WorldWideScience

Sample records for waste wood

  1. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  2. Urban Wood Waste Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  3. Wood wastes: Uses

    International Nuclear Information System (INIS)

    Cipro, A.

    1993-01-01

    The 1,500 industrial firms manufacturing furniture in the Italian Province of Treviso can generate up to 190,000 tonnes of wood wastes annually. In line with the energy conservation-environmental protection measures contained in Italian Law No. 475/88, this paper indicates convenient uses for these wood wastes - as a raw material for fibreboards or as a fuel to be used in the furniture manufacturing plants themselves and in kilns producing lime. Reference is made to the wood wastes gasification/power generation system being developed by ENEA (the Italian Agency for New Technology, Energy and the Environment)

  4. Sustainable wood waste management in Nigeria

    Directory of Open Access Journals (Sweden)

    Owoyemi Jacob Mayowa

    2016-09-01

    Full Text Available Wood industries produce large volumes of residues which must be utilized, marketed or properly disposed of. Heaps of wood residues are common features in wood industries throughout the year. In Nigeria, this residue is generally regarded as waste and this has led to open burning practices, dumping in water bodies or dumping in an open area which constitutes environmental pollution. Sawmills in Nigeria generated over 1,000,000 m3 of wood waste in 2010 while about 5000 m3 of waste was generated in plywood mills. Nigeria generates about 1.8 million tons of sawdust annually and 5.2 million tons of wood wastes. The impact of improper disposal of waste wood on the environment affects both the aquatic and terrestrial ecosystems. Also burning of waste wood releases greenhouse gases into the atmosphere causing various health issues. Reuse/recycling of these wood residues in Nigeria will reduce the pressure on our ever decreasing forests, reduce environmental pollution, create wealth and employment. The literature available on this subject was reviewed and this article, therefore, focuses on the various methods of wood waste disposal and its utilization in Nigerian wood industries, the effects of wood waste on the environment as well as on human health and the benefits of proper wood waste management practices.

  5. Urban Wood Waste Resource Assessment; TOPICAL

    International Nuclear Information System (INIS)

    Wiltsee, G.

    1998-01-01

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris

  6. Assessment of the wood waste resource and its position in the wood / wood-energy sector - Synthesis

    International Nuclear Information System (INIS)

    Guinard, Ludovic; Deroubaix, Gerard; Roux, Marie-Lise; Levet, Anne-Laure; Quint, Vincent

    2015-04-01

    The first objective of this study is to obtain a better knowledge of the 'wood wastes' issue, to propose a photography of the wood waste sector (productions, trades, consumptions), and then to elaborate different prospective scenarios on the use of wood waste volumes while taking into account possible evolutions on the medium or short term of the regulation and market of the wood/wood energy sector. The considered wastes come from industrial production, from the use of wood-based products, and from the end of life of products potentially containing wood. The authors present bibliographical sources and the adopted methodology, briefly describe the 'wood waste' system with its actors, and then report their assessment of wood wastes. They propose a global assessment as well as detailed assessments with respect to waste origins: wood trade and distribution, industries, craft, households and communities, building sector, public and private tertiary sector, packaging. They also address the collection and management of wood wastes by public services, and present the different types of valorisation (panel fabrication, energy, and others). They discuss exports, and then present different scenarios: a trend-based scenario, and two prospective scenarios with a priority to energetic valorisation or to material valorisation of wood wastes. These scenarios are compared

  7. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  8. Waste-wood resource supply assessment. Final report

    International Nuclear Information System (INIS)

    1991-08-01

    The report documents and analyzes the availability and supply of wood waste in New York State to determine the type and amount currently generated to estimate its potential future use as a fuel. Detailed, current information is included on the availability, quantity and price of wood waste. Topics include wood waste markets; the harvesting and supply infrastructure; current and project prices; competing markets; environmental impacts of harvesting, processing and burning wood waste for fuel; and factors affecting long-term availability and supply. New York State's waste wood resource was evaluated to complete the Energy Authority's recent investigation of the potential role of wood in producing electric power. In 1989 approximately 11.8 million tons of wood waste were generated in New York State. More than 8 million tons or 68 percent, were disposed of by municipal solid waste and construction and demolition debris facilities. Just under 3.8 million tons or 32 percent, were reused and/or recycled. More than 25.7 million tons of wood waste could be available annually for fuel. Of the amount, more than 17.2 million tons per year, or 67 percent, could be produced by silvicultural activities that improve the health and productivity of forests

  9. The use of wood waste for energy production

    International Nuclear Information System (INIS)

    Karlopoulos, E.; Pavloudakis, F.

    1999-01-01

    The paper presents some technical aspects and management issues of wood waste reuse end disposal. It refers to the Greek and European legislation which determines the framework for rational and environmental friendly practices for woos waste management. It refers also to the wood waste classification systems and the currently applied methods of wood waste disposal and reuse. Emphasis is given to the wood waste-to-energy conversion system, particularly to the pretreatment requirements, the combustion techniques, and the environmental constrains. Finally, the decision making process for the investments in the wood waste firing thermal units is discussed

  10. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    Science.gov (United States)

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  11. Wood waste: A disposal problem or an opportunity?

    International Nuclear Information System (INIS)

    Vajda, P.

    1989-01-01

    The utilization of wood wastes in North America is reviewed, with a focus on the wood products industry and markets. On the whole, wood mill residues in North America have always been utilized except for a period from the 1940s to the 1970s oil crisis. In the latter period, low cost electric power and hydrocarbon fuels rendered uneconomical the use of wood wastes as fuel. As a response to the problem of disposing these wastes, a number of innovations occurred in that period, including the use of wood chips for manufacturing pulp and particleboard, and the use of sawdust and shavings for manufacturing hardboard and medium density fiberboard. Uses for bark, except as fuel, have not been successfully developed. Since the 1970s, wood waste in the USA is essentially all used for composite board products and fuel. This is also true in eastern Canada, which is close to the wood products markets and which has fairly high oil and gas costs. However, in western Canada, low energy costs and small internal markets have led to a serious wood waste disposal problem. A survey of wood waste supply and demand shows large surpluses in mill residues in western Canada and some remote locations in northern Ontario and Quebec. The Pacific Rim countries are identified as a potential market for western Canadian composite board production. The use of other sources of wood waste (forestry or logging residues, which are costly to collect, and municipal construction waste) is briefly discussed

  12. An assessment of management practices of wood and wood-related wastes in the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The US Environmental Protection Agency estimates that yard waste{sup 1} accounts for approximately 16% of the municipal solid waste (MSW) stream (US EPA, 1994). Until recently, specific data and related information on this component of the (MSW) stream has been limited. The purposes of this study, phase two of the three-phase assessment of urban wood waste issues, are to assess and describe current alternatives to landfills for urban wood waste management; provide guidance on the management of urban wood waste to organizations that produce or manage wood waste; and clarify state regulatory and policy positions affecting these organizations. For this study, urban wood waste is defined as solid waste generated by tree and landscape maintenance services (public and private). Urban wood waste includes the following materials: unchipped mixed wood, unchipped logs, and unchipped tops and brush; clearing and grubbing waste; fall leaves and grass clippings; and chips and whole stumps. Construction and demolition debris and consumer-generated yard waste are not included in this study. Generators of urban wood waste include various organizations; municipal, county, and commercial tree care divisions; nurseries, orchards, and golf courses; municipal park and recreation departments; and electric and telephone utility power line maintenance, excavator and land clearance, and landscape organizations. (1) US EPA defines yard waste as ''yard trimmings'' which includes ''grass, leaves and tree brush trimmings from residential, institutional, and commercial sources.''

  13. Forest biomass and wood waste resources

    Science.gov (United States)

    K. Skog; P. Lebow; D.. Dykstra; P.. Miles; B.J. Stokes; R.D. Perlack; M. Buford; J. Barbour; D. McKeever

    2011-01-01

    This chapter provides estimates of forest biomass and wood waste quantities, as well as roadside costs (i.e., supply curves) for each county in the contiguous United States. Roadside price is the price a buyer pays for wood chips at a roadside in the forest, at a processing mill location in the case of mill residue, or at a landfill for urban wood wastes prior to any...

  14. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  15. USE OF CANDEIA’S (Eremanthus erythropappus WASTE WOOD

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2008-09-01

    Full Text Available The candeia (Eremanthus erythropappus is a native forest species with multiple uses and specially utilized as essential oils source. The use of the candeia´s waste wood after oil extraction for particle panels production becomes a viable alternative, avoiding environmental problems and increasing the availability of these products in the consuming market. This work verified the viability of producing wood-cement panels using waste wood generated after the extraction of candeia’s oil, in association with pinus and eucalipto woods. The experiment was installed according to a completely randomized design with three repetitions. The treatments were arranged according to a factorial 2 x 3 scheme (two wooden species and three replacement percentages of the woods by candeia’s waste. The results of the physical and mechanical property tests showed high potentiality of candeia waste wood, after oil extraction, in association with pinus and eucalipto wood for manufacturing wood-cement panels.

  16. Inventory of contaminants in waste wood; Inventering av foeroreningar i returtrae

    Energy Technology Data Exchange (ETDEWEB)

    Jermer, Joeran; Ekvall, Annika; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-03-01

    Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, mainly from Germany and the Netherlands. The waste wood is contaminated by e.g. paint and wood preservatives and objects of metal, glass, plastics etc. The contaminants may cause technical problems such as deposits and corrosion as well as plugging of air openings. The present study has focussed on potential contaminants in waste wood that could cause problems of technical as well as environmental nature. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treatments also contribute to increased levels of sodium, chlorine, sulphur and nitrogen. Preservative-treated wood is the most important source of increased levels of copper, chromium and arsenic in the waste wood. Waste wood imported from Germany contains less arsenic but the same amount of copper and chromium as Swedish waste wood. The contents of mercury in German waste wood can be expected to be higher than in waste wood of Swedish origin. The fraction consisting of wood-based panels is comparably free from contaminants but as a result of the high contents of adhesives wood-based panels contribute to a higher proportion of nitrogen in waste wood than in forest residues. A great number of non-wood compounds (such as plastics and metals) do also contaminate waste wood. By careful and selective demolition and various sorting procedures most non-wood compounds will be separated from the waste wood. Waste sorting analyses carried out indicate that the waste wood contains approximately 1% non-wood compounds, mainly plastic and metal compounds, glass, dirt, concrete, bricks and gypsum. This may seem to be a small proportion, but if large amounts of waste wood are incinerated the non-wood compounds will inevitably cause

  17. Furniture wood wastes: Experimental property characterisation and burning tests

    International Nuclear Information System (INIS)

    Tatano, Fabio; Barbadoro, Luca; Mangani, Giovanna; Pretelli, Silvia; Tombari, Lucia; Mangani, Filippo

    2009-01-01

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675 to 5105 kcal kg -1 for HHV, and from 3304 to 4634 kcal kg -1 for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM 1 fraction during incomplete industrial wood burning.

  18. The use of urban wood waste as an energy resource

    Science.gov (United States)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  19. Pretreatment Characteristics of Waste Oak Wood by Ammonia Percolation

    Science.gov (United States)

    Kim, Jun-Seok; Kim, Hyunjoon; Lee, Jin-Suk; Lee, Joon-Pyo; Park, Soon-Chul

    A log of waste oak wood collected from a Korean mushroom farm has been tested for ammonia percolation pretreatment. The waste log has different physical characteristics from that of virgin oak wood. The density of the waste wood was 30% lower than that of virgin oak wood. However, there is little difference in the chemical compositions between the woods. Due to the difference in physical characteristics, the optimal pretreatment conditions were also quite different. While for waste oak the optimum temperature was determined to be 130°C, for virgin oak wood the optimum pretreatment was only achieved at 170°C. Presoaking for 12 h with ammonia solution before pretreatment was helpful to increase the delignification efficiency.

  20. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  1. State-of-the-art of the European regulation on wood wastes and wood ashes valorization. Synthesis

    International Nuclear Information System (INIS)

    Mousseau, S.

    2007-01-01

    This study has the objective of comparing the regulations of 10 European countries with that of France, in relation to the classification and recycling of wood waste, in particular lightly treated wood, as well as recycling of wood ash. The first part relating to wood waste presents a detailed analysis by country as well as a summary, on the one hand, of the various sectors for recycling waste wood and, on the other, the emission limits for their energy recovery. Generally, there is a distinction between waste covered by the incineration directive, and the others, without any particular category for lightly treated wood. However, recommendations emerge from this that are based essentially on the regulations or guidelines observed in Germany, Austria and the United Kingdom. The second part relating to wood ash also a presents a detailed analysis by country as well as a summary of the various sectors of recycling and limit values for spreading. Ash is generally considered as waste, and is recycled on a case-by case basis. Only Germany and Austria have clearly integrated wood ash in their regulatory framework. Overall this study shows the need for uniform regulation at European level, establishing environment requirements for recycling wood waste and wood ash, in order to encourage development of the use of biomass

  2. Scarcity on the market for wood wastes

    International Nuclear Information System (INIS)

    De Boer, A.

    2004-01-01

    An overview is given of the market for wood wastes in the Netherlands and how this affects the targets to use biomass. Several types of biomass must be imported, not only wood wastes, but also e.g. olive stones and cacao shells [nl

  3. Characterization and potential recycling of home building wood waste

    Science.gov (United States)

    Philip A. Araman; D.P. Hindman; M.F. Winn

    2010-01-01

    Construction waste represents a significant portion of landfill waste, estimated as 17% of the total waste stream. Wood construction waste of a 2000 square foot single family home we found to be 1500-3700 lbs of solid-sawn wood, and 1000-1800 lbs of engineered wood products (EWP). Much of the solid-sawn lumber and EWPs could be recycled into several products. Through a...

  4. Nigerian Wood Waste: A Potential Resource for Economic ...

    African Journals Online (AJOL)

    ADOWIE PERE

    methods these vast amount of wood residues are often discarded ... contradict sustainable solid waste management which entails various .... waste through the production of steam in boiler super-heater .... Wood Fuels Handbook. AIEL: Italian.

  5. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  6. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F.W.M. [EPON, Zwolle (Netherlands)

    1997-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  7. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F W.M. [EPON, Zwolle (Netherlands)

    1998-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  8. Waste-wood-derived fillers for plastics

    Science.gov (United States)

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  9. Consideration of the energetic use of waste wood versus re-use of materials

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Sas, H.

    1997-01-01

    Recycling of wood wastes to chipboard is compared with the combustion of waste wood in combination with high-efficient energy recovery. Both options show much better environmental effects than the disposal of wood wastes. The differences between the environmental effects of the first two options can be neglected. The reprocessing of wood wastes to chipboard results in a decrease of the production of gypsum board. That benefit is equal to the benefit of cocombustion of wood wastes in a coal-fired power plant, i.e. saving coal. 18 refs

  10. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  11. Wood waste in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Matos, O; Ribeiro, R [Biomass Centre for Energy - CBE, Miranda do Corvo (Portugal)

    1998-12-31

    The energy policy of the EC, as well as most of member states points to a sizeable increase of energy production based on renewable energy sources, wood, wood residues, agricultural residues, energy crops including SRF, organic sludges, solid residues, etc. Most recent goals indicate a desirable duplication of today`s percentage by 2010. The reasons for this interest, besides diversification of sources, less dependence on imported fuels, use of endogenous resources, expected decrease of fossil fuel reserves, use of available land, additional employment and income for rural communities, etc., are related to important environmental benefits namely in terms of emissions of hot house gases. Wood waste, resulting from forest operations, cleaning, cultural and final cuttings, and from wood based industries, constitute a special important resource by reason of quality and availability. In addition to this they do not require additional land use and the removal is beneficial. In the run-up to the becoming December`s 1997 `Climate Change Summit` in Kioto, there is mounting pressure on companies to plan on carbon cuts. (author) 6 refs., 1 tab.

  12. Wood waste in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Matos, O.; Ribeiro, R. [Biomass Centre for Energy - CBE, Miranda do Corvo (Portugal)

    1997-12-31

    The energy policy of the EC, as well as most of member states points to a sizeable increase of energy production based on renewable energy sources, wood, wood residues, agricultural residues, energy crops including SRF, organic sludges, solid residues, etc. Most recent goals indicate a desirable duplication of today`s percentage by 2010. The reasons for this interest, besides diversification of sources, less dependence on imported fuels, use of endogenous resources, expected decrease of fossil fuel reserves, use of available land, additional employment and income for rural communities, etc., are related to important environmental benefits namely in terms of emissions of hot house gases. Wood waste, resulting from forest operations, cleaning, cultural and final cuttings, and from wood based industries, constitute a special important resource by reason of quality and availability. In addition to this they do not require additional land use and the removal is beneficial. In the run-up to the becoming December`s 1997 `Climate Change Summit` in Kioto, there is mounting pressure on companies to plan on carbon cuts. (author) 6 refs., 1 tab.

