26% received taxane-monotherapy based chemotherapy. Hair preservation was successful in 102 women who underwent scalp cooling (71.0%; 95% CI = 63-79%). Only adverse events related to device use were collected, representing 7% (95% CI = 3-11%) of cases. Scalp cooling is effective in preventing hair loss among breast cancer patients undergoing standard chemotherapy treatment, and has minimal adverse effects. Copyright © 2018. Published by Elsevier Ltd.

  11. A RTS-based method for direct and consistent calculating intermittent peak cooling loads

    International Nuclear Information System (INIS)

    Chen Tingyao; Cui, Mingxian

    2010-01-01

    The RTS method currently recommended by ASHRAE Handbook is based on continuous operation. However, most of air-conditioning systems, if not all, in commercial buildings, are intermittently operated in practice. The application of the current RTS method to intermittent air-conditioning in nonresidential buildings could result in largely underestimated design cooling loads, and inconsistently sized air-conditioning systems. Improperly sized systems could seriously deteriorate the performance of system operation and management. Therefore, a new method based on both the current RTS method and the principles of heat transfer has been developed. The first part of the new method is the same as the current RTS method in principle, but its calculation procedure is simplified by the derived equations in a close form. The technical data available in the current RTS method can be utilized to compute zone responses to a change in space air temperature so that no efforts are needed for regenerating new technical data. Both the overall RTS coefficients and the hourly cooling loads computed in the first part are used to estimate the additional peak cooling load due to a change from continuous operation to intermittent operation. It only needs one more step after the current RTS method to determine the intermittent peak cooling load. The new RTS-based method has been validated by EnergyPlus simulations. The root mean square deviation (RMSD) between the relative additional peak cooling loads (RAPCLs) computed by the two methods is 1.8%. The deviation of the RAPCL varies from -3.0% to 5.0%, and the mean deviation is 1.35%.

  12. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phase change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results

  13. Recovery of exhaust waste heat for a hybrid car using steam turbine

    Science.gov (United States)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  14. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  15. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. It is difficult to reclaim this heat due to the dispersed nature and relative smallness of its sources. Thermoelectric conversion can offer a very promising method to overcome these difficulties...... by converting heat directly into electricity. However, the requirements for this task place in the materials are not easily satisfied by the conventional thermoelectric materials. Not only they must possess a high thermoelectric performance, they should also be stable at high temperatures and be composed...... of nontoxic and low-cost elements, and must be able to be processed and shaped cheaply. Oxides are among the strongest candidate materials for this purpose, and recently they have been intensively investigated and developed [1-5]. In this report, the development progress of two state-of-the-art p-type Ca3Co4O...

  16. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  17. Compressed air energy storage with waste heat export: An Alberta case study

    International Nuclear Information System (INIS)

    Safaei, Hossein; Keith, David W.

    2014-01-01

    Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO 2 e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO 2 e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES

  18. Analysis of economic and energy utilization aspects for waste heat aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.; Wilson, J. V.

    1978-01-01

    A waste heat aquaculture system using extensive culture techniques to produce fin and shellfish is currently under investigation at the Oak Ridge National Laboratory. The system uses nutrients in waste water streams to grow algae and zooplankton which are fed to fish and clams. A tilapia polyculture association and the freshwater clam Corbicula are the animals cultured in the system. The investigations were performed to determine the economic feasibility of the system and examine energy utilization in the system. A net energy analysis was performed to identify the energy saving potential for the system. This analysis includes all energy costs (both direct and indirect) associated with building and operating the system. The results of the economic study indicated that fish production costs of $0.55/kg ($0.25/lb) were possible. This cost, however, depends upon the fish production rate and food conversion efficiency and could rise to as much as $1.65/kg ($0.75/lb). Clam production costs were found to be in the neighborhood of $0.37/kg of clam meat ($1.24/bushel). The energy utilization study results indicated that, when all energy costs are included, fish from the aquaculture system may require only 35% of the net energy now required for fish products from the ocean. However, the energy requirements also depend on system parameters and could be as large as the energy required for ocean caught products. Clams can be produced in the aquaculture system using only about 25% of the net energy required by traditional means. The results of the analysis indicate that the system appears to be economically feasible. They also indicate that significant energy savings are possible if waste heat aquaculture products replace ocean caught products.