  13. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  14. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  15. Swedish recovered wood waste: linking regulation and contamination.

    Science.gov (United States)

    Krook, J; Mårtensson, A; Eklund, M; Libiseller, C

    2008-01-01

    In Sweden, large amounts of wood waste are generated annually from construction and demolition activities, but also from other discarded products such as packaging and furniture. A large share of this waste is today recovered and used for heat production. However, previous research has found that recovered wood waste (RWW) contains hazardous substances, which has significant implications for the environmental performance of recycling. Improved sorting is often suggested as a proper strategy to decrease such implications. In this study, we aim to analyse the impacts of waste regulation on the contamination of RWW. The occurrence of industrial preservative-treated wood, which contains several hazardous substances, was used as an indicator for contamination. First the management of RWW during 1995-2004 was studied through interviews with involved actors. We then determined the occurrence of industrial preservative-treated wood in RWW for that time period for each supplier (actor). From the results, it can be concluded that a substantially less contaminated RWW today relies on extensive source separation. The good news is that some actors, despite several obstacles for such upstream efforts, have already today proved capable of achieving relatively efficient separation. In most cases, however, the existing waste regulation has not succeeded in establishing strong enough incentives for less contaminated waste in general, nor for extensive source separation in particular. One important factor for this outcome is that the current market forces encourage involved actors to practice weak quality requirements and to rely on end-of-pipe solutions, rather than put pressure for improvements on upstream actors. Another important reason is that there is a lack of communication and oversight of existing waste regulations. Without such steering mechanisms, the inherent pressure from regulations becomes neutralized.

  16. Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy

    Science.gov (United States)

    Kislukhina, Irina A.; Rybakova, Olga G.

    2018-03-01

    The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.

  17. Pollution-free combustion of waste wood in Swiss joineries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The exploitation of scrap wood for heat generation in the wood processing industry makes sense not only in the context of energy conservation but also on environmental grounds. Existing energy requirements can be provided by renewable energy sources, relieving the burden on the public waste disposal facility. The wood-fired heating plant for a joinery in Pratteln, Switzerland consumes 150 to 180 tonnes of waste wood per year, enabling approximately 80 tonnes of heating oil to be saved. The heat produced is used in a local scheme to heat the joinery and adjacent housing. A new fibrous filter system for the retention of fine particles was installed, enabling the particle concentration in the exhaust to be reduced from 292 mg/m{sup 3} to 24 mg/m{sup 3}. (UK)

  18. Roughness study on homogeneous layer panels manufactured from treated wood waste

    Directory of Open Access Journals (Sweden)

    Maria Fátima do Nascimento

    2017-02-01

    Full Text Available Natural resource exploration is growing, highlighting woods and joinery waste, wood industries and the like. This study presents homogeneous particleboard (PPH roughness characterization manufactured from treated wood waste. Normative document with values of Brazilian Technical Standard Association ABNT NBR 8404 (1984, was adopted as a reference. The results show that the manufactured PPH showed roughness class N 10, with roughness values (Ra of less than 12.5 microns.

  19. State-of-the-art of waste wood supply chain in Germany and selected European countries.

    Science.gov (United States)

    Garcia, Carlos A; Hora, Guido

    2017-12-01

    According to the statistic office of the European Union (Eurostat), Germany is the main producer of waste wood in Europe followed by France, United Kingdom, Italy and Finland. Based on the characteristics of the waste wood, it can be classified in four (4) categories: A I, A II, A III and A IV. This paper focuses in the A I waste wood since is the only category able to be used directly for both material and energy purposes without a previously pre-treatment. Currently, most of this waste wood is used for direct energy production due to the previous government legislation that promoted its use directly in incineration facilities. However, the newest Renewable Energy Act (EEG 2017) may promote the cascade-use of A I waste wood prior to be intended for energy purposes. Nonetheless, the government incentives to the energy sector is not the only bottleneck that the use of A I waste wood as raw material in the wood-based industry has to overcome. The peak availability, collection logistics (collection centers and transportation) and recycling facility location are some of the parameters that must be considered in order to design the "best" supply chain network for A I waste wood. This work presents a detailed description of the effect of the hierarchical strategic decision in the proper design of the waste wood supply chain. Additionally, the global picture of waste wood recycling in different European countries (UK, Italy and Finland) is briefly presented. Copyright © 2017. Published by Elsevier Ltd.

  20. A Study on the Effect of Plasma Treatment for Waste Wood Biocomposites

    Directory of Open Access Journals (Sweden)

    MiMi Kim

    2013-01-01

    Full Text Available The surface modification of wood powder by atmospheric pressure plasma treatment was investigated. The composites were manufactured using wood powder and polypropylene (wood powder: polypropylene = 55 wt% : 45 wt%. Atmospheric pressure plasma treatment was applied under the condition of 3 KV, 17±1 KHz, 2 g/min. Helium was used as the carrier gas and hexamethyl-disiloxane (HMDSO as the monomer to modify the surface property of the waste wood biocomposites by plasma polymerization. The tensile strengths of untreated waste wood powder (W3 and single species wood powder (S3 were about 18.5 MPa and 21.5 MPa while those of plasma treated waste wood powder (PW3 and plasma treated single species wood powder (PS3 were about 21.2 MPa and 23.4 MPa, respectively. Tensile strengths of W3 and S3 were improved by 14.6% and 8.8%, respectively. From the analyses of mechanical properties and morphology, we conclude that the interfacial bonding of polypropylene and wood powder can be improved by atmospheric pressure plasma treatment.

  1. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Detoxification of wood preserving waste under ambient, enhanced and chemical pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.S.; Brown, K.W.; Dale, B.E.; Donnelly, K.C.; He, L.Y.; Markiewicz, K.V. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Detoxification of pentachlorophenol-containing wood preserving waste was monitored under ambient, enhanced and chemical pretreatment conditions for genotoxicity and parent compound removal. Samples were collected throughout the treatment periods and sequentially extracted with dichloromethane and methanol with the Tecator Soxtec apparatus. The organic extracts were analyzed on GC/ECD and GC/MS. The extract mutagenic and genotoxic potentials were evaluated with and without metabolic activation with the Salmonella Microsomal and E. coli Prophage Induction assays. The Salmonella mutagenic responses of extracts from Weswood soil amended with wood preserving waste and treated under ambient conditions were 2.0, 34.6 and 2.4 times greater than the solvent control on days 0, 540 and 1,200 respectively. Organic extracts of soil amended with wood preserving waste and treated under enhanced conditions in a solid-phase rotating drum bioreactor had mutagenic potentials of 3.4, 4.9 and 3.5 on days 0, 14 and 30, respectively. Extracts from wood preserving waste sludge treated with potassium polyethylene glycol were shown to have mutagenic potentials of 2.8, 6.1 and 3.8 at 0, 10 and 30 minutes. The results indicate that the initial products of the wood preserving waste detoxification under all treatment conditions appear to have greater genotoxic potentials than the starting material. The results also suggest that a more rapid detoxification occurs under enhanced and chemical pretreatment conditions.

  3. North American Wood Waste Forum: Summary of Group Feedback, 2-3, 2012

    Science.gov (United States)

    Bob Falk

    2012-01-01

    This report summarizes the feedback and recommendations of the North American Wood Recovery Group. This report summarizes the barriers and opportunities in wood recovery, reuse, and recycling as identified by this group of stakeholders from the wood industry, waste industry, and relevant government agencies.

  4. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  5. Electrochemical removal of CU, CR and AS from CCA-treated waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)]|[Dept. de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Univ. Nova de Lisboa, Caparica (Portugal)

    2001-07-01

    CCA-treated waste wood poses a potential environmental problem due to the content of copper, chromium and arsenic. This paper presents the results obtained by electrodialytic remediation of CCA-treated waste wood. It is found that more than 90% Cu, and approximately 85% Cr and As was removed from the wood during the remediation. Thereby the concentration of copper in the wood is reduced from app. 426 ppm to app. 25 ppm, chromium is reduced from app. 837 ppm to app. 135 ppm and the arsenic content decreases from app. 589 ppm to app. 151 ppm. After remediation the removed metals are collected into liquids. The use of ion exchange membranes to separate the wood from the electrolytes result in a distribution of the metals after remediation that makes the collection of the metals easier, and reuse of the metals, for e.g. new CCA, may be possible. (orig.)

  6. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, Lucie [INRS-ETE (Canada); Blais, Jean-François, E-mail: blaisjf@ete.inrs.ca [INRS-ETE (Canada); Mercier, Guy [INRS-ETE (Canada); Cooper, Paul [University of Toronto (Canada); Gastonguay, Louis [IREQ (Canada); Morris, Paul [FPInnovations (Canada); Janin, Amélie; Reynier, Nicolas [INRS-ETE (Canada)

    2013-10-15

    Highlights: • A leaching process was studied for metals removal from CCA-treated wood wastes. • This decontamination process was studied at pilot scale (130-L reactor). • Removals up to 98% of As, 88% of Cr, and 96% of Cu were obtained from wood wastes. • The produced leachates can be treated by chemical precipitation. -- Abstract: The disposal of metal-bearing treated wood wastes is becoming an environmental challenge. An efficient recycling process based on sulfuric acid leaching has been developed to remove metals from copper-based treated wood chips (0 < x < 12 mm). The present study explored the performance and the robustness of this technology in removing metals from copper-based treated wood wastes at a pilot plant scale (130-L reactor tank). After 3× 2 h leaching steps followed by 3× 7 min rinsing steps, up to 97.5% of As, 87.9% of Cr, and 96.1% of Cu were removed from CCA-treated wood wastes with different initial metal loading (>7.3 kg m{sup −3}) and more than 94.5% of Cu was removed from ACQ-, CA- and MCQ-treated wood. The treatment of effluents by precipitation–coagulation was highly efficient; allowing removals more than 93% for the As, Cr, and Cu contained in the effluent. The economic analysis included operating costs, indirect costs and revenues related to remediated wood sales. The economic analysis concluded that CCA-treated wood wastes remediation can lead to a benefit of 53.7 US$ t{sup −1} or a cost of 35.5 US$ t{sup −1} and that ACQ-, CA- and MCQ-treated wood wastes recycling led to benefits ranging from 9.3 to 21.2 US$ t{sup −1}.

  7. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  8. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.

    Science.gov (United States)

    Hasan, A Rasem; Solo-Gabriele, Helena; Townsend, Timothy

    2011-04-01

    Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  10. Life-cycle assessment for power generation from wood fuels and wood wastes; Oekobilanz fuer die Stromerzeugung aus Holzbrennstoffen und Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Frischknecht, R.; Faist, M.

    2002-07-01

    This reworked final report for the Swiss Federal Office of Energy (SFOE) presents the results of life-cycle assessments made of four wood-fired systems with the goal of analysing the possibilities of labelling such plants with the Swiss eco-label 'Naturemade Star'. In addition to these case studies, three standard technologies were modelled, whereby in two of the models different waste gas filtering methods were considered. In the third model, electricity is produced from waste wood and features an advanced waste gas treatment system. The report describes the various plants and draws up eco-balances for them. Pollution emissions, such as dust, oxides of nitrogen and sulphur dioxide, are discussed and plant operation and assessment are looked at. Certification to 'Naturemade Star' standards is checked out for the case-study plant examples and for the standard plant proposed. A further eco-balance is drawn up for wood-fired power generation with impact allocated to heat and power generation based on exergy content. An appendix provides details on the physical parameters of wood and on the methods used for impact assessment.

  11. Drying wood waste with a pulse combustion dryer

    Energy Technology Data Exchange (ETDEWEB)

    Buchkowski, A.G. [Spectrum Engineering Corp., Ltd., Peterborough, Ontario (Canada); Kitchen, J.A. [John A. Kitchen, Ltd., Hastings, Ontario (Canada)

    1993-12-31

    There is a vast amount of wood waste available to be used as an alternate fuel if its moisture could be reduced efficiently. Tests have been conducted to assess an industrial dryer using pulse combustion as a heating source for drying wood waste; specifically sawdust and pulverized wet hog fuel. Pulse combustion offers the advantage of high heat transfer, efficient combustion, and low NO{sub x} emissions. The material is injected into the exhaust gases in the tailpipe of the combustor which uses natural gas or propane as a fuel. The turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The materials is further dried in a rotary drum. The material has been dried without scorching or burning in tests where the inlet moisture content has been as high as 60% on a wet basis. The outlet moisture contents achieved have typically been 10%. Analysis of the test data and cost estimates of the equipment indicate that the pulse combustion drying system is at least comparable to existing systems in terms of operating costs, and offers very significant savings in capital costs. Testing with various other materials such as wood pulp, sludges and peat is continuing to further assess the equipment`s performance.

  12. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  13. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  14. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications

  15. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the...

  16. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  17. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  18. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for...

  19. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  20. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What...

  1. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Science.gov (United States)

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain...

  2. Scarcity on the market for wood wastes; Krapte op de markt voor afvalhout

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A. (ed.)

    2004-05-01

    An overview is given of the market for wood wastes in the Netherlands and how this affects the targets to use biomass. Several types of biomass must be imported, not only wood wastes, but also e.g. olive stones and cacao shells. [Dutch] Er dreigt in Nederland een krapte te ontstaan op de markt voor afvalhout, want de vraag vanuit de buitenlandse vezelplaatindustrie blijft constant, terwijl er vanuit de energiesector een groeiende vraag is. Om de beleidsdoelstellingen voor biomassa te kunnen halen zal er biomassa geimporteerd moeten worden. Daarbij kan het gaan om resthout of afvalhout, maar ook om andere biomassastromen zoals olijfpitten en cacaodoppen.

  3. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  4. CORROSION AND CHEMICAL WASTE IN SAWBLADES STEEL USED IN WOOD

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2002-01-01

    Full Text Available The objective this work was to evaluate the chemical waste provoked by the wood on the sheets of steel used in the making of the mountains and cut tools. It was certain the correlationbetween the chemical waste and the extractive soluble in cold water, hot water and in the sequencetoluene and ethanol content. Two types of steel and twenty-seven species different from wood wereused. The corrosive agent, constituted of 50 g of fresh sawdust (moist mixed to 50 ml of distilledwater, it was prepared and placed inside of the plastic box, hermetically closed, on the samples ofsteel, which were totally immersed. The box was placed in a water bath pre-heated to 75°C, that themedium temperature of reaction is considered, that affects the sheet of the sawblade in operation. Thisgroup was operated to 80 rotations per minute (rpm. The time of reaction was of four hours. Afterthat time the corrosive agent was discarded and the samples were washed, dried and weighed. At theend, each sample was processed by a total period of forty hours. The chemical waste was evaluated by the weight difference suffered from beginning at the end of the experiment. For theresults it was observed that the Eucalyptus tradryphloia and the Eucalyptus phaeotricha the speciesthat provoked were, respectively, the largest and smaller chemical waste for the two types of steelappraised. Great variation exists in the chemical waste due to the effect of the species. The corrosionand chemical waste are especially related with the quality of the material solved in ethanol. The 1070steel were more attached than the 6170 steel.

  5. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    Jackson, P.M.; Jones, H.H.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm -3 ) and THC (34mgm -3 ) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO 2 and O 2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  6. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    Science.gov (United States)

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sources of heavy metal contamination in Swedish wood waste used for combustion

    International Nuclear Information System (INIS)

    Krook, J.; Martensson, A.; Eklund, M.

    2006-01-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW

  8. Chemi-thermomechanical pulping of para rubber waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T.; Hosokawa, J.; Kobayashi, T.; Kobayashi, Y.

    1981-01-01

    The addition of NaOH to Na/sub 2/SO/sub 3/-treated waste wood chips (Hevea brasiliensis) increased long fiber fraction, Klason lignin content and bulk density, improved breaking length and tear factor, and decreased energy consumption in refining and brightness of resulting chemithermomechanical pulp. Lowering in brightness by alkali treatment was recovered by H/sub 2/O/sub 2/ bleaching, and bleaching with 8% H/sub 2/O/sub 2/ on pulp gave pulp with 61.3% brightness.

  9. Leaching of CCA-treated wood: implications for waste disposal

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini

    2004-01-01

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality

  10. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  11. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  12. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  13. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    The intent of this article is to demonstrate how wood waste called sawdust or wood flour can be transformed by plastic moulding machine into items of economic value. Wood flour is wood reduced to very fine particle form. It can be waste product from saw mills, wood working plants or produced from selected dry wood by ...

  14. Increasing Effort in Using the Waste of Mangrove Wood for Natural Dyes

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Sri-Sunaryati; G, Isminingsih; Santosa; Mirtha

    2000-01-01

    The general function of mangrove forest is mainly for protecting thesustain ability of sea shore against the wave toss, however, the fishermenhas often used the mangrove wood to produce their ships, building and otherthings. Among others, this wood also contains of chromophore, tannine,furfurol and phtalic that has the possibility to serve as textile dyes,however its fixation ability to silk fiber in this dyes does not have strongfixation ability to silk fiber. In other to improve its color fastness it wasnecessary to do after treatment with mordant. In this study the waste fromthe mangrove in the form of shredded wood, wood bark or twig and small branchwere used as the raw material of the natural dyes. This materials werechopped as small as possible (into saw form) and being extracted in order toobtain the dyes as much as possible. As the result of this study wasaddressed to the small and medium scale industries, the extraction processwas carried out in a simple way using water as medium with various ratios inthe respected order 1:10; 1:20; 1:30; 1:40; and 1 :50. To obtain theextracted yields, the mangrove waste was extracted until it reached the ratioof 1/5 to the medium, the extracted sample was taken out to be extractedagain in fresh water as medium in the same ratio variation. This process wasrepeated until no more wood color to be extracted (± 9 repeats). Theextracted liquid was then put into evaporation, drying and grinded into dyespowder. The highest extracted yields was obtained by the ratio to medium(1:40 to 1:50) with 9.40% -9.48% extracted yields. The following experimentwas dyeing process to silk fabrics by using dyes powder or dyes liquidextracted from medium with ratio 1:40 mixture from first extraction up toforth extraction. The dyeing process was carried out without mordanting,pre-mordanting and post-mordanting, by means of Tawas (Al 2 K 2 (SO 4 ) 3 ) orTunjung (FeSO 4 . 7 H 2 O) as mordanting material. The dyed silk fabrics werethen tested for

  15. LEATHER WASTE VALORISATION THROUGH MATERIAL INNOVATION: SOME PROPERTIES OF LEATHER WOOD FIBREBOARD

    Directory of Open Access Journals (Sweden)

    Axel M. RINDLER

    2015-12-01

    Full Text Available Due to the ever-increasing scarcity of resources and raw materials in the wood panels industry, it is imperative to look for suitable alternatives to the established resources. Therefore a combination of the traditionally used and newly explored sources may reveal highly innovative ways. The objective of this study is to provide an insight into the behavior of the material and possible new applications of those fiber/particle wood and waste leather composites. For this reason exclusively fibers of spruce were used for the trials. Wet white (WW leather particles and wet blue (WB leather particles were mixed with the wooden materials for the production of high density fibreboards. Besides the mechanical properties such as the internal bond (IB the bending strength (MOR and modulus of elasticity (MOE was analyzed. Further physical property as thickness swelling after 24h watering was investigated. To analyze how the density influences the behavior under thermal conditions, fiberboards with the densities 500, 700 and 900 kg/m³ were tested. The results of the material properties were influenced by the leather content of the panels. The results for the UF-bonded HDF boards show enhancement of the transverse IB with increasing wet blue leather content, whereas the other mechanical properties decline meanwhile. The thickness swelling showed higher values compared to the wood fibreboard. The results of this study underline the usefulness of integrating leather shavings to HDF and give an overview of their influence in wood fiber materials. The combination of the natural resource wood fiber and the leather waste products (Wet Blue and Wet White gives a very interesting new material, its mechanical properties allow a variety of possible application in future applications.

  16. Recycling of wood products. Final report of the preliminary study project partly financed by the Finnish Wood Research Oy; Puutuotteiden kierraetys. Finnish Wood Research Oy:n osarahoittaman esiselvityshankkeen loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Pirhonen, I.; Heraejaervi, H.; Saukkola, P.; Raety, T.; Verkasalo, E., Email: henrik.herajarvi@metla.fi

    2011-07-01

    The objective of this preliminary study was to clarify the present state of recycling of wood in Finland and Europe. In the work the control measures of recycling were examined. In Finland there will be a total amount of 850 000 tons of waste wood per year. Of this amount 670 000 tons is from construction and demolishing of buildings. Burning the wood to energy is technically and economically the most reasonable use of waste wood in Finland and in several other European countries where there is a long heating season. A lot of work has been done to find new ways of utilization. The objective of the European Union to increase the use of renewable natural resources in the energy production creates an additional demand to all kinds of wood, including waste wood. The waste legislation of Finland and EU is directing to recycling, not restricting it. Furthermore, the systems to try to create markets for products containing recycled materials are under development. In the future it is expected that the legislation is tightening and the burning of waste wood is no longer calculated as acceptable recycling. Other ways to utilize wood waste should then already be developed. Furthermore, the development and introduction of new recycling methods are of important significance also when marketing wood and wood products. The recycling should be taken into consideration already at the planning stage of the building

  17. The economics of particulate pollution abatement technologies for wood-waste-fired combustors

    International Nuclear Information System (INIS)

    Ismail, A.; Stevenson, D.H.

    1991-07-01

    A study was conducted to quantify the impact of new and improved particulate abatement equipment (PAE) on the economics of new and existing wood waste combustion systems. The operating characteristics of current PAE technology are summarized and the basis for cost estimates is established. The technologies include multicyclone collectors, wet scrubbers, fabric filter baghouses, electrostatic precipitators, and new versus retrofit installations. Capital costs were determined for 4 generic types of PAE and 4 cases for each PAE type according to GJ/h in steam enthalpy. Cost information was developed for wood waste energy systems with and without PAE. In the cost analysis, a hypothetical steam selling price is determined which will give a 25% return on pretax cash flow over a 20-year period. Additional costs of the PAE are applied to the energy system cash flows and the impact on average annual return is calculated. Results indicate reductions in internal rate of return of 3-6% for most PAE systems. 54 refs., 2 figs., 12 tabs

  18. Complete knock down (CKD) house made of wood from waste biomass and plastic for disaster struck areas

    International Nuclear Information System (INIS)

    Foong, Winson

    2010-01-01

    Despite global efforts and all good intentions to save our forests and eco systems, Mother Earth has witnessed the destruction of some 160,000 square kilometers of forest cover every year from the 1960s right up to the 1990s. The insatiable appetite and unrelenting demand for this fast diminishing commodity by both Mankind and Industry have created vast demand and supply imbalances and with pressures mounting even in the new millennium with global wood consumption reaching 3.8 billion cubic metres by 2010. Thus the quest for alternate materials continues. However, to be successful as a viable alternate to the traditional wood industry, the intending material must be able to build and expand on the current properties and advantages of wood. It should ideally be designed and engineered to yield performance properties superior to that of traditional wood. Fibersit is a high performance fiber composite derived from a revolutionary green technology. The proprietary Fibersit technology involves a method of refining, blending and compounding natural fibers from cellulose waste streams to form a high strength fibre composite material in a polymer matrix. The designated waste or base raw materials used in this instance are those of waste thermoplastics and various categories of cellulose waste including wood. Fibersit has all the structural qualities of wood, handles like wood but is yet stronger and more durable than wood. It can be nailed, screwed, drilled, sawn, milled, processed and finished just like wood. This extended product performance offers unbeatable value for money and broad, flexible on site options. In modern times, many natural disasters have occurred near or in urban areas destroying vast areas of houses and buildings. The need to rebuild society is essential and needs to be carried out in a sustainable manner. This cost often goes into billions and is needed very quickly in order to provide the bare minimum to the victims. In many instances, we have seen

  19. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  20. LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE

    Science.gov (United States)

    Soils contaminated with wood preserving wastes, including pentachlo-rophenol (PCP) and creosote, are treated at field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). The concentration of selected indicator compounds of treatment ...

  1. Preparation of TiO2 photocatalyst with the matrix of palm wood ( Arenga pinnata ) waste in the photodegradation of batik wastewater

    International Nuclear Information System (INIS)

    Kresnadipayana, Dian; Wahyuni, Endang Tri; Santosa, Sri Juari; Mudasir

    2017-01-01

    The study aimed to the preparation of TiO 2 photocatalyst with the matrix from palm wood waste whose has lignin and cellulose content. TiO 2 photocatalyst with the matrix from the wastewater of palm wood waste (TiO 2 /pww) was used as photocatalyst in photodegradation of batik wastewater. TiO 2 solid was dissolved in ethanol and aquadest, added with the powder of wood palm waste and stirred with a magnetic stirrer for 16 hours. Then separation was carried out using buchner and filtrate and residue were obtained. The filtrate was disposed and the residue was calcined with various temperatures for 3 hours. The temperatures in this research were 100 °C (TiO 2 /pww-100); 200°C (TiO 2 /pww-200); 300°C (TiO 2 /pww-300). Analysis and characterization of TiO 2 /wwp were conducted using X-ray diffraction (XRD) and spectrophotometer Fourier Transform Infra Red (FTIR) methods. Photocalalytic TiO 2 /wwp use the batch system in a reactor with UV light 40 watts, 220 volts and length wave 360 nm the plate magnetic stirrer. Liquid waste batik adds TiO 2 /wwp with time variation. At XRD analysis showed that the preparation of TiO 2 /pww could be done on the heating TiO 2 /pww temperature of 100°C and 200°C. At the temperature of 300°C, it was indicated that the lignocelluloses in palm wood waste were burned, meaning that few lignocelluloses remained. The result of FTIR analysis showed clearly that at the temperature of 300°C, a few spectrum of lignocelluloses remained in palm wood waste, while at a temperature of 100°C and 200°C, spectra of lignocelluloses of palm wood waste remained. The result of photocatalysis test indicated that TiO 2 /pww could reduce 40%, 72%, 81% and 64% COD for TiO 2 (control), TiO 2 /pww-100, TiO 2 /pww-200 and TiO 2 /pww-300, respectively. (paper)

  2. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  3. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  4. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    International Nuclear Information System (INIS)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-01-01

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability

  5. Regulatory Promotion of Waste Wood Reused as an Energy Source and the Environmental Concerns about Ash Residue in the Industrial Sector of Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2012-11-01

    Full Text Available The objective of this paper was to provide a preliminary analysis of the utilization of energy derived from waste wood in Taiwan, a highly industrialized country with a high dependence (over 99% on imported energy. The discussion focuses on the status of waste wood generation and its management over the past decade. Findings show that the quantities of biomass waste collected for reuse purposes in the industrial sectors of Taiwan has exhibited an increasing trend, from about 4000 tons in 2001 to over 52,000 tons in 2010. Although waste wood can be reused as a fuel and raw material for a variety of applications based on regulatory promotion, the most commonly used end use is to directly utilize it as an auxiliary fuel in industrial utilities (e.g., boilers, heaters and furnaces for the purpose of co-firing with coal/fuel oil. The most progressive measure for promoting biomass-to-power is to introduce the feed-in tariff (FIT mechanism according to the Renewable Energy Development Act passed in June 2009. The financial support for biomass power generation has been increasing over the years from 0.070 US$/kWh in 2010 to 0.094 US$/kWh in 2012. On the other hand, the environmental regulations in Taiwan regarding the hazard identification of wood-combusted ash (especially in filter fly-ash and its options for disposal and utilization are further discussed in the paper, suggesting that waste wood impregnated with chromated copper arsenate (CCA and other copper-based preservatives should be excluded from the wood-to-energy system. Finally, some recommendations for promoting wood-to-energy in the near future of Taiwan are addressed.

  6. Second-generation bioethanol from industrial wood waste of South American species

    Directory of Open Access Journals (Sweden)

    María E. Vallejos

    2017-09-01

    Full Text Available There is a global interest in replacing fossil fuels with renewable sources of energy. The present review evaluates the significance of South-American wood industrial wastes for bioethanol production. Four countries have been chosen for this review, i.e., Argentina, Brazil, Chile, and Uruguay, based on their current or potential forestry industry. It should be noted that although Brazil has a global bioethanol market share of 25%, its production is mainly first-generation bioethanol from sugarcane. The situation in the other countries is even worse, in spite of the fact that they have regulatory frameworks in place already allowing the substitution of a percentage of gasoline by ethanol. Pines and eucalyptus are the usually forested plants in these countries, and their industrial wastes, as chips and sawdust, could serve as promising raw materials to produce second-generation bioethanol in the context of a forest biorefinery. The process to convert woody biomass involves three stages: pretreatment, enzymatic saccharification, and fermentation. The operational conditions of the pretreatment method used are generally defined according to the physical and chemical characteristics of the raw materials and subsequently determine the characteristics of the treated substrates. This article also reviews and discusses the available pretreatment technologies for eucalyptus and pines applicable to South-American industrial wood wastes, their enzymatic hydrolysis yields, and the feasibility of implementing such processes in the mentioned countries in the frame of a biorefinery.

  7. Biotechnology for in vitro growing of edible and medicinal mushrooms on wood wastes

    Directory of Open Access Journals (Sweden)

    Marian Petre

    2009-11-01

    Full Text Available The aim of this work was focused on finding out the best way to convert the wood wastes into useful food supplements, such as mushroom fruit bodies, by using them as growing sources for the edible and medicinal mushrooms. According to this purpose, three fungal species from Basidiomycetes, namely Ganoderma lucidum (Curt.:Fr. P. Karst, Lentinus edodes (Berkeley Pegler and Pleurotus ostreatus (Jacquin ex Fries Kummer were tested to determine their biological potential to grow on substrates made of wood wastes (sawdusts as well as shavings which could be used in this way as main ingredients for preparation of natural culture composts.The experiments were achieved by in vitro growing of all these fungal species in special rooms, where the main culture parameters were kept at optimal levels in order to get the highest production of mushroom fruit bodies. The effects of culture compost composition (carbon, nitrogen and mineral sources as well as other physical and chemical factors (such as: temperature, inoculum amount, pH level and incubation time, etc. on mycelial net formation and especially on fruit body induction, were investigated. From all these fungal species tested in our experiments, P. ostreatus was registered as the fastest mushroom culture, then L. edodes and finally, G. lucidum asthe longest mushroom culture. During the experiments, different logs of the same species were used as control samples for each culture compost variants. Applying such biotechnology, the environmental problems generated by the plant wastes accumulation in wood industry could be solved only by using biological means for theirvalorising, simultaneously with food supplements producing having high nutritive values as well as healing effects by increasing the consumers` health.

  8. Biotechnology for in vitro growing of edible and medicinal mushrooms on wood wastes

    Directory of Open Access Journals (Sweden)

    Marian Petre

    2009-12-01

    Full Text Available The aim of this work was focused on finding out the best way to convert the wood wastes into useful food supplements, such as mushroom fruit bodies, by using them as growing sources for the edible and medicinal mushrooms. According to this purpose, three fungal species from Basidiomycetes, namely Ganoderma lucidum (Curt.:Fr. P. Karst, Lentinus edodes (Berkeley Pegler and Pleurotus ostreatus (Jacquin ex Fries Kummer were tested to determine their biological potential to grow on substrates made of wood wastes (sawdusts as well as shavings which could be used in this way as main ingredients for preparation of natural culture composts. The experiments were achieved by in vitro growing of all these fungal species in special rooms, where the main culture parameters were kept at optimal levels in order to get the highest production of mushroom fruit bodies. The effects of culture compost composition (carbon, nitrogen and mineral sources as well as other physical and chemical factors (such as: temperature, inoculum amount, pH level and incubation time, etc. on mycelial net formation and especially on fruit body induction, were investigated. From all these fungal species tested in our experiments, P. ostreatus was registered as the fastest mushroom culture, then L. edodes and finally, G. lucidum as the longest mushroom culture. During the experiments, different logs of the same species were used as control samples for each culture compost variants. Applying such biotechnology, the environmental problems generated by the plant wastes accumulation in wood industry could be solved only by using biological means for their valorising, simultaneously with food supplements producing having high nutritive values as well as healing effects by increasing the consumers` health.

  9. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  10. Design and testing of wood containers for radioactive waste

    International Nuclear Information System (INIS)

    Roberts, R.S.; Barry, P.E.