  19. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery

    International Nuclear Information System (INIS)

    Li, You-Rong; Du, Mei-Tang; Wu, Chun-Mei; Wu, Shuang-Ying; Liu, Chao

    2014-01-01

    The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance. - Highlights: • Organic Rankine cycle system with the mixture working fluids for recovering waste heat is analyzed. • The performance of the mixture-fluid ORC is related to temperature glide in phase change of mixture working fluids. • The relative merit of the mixture working fluids depends on the restrictive operation conditions of the ORC. • The ORC with mixture working fluid presents a poor economical performance compared with the pure working fluid case

  20. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  1. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  2. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  3. Process and device for determining the effect of river water heating by waste heat on its temperature characteristics

    International Nuclear Information System (INIS)

    Pietzsch, L.; Kauer, H.; Lautersack, K.

    1979-01-01

    It is proposed to use measurements for determining the effect of heating river water by introducing waste heat from industrial plants or power-stations, instead of deriving the effect from calculations. A suitable method of measurement is proposed and discussed. (UWI) 891 HP/UWI 892 CKA [de

  4. Method and means for heating buildings in a district heating system with waste heat from a thermal power plant

    International Nuclear Information System (INIS)

    Margen, P.H.E.

    1975-01-01

    The waste heat from a thermal power plant is transported through a municipal heating network to a plurality of buildings to be heated. The quantity of heat thus supplied to the buildings is higher than that required for the heating of the buildings. The excess heat is released from the buildings to the atmosphere in the form of hot air

  5. Design of a predictive control strategy for an automotive electrically-assisted waste heat recovery system with preview

    NARCIS (Netherlands)

    Seretis, M.

    2017-01-01

    This report regards the development of a predictive control strategy for an automotive electrically-assisted Waste Heat Recovery System (eWHR) with preview information. In this system, the energy recovery is decoupled from the energy supply to the engine. For such dynamical systems with energy

  6. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    (configuration 2) is more efficient than the two pressure level cycle (configuration 1). At the same time, the engine equipped with waste heat recovery with a three-pressure level steam cycle is simpler to operate in Tier II operation. However, the two-pressure level steam cycle is a simpler configuration....

  7. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  8. Economical utilization of hot water - an important precondition for an efficient utilization of waste heat in milk cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E; Pflug, C

    1985-01-01

    Indispensable both in the field of hydroecological and energy policies is the economical utilization of hot water. Hydroecological process analyses in specialized dairy cattle plants have shown that the specific mean annual abstraction of hot water (50/sup 0/C) may be reduced to 14 l per cow and per day. The proportionate contribution of different operational sectors and methods to arrive at the standards are pointed out. Economizing dairy cattly plants reducing hot water consumption as indicated and reaching average milking outputs of >= 1 l per cow and per day may thus bridge the summer season by heat recovery processes producing a sufficient quantity of hot water and allowing a shutdown of all heating units. At present the majority of dairy cattle plants cannot yet dispense with supplementary water during the remaining months. The hot water consumption rate is highest at the end of shifts. In double-shifted dairy cattle plants the estimated maximum hourly consumption amounts to 12 per cent of the average daily consumption. (orig.).

  9. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  10. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    International Nuclear Information System (INIS)

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao

    2017-01-01

    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  11. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Uusitalo, Antti; Honkatukia, Juha; Turunen-Saaresti, Teemu; Larjola, Jaakko