    1981-01-01

    A wood container for shipping and storing radioactive waste was designed to eliminate the problems caused by the weight, cost, and shape of the steel containers previously used. Tests specified by federal regulations (compression, free-drop, penetration, and vibration) were conducted on two of the containers, one loaded to 2500 lb and one loaded to 5000 lb. The 5000-lb container failed the free-drop test, but the 2500-lb container easily passed the tests and therefore qualifies as a Type A container. Its simplicity of design, low weight, and ease in handling have proved to be time-saving and cost-effective

  11. Climate protection potential in the waste management sector. Examples: municipal waste and waste wood; Klimaschutzpotenziale der Abfallwirtschaft. Am Beispiel von Siedlungsabfaellen und Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Dehoust, Guenter; Schueler, Doris [Oeko-Institut e.V. Institut fuer angewandte Oekologie, Darmstadt (Germany); Vogt, Regine; Giegrich, Juergen [IFEU Institut fuer Energie- und Umweltforschung Heidelberg GmbH (Germany)

    2010-03-15

    In the National Inventory Reports only the direct greenhouse gas emissions of the waste management sector are taken into account. The overall efforts of the waste management sector in terms of reducing greenhouse gas emissions in accordance with the Kyoto Protocol are not, therefore, represented. In particular the efforts related to the separate collection of recyclables from waste and the re-use or energetic use of such recyclables or residue are shown as the savings of other sectors of the production industry and energy industry. This research project has used the methodology of eco-balancing to examine the efforts of the municipal waste management sector - including the use of waste wood - in Germany, the 27 Member States as well as in Turkey, Tunisia and Mexico. The balances referred to the actual balance in 2006 and different optimisation scenarios for 2020. The expenditure resulting from collection, transport, treatment and recycling of waste after it has become available was compared to the savings arising from the secondary products and energy realised from waste. Since the landfilling of untreated municipal waste has been discontinued in Germany, the key potentials of the country have already been fully tapped. Indeed, the contribution of municipal waste management to the reduction of total greenhouse gas emissions amounted to approx. 18 million t CO{sub 2}-eq per annum in 2006 in Germany. In particular, these emission reductions have been brought about by improving treatment techniques (emission reductions in the biological processes and greater energy efficiency in the thermal processes) and by increases in the separate collection and use of recyclable materials stemming from municipal waste and waste wood. If both strategies are combined, there is still an optimisation potential for reducing greenhouse gas emissions of 10 million t CO{sub 2}-eq per annum. Compared to 1990 data taken from previous assessments, the overall reduction amounts to approx. 56

  12. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  13. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  14. The classification of wood chips parameters by crushing of waste cane from different varieties of grapevine

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2008-01-01

    Full Text Available This work deales with exploitatives parameters monitoring of wood shreder PEZZOLATO 110 Mb by crushing of waste cane of six varieties. The results shows that the wood shreders efficiency, fuel consumption and the wood chips elements size can be influenced by varieties characters of cane. The va­lued machines efficiency was 230–470 kg . h−1 by average volume 40.70 % water in wood. The hig­hest values by cane crushing had the variety Saint Laurent (0.47 t . h−1 and the lowest variety ­Blauer Portugieser (0.23 t . h−1. The specific consumption of petrol Natural 95 was 4.52.10−3–8.12.10−3 l . kg−1. The average middle elements lenght was 6.64 mm by crushed varieties.

  15. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  16. Corrosivity of hot flue gases in the fluidized bed combustion of recovered waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Enestam, S.

    2011-07-01

    In recent years, recovered waste wood has become a fuel of interest due to its green energy benefits and low price compared to virgin wood-based fuels. However, waste wood is often contaminated with paint, plastic, and metal components, producing concentrations of heavy metals such as zinc and lead, chlorine, sodium, and sometimes sulphur that are elevated relative to those in virgin wood. In several cases, boilers burning waste wood have experienced increased fouling and corrosion of furnace walls, superheaters, and economizers, problems associated with chlorine, zinc, lead, and alkali metals in the deposits. The location of the deposits and the corrosion as well as the composition of the deposits vary with the fuel composition, boiler design, combustion parameters, flue gas temperature, and material temperature. Experience gained from the operation of biofuel and waste boilers shows that corrosion damage can be reduced, or even avoided, by the selection of optimum materials or for heat exchanger surfaces, by the use of fuel mixtures or additives that decrease the corrosivity of the combustion environment, by the placement of superheaters in a less corrosive environment, and by adjusting the steam parameters. Finding the right solutions for boilers burning RWW requires a thorough understanding of the whole process, including the fuel fed into the boiler, the combustion atmosphere, the corrosivity of the flue gas and the deposits, and the corrosion resistance of different boiler materials under the prevailing conditions. The objective of this work was to shed more light on the combustion environment in bubbling fluidized bed boilers burning RWW and thus increase knowledge about the corrosivity of zinc- and lead-rich deposits formed during the combustion of RWW, with the final goal of developing a corrosion prediction tool for use in the design of boilers for RWW combustion. With such a tool, it would be possible to optimize boiler design and material selection with

  17. Morphology, composition, and mixing state of primary particles from combustion sources ? crop residue, wood, and solid waste

    OpenAIRE

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A. P.; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye

    2017-01-01

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combusti...

  18. Inventories of woody residues and solid wood waste in the United States, 2002

    Science.gov (United States)

    David B. McKeever

    2004-01-01

    Large amounts of woody residues and wood waste are generated annually in the United States. In 2002, an estimated 240 million metric tons was generated during the extraction of timber from the Nation’s forests, from forestry cultural operations, in the conversion of forest land to nonforest uses, in the initial processing of roundwood timber into usable products, in...

  19. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  20. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  1. Woody residues and solid waste wood available for recovery in the United States, 2002

    Science.gov (United States)

    David B. McKeever; Robert H. Falk

    2004-01-01

    Large amounts of woody residues and solid wood waste are generated annually in the United States from the extraction of timber from forests, from forestry cultural operations, in the conversion of forest land to nonforest uses, in the initial processing of roundwood timber into usable products, in the construction and demolition of buildings and structures, and in the...

  2. Recognized and new problems of power generation from waste wood according to the new EEG of 2004; Alte und neue Probleme der Altholzverstromung nach der EEG-Novelle 2004

    Energy Technology Data Exchange (ETDEWEB)

    Anger, C. [Avocado Rechtsanwaelte, Koeln (Germany)

    2005-10-01

    Power generation from waste wood according to the EEG (Renewables Act), even in the modified version of 2004, raises complex legal problems under EU law. The contribution discusses these problems and presents important information on the legal boundary conditions of power generation from waste wood. (orig.)

  3. Wood chemistry symposium: from muka to lignin

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, M.

    1979-01-01

    The Canadian Wood Chemistry Symposium held during September, 1979, is reviewed. The chemical and physical explanations of delignification were debated. Problems of mechanical pulping include insufficient brightness, yellowing, and low strength relative to energy consumption. A session on chemicals, energy, and food from wood began with criteria for a viable project, which included adequate return on investment, modest capital investment requirements, identified pre-existing markets, and favorable thermodynamic balances. The pulp and paper industry should improve its methods of using bark and wood waste in direct combustion (by pre-drying wastes and improving furnace efficiency) rather than supporting oil-from-wood projects, since using a waste for fuel will free fossil fuels for uses in synthetic fibers and thermoplastics. In the area of food, there are modest successes with cellulose fiber additives to bread and snack food and single cell protein (which, though made from wastes, cannot compete with soy protein). However, making monomeric sugars from wood polysaccharides is not an efficient process, and muka, animal feed supplement from foliage, is successful only in Russia. In Canada it cannot compete with agricultural products. Alpha cellulose is a major wood chemical product. Promising uses include cellulose derived thermoplastics and lignosulphonates for secondary oil recovery. Instead of breaking wood polysaccharides and lignin into monomers and then repolymerizing them, it is possible to use the pre-built polymers; such an approach is illustrated by use of lignin in polyurethane foams, adhesives, and coatings.

  4. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Directory of Open Access Journals (Sweden)

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  6. Technologies for the commercial energetic utilisation of waste wood and used wood; Technologien zur energetischen Nutzung von Holzabfaellen und Gebrauchsholz im gewerblichen Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, R.

    1998-12-31

    Due to the frequent contamination of wood with wood preservatives, coatings, adhesives, paints and other non-wood materials the conversion of production residues and various types of used wood to energy appears to be fraught with problems. However, extensive studies conducted during the past years have shown that most problems regarding combustion residues and emissions have been overestimated. Thanks to new technologies it is now possible to avoid or at least reduce the formation of pollutants during combustion of even complexly contaminated waste wood. Environmentally acceptable combustion of wood presupposes complete combustion, effective dedusting, and primary measures for nitrogen oxide control. Depending on the type of feedstock and the relevant emission limit values one may optionally include secondary nitric oxides removal measures and control techniques for partially volatile heavy metals and halocarbons. Moreover, firing plants must be so conditioned as to keep the new synthesis of dioxins at a low level. [Deutsch] Die energetische Verwertung von Produktionsabfaellen und Gebrauchtholzsortimenten scheint wegen der haeufig vorhandenen Belastung der Hoelzer mit Holzschutzmitteln, Oberflaechenbeschichtungen, Klebstoffen, Farbanstrichen und andere holzfremden Bestandteilen schwierig zu sein. Tatsaechlich sind - wie umfangreiche Untersuchungen der letzten Jahre gezeigt haben - die meisten Probleme in Hinblick auf Ausbrand und Emissionen ueberschaetzt worden. Durch Weiterentwicklung von Anlagen- und Regelungstechnik ist es heute moeglich, die Schadstoffbildung bei der Verbrennung auch komplex belasteter Holzabfaelle zu vermeiden oder zu vermindern. Voraussetzungen einer umweltvertraeglichen Verbrennung von Holz sind - ein guter Ausbrand, - eine effektive Entstaubung, - und primaere Massnahmen der Stickstoffoxidminderung. Optional kommen je nach Brennstoff und Emissionsgrenzwert noch sekundaere Entstickungsmassnahmen und Minderungstechniken fuer partiell

  7. Wood wastes and residues generated along the Colorado Front Range as a potential fuel source

    Science.gov (United States)

    Julie E. Ward; Kurt H. Mackes; Dennis L. Lynch

    2004-01-01

    Throughout the United States there is interest in utilizing renewable fuel sources as an alternative to coal and nat-ural gas. This project was initiated to determine the availability of wood wastes and residues for use as fuel in ce-ment kilns and power plants located along the Colorado Front Range. Research was conducted through literature searches, phone surveys,...

  8. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the

  9. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  10. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  11. Wood fuel and the environment

    International Nuclear Information System (INIS)

    Foster, C.A.

    1992-01-01

    The purpose of this paper is to try and demonstrate the role that the use of Wood as a Fuel can play in our environment. The term ''Wood Fuel'', for the purposes of these proceedings, refers to the use of wood obtained from the forest or the farm. It does not refer to waste wood from for example buildings. The role of wood fuel in the environment can be assessed at many different levels. In this paper three different scales of ''Environment'' and the role of wood fuel in each, will be considered. These three scales are namely the global environment, the local environment, and the National (community) environment. (Author)

  12. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  13. Controlled composting of waste wood contaminated with PAH; Untersuchungen zur gesteuerten Rotte von mit polyzyklischen aromatischen Kohlenwasserstoffen (PAK) kontaminiertem Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, H.

    2002-07-01

    The author investigated the potential and limits of microbial pollutant degradation in PAH-polluted waste wood by composting. The conditions in which autochthonic micro-organisms are able to decomposite the PAH contained in wood by solid phase fermentation were investigated. The focus was on phenanthrene, anthracene and pyrene, all of which are used as protective materials (disinfestants) for wood. The results were verified on contaminated waste wood, including an analytical investigations of decomposition of PAH of the EPA catalogue. Boundary conditions for achieving high rates of PAH decomposition were investigated. [German] Generelles Ziel der Arbeit war die Untersuchung der Moeglichkeiten und Grenzen des mikrobiellen Schadstoffabbaus in PAK-belastetem Altholz durch Kompostierung und die Pruefung auf Anwendbarkeit der Erkenntnisse in technischen Verfahren. In der vorliegenden Arbeit wurde untersucht, unter welchen Bedingungen die autochthonen Mikroorganismen in der Lage sind, an das Holz gebundene PAK durch Feststofffermentation abzubauen. Als Schwerpunkt wurde zunaechst der Abbau der im zum Holzschutz verwendetem Teeroel vorkommenden PAK Phenanthren, Anthracen und Pyren untersucht. Eine Verifizierung der Ergebnisse erfolgte mit real kontaminiertem Altholz, dabei wurde der Abbau der PAK der EPA-Liste analytisch verfolgt. Es sollten geeignete Randbedingungen gefunden werden, um im Festphasensystem hohe Abbauraten der PAK zu erreichen. (orig.)

  14. Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends.

    Science.gov (United States)

    Edo, Mar; Ortuño, Núria; Persson, Per-Erik; Conesa, Juan A; Jansson, Stina

    2018-07-01

    Four different types of fuel blends containing demolition and construction wood and household waste were combusted in a small-scale experimental set-up to study the effect of fuel composition on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), chlorobenzenes (PCBzs), chlorophenols (PCPhs) and polycyclic aromatic hydrocarbons (PAHs). Two woody materials, commercial stemwood (ST) and demolition and construction wood (DC) were selected because of the differences in their persistent organic pollutants (POPs), ash and metals content. For household waste, we used a municipal solid waste (MSW) and a refuse-derived fuel (RDF) from MSW with 5-20 wt% and up to 5 wt% food waste content respectively. No clear effect on the formation of pollutants was observed with different food waste content in the fuel blends tested. Combustion of ST-based fuels was very inefficient which led to high PAH emissions (32 ± 3.8 mg/kg fuel ). The use of DC clearly increased the total PCDD and PCDF emissions (71 ± 26 μg/kg fuel ) and had a clear effect on the formation of toxic congeners (210 ± 87 ng WHO 2005 -TEQ/kg fuel ). The high PCDD and PCDF emissions from DC-based fuels can be attributed to the presence of material contaminants such as small pieces of metals or plastics as well as timber treated with chromated copper arsenate preservatives and pentachlorophenol in the DC source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Controversy. The wood war

    International Nuclear Information System (INIS)

    James, O.

    2010-01-01

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  16. Equipment for biomass. Wood burners; Materiels pour la biomasse, les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R., 63 - Arlanc (France)

    1997-12-31

    A review of the French classification of biomass wastes (and more especially wood and wood wastes) concerning classified burning equipment, is presented: special authorization is thus needed for burning residues from wood second transformation processes. Limits for combustion product emission levels are detailed and their impact on wood burning and process equipment is examined: feeder, combustion chamber, exchanger, fume treatment device, residue disposal. Means for reducing pollutant emissions are reviewed

  17. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    Directory of Open Access Journals (Sweden)

    Swaptik Chowdhury

    2015-06-01

    Full Text Available With increasing industrialization, the industrial byproducts (wastes are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling. Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alternative, such as a sustainable building practice. This paper presents an overview of the work and studies done on the incorporation of wood ash as partial replacement of cement in concrete from the year 1991 to 2012. The aspects of wood ash such as its physical, chemical, mineralogical and elemental characteristics as well as the influence of wood ash on properties such as workability, water absorption, compressive strength, flexural rigidity test, split tensile test, bulk density, chloride permeability, freeze thaw and acid resistance of concrete have been discussed in detail.

  18. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces...... of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr...... in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles – indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic...

  19. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... be waste product from saw mills, wood working plants or produced from selected dry wood by .... Stop watch-used to indicate the exact time the mould has remained in the press before wood .... There is abundance of saw dust the source of which is the ... Madison, Wisconsin: Wiley Interscience. Usoro, H. S. ...

  20. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  1. SOLID FUEL OF HYDROCARBON, WOOD AND AGRICULTURAL WASTE FOR LOCAL HEAT SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available In Belarus oil refining and oil producing industries are paid close attention. On the background of the active maintaining the level of oil processing and volume of oil extraction in our country and in the countries of the Eurasian Economic Union there is a steady formation of hydrocarbon-containing waste; therefore recycling of the latter is an urgent task to improve the competitiveness of production. The most cost-effective way of using hydrocarbon waste is the conversion of it into power resources. In this case it is possible to obtain significant power-saving and economic effect of the combined use of a hydrocarbon, wood, agricultural and other combustible waste, meanwhile improving the ecological situation at the sites of waste storage and creating a solid fuel with the necessary energy and specified physical-and-chemical properties. A comprehensive solution of a recycling problem makes it possible to use as energy resources a lot of waste that has not found application in other technologies, to produce alternative multi-component fuel which structure meets environmental and energy requirement for local heating systems. In addition, the implementation of such technology will make it possible to reduce power consumption of enterprises of various kinds that consume fuel and will also increase the share of local fuels in the energy balance of a particular region.