    2014-01-01

    Organic Rankine Cycle (ORC) is a Rankine cycle using organic fluid as the working fluid instead of water and steam. The ORC process is a feasible choice in waste heat recovery applications producing electricity from relatively low-temperature waste heat sources or in applications having a rather low power output. Utilizing waste heat from a large high-efficiency reciprocating engine power plant with ORC processes is studied by means of computations. In addition to exhaust gas heat recovery, this study represents and discusses an idea of directly replacing the charge air cooler (CAC) of a large turbocharged engine with an ORC evaporator to utilize the charge air heat in additional power production. A thermodynamic analysis for ORCs was carried out with working fluids toluene, n-pentane, R245fa and cyclohexane. The effect of different ORC process parameters on the process performance are presented and analyzed in order to investigate the heat recovery potential from the exhaust gas and charge air. A simplified feasibility consideration is included by comparing the ratio of the theoretical heat transfer areas needed and the obtained power output from ORC processes. The greatest potential is related to the exhaust gas heat recovery, but in addition also the lower temperature waste heat streams could be utilized to boost the electrical power of the engine power plant. A case study for a large-scale gas-fired engine was carried out showing that the maximum power increase of 11.4% was obtained from the exhaust gas and 2.4% from the charge air heat. - Highlights: • Waste heat recovery potential of reciprocating engines was studied. • Thermodynamic optimization for ORCs was carried out with different fluids. • The utilization of exhaust gas and charge air heat is presented and discussed. • Simplified economic feasibility study was included in the analysis. • Power increase of 11.4% was obtained from exhaust gas and 2.4% from charge air

  12. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  13. Elastocaloric effect of a Ni-Ti plate to be applied in a regenerator-based cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2016-01-01

    The aim of this article is to analyze the elastocaloric effect of a commercial Ni-Ti plate for its application in a cooling device. In the first part, the article shows numerical results of the cooling characteristics of a regenerator-based elastocaloric cooling device with different thickness...... of the Ni-Ti plates based on a previously developed numerical model. It is shown that such a device (with a plate thickness of 0.1 mm) can produce a specific cooling power up to 7 kW/kg and coefficient of performance values up to 5 at the 30 K of the temperature span. In the second part of the article...... and the temperature irreversibilities during unloading are presented and discussed. It can be concluded that thin Ni-Ti plates with suitable austenitic finish temperature are good candidates to be applied in a proof-of-concept regenerator-based cooling device....

  14. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    DEFF Research Database (Denmark)

    Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...... on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected...

  15. Application of autoclaving-cooling cycling treatment to improve resistant starch content of corn-based rice analogues

    Science.gov (United States)

    Hidayat, B.; Muslihudin, M.; Akmal, S.

    2018-01-01

    Resistant starch is one important component determining the characteristics of a functional food. The aim of the research was to determine the cooling time optimum in the autoclaving-cooling treatment to increase the resistance starch content corn-based rice analogues, with 6 level of cooling time (0 hours/control, 12 hours, 24 hours, 36 hours, 48 hours and 60 hours). The results showed that cooling at 4°C for 60 hours would increase the resistant starch content (6.27% to 15.38%), dietary fiber content (14.53% to 20.17%); and decrease the digestible starch content (61.81% to 52.70%). Cooling time level at 4°C for 24 hours, would increase the sensory score of corn-based rice analogues then back down until cooling time level of 60 hours. Microscopic analysis of granular structure using SEM indicated that cooling time had a linear correlation with cracks intensity on the granule surface of the corn-based rice analogues. The high content of resistant starch showed that the application of cooling time level at 4°C for 24 hours would improve the functional properties of corn-based rice analogues with sensory characteristics remain favorable to panelists.

  16. Energy Demand Comparison between Hollow Fiber Membrane Based Dehumidification and Evaporative Cooling Dehumidification Using TRNSYS

    Directory of Open Access Journals (Sweden)

    Jeachul Jang

    2018-05-01

    Full Text Available This communication presents the performance evaluation and comparative study between two different techniques: a membrane-based dehumidification system (MDS and evaporative cooling dehumidification (ECD for a typical climate of South Korea. Although there are different ways to dehumidify the air in living and work spaces, the membrane-based dehumidification system (MDS is the most effective way as it neither causes a change in the temperature nor harms the environment. Moreover, it consumes significantly less energy when compared to other methods. There are also limitations concerning products that are sensitive to temperature such as food and pharmaceutical products; the method of evaporative cooling dehumidification is not suitable for such applications. The present work demonstrated the excellent energy-saving performance of the membrane-based dehumidification system against evaporative cooling dehumidification by comparing the performance of these two systems during the rainy season using a transient system simulation. The results showed that the MDS helped to reduce the dehumidification load by more than 47.6% when compared to the ECD system, which is a significant achievement in this regard.

  17. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Zou, Zheng; He, Suoying

    2015-01-01

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  18. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  19. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    Science.gov (United States)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  20. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  1. Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics

    Science.gov (United States)

    Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui

    A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.

  2. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  3. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zia, Jalal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  4. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  5. Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Kamiji, Yu; Terada, Atsuhiko; Yan Xing; Inagaki, Yoshiyuki; Murata, Tetsuya; Mori, Michitsugu

    2015-01-01

    A district heating and snow melting system utilizing waste heat from Gas Turbine High temperature Gas Reactor of 300 MW_e (GTHTR300), a heat-electricity cogeneration design of high temperature gas-cooled reactor, was analyzed. Application areas are set in Sapporo and Ishikari, the heavy snowfall cities in Northern Japan. The heat transport analyses are carried out by modeling the components in the system; pipelines of the secondary water loops between GTHTR300s and heat demand district and heat exchangers to transport the heat from the secondary water loops to the tertiary loops in the district. Double pipe for the secondary loops are advantageous for less heat loss and smaller excavation area. On the other hand, these pipes has disadvantage of more electricity consumption for pumping. Most of the heat demand in the month of maximum requirement can be supplied by 2 GTHTR300s and delivered by 9 secondary loops and around 5000 heat exchangers. Closer location of GTHTR300 site to the heat demand district is largely advantageous economically. Less decrease of the distance from 40 km to 20 km made the heat loss half and cost of the heat transfer system 22% smaller. (author)

  6. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle

    International Nuclear Information System (INIS)

    Domingues, António; Santos, Helder; Costa, Mário

    2013-01-01

    This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy

  7. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j.palmiere@sheffield.ac.uk

    2017-01-15

    Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientation information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.

  8. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  9. Low-noise cooling system for PC on the base of loop heat pipes

    International Nuclear Information System (INIS)

    Pastukhov, Vladimir G.; Maydanik, Yury F.

    2007-01-01

    The problem of current importance connected with a wide use of personal computers (PC) and a rapid growth of their performance is a decrease in the noise level created at the operation of cooling system fans. One of the possible ways of solving this problem may be the creation of passive or semi-passive systems on the base of loop heat pipes (LHPs) in which the heat sink is an external radiator cooled by natural and/or forced air convection. The paper presents the results of development and tests of several variants of such systems, which are capable of sustaining an operating temperature of 72-78 deg. C on the heat source thermal interface which dissipates 100 W at an ambient temperature of 22 deg. C. It is also shown that the use of additional means of active cooling in combination with LHPs allows to increase the value of dissipated heat up to 180 W and to decrease the system thermal resistance down to 0.29 deg. C/W

  10. Design study of blanket structure based on a water-cooled solid breeder for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Youji; Tobita, Kenji; Utoh, Hiroyasu; Tokunaga, Shinji; Hoshino, Kazuo; Asakura, Nobuyuki; Nakamura, Makoto; Sakamoto, Yoshiteru

    2015-10-15

    Highlights: • Neutronics design of a water-cooled solid mixed breeder blanket was presented. • The blanket concept achieves a self-sufficient supply of tritium by neutronics analysis. • The overall outlet coolant temperature was 321 °C, which is in the acceptable range. - Abstract: Blanket concept with a simplified interior for mass production has been developed using a mixed bed of Li{sub 2}TiO{sub 3} and Be{sub 12}Ti pebbles, coolant conditions of 15.5 MPa and 290–325 °C and cooling pipes without any partitions. Considering the continuity with the ITER test blanket module option of Japan and the engineering feasibility in its fabrication, our design study focused on a water-cooled solid breeding blanket using the mixed pebbles bed. Herein, we propose blanket segmentation corresponding to the shape and dimension of the blanket and routing of the coolant flow. Moreover, we estimate the overall tritium breeding ratio (TBR) with a torus configuration, based on the segmentation using three-dimensional (3D) Monte Carlo N-particle calculations. As a result, the overall TBR is 1.15. Our 3D neutronics analysis for TBR ensures that the blanket concept can achieve a self-sufficient supply of tritium.