  2. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    Science.gov (United States)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing

  3. Physical and chemical evaluation of furniture waste briquettes.

    Science.gov (United States)

    Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A

    2016-03-01

    Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified material by co-densification of furniture wood waste and polyurethane foam waste. Densification of furniture wood and the co-densification of furniture wood waste with polyurethane foam have been studied. On the one hand, the parameters that have an effect on the quality of the furniture waste briquettes have been analysed, i.e., moisture content, compaction pressure, presence of lignin, etc. The maximum weight percentage of polyurethane foam that can be added with furniture wood waste to obtain durable briquettes and the optimal moisture were determined. On the other hand, some parameters were analysed in order to evaluate the possible effect on the combustion. The chemical composition of waste wood was compared with untreated wood biomass; the higher nitrogen content and the concentration of some metals were the most important differences, with a significant difference of Ti content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  5. 5000 sustainable workplaces - Wood energy provides work

    International Nuclear Information System (INIS)

    Keel, A.

    2009-01-01

    This article presents the results of a study made by the Swiss Wood Energy Association on the regional and national added value resulting from large wood-fired installations in Switzerland. The number of workplaces created by these installations is also noted. Wood energy is quoted as not only being a way of using forest wastes but also as being a creator of employment. Large wood-fired heating installations are commented on and efforts to promote this type of energy supply even further are discussed. The study indicates which professions benefit from the use of wood energy and quantifies the number of workplaces per megawatt of installed power that result.

  6. Handling wood shavings

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-18

    Details of bulk handling equipment suitable for collection and compressing wood waste from commercial joinery works are discussed. The Redler Bin Discharger ensures free flow of chips from storage silo discharge prior to compression into briquettes for use as fuel or processing into chipboard.

  7. Bond quality of phenol-based adhesives containing liquefied creosote-treated wood

    Science.gov (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan

    2009-01-01

    Liquefaction of spent creosote-treated wood was studied to determine the technological practicability of its application in converting treated wood waste into resin adhesives. A total of 144 plywood panels were fabricated with experimental variables included 2 phenol to wood (P/W) ratios in liquefaction, 6 resin formulations (3 formaldehyde/liquefied wood (F/...

  8. Waste fatty acid addition to black liquor to decrease tall oil soap solubility and increase skimming efficiency in kraft mills pulping mountain pine beetle-infested wood

    Energy Technology Data Exchange (ETDEWEB)

    Uloth, V.; Guy, E. [FPInnovations, Prince George, BC (Canada). PAPRICAN Div.; Shewchuk, D. [Cariboo Pulp and Paper, Quesnel, BC (Canada); Van Heek, R. [Aker Kvaerner, Vancouver, BC (Canada)

    2009-07-01

    This paper presented the results of tests conducted to determine if the addition of waste fatty acids from vegetable oil processing might decrease tall oil soap solubility in pine-beetle impacted wood from British Columbia (BC). The soap recovery and tall oil production at BC mills has fallen by 30 to 40 percent in recent years due to the pulping of high proportions of grey-stage beetle-impacted wood. Full-scale mill tests were conducted over a 4-day period. The study showed that the addition of tall oil fatty acids or waste fatty acids from vegetable oil processing could decrease tall oil soap solubility and increase the soup skimming efficiency in mills pulping a large percentage of grey stage beetle-infested wood. The addition of fatty acids increased tall oil soap skimming efficiency from 50.2 percent in the baseline tests to 71.8 percent based on the total soap available, and from 76.7 percent in the baseline tests to 87.5 percent based on insoluble soap only. The economic analyses indicated that waste fatty acid addition could be economical when natural gas and oil prices are high. 4 tabs., 9 figs.

  9. physico-chemical properties and energy potential of wood wastes

    African Journals Online (AJOL)

    user

    were performed to assess the energy characteristics of the collected wood .... Methods. Wood processing activities were physically observed for. 6 days/wk at the sawmills for 15weeks. ..... [10] Oladeji, J T “Fuel characterization of briquettes.

  10. Fertilization effects of organic waste resources and bottom wood ash: results from a pot experiment

    Directory of Open Access Journals (Sweden)

    Eva Brod

    2012-12-01

    Full Text Available We conducted a pot experiment to study the fertilization effects of four N- and P-rich organic waste resources alone and in combination with K-rich bottom wood ash at two application rates (150 kg N ha–1 + 120 kg K ha–1, 300 kg N ha-1 + 240 kg K ha–1. Plant-available N was the growth-limiting factor. 48–73% of N applied with meat and bone meal (MBM and composted fish sludge (CFS was taken up in aboveground biomass, resulting in mineral fertilizer equivalents (MFE% of 53–81% for N uptake and 61–104% for yield. MFE% of MBM and CFS decreased for increasing application rates. Two industrial composts had weak N fertilization effects and are to be considered soil conditioners rather than fertilizers. Possible P and K fertilization effects of waste resources were masked by the soil’s ability to supply plant-available P and K, but effects on plant-available P and K contents in soil suggest that the waste resources may have positive effects under more nutrient-deficient conditions.

  11. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  12. Physical utilisation and conversion to energy of wastes arising in the wood industry; Stoffliche und energetische Abfallverwertung in der Holz- und Papierindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Leithner, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Waerme- und Brennstofftechnik; Marutzky, R. [Fraunhofer-Institut fuer Holzforschung, Wilhelm-Klauditz-Institut (WKI), Braunschweig (Germany)

    1998-09-01

    The present paper describes material streams in the paper and wood industry. It also points out possibilities for the physical utilisation and conversion to energy of wood waste and discusses the problems they involve. The authors give a brief overview of the of the plants used for this purpose along with illustrating examples. [Deutsch] Es werden Stoffstroeme in der Papier- und Holzindustrie aufgezeigt. Ferner werden stoffliche und energetische Verwertungsmoeglichkeiten von Holzabfaellen und Probleme dieser Verwertung beschrieben. Auch die Anlagen zu dieser Verwertung und einige Beispiele werden kurz zusammengefasst vorgestellt. (orig.)

  13. Advanced air/flue gas staging based on CFD modelling for enhanced combustion and burnout in a waste-wood fired boiler

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko

    2017-01-01

    The paper presents the impacts of the jet momentum, position and orientation of air and Recycled Flue Gas (RFG) streams on the performance of a grate-fired boiler burning waste wood via a comprehensive CFD-based parametric study. It is found that the air and RFG jets can be optimized to enhance m...

  14. Towards controlling dioxins emissions from power boilers fuelled with salt-laden wood waste

    International Nuclear Information System (INIS)

    Luthe, C.; Karidio, I.; Uloth, V.

    1997-01-01

    An evaluation of the dioxins emissions from a power boiler fuelled with salt-laden wood waste has provided insights on potential control technologies. Whereas a reduction in stack particulate levels does not preclude a corresponding reduction in dioxins emissions, good combustion conditions, in combination with an efficient secondary collection device for particulate removal, were found to offer effective control (stack emissions of 0.064 to 0.086 ng TEQ/m 3 ). Regarding minimization of dioxins formation at source, a preliminary assessment of the possible beneficial effect of an attenuated chlorine:sulphur ratio was encouraging. A more accurate assessment requires additional trials, preferably longer in duration, to eliminate any possible memory effects. (author)

  15. Wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill applications. Phase 2. Site-specific preliminary engineering and financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The use of conventional steam/electricity cogeneration systems is not generally economical at the sawmill scale of operation. This paper describes an evaluation of a wood-waste fueled and, indirectly, gas fired turbine cogeneration plant aimed at developing a cost-effective wood-waste fired power generation and dry kiln heating system for sawmill applications. A preliminary engineering design and financial analysis of the system was prepared for a demonstration site in British Columbia. A number of alternative system configurations were identified and preliminary engineering designs prepared for each. In the first option , wood wastes combusted in a wet cell hot gas generator powered a 600 kW turbine, and produced 7,000 kW for the drying kilns. The second option provided the same electrical and heat output but used a down-fired suspension burner unit fuelled by clean, dried sawdust, together with an integral air heater heat exchanger. The third option represented a commercial-scale configuration with an electrical output of 1,800 kW, and sufficient heat output for the dry kilns. A financial analyis based on a computerized feasibility model was carried out on the last two options. Low electricity rates in British Columbia combined with the small scale of a demonstration project provide an inadequate rate of return at the site without substantial outside support. At a commercial scale of operation and with the higher electricity prices that exist outside of British Columbia the financial analysis indicates that the incremental investment in the electric generation portion of the system provides very attractive rates of return for the 3 options. 11 figs., 10 tabs.

  16. Exposure assessment of residents living near a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Horsak, Randy D.; Parker, Frank M. III; Takhar, Harpreet

    2003-01-01

    We report the results of environmental sampling and modeling in a neighborhood adjacent to a wood processing plant. This plant used creosote and pentachlorophenol (PCP) to treat wood for over 70 years. Between 1999 and 2001, environmental samples were obtained to quantify the level of environmental contamination from the wood processing plant. Blood from 10 residents was measured for chlorinated dioxins and dibenzofurans. Soil sediment samples from drainage ditches and attic/dust samples from nearby residents' homes were tested for polychlorinated dioxins, furans, and polycyclic aromatic hydrocarbons (PAH). The dioxin congeners analysis of the 10 residents revealed elevated valued for octachlorodibenzo-p-dioxin and heptachlorodibenzo-p-dioxin compatible with PCP as the source. The levels of carcinogenic PAHs were higher than background levels and were similar to soil contamination on wood preserving sites. Wipe sampling in the kitchens of 11 homes revealed that 20 of the 33 samples were positive for octachlorinated dioxins with a mean value of 10.27 ng/m 2 . The soil, ditch samples, and positive wipe samples from the homes indicate a possible ongoing route of exposure to the contaminants in the homes of these residents. Modeled air exposure estimated for the wood processing waste chemicals indicate some air exposure to combustion products. The estimated air levels for benzo(a)pyrene and tetrachlorodibenzodiozin in this neighborhood exceeded the recommended levels for these compounds in some states. The quantitative data presented suggest a significant contamination of a neighborhood by wood processing waste chemicals. These findings suggest the need for more stringent regulations on waste discharges from wood treatment plants

  17. Effect of boron compounds on the thermal and combustion properties of wood-plastic composites

    OpenAIRE

    Altuntaş, Ertuğrul; Karaoğul, Eyyup; Alma, Mehmet Hakkı

    2017-01-01

    In this study, the thermal properties and fire resistancesof the wood plastic composites produced with waste lignocellulosic materialswere investigated. For this purpose, lignocellulosic waste, high densitypolyethylene, (HDPE) sodium borate (borax) and boric acid was used to producethe wood-plastic composites. A twin-screw extruder was used during theproduction of the wood plastic composites. The produced composite granule waspressed at 175 °C hot press. The effects of boric acid and borax ad...

  18. Evaluation of energy efficient techniques in the wood working and wood processing industry. Final report THERMIE - Action no. DIS-0059-95-DE

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Digutsch, O.; Frey, G. v. [and others

    1997-05-01

    With the entrance of Austria, Finland and Sweden in the European Union beginning of 1995 the pattern of industrial energy consumption has changed considerably in some branches which are large energy consumers in the Northern countries. The wood working and wood processing industry is one of those branches. It comprises the preparation of wood from primary processing in sawmills up to the production of finished products, and is highly energy-intensive although to a somewhat smaller extent than the large energy consumers such as the iron and steel production or glass manufacturing. It can further be assumed that official statistics underestimate the real importance of the energy consumption in the wood sector because most official statistics do not indicate waste wood as a fuel. Waste wood is a renewable fuel and has as such not the same impact in terms of CO{sub 2}-emissions as fossil fuels. Nevertheless, renewable energy sources should be also used efficiently because they can replace fossil fuels for other purposes. The objective of this study on the wood sector were to analyse and summarise the present status of energy consumption in the fifteen countries of the EU and the two EFTA countries Norway and Switzerland, to evaluate present day energy technology in the wood industry, and to investigate existing application barriers to these techniques in order to inform, support and to motivate small and medium-sized companies in particular, thus simulating the wide spread use of such techniques. (orig./SR)

  19. Thermogravimetric analysis of combustible waste components

    DEFF Research Database (Denmark)

    Munther, Anette; Wu, Hao; Glarborg, Peter

    In order to gain fundamental knowledge about the co-combustion of coal and waste derived fuels, the pyrolytic behaviors of coal, four typical waste components and their mixtures have been studied by a simultaneous thermal analyzer (STA). The investigated waste components were wood, paper, polypro......In order to gain fundamental knowledge about the co-combustion of coal and waste derived fuels, the pyrolytic behaviors of coal, four typical waste components and their mixtures have been studied by a simultaneous thermal analyzer (STA). The investigated waste components were wood, paper...

  20. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  1. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  2. Assessment of chemical and material contamination in waste wood fuels--A case study ranging over nine years.

    Science.gov (United States)

    Edo, Mar; Björn, Erik; Persson, Per-Erik; Jansson, Stina

    2016-03-01

    The increased demand for waste wood (WW) as fuel in Swedish co-combustion facilities during the last years has increased the import of this material. Each country has different laws governing the use of chemicals and therefore the composition of the fuel will likely change when combining WW from different origins. To cope with this, enhanced knowledge is needed on WW composition and the performance of pre-treatment techniques for reduction of its contaminants. In this study, the chemical and physical characteristics of 500 WW samples collected at a co-combustion facility in Sweden between 2004 and 2013 were investigated to determine the variation of contaminant content over time. Multivariate data analysis was used for the interpretation of the data. The concentrations of all the studied contaminants varied widely between sampling occasions, demonstrating the highly variable composition of WW fuels. The efficiency of sieving as a pre-treatment measure to reduce the levels of contaminants was not sufficient, revealing that sieving should be used in combination with other pre-treatment methods. The results from this case study provide knowledge on waste wood composition that may benefit its management. This knowledge can be applied for selection of the most suitable pre-treatments to obtain high quality sustainable WW fuels. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Symposium on extending the use of wood residue

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A symposium on extending the use of wood residues was held in Geneva, Switzerland in June, 1977. These meetings were sponsored by the UN Economic Commission for Europe, Timber Committee for the purpose of sharing information and ideas on recycling wood wastes. Eight separate papers were abstracted for inclusion in the Energy Data Base.

  4. A Review of Wood Plastic Composites effect on the Environment

    Directory of Open Access Journals (Sweden)

    Ahmed Taifor Azeez

    2017-05-01

    Full Text Available Wood Plastic Composites (WPCs are environmentally friend materials with a wide range of applications in the field of constructions, comprising high mechanical and physical properties with low cost raw materials as plastic wastes and different carpentry process wood reminder. The effects of wood, plastic waste and additives on various properties of the material such as mechanical (modulus of elasticity and modulus of rupture, physical (moisture absorption and fire retardancy have been investigated in order to push the output functions of the products to the limits of work conditions requirements. This study, overviews the importance of Wood Plastic Composites in conserving the environment by depletion post consume plastics from landfills, and the impact of these composites in developing the economic via opening new flourished markets for modern products. Both the ecological and economical requirements oblige the Iraqi government to replace the negatively healthy effects formaldehyde wood composites (medium density fiberboard MDF which are widely consumed in Iraqi markets with Wood Plastic Composites. a long-term strategy plan in which the researchers and the capitals meet under supervision of the government is very necessary and recommended in this paper to establish and develop WPCs industry in Iraq.

  5. Preparation Of Charcoal Using Agricultural Wastes | Bogale ...

    African Journals Online (AJOL)

    Conclusion: As compared to wood charcoal the charcoal briquette produced from agricultural wastes are economical, environmentally friendly, healthy (no smoke at all) and reduce impact of deforestation. Key words: Pollution, deforestation, extruder, carbonizer, wood charcoal, briquette charcoal, agricultural wastes, ...

  6. Measurements of emissions during waste wood combustion to identify refurbishment needs; Maetning av emissioner vid foerbraenning av RT-flis foer att identifiera eventuella ombyggnadsaatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, Leif

    2003-01-01

    The background to this project is the new EU directive 2000/76/EG regarding incineration of waste. This directive may have an effect on emission limits for Swedish plants firing waste wood. It may lead to needs of refurbishment in e.g. the area of flue gas cleaning equipment. In order to produce a basis to evaluate the need for such upgrading, measurement of metals, HCI, SO{sub 2} , CO, TOC and dioxin have been carried out on three plants firing wood waste: a grate boiler (Handeloeverket P11), one circulating fluid bed boiler (Aaterbruket in Lomma), and a bubbling fluidised bed boiler (Johannes in Gaevle, firing 50% waste wood). The measurements have mainly been carried out after boiler, equivalent to upstream flue gas cleaning. The results are that the demands of the EU directive on most points can be managed with existing equipment if this consists of electrostatic precipitator or bag filter with good performance and flue gas condensor. Without flue gas condensor, there is a need for other measures for 1-10 and for grate boilers, SO{sub 2} as well. The requirements in the directive for TOC is weaker than the demand on CO, and correspondingly, the demand on CO is driving. The level of dioxin from the boiler (upstream filter) exceeds allowed emission, and is in the range of 0,1-2 ng TE/Nm{sup 3} tg, 6 % O{sub 2} . Existing equipment will meet the emission limit for the lower levels (0,1-0,3) , but not safely for the higher levels (1,5-2). Correspondingly, there may be a need for equipment upgrading, e.g. in the form of activated carbon injection upstream flue gas filter.

  7. Proceedings of the 7. biennial residue-to-revenue residual wood conference 2007

    International Nuclear Information System (INIS)

    Raulin, J.

    2007-01-01

    This conference provided information on the highest and best use of residual wood, which is quickly becoming a valuable commodity. Issues concerning forest residues, sawmill wastes, agricultural residues and urban organic materials were discussed along with trends in Canadian surplus mill waste production. The evolving nature and technologies of the biomass business were highlighted with particular focus on how to generate energy and save money through the use of residual wood. Residual wood energy projects and developments in Canada, North America and Europe were outlined along with biomass development in relation to forest fires and insect disturbances. Cogeneration technologies using wood wastes for thermal heat, steam and electricity were also presented, along with transportation fuel technologies for the production of ethanol. It was noted that with the rising cost of energy, the forest industry is seeking energy solutions based on the use of residual wood. The range of economically practical residual wood solutions continues to grow as energy prices increase. The conference was attended by more than 200 delegates from the forest industry, suppliers and government representatives, to discuss policies and procedures currently in place. Industry investment is being stimulated by the potential for biofuels and biochemicals, as well as the co-operation between the forest and energy sectors. The conference featured 23 presentations, of which 12 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. Physical and chemical characterization of waste wood derived biochars.

    Science.gov (United States)

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  9. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Science.gov (United States)

    2010-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60...

  10. Toxic emissions during co-combustion of biomass-waste wood-lignite blends in an industrial boiler.

    Science.gov (United States)

    Samaras, P; Skodras, G; Sakellaropoulos, G P; Blumenstock, M; Schramm, K W; Kettrup, A

    2001-01-01

    The objectives of this work were to study the PCDD/F emissions during the co-combustion of waste wood/coal co-combustion in an industrial boiler and to determine the relation of the toxic emissions to the fuel properties. Co-combustion experiments were performed in a 13.8 MWthermal industrial moving grate combustor. The fuels which were examined in this study included Greek lignite, natural uncontaminated wood, power poles and medium density fibers (MDFs) which were by-products of the plant production process. Fuel blends were prepared by mixing single components in various concentrations. PCDD/F emissions were collected during experimental runs and were analyzed according to standard methods. Low PCDD/F emissions were obtained during the co-combustion tests, lower than the limit value of 0.1 ng TEQ/Nm3. The lowest values were observed during the combustion of fuel blends containing MDF, possibly due to the inhibitory action of some of the N-containing MDF ingredients, such as urea. No direct correlation was found between the PCDD/F and the copper emissions, while examination of the PCDD/F homologue patterns revealed the predominance of the lower chlorinated isomers over the higher ones.

  11. What Next for Wood Construction/Demolition Debris?

    OpenAIRE

    Martin A. Hubbe

    2014-01-01

    Residents in localities throughout the world voluntarily participate in the routine recycling of household wastes, such as paper, metals, and plastics containers. But when a house in their neighborhood gets built or torn down, most of the debris – including wood waste – gets landfilled. Such a waste of material suggests that there are opportunities to add value to these under-utilized resources. The great variability, as well as contamination, pose major challenges. It is recommended that rec...

  12. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    International Nuclear Information System (INIS)

    Humar, Miha; Amartey, Sam A.; Pohleven, Franc

    2006-01-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes

  13. Urban wood: Fuel from landscapers and land fills

    International Nuclear Information System (INIS)

    Miles, T.R.; Miles, T.R. Jr.

    1991-01-01

    Wood recovered from urban landscaping, construction and building demolition has become an important fuel for several new power plants. Sources, composition, and requirements for fuel preparation, handling, firing and emissions control are described from experience at several plants. Urban wood waste fuels are suitable for steam and power generation if precautions are taken to process the fuel and provide uniform flow to the boiler

  14. Production of Solid Fuel Briquettes from Agricultural and Wood ...

    African Journals Online (AJOL)

    Fibrous agricultural and wood waste materials have been compressed with suitable adhesive into solid fuel briquettes in a compressing machine, which was designed and constructed for this purpose. Nine samples of fibrous waste materials were prepared into different categories:- Category A (100% saw-dust, 100% ...

  15. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    of virgin wood does not change the results radically (—665 to —125 kg CO2-equivalents tonne— 1 wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes...

  16. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  17. Wood-energy - The sector get worried

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane; Bohlinger, Philippe; Guilhem, Jean; De Santis, Audrey; Sredojevic, Alexandre; Defaye, Serge; Maindrault, Marc

    2017-01-01

    Wood energy is, today and certainly also tomorrow, one of the most important renewable energies in France. However, the wood-energy sector seems to slow down as hydrocarbon prices stay extremely low. This document presents 8 articles, describing the context and the characteristics of this evolution, plus some examples of developments in France. The themes of the articles are: the activity of the wood-energy sector should be reinforced to meet the objectives of the French energy multi-year plan; The 2035 prospective of the wood yield in the French forest will meet the future demand, however this evaluation does not take into consideration the effects of the climatic change; the conversion to biomass of the 'Fort de l'Est' (near Paris) heating system (equipped with a boiling fluidized bed boiler) has enabled the heat network to beat the 50 pc share of renewable energy; wood-energy professionals use the 'quality' lever to challenge their fossil fuel competitors; the city of Orleans is now equipped with an innovative biomass cogeneration plant; the example of wood waste valorization in a French sawmill; the French ONF (Forest Administration) Wood-Energy actor has just inaugurated its largest biomass dryer, in order to develop the domestic market for wood as a fuel; analysis of the technical and economical feasibility of using wood to generate electric power or replacing electric space heating by heat network

  18. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Science.gov (United States)

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  19. Exploring the role of wood waste landfills in early detection of non-native alien wood-boring beetles

    Science.gov (United States)

    Davide Rassati; Massimo Faccoli; Lorenzo Marini; Robert A. Haack; Andrea Battisti; Edoardo. Petrucco Toffolo

    2015-01-01

    Non-native wood-boring beetles (Coleoptera) represent one of the most commonly intercepted groups of insects at ports worldwide. The development of early detection methods is a crucial step when implementing rapid response programs so that non-native wood-boring beetles can be quickly detected and a timely action plan can be produced. However, due to the limited...

  20. Controversy. The wood war; Polemique - la guerre du bois

    Energy Technology Data Exchange (ETDEWEB)

    James, O.

    2010-12-15

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  1. Quaternized wood as sorbent for hexavalent chromium.

    Science.gov (United States)

    Low, K S; Lee, C K; Lee, C Y

    2001-01-01

    The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.

  2. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    Energy Technology Data Exchange (ETDEWEB)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  3. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A

    International Nuclear Information System (INIS)

    MacFarlane, David W.

    2009-01-01

    Tree and wood biomass from urban areas is a potentially large, underutilized resource viewed in the broader social context of biomass production and utilization. Here, data and analysis from a regional study in a 13-county area of Michigan, U.S.A. are combined with data and analysis from several other studies to examine this potential. The results suggest that urban trees and wood waste offer a modest amount of biomass that could contribute significantly more to regional and national bio-economies than it does at present. Better utilization of biomass from urban trees and wood waste could offer new sources of locally generated wood products and bio-based fuels for power and heat generation, reduce fossil fuel consumption, reduce waste disposal costs and reduce pressure on forests. Although wood biomass generally constitutes a 'carbon-neutral' fuel, burning rather than burying urban wood waste may not have a net positive effect on reducing atmospheric CO 2 levels, because it may reduce a significant long term carbon storage pool. Using urban wood residues for wood products may provide the best balance of economic and environmental values for utilization

  4. Environmental issues: New techniques for managing and using wood fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Fehrs, J.E.; Donovan, C.T. [C.T. Donovan Associates, Inc., Burlington, VT (United States)

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  5. Sawmill "Waste"

    Science.gov (United States)

    Fred C. Simmons; Adna R. Bond

    1955-01-01

    Sawmills have the reputation of being very wasteful in converting logs and bolts into lumber and timbers. Almost everyone has seen the great heaps of sawdust and slabs that collect at sawmills. Frequently the question is asked, "Why doesn't somebody do something about this terrible waste of wood?"

  6. Report of the Task Force on Sawmill Wood Residue Management

    International Nuclear Information System (INIS)

    1993-11-01

    The Sawmill Wood Residue Task Force was established in 1993 to seek solutions to managing wood residue at sawmills, shingle mills, and log sort yards in British Columbia without burning or landfilling. In particular, the Task Force was formed to address the phaseout of beehive-type wood waste burners by January 1, 1996. The Task Force was formed at the forest product industry's request and included representatives from industry associations and government. It reviewed existing information on the quantities of mill residues and the options available for reducing, reusing, and recycling the residues. Nearly half of all the province's residues of 5 million bone dry tonnes/y is disposed of by burning with no energy recovery, or by landfilling. It was recognized that the total volume of wood residue cannot be handled by any one method suitable for all sources but that in the near term, electricity generation could deal with a significant percentage of wood currently being burned. The most immediate technically viable opportnity by industry in this area may be in cogeneration of electricity for load displacement at pulp mills. Other opportunities exist such as conversion of wood residue to liquid fuels but these require greater commitments to research and development. The need to handle bark and sawdust was identified as a critical requirement for alternate uses. Small niche uses for wood residue must be examined on a case by case basis for each company or group of companies in a region. The provincial government can also promote better use of wood wastes through policies such as social costing of power generation options and sales tax exemption for ethanol fuel. 1 tab

  7. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  8. Federal tax incentives and disincentives for the adoption of wood-fuel electric-generating technologies

    International Nuclear Information System (INIS)

    Hill, L.J.; Hadley, S.W.

    1995-01-01

    In this paper, we estimate the effects of current federal tax policy on the financial criteria that investor-owned electric utilities (IOUs) and non-utility electricity generators (NUGs) use to evaluate wood-fuel electric-generating technologies, distinguishing between dedicated-plantation and wood-waste fuels. Accelerated tax depreciation, the 1.5 cent/kWh production tax credit for the dedicated-plantation technology, and the alternative minimum tax are the most important tax provisions. The results indicate that federal tax laws have significantly different effects on the evaluation criteria, depending on the plant's ownership (IOU vs NUG) and type of fuel (dedicated-plantation vs wood-waste). (Author)

  9. THERMAL DEGRADATION AND MORPHOLOGICAL ASPECTS OF FOUR WOOD SPECIES USED IN LUMBER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Matheus Poletto

    Full Text Available ABSTRACT The aim of this work was characterize four wood waste samples from lumber industry in order to obtain previous information about structure and properties of wood before use it as a biofuel or as reinforcement in composite formulations. The influence of wood components on the thermal degradation stability of different wood species has been investigated using thermogravimetry, differential scanning calorimetry and scanning electron microscopy. Four wood species, Eucalyptus grandis (EUG, Pinus elliottii (PIE, Dipteryx odorata (DIP and Mezilaurus itauba (ITA, were used in this study. The results showed that higher extractives contents may form a thin film on the wood fiber surface which can accelerate the degradation process and reduce the wood thermal stability

  10. Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method

    Science.gov (United States)

    Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud

    2017-05-01

    The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.

  11. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    International Nuclear Information System (INIS)

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M.A.; Ludwig, Christian

    2012-01-01

    Highlights: ► Simultaneous measurements of 23 elements in process gases of a waste wood combustor. ► Mobile ICP spectrometer allows measurements of high quality at industrial plants. ► Continuous online measurements with high temporal resolution. ► Linear correlations among element concentrations in the raw flue gas were detected. ► Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.

  12. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  13. Wood energy and air quality. Synthetic report

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents and comments some reference data about the current and prospective (2010, 2020) pollutant emissions through wood combustion as a source of energy. It indicates and compares greenhouse gas emissions by the different sources for household, collective and industrial heating (fuel, gas, electricity, pellets, logs, grinds, wood wastes), gives an overview of atmospheric emissions due to biomass combustion. It compares emissions due to wood combustion with respect to the activity sectors and to combustion equipment. It highlights the challenges of the development of the household sector in terms of improvement and renewal of the quality of the burning equipment. It comments the implemented policies which notably aim at reducing the emission of particles, and at defining quality labels

  14. Sustainable wood use, decarbonisation of energetic metabolism and forest development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2009-01-01

    Air pollution from wood stoves with PAH, primary particles and chlorinated dioxins (reported according to national estimates of  Danish NERI) is presented as an insoluble problem because of dioxin de-novo-synthesis in chimneys, as it is known from municipal waste incinerators. A trade-off of this......Air pollution from wood stoves with PAH, primary particles and chlorinated dioxins (reported according to national estimates of  Danish NERI) is presented as an insoluble problem because of dioxin de-novo-synthesis in chimneys, as it is known from municipal waste incinerators. A trade......-off of this local pollution against alleged positive impacts of wood (as all biomass) combustion on global climate change because of 'zero carbon dioxide emissions' is rejected, although this resetting to zero is part of the Danish Law on CO2-quota of 2004. These emissions are, on the contrary, aggravated pr. unit...... of energy, when substituting for fossil fuels, whereas compensatory binding of carbon dioxide by tree growth over many decades is referred to an insecure future under global warming. Harvested wood products should rather not be used in atmospheric burners, but in product form. Otherwise an accelerated...

  15. EFFECT OF EXTRACTIVES AND CARBONIZATION TEMPERATURE ON ENERGY CHARACTERISTICS OF WOOD WASTE IN AMAZON RAINFOREST

    Directory of Open Access Journals (Sweden)

    Jordão Cabral Moulin

    2017-06-01

    Full Text Available The objective of this study was to evaluate the effect of extractives soluble in hot water, besides final carbonization temperatures, on the gravimetric yield and properties of charcoal for waste of three native forest species from the Amazon region. Waste cuttings of Ipé, Grapia and Maçaranduba species, from the machine processing for joinery of a company in the State of Pará, were used. Carbonization was carried out in an adapted electric furnace with a heating rate of 1.67°C min-1 and final temperatures of 500, 600 and 700°C. The waste was carbonized fresh after extraction in hot water to remove extractives. Gravimetric yields were analyzed, as well as chemical features and high heating value. In the evaluation of the experiment, arranged in a factorial scheme with three factors (species x temperature x material with and without extraction, and Principal Component Analysis used too. The presence of extractives (soluble in hot water from wood waste had little influence on the gravimetric yield and immediate chemical composition of charcoal; however, it showed a greater high heating value and lower contents of hydrogen and nitrogen. The increase in the final carbonization temperature reduced the gravimetric yield in charcoal, the content of volatile materials and hydrogen, with a higher content of fixed carbon, carbon and high heating value. The treatments with the best energy characteristics were obtained from Ipé and Maçaranduba charcoals with extractives produced at 600°C, in addition to Ipê and Maçaranduba charcoals with and without extractives obtained at 700°C.

  16. USARCENT AOR Contingency Base Waste Stream Analysis: An Analysis of Solid Waste Streams at Five Bases in the U. S. Army Central (USARCENT) Area of Responsibility

    Science.gov (United States)

    2013-03-31

    and Plastics Waste in As Bench Scale Combustor. University of Technology, Malaysia . http://eprints.utm.my/2854/1/75186.pdf. ASTM – ASTM...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic

  17. Minimizing waste (off-cuts using cutting stock model: The case of one dimensional cutting stock problem in wood working industry

    Directory of Open Access Journals (Sweden)

    Gbemileke A. Ogunranti

    2016-09-01

    Full Text Available Purpose: The main objective of this study is to develop a model for solving the one dimensional cutting stock problem in the wood working industry, and develop a program for its implementation. Design/methodology/approach: This study adopts the pattern oriented approach in the formulation of the cutting stock model. A pattern generation algorithm was developed and coded using Visual basic.NET language. The cutting stock model developed is a Linear Programming (LP Model constrained by numerous feasible patterns. A LP solver was integrated with the pattern generation algorithm program to develop a one - dimensional cutting stock model application named GB Cutting Stock Program. Findings and Originality/value: Applying the model to a real life optimization problem significantly reduces material waste (off-cuts and minimizes the total stock used. The result yielded about 30.7% cost savings for company-I when the total stock materials used is compared with the former cutting plan. Also, to evaluate the efficiency of the application, Case I problem was solved using two top commercial 1D-cutting stock software.  The results show that the GB program performs better when related results were compared. Research limitations/implications: This study round up the linear programming solution for the number of pattern to cut. Practical implications: From Managerial perspective, implementing optimized cutting plans increases productivity by eliminating calculating errors and drastically reducing operator mistakes. Also, financial benefits that can annually amount to millions in cost savings can be achieved through significant material waste reduction. Originality/value: This paper developed a linear programming one dimensional cutting stock model based on a pattern generation algorithm to minimize waste in the wood working industry. To implement the model, the algorithm was coded using VisualBasic.net and linear programming solver called lpsolvedll (dynamic

  18. 5000 sustainable workplaces - Wood energy provides work; Holzenergie schafft Arbeit. 5000 nachhaltige Arbeitsplaetze

    Energy Technology Data Exchange (ETDEWEB)

    Keel, A.