  11. Air cooling analysis and design of impacted flexible actuator’s servo controller based on PLECS

    Directory of Open Access Journals (Sweden)

    Zhu Mingjun

    2017-01-01

    Full Text Available At present, SUAV (small unmanned aerial vehicle is developing with small shape, high dynamic performance and distributed structure. Meanwhile the power by wire, which can replace traditional hydraulic system to lighten weight and improve reliability, is important developing direction of actuator technology in future. When a plane which applies power by wire is doing high-g routine, the power devices’ loss is giant because of the high power. Thus it is necessary to design cooling structure to carry out heat from controller inner. To avoid over design and analyze more exactly, this paper introduces a method based on MATLAB and PLECS union Simulink to calculate controller’s loss. By power devices’ thermal resistance and working temperature referred from products manual, it is possible to define cooler’s size. Then we can achieve wind pressure and flow characteristic curve, and select the cooling fan. Compared with theory calculation, this method can achieve exact controller loss in different working conditions and take effects which influenced by temperature in consideration, by what we can avoid cooling structure’s over design.

  12. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  13. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  14. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  15. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun

    2015-01-01

    Thermal modeling is the key issue in thermal management of lithium-ion battery system, and cooling strategies need to be carefully investigated to guarantee the temperature of batteries in operation within a narrow optimal range as well as provide cost effective and energy saving solutions for cooling system. This article reviews and summarizes the past cooling methods especially forced air cooling and introduces an empirical heat source model which can be widely applied in the battery module/pack thermal modeling. In the development of empirical heat source model, three-dimensional computational fluid dynamics (CFD) method is employed, and thermal insulation experiments are conducted to provide the key parameters. A transient thermal model of 5 × 5 battery module with forced air cooling is then developed based on the empirical heat source model. Thermal behaviors of battery module under different air cooling conditions, discharge rates and ambient temperatures are characterized and summarized. Varies cooling strategies are simulated and compared in order to obtain an optimal cooling method. Besides, the battery fault conditions are predicted from transient simulation scenarios. The temperature distributions and variations during discharge process are quantitatively described, and it is found that the upper limit of ambient temperature for forced air cooling is 35 °C, and when ambient temperature is lower than 20 °C, forced air-cooling is not necessary. - Highlights: • An empirical heat source model is developed for battery thermal modeling. • Different air-cooling strategies on module thermal characteristics are investigated. • Impact of different discharge rates on module thermal responses are investigated. • Impact of ambient temperatures on module thermal behaviors are investigated. • Locations of maximum temperatures under different operation conditions are studied.

  16. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes

    Science.gov (United States)

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly ( P Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher ( P < 0.05) in cooled group of Murrah buffaloes.

  17. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  18. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  19. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  20. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  1. Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer

    International Nuclear Information System (INIS)

    Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang

    2013-01-01

    In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.

  2. Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat

    Science.gov (United States)

    Cherednichenko, Oleksandr; Serbin, Serhiy

    2018-03-01

    One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.

  3. Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat

    International Nuclear Information System (INIS)

    Yamanaka, H; Nakagawa, M

    2013-01-01

    Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.

  4. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  5. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  6. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  7. Effect of solution cooling rate on the γ' precipitation behaviors of a Ni-base P/M superalloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of cooling rate on the cooling "/' precipitation behaviors was investigated in a Ni-base powder/metallurgy (P/M)superalioy (FGH4096).The empirical equations were established between the cooling rate and the average sizes of secondary and tertiary γ' precipitates within grains and tertiary γ' precipitates at grain boundaries,as well as the apparent width of grain boundaries.The results show that the average sizes of secondary or tertiary γ' precipitates are inversely correlated with the cooling rate.The shape of secondary γ' precipitates within grains changes from butterfly-like to spherical with the increase of cooling rate,but all the tertiary γ' precipitates formed are spherical in shape.It is also found that tertiary γ' may be precipitated in the latter part of the cooling cycle only if the cooling rate is not faster than 4.3℃/s,and the apparent width of grain boundaries decreases linearly with the increase of cooling rate.