    2009-07-01

    This article presents the results of a study made by the Swiss Wood Energy Association on the regional and national added value resulting from large wood-fired installations in Switzerland. The number of workplaces created by these installations is also noted. Wood energy is quoted as not only being a way of using forest wastes but also as being a creator of employment. Large wood-fired heating installations are commented on and efforts to promote this type of energy supply even further are discussed. The study indicates which professions benefit from the use of wood energy and quantifies the number of workplaces per megawatt of installed power that result.

  19. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods

    International Nuclear Information System (INIS)

    Collet, S.

    2000-02-01

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  20. EVALUATING ACQ AS AN ALTERNATIVE WOOD PRESERVATIVE SYSTEM

    Science.gov (United States)

    This evaluation addresses the waste reduction/pollution prevention and economic issues involved in replacing chromated copper arsenate (CCA) with ammoniacal copper/quaternary ammonium (ACQ) as a way to preserve wood. The most obvious pollution prevention benefit gained by using A...

  1. Market opportunities for the utilization of wood waste generated by small sawmills

    International Nuclear Information System (INIS)

    1992-01-01

    Analysis of the amounts and types of wood residue from the British Columbia sawmill and logging industry shows that only ca 50% of the residue is being utilized. On a large scale, increased utilization will mainly be achieved through use for the generation of energy. For small sawmills, a more innovative approach to the problem is needed. To assist in developing the innovative markets and uses for wood residues from the small mills, a series of in-depth interviews was conducted with sawmill operators, resource agencies, and users of wood residue throughout British Columbia. The user markets include other sawmills; pulp, paper, and particleboard plants; energy applications; and agriculture. The results of the interviews are tabulated and analyzed to demonstrate the broad spectrum of wood residue uses currently available as well as those that are emerging. For many small sawmill operations in remote areas, utilization of residues is not economical. As environmental regulations become more stringent, the cost and difficulty of handling or disposing residue will increase, and utilization (even if not economical) will become a valid option compared to disposal. A number of emerging markets for wood residue are noted, many of which are in the agricultural field. Other products which can be made out of wood residues are hog fuel and fuel pellets or briquettes. Small sawmills will not have the residue volumes or funds to establish a briquette plant, but they have expressed interest in supplying residue to any such plant that can be established in their area. 16 refs., 5 figs., 3 tabs

  2. Increase in energy efficiency of use of vegetable waste

    Science.gov (United States)

    Safin, R. R.; Safiullina, A. K.; Nazipova, F. V.

    2017-10-01

    Wastes of woodworking which are exposed to granulation for equalization of humidity, dispersion and also for increase in energy efficiency are the most widespread types of alternative fuel in Russia. Besides, one of the effective methods of the increase in calorific capability of granulates now is the preliminary torrefaction of wood waste - heat treatment without air oxygen access. However this technology is rather researched in detail only in relation to wood particles, while pellets from wastes of agricultural productions are also popular in the market in recent years. The possibility of the increase of the efficiency of production of pellets from sunflower pod by torrefaction is considered in this article, and the analysis of their characteristics in comparison with wood pellets is carried out. It is established that the process of heat treatment of waste of sunflower production is similar to torrefaction of wood raw materials in many respects; therefore, the equipment with similar characteristics can be used. According to the received results on pellet’s properties it is established that hygroscopicity and swelling of samples of fuel granules from sunflower pod considerably decreases with the increase in temperature of treatment that simplifies requirements for their storage and transportation. Besides, it is defined that torrefaction of the granulated fuel from sunflower pod does not yield in calorific properties to the similar fuel granules made of wood sawdust. Thus feasibility of use of heat treatment in production of fuel granules from waste of vegetable raw materials is proved.

  3. Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties

    Directory of Open Access Journals (Sweden)

    Mário Vanoli Scatolino

    Full Text Available ABSTRACT The wood panel industry is constantly growing, being necessary the innovation in technologies and raw materials to improve the quality of the final product. Considering the shortage and pressure to decrease the dependence of wood, there is an interest in other renewable materials such as agricultural wastes. Among these wastes, coffee parchment is one which deserves notoriety. An alternative use for coffee parchment could be for production of particleboard in association with wood particles. This study aimed to evaluate the feasibility of using coffee parchment for production of particleboard. The following percentages of wastes were used: 0, 10, 20, 30, 40 and 50% in association to eucalyptus wood. The panels were produced with 8% of urea formaldehyde (based on dry weight of particles. The pressing cycle consisted by: pre-pressing of 0.5 MPa for 10 minutes followed by pressing of 4.0 MPa, and temperature of 160° C for 15 minutes. The compaction ratio of particleboards produced using higher quantities of parchment improved the physical properties. The properties of Water Absorption (2 and 24 h and Thickness Swelling (2 h decreased with increasing percentage of coffee parchment. The Thickness Swelling (24 h showed not significant effect with an increase of coffee waste. The Modulus of Elasticity for coffee parchment particleboards was in the range 646.49 ± 112.65 to 402.03 ± 66.24 MPa, while the Modulus of Rupture ranged from 8.18 ± 1.39 to 4.45 ± 0.75 MPa. The results showed that 10% of coffee parchment could be added for production of particleboards.

  4. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  5. Health effects on nearby residents of a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Thornton, John; Anderson-Mahoney, P.M.; Takhar, Harpreet

    2003-01-01

    Objectives: The aim of the study was to evaluate the health status of nearby residents of a wood treatment plant who had sustained prolonged low-level environmental exposure to wood processing waste chemicals. Methods: A population of 1269 exposed residents who were plaintiffs or potential plaintiffs in a lawsuit against the wood treatment plant were evaluated by questionnaire for a health history and symptoms. A representative sample of 214 exposed subjects was included in the analysis. One hundred thirty-nine controls were selected from 479 unexposed volunteers and matched to the exposed subjects as closely as possible by gender and age. Subjects and controls completed additional questionnaires and were evaluated by a physician for medical history and physical examination, blood and urine testing, neurophysiological and neuropsychological studies, and respiratory testing. Environmental sampling for wood processing waste chemicals was carried out on soil and drainage ditch sediment in the exposed neighborhood. Results: The exposed subjects had significantly more cancer, respiratory, skin, and neurological health problems than the controls. The subjective responses on questionnaires and by physician histories revealed that the residents had a significantly greater prevalence of mucous membrane irritation, and skin and neurological symptoms, as well as cancer. (Exposed versus unexposed, cancer 10.0% versus 2.08%, bronchitis 17.8% versus 5.8%, and asthma by history 40.5% versus 11.0%) There were significantly more neurophysiologic abnormalities in adults of reaction time, trails A and B, and visual field defects. Conclusions: Adverse health effects were significantly more prevalent in long-term residents near a wood treatment plant than in controls. The results of this study suggest that plant emissions from wood treatment facilities should be reduced

  6. Significance of wood extractives for wood bonding.

    Science.gov (United States)

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  7. Fouling and slagging problems at recovered wood fuel combustion; Orsaker till askrelaterade driftproblem vid eldning av returtraeflis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Hoegberg, Jan [Vattenfall Utveckling AB, Stockholm (Sweden)

    2001-03-01

    CHP-plants that use a large portion of sorted wood waste fuel can face ash-related problems. By analysing the circumstances about these problems, the goal is to find causes for the problems and measures that can be taken. This knowledge can then be utilised in plants where it is desired to increase the portion of sorted wood waste fuel. For the measurements, a deposit probe is a good tool to use since the result is independent of many boiler-specific factors. Compared with forest residues, sorted wood waste causes a more problematic ash. The risk of troublesome fouling and corrosion seems to increase with increased admixture of sorted wood waste fuel. Plugging of the grate is associated with melts that are formed from metallic contamination in the fuel. These melts obstruct the air holes. The melts that have been seen during the project have had a content of aluminium, brass and zinc. In order to solve these problems, the construction and cooling of the grate and quality assurance of the fuel are important aspects. One problem that was found in all of the studied boilers (grates as well as fluidized beds) is growth of fouling on surfaces for heat transfer. Measurements with deposit probe show that the initial growth rate on superheaters are approximately 3 - 5 times higher when sorted wood waste is used than if forest residues is used. Even if this growth rate can not be extrapolated to a complete operating season, the relative difference between the fuels remains. The extent of the problem depends on the dimensioning of the boiler. The fouling tends to have a light outer layer that can be disadvantageous for the absorption of heat radiation. Haendeloe P11 needs for example to be stopped for cleaning with an interval of 2 - 3 months because of lost heat absorption in the furnace and the convection path. The most obvious ash related problem that was found in Haendeloe P11 when 100 % sorted wood waste fuel was used was corrosion on the walls of the lower parts of the

  8. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  9. Prediction of the working parameters of a wood waste gasifier through an equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Altafini, Carlos R.; Baretto, Ronaldo M. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Wander, Paulo R. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Federal Univ. of Rio Grande do Sul State (UFRGS), Mechanical Engineering Postgraduation Program (PROMEC), RS (Brazil)

    2003-10-01

    This paper deals with the computational simulation of a wood waste (sawdust) gasifier using an equilibrium model based on minimization of the Gibbs free energy. The gasifier has been tested with Pinus Elliotis sawdust, an exotic specie largely cultivated in the South of Brazil. The biomass used in the tests presented a moisture of nearly 10% (wt% on wet basis), and the average composition results of the gas produced (without tar) are compared with the equilibrium models used. Sensitivity studies to verify the influence of the moisture sawdust content on the fuel gas composition and on its heating value were made. More complex models to reproduce with better accuracy the gasifier studied were elaborated. Although the equilibrium models do not represent the reactions that occur at relatively high temperatures ( {approx_equal} 800 deg C) very well, these models can be useful to show some tendencies on the working parameter variations of a gasifier. (Author)

  10. BioWaste-to-Liquid. An ecologic-economic consideration of pyrolysis oil based on biogenic residual materials and wastes; BioWaste-to-Liquid. Oekologisch-oekonomische Betrachtung von Pyrolyseoel auf Basis biogener Rest- und Abfallstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Liemen, Franziska; Zech, Konstantin; Kroeger, Michael [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2012-07-01

    The joint research project BioWaste-to-Liquid, which is carried out by Deutsches BiomasseForschungsZentrum (DBFZ) and Karlsruhe Institute of Technology (KIT), focuses on the provision of alternative fuels by means of fast pyrolysis. Alongside the various tests and technical analyses, an ecologic and economic assessment was carried out, that examines the performance of different raw materials in terms of GHG-emissions and production costs. The herein examined raw materials were Rape straw, Sunflower straw, residues of corn harvesting, hay, waste wood, bark and driftwood from river Rhine. The results show a good performance of waste wood and draft wood both in ecologic and economic terms, whilst especially Sunflower straw can be considered rather unsuitable since it is particularly affected by the negative effects of the compensatory fertilization. The other raw materials perform varyingly in the ecologic and economic assessments. (orig.)

  11. Recovery, reuse and recycling by the United States wood packaging industry: 1993-2006

    Science.gov (United States)

    Robert J. Bush; Philip A. Araman; E. Bradley Hager

    2007-01-01

    The packaging industry is an important market for wood materials, especially low grade hardwoods. Approximately one-third of U.S. hardwood lumber production is utilized in the production of pallets and containers. The industry recovers significant volumes of pallets and containers from the waste stream for re-use, repair, and recycling. Industry by-products (both wood...

  12. A guide on resources of waste

    International Nuclear Information System (INIS)

    1989-07-01

    This book is a guide on resources of waste, which includes general remarks, analysis of investigation on city resources of waste, disposal and recycling technology of resources of waste, mechanical distinguish, incineration system, pyrolysis refuse derived fuel, composting, the recycling case of resources of waste, such as waste oil, waste plastic, waste tire, waste wood, waste ceramics and waste con crete, integrated recycling system and the cases like landfill gas, composting plant U.S. Bureau of Mines recycling system and law related resources of waste.

  13. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Directory of Open Access Journals (Sweden)

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  14. Regional analysis of potential energy production from agricultural wastes: technical and economic study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Have, H

    1981-01-01

    The possibilities for utilization of agricultural wastes for energy production are analyzed in two Danish counties, Ringkoebing and Vestsjaelland, which have different agricultural production patterns. The quantitative analysis shows that the major waste products, surplus straw, waste wood and animal waste, in total with present technique can cover about 28% of the demand for heat energy (mostly space heating) in both counties. The potential coverage from straw, wood and animal waste is about 3, 3 and 22% in Ringkoebing and 18, 2 and 8% in Vestsjaelland respectively. A technical analysis indicates that direct combustion is the most favorable conversion method for straw and wood while biological conversion at present is best suited for animal waste. An economic analysis based on costs of collection, storage, transport and conversion of wastes and costs of corresponding oil and oil conversion were made. From a community point of view only straw and wood are found to be competitive to the expensive gas fuel oil when burned in automatically stoked furnaces. From a heating station point of view waste utilization is more attractive because of the sales tax on oil products. Here straw and wood are competitive fuels to both gas and heavy fuel oil in all the analyzed systems except from the small manually stoked furnaces. Animal waste seems to be competitive only when replacing gas fuel oil in medium size (500 kW) well utilized aerobic fermenters.

  15. Green waste from spirit; Gruener Abfall zu Sprit

    Energy Technology Data Exchange (ETDEWEB)

    Heida, Lydia

    2013-05-15

    Bio MCN (Almere, The Netherlands) has built the largest factory of the world for the production of bio-methanol. This factory produces 250 million liter methanol annually from natural gas, green gas (from the fermentation of sugar beet residues) and crude glycerol. Crude glycerol arises from the biodiesel production. As part of the Wood Spirit Project, Bio MCN constructs an additional plant that converts 750,000 tons of wood waste to 250 million liters of methanol. The waste wood is chipped and converted to biochar by means of torrefaction. Biochar is pulverized and converted to synthesis gas. This synthesis gas is converted to methanol by means of a chemical catalyst.

  16. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  17. Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders R.; Larsen, Morten B.; Glarborg, Peter

    2012-01-01

    Cement production is highly energy intensive and requires large quantities of fuels. For both economical and environmental reasons, there is an increasing tendency for utilization of alternative fuels in the cement industry, examples being tire derived fuels, waste wood, or different types...... of industrial waste. In this study, devolatilization and combustion of large particles of tire rubber and pine wood with equivalent diameters of 10 mm to 26 mm are investigated in a pilot scale rotary kiln able to simulate the process conditions present in the material inlet end of cement rotary kilns...

  18. The logging waste as inexhaustible resource for alternative energy

    Directory of Open Access Journals (Sweden)

    Gryazkin Anatoliy V.

    2017-01-01

    Full Text Available The article shows that during the production and consumption of fuel wood for bioenergy projects in the organization of the Northwest and other regions of Russia there is the problem of lack of raw materials. It is established that the waste timber, during cutting on average, about 20% of the stock of standing timber. This value varies according to region, type forest resources and the skills, and technical equipment performer. Therefore, the main purpose of the article is a system evaluation of the use of forest residues in Russia. The authors present data on volumes of raw materials for production of wood chips and pellets on example, the Northwest region of Russia. Only about 30% of wood chips are now received from wood waste, bulk wood chips, and pellets produced from the wood of stems. Small volume of use of bark, twigs, branches, tops, stumps, and roots is due imperfection of processing technologies. Another important issue addressed in the article – the lack of standards and guides taxation inventory valuation and structure of the waste in many regions of Russia. This primarily relates to the hardwood. Research has shown that, depending on tree species, the structure and volume of waste are significantly different. Expert evaluation conducted by the authors shows that the proportion of forest residues from 5 to 20% of the stock of wood. It is found that in different forest types share twigs, branches, stumps, and roots vary considerably according to species of tree. But even within the forest reserves such as twigs, branches, and underground parts of the same species depend strongly on the age of stands and their completeness, and the differences may reach 2 to 5 times the size.