  8. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  9. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  10. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Yongping; Xu, Cheng; Xu, Gang; Han, Yu; Fang, Yaxiong; Zhang, Dongke

    2015-01-01

    Highlights: • A new cold-end design of boilers for CFPPs with waste heat recovery is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Higher energy efficiency improvement and greater economic benefits are achieved. • Lower exergy destruction and better matched energy level are obtained. - Abstract: After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000 MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000 MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3 MW e additional net power output with a heat rate reduction of approximately 112.0 kJ/kW h and could yield a net benefit of up to $85.8 M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9 MW th in the conventional boiler cold-end design to 39.6 MW th in the proposed design

  11. Steady-state and dynamic modelling of a 1 MWel commercial waste heat recovery ORC power plant

    OpenAIRE

    Andritsos, George; Desideri, Adriano; Gantiez, Clement; Lemort, Vincent; Quoilin, Sylvain

    2016-01-01

    ORC power systems have been proven to be a mature technology for low quality waste heat recovery applications. ORC units stand out for their simple structure, reliability and cost- effectiveness. The non-constant nature of the energy source requires the ORC power unit to be flexible. Dynamic modelling can be adopted to evaluate and optimize the response time of a system in case of transient conditions, to develop and test control strategies, to support the tuning of the controller and to supp...

  12. Using the transformer oil-based nanofluid for cooling of power distribution transformer

    OpenAIRE

    Mushtaq Ismael Hasan

    2017-01-01

    Thermal behavior of electrical distribution transformer has been numerically studied with the effect of surrounding air temperature. 250 KVA distribution transformer is chosen as a study model and studied in temperature range cover the weather conditions of hot places. Transformer oil-based nanofluids were used as a cooling medium instead of pure transformer oil. Four types of solid particles (Cu, Al2O3, TiO2 and SiC) were used to compose nanofluids with volume fractions (1%, 3%, 5%, 7%, and ...

  13. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  14. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  15. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  16. Waste-Heat-to-Power Market in the U.S., Heat is Power Annual Meeting (Presentation) – August 15, 2012

    Science.gov (United States)

    This presentation provides information about the EPA CHP Partnership, including an overview of the Partnership's tools and resources, and policy support. The presentation also describes the potential of Waste Heat to Power (WHP) systems.

  17. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  18. Development of a desalination system driven by solar energy and low grade waste heat

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Sultan, Gamal I.

    2015-01-01

    Highlights: • Productivity increases significantly up to critical waste gas flow rate. • Productivity decreases for waste gas flow rate higher than critical flow rate. • Increasing evaporator inlet waste gas temperature increases productivity. • The proposed system coupled with combined cycle has a fuel saving 1844 kg/h. • The cost of potable water produced is 0.014 USD/L. - Abstract: Various thermal power systems emit flue gases containing significant amount of waste energy. The aim of this research is to recover a valuable amount of this energy to develop an efficient desalination system coupled with solar energy. Experiments were performed in the month of June 2014 at Al-Qassim, Saudi Arabia (26°4′53″N, 43°58′32″E) for different hot air (waste gas) flow rates and evaporator inlet water temperature to study the effect on daily potable water productivity. The proposed setup comprised an evaporator, condenser, air blower, electric heaters, storage tank and evacuated tube solar collectors. It was found that increasing the hot air flow rate increases the water productivity up to the critical flow rate after which the productivity decreases. Analytical model was developed for this desalination setup and the results were compared to that obtained from experiments. The overall daily (9 AM–5 PM) potable water productivity of the proposed system is about 50 L for corresponding useful waste heat varying from 130 to 180 MJ/day and a global solar radiation on a horizontal surface ranging from 15 to 29 MJ/m 2 /day. Water is produced at the cost of 0.014 USD/L and the fuel saving equal to 1844 kg/h is achieved for the proposed desalination system

  19. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  20. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    International Nuclear Information System (INIS)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    Highlights: • Theory of power maximization used to design an air bottoming cycle. • Theory of power maximization extended by a multi-objective optimization method. • Three objective functions considered: net power output, recuperator volume and net present value. • Comparison between the theory of power maximization and the multi-objective optimization method. • Case study: a methodology applied to recover exhaust heat on off-shore platforms. - Abstract: This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi-objective optimization approach is employed to maximize the economic revenue, the compactness and the power production of the air bottoming cycle. The system compactness is assessed by introducing a detailed model of the shell and tube recuperator and including geometric quantities in the set of optimization variables. Findings indicate that using the power production, the volume of the recuperator and the net present value as objective functions the optimal pressure ratio (2.52) and the exhaust gas temperature (178.8 °C) differ from the values (2.80 and 145.5 °C) calculated using the theory of the power maximization. The highest net present value (2.8 M$) is found for a volume of the recuperator of 128 m 3 . Thus, it can be concluded that the multi-objective optimization approach enables extending the theory of power maximization bridging the gap between a mere optimization of the thermodynamic cycle and the practical feasibility of a power generation system

  1. Economic feasibility assessment of the Oak Ridge National Laboratory waste-heat polyculture concept

    International Nuclear Information System (INIS)

    Olszewski, M.

    1979-02-01

    An economic feasibility analysis was performed for a proposed waste-heat aquaculture system that uses a tilapia polyculture concept. The system is designed to use waste water nutrients to grow plankton which is fed to the fish. The system was judged to be economically viable if fish production costs of $1.32/kg (60 cents/lb) or lower were achieved for production rates that have been experimentally verified. The results of the analysis indicate that the system is economically viable if capital costs are annualized using a 15% fixed charge rate (FCR). Feasibility of the system at a 25% FCR depends upon aeration turnover time and system food conversion efficiency. Eliminating cages from the system design decreases the capital costs and improves the economic potential of the system. Additional capital cost reductions are possible if the aerators are removed from the system. However, expected fish production rates are also decreased and the system does not appear economically viable for a 25% FCR. System design modifications due to biological considerations included lining the algal pond with a plastic liner and using commercial fertilizers in place of organic waste streams. Lining the algal ponds did not affect the feasibility of the system at a 15% FCR but did result in the system becoming economically unattractive at a 25% FCR. The use of commercial fertilizers added 15 cents/kg (7 cents/lb) to the production but did not have serious adverse effects on the feasibility of the system. The system appears to have economic promise and should be examined further. Operation of a small expermental system to verify the estimated performance parameters is needed

  2. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  3. Parametric study of power turbine for diesel engine waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Chen, Zhen; Li, Zhigang

    2014-01-01

    Turbocompounding is a promising technology to recover waste heat from the exhaust and reduce fuel consumption for internal combustion engine. The design of a power turbine plays a key role in turbocompound engine performance. This paper presents a set of parametric studies of power turbine performed on a turbocompound diesel engine by means of turbine through-flow model developed by the authors. This simulation model was verified and validated using engine performance test data and achieved reasonable accuracy. The paper first analyzed the influence of three key geometrical parameters (blade height, blade radius and nozzle exit blade angle) on turbine expansion ratio and engine fuel consumptions. After that, the impacts of the geometrical parameters on power distribution, air mass flow rate and exhaust temperature were analyzed. Results showed that these parameters had significant effects on engine BSFC and power. At high engine speeds, there existed an optimum value of geometry parameter to obtain the lowest BSFC. At low engine speeds, the engine BSFC kept increasing or decreasing continuously as the geometry parameters changed. Research also found that the engine BSFC was most sensitive to the nozzle exit blade angle, which should be considered carefully during the design process. This paper provides a useful method for matching and designing of a power turbine for turbocompound engine. - Highlights: •Through-flow model of axial-flow power turbine for turbocompound engine was established. •Turbocompound engine performance test was carried out to validate the cycle simulation model. •Influences of power turbine geometry parameters on engine BSFC and power were presented

  4. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  5. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for