  19. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  20. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    It has been estimated that in the 20th century it is possible to recycle about 70 000 m{sup 3} of impregnated wood, corresponding to about 48 % of the total amount of annually demolished impregnated wood. The amount is estimated to grow up to 130 000 m{sup 3} in 2015 (about 65% of demolished impregnated wood). In the beginning half of the recyclable impregnated wood is poles, but the share of sawn timber will increase as the time goes by. The poles and pieces of them are demolished and transported to an intermediate storage e.g. on the yard of an electricity supply company, from which they can be fetched in larger quantities. Even wood impregnation plant can act as intermediate storage sites. Collection points for impregnated construction timber can be established on timer sales companies, but most of it will be collected at waste processing sites. The economy of impregnated wood recycling chain depends on the sales income of generated energy. Calculations show that collection, transportation and processing costs can be covered with the sales of impregnated wood for energy generation and with recycling fees. The recycling fee for sawn timber would be 20 FIM/m{sup 3} and that for poles 64 FIM/m{sup 3}. In 2001 recycling fees were set for impregnated wood, the fees being 11 FIM/m{sup 3} for sawn timber and 42 FIM/m{sup 3} for poles. Collected impregnated wood can be crushed with either fixed or movable crushers used for crushing of waste wood. The impurities of wood (bolts, nails, stones, etc.), large dimensions of wood, in- homogenous material and dust require special features for the crushing equipment. Crushing device can be equipped with feeding crane and saw for processing of large-dimension wood, and metal detectors and magnetic separators if needed, but the large metal scrap has to be removed before crushing. At present in Finland there is not a combustion plant capable for combustion of impregnated wood without any modification. Improvements of flue gas

  1. Evaluation of the use of waste of soybeans (Glycine max (L.)) combined with wood waste in making briquet; Avaliacao da utilizacao de residuo de soja (Glycine max (L.)) combinado com residuo de madeira de confeccao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Travessini, Rosana; Schutz, Fabiana Costa de Araujo; Anami, Marcelo Hidemassa; Scherpinski, Neusa Idick [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)], Emails: rosana_travessini@yahoo.com.br, fabianaschutz@gmail.com, mhanami@gmail.com, neusascherpinski@gmail.com

    2010-07-01

    The agricultural industry produces a large amount of which use biomass is an alternative energy economically viable through the compression portion of ligno-cellulose as raw material to replace the wood with an equivalent product, by briquetting. This study aimed to evaluate the technical feasibility of manufacturing fuel briquettes made from soybean residues combined with waste wood. The making of briquettes was performed in the laboratory of Electromechanics of UTFPR campus Medianeira PR. For this analysis, we assessed the content of moisture, ash, fixed carbon content of porosity and higher calorific value. From the results we can conclude that the manufacture of briquettes from lignocellulosic raw materials is an extremely viable energy flashlight for the region of the Bacia do Rio Parana III. (author)

  2. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  3. Extant contents of chromium, copper and arsenic in waste CCA-treated timber

    International Nuclear Information System (INIS)

    Chiba, Keiko; Uchida, Shinpei; Honma, Yoshinori; Sera, Koichiro; Saitoh, Katsumi

    2009-01-01

    The segregation and disposal of chromated copper arsenate (CCA)-treated wood waste when recycling building waste materials is a serious issue. We examined the contents of CCA preserved cedar timber by PIXE analysis. CCA preserved timber contained large amounts of these metals both on the surface and core of the wood. The ratio of chromium, copper and arsenic contained on the surface was 1:2:1, and in contrast, the ratio in the core was 1:1:2. In other words, the arsenic content was highest in the core. Moreover, the chemical form of arsenic in both parts of the wood was only inorganic arsenic; the same form of arsenic in preservative components known as carcinogenic substances. These findings mean that the complete separation of waste CCA preserved timber from construction and demolition wood is needed. (author)

  4. BIOREMEDIATION TREATABILITY STUDIES OF CONTAMINATED SOILS AT WOOD PRESERVING SITES

    Science.gov (United States)

    Bioremediationis used frequently at sites contaminated with organic hazardous chemical where releases from processing vessels and the mismanagement of reagents and generated waste have contributed to significant impairment of the environment. At wood treater sites, process reagen...

  5. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  6. Wood chip delivery and research project at Mikkeli region

    International Nuclear Information System (INIS)

    Saksa, T.; Auvinen, P.

    1995-01-01

    In 1994, a large-scale energywood production chain was started as a co-operation project by the Mikkeli city forest office and local forestry societies. Over 60 000 m 3 (about 46 000 MWh of energy) of forest processed chips were delivered to Pursiala heat and power plant in Mikkeli. About 60 % of these chips was whole tree chips from improvement cuttings of young forest stands and the rest was logging waste chips from regeneration cutting areas. The average total delivery costs of forest processed chips after reduction of energywood and other subsidies were approximately 51 FIM/m 3 (68 FIM/MWh) for the whole tree chips and 40 FIM/m 3 (53 FIM/MWh) for logging waste chips. The delivery costs of wood chips could compete with those of fuel peat only in the most favourable cases. The resources of forest processed chips were studied on the basis of forestry plans. According to the study, there is enough raw material for permanent, large-scale delivery of forest processed chips (up to 250 000 m 3 /a) in the forests located at a distance of under 40 road kilometers from the Pursiala heat and power plant. The following project stages will involve further development of the wood chip delivery chain logistics, as well as improvement of logging and chipping equipment and methods in energywood and logging waste production. Also the effects of wood energy production on the economy and environment of the whole Mikkeli region will be studied. (author)

  7. WOOD PROPERTIES AND EFFECT OF WOOD PROPERTIES ON THE WOOD FINISHING

    Directory of Open Access Journals (Sweden)

    Abdulkadir Malkoçoğlu

    2006-04-01

    Full Text Available Wood is basic raw material for furniture and joinery industries with wood structures. Wood is a biological material that has widely different properties depending on species, geographic area where the tree grew, the growth condition, size of the tree at harvest, sawing, and other manufacturing processes. Wood properties have been characterized within two groups as natural and manufacturing factors that effects finishing performance. Grow rate, density, knots, moisture content, extractives and juvenile wood are natural characteristics. Grain orientation, texture, drying and performance expectations are manufacturing characteristics. In this review, the effects of natural and manufacturing characteristics are discussed on the surface finishing performance of wood.

  8. Impact of chromated copper arsenate (CCA) in wood mulch.

    Science.gov (United States)

    Townsend, Timothy G; Solo-Gabriele, Helena; Tolaymat, Thabet; Stook, Kristin

    2003-06-20

    The production of landscape mulch is a major market for the recycling of yard trash and waste wood. When wood recovered from construction and demolition (C&D) debris is used as mulch, it sometimes contains chromated copper arsenate (CCA)-treated wood. The presence of CCA-treated wood may cause some potential environmental problems as a result of the chromium, copper, and arsenic present. Research was performed to examine the leachability of the three metals from a variety of processed wood mixtures in Florida. The mixtures tested included mixed wood from C&D debris recycling facilities and mulch purchased from retail outlets. The synthetic precipitation leaching procedure (SPLP) was performed to examine the leaching of chromium, copper and arsenic. Results were compared to Florida's groundwater cleanup target levels (GWCTLs). Eighteen of the 22 samples collected from C&D debris processing facilities leached arsenic at concentrations greater than Florida's GWCTL of 50 microg/l. The mean leachable arsenic concentration for the C&D debris samples was 153 microg/l with a maximum of 558 microg/l. One of the colored mulch samples purchased from a retail outlet leached arsenic above 50 microg/l, while purchased mulch samples derived from virgin materials did not leach detectable arsenic (<5 microg/l). A mass balance approach was used to compute the potential metal concentrations (mg/kg) that would result from CCA-treated wood being present in wood mulch. Less than 0.1% CCA-treated wood would cause a mulch to exceed Florida's residential clean soil guideline for arsenic (0.8 mg/kg).

  9. Availability and conversion to energy potentials of wood-based industry residues in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Siyam Siew, S.

    2000-01-01

    The importance of biomass as the most accessible primary energy source in Cameroon is presented. The valorization of wood wastes and residues is seen as a way of implementing the sustainable use of biomass resources. A recent survey of wood-based industries in Cameroon reveals that large volumes of industrial wood residues are generated in the rain forest areas and are inefficiently used. Important quantities are lost in the form of burning in the four main forestry provinces, while other parts of the country suffer from fuelwood shortage. With the exception of the plywood factories, the wood industry is essentially dependent on commercial energy. An analysis made to show the economic and environmental benefits of converting wood residues to energy for industrial and domestic use is presented. (author)

  10. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  11. Climatic impact of increased use of wood; Klimamessige virkninger av oekt bruk av trevirke

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-22

    This report evaluates the climatic impact of increased absorption/storage of carbon and use of wood. This includes the impact on carbon storage through forest growth, increased use of wood products with long life, and the effect on CO{sub 2} emission of the increasing replacement of fossil fuel with wood. It also includes the effects of depositing or burning wood wastes or wood products. The main emphasis is placed on the climatic impact of the use of wood, especially for power generation, recirculation or burning of paper and the use of wood for buildings. The report also discusses briefly the carbon cycle and the principal aspects of absorption and storage of carbon as means compared to other climatic means. The possible long-term effects which efforts to increase the absorption and prolong the fixation of CO{sub 2} might have on the market prices of timber and wood products, etc., are discussed. Costs or potential for increased use of wood are not stated. 21 refs., 2 figs., 13 tabs.

  12. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    Shearon, M.D.

    1992-01-01

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  13. Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gregorio, M.R.; Garcia-Falcon, M.S.; Martinez-Carballo, E. [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain); Simal-Gandara, J., E-mail: jsimal@uvigo.es [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain)

    2010-06-15

    Polycyclic aromatic hydrocarbons (PAHs) can be formed during the refinery processes of crude petroleum. Their removal is of great importance. The same happens with other organic solvents used for the extraction of PAHs (hexane, acetonitrile...), which can be polluted with PAHs. Kinetic and equilibrium batch sorption tests were used to investigate the effect of wood ashes wastes as compared to activated carbon on the sorption of three representative PAHs from n-hexane and acetonitrile. Mussel shell ashes were discarded for batch sorption experiments because they were the only ashes containing PAHs. The equilibrium time was reached at 16 h. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the PAHs removal process. Our investigation revealed that wood ashes obtained at lower temperature (300 deg. C) did not show any PAHs sorption, while ashes obtained at higher temperature (>500 deg. C) have adsorbent sites readily available for the PAH molecules. An increase in the molecular weight of PAHs has a strong effect on sorption wood ashes wastes. As low the wood ashes particle size as high the sorption of PAHs, as a result of differences in adsorbent sites. The performance of wood ash wastes vs. activated carbon to remove 10 PAHs from organic solvents is competitive in price, and a good way for waste disposal.

  14. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  15. Quality wood chips - an alternative to pellets; Alternative zu Pellets. Qualischnitzel

    Energy Technology Data Exchange (ETDEWEB)

    Keel, A.

    2008-07-01

    This article takes a look at a new wood-chip product that features wood-chips that are dryer than traditional ones. The new 'quality chips' are also of a calibrated size and are supplied dust-free. Their low water content permits their use in the same areas as wood pellets, where, especially in summer, low water-content is important. The increasing use of pellets and the growing shortages of clean sawdust and shavings for their production is commented on, as is the use of forestry wastes in pellet production. The new wood-chip product is further discussed as being a direct alternative to pellets. The low 'grey energy' content for tree-felling, hacking, transport and the drying of the chips is quoted as being less than 5% of the energy in the chippings.

  16. Comparisons of four categories of waste recycling in China’s paper industry based on physical input–output life-cycle assessment model

    International Nuclear Information System (INIS)

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-01-01

    Highlights: ► Using crop straws and wood wastes for paper production should be promoted. ► Bagasse and textile waste recycling should be properly limited. ► Imports of scrap paper should be encouraged. ► Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input–output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China’s paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  17. Quantities of arsenic-treated wood in demolition debris generated by Hurricane Katrina.

    Science.gov (United States)

    Dubey, Brajesh; Solo-Gabriele, Helena M; Townsendt, Timothy G

    2007-03-01

    The disaster debris from Hurricane Katrina is one of the largest in terms of volume and economic loss in American history. One of the major components of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures such as electrical poles, fences, decks, and homes a considerable amount of treated wood and consequently arsenic will be disposed as disaster debris. In this study an effort was made to estimate the quantity of arsenic disposed through demolition debris generated in the Louisiana and Mississippi area through Hurricane Katrina. Of the 72 million cubic meters of disaster debris generated, roughly 12 million cubic meters were in the form of construction and demolition wood resulting in an estimated 1740 metric tons of arsenic disposed. Management of disaster debris should consider the relatively large quantities of arsenic associated with pressure-treated wood.

  18. FY 1999 report on the development of technology to recycle architectural waste materials, glass, etc. Development of technology to recycle architectural waste materials; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Waste wood materials in the materials discharged from architectural disassembly were regarded as a potential wood resource, and the R and D of the technology to recycle these were conducted. Studies were made on the technology to finely grind waste wood materials, technology to compress/form waste wood materials and ground wood powder, verification of strength characteristics/dimension stability of the formed wood materials, etc. As to the wood materials which were badly degraded under ultra violet rays, they were coloring-processed by the steam treatment, and a possibility of coating substitution was confirmed. In relation to the technology to produce compressed wood materials, the optimization of heat treatment conditions was experimentally conducted. About the technology to give dimensional stability, dimensional stability was improved as a result of the improvement of chemicals feeding and the development of chemically processed drugs. In the development of light formed products, the board was successfully formed which is light in weight using lignocelluloses/inorganic hydrates and has the bending strength higher than that of the plaster board. In the development of interior materials, the technology was developed in which ground wood powder and thermo-plastic resin are mixed for die molding, and the OA floor using this was commercialized. (NEDO)

  19. Ashes from straw and wood-chip fired plants for agricultural usage. Pilot project

    International Nuclear Information System (INIS)

    Morsing, M.; Westborg, S.

    1994-08-01

    The content of nutrients and heavy metals in ashes from the combustion of straw and wood chips at district heating plants is studied, on the basis of results of analyses from Danish municipalities, to determine whether such ashes are suitable for use as fertilizers. Results of the analysis of ashes from 9 wood-chip fired and 26 straw-fired plants are presented. They show significant variations in nutrient and heavy metal content which could be caused by combustion and operational conditions and/or testing methods. On condition that the phosphorous content of straw and wood-chip ashes amount to 1% of the dry matter, 50%-75% of the straw ashes and under 50% of wood chip ashes analyses are within the limit for cadmium stipulated in the Danish Ministry of the Environment's Executive Order no. 736 on the use of wastes for agricultural purposes. This is found to be unsatisfactory. It is suggested that a closer investigation should be undertaken in order to determine which amount of straw and wood-chip ashes can be accepted for use as fertilizers in consideration of the stipulated limits for cadmium content of wastes to be used for agricultural purposes. In addition the technological and economic potentials of dosing of these ashes for this use should be investigated. Fly ash and slag were also included in the analysis results studied and it was found that the cadmium content of slag did not prevent its use as fertilizer, but that the distribution of cadmium in slag, in fly ash and in slam from flue gas cleaning systems related to the combustion of wood chips should be further investigated. (AB)

  20. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci

    Energy Technology Data Exchange (ETDEWEB)

    He, Yucai; Li, Xiaolu; Xue, Xiaoyun; Swita, Marie S.; Schmidt, Andrew J.; Yang, Bin

    2017-01-01

    In this study, R. opacus PD630, R. jostii RHA1, R. jostii RHA1 VanA-, and their co-culture were employed to convert hydrothermal liquefaction aqueous waste (HTLAW) into lipids. After 11 days, the COD reduction of algal-HTLAW reached 93.4% and 92.7% by R. jostii RHA1 and its mutant VanA-, respectively. Woody-HTLAW promoted lipid accumulation of 0.43 g lipid/g cell dry weight in R. opacus PD630 cells. Additionally, the total number of chemicals in HTLAW decreased by over 1/3 after 7 days of coculture, and 0.10 g/L and 0.46 g/L lipids were incrementally accumulated in the cellular mass during the fermentation of wood- and algal-HTLAW, respectively. The GC-MS data supported that different metabolism pathways were followed when these Rhodococci strains degraded algae- and woody-HTLAW. These results indicated promising potential of bioconversion of under-utilized carbon and toxic compounds in HTLAW into useful products by selected Rhodococci.

  1. Production of furfural from timber wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kulkevics, A.; Pugulis, J.; Daugavietis, M.; Sav' yalov, V.A.; Bucena, A. Ya.

    1980-01-01

    A pilot plant was designed for the manufacture of furfural (I) (with an output of 135 tons/y) from chipping and wood waste (containing greater than or equal to 30% bark) in the presence of H/sub 2/SO/sub 4/. The operating parameters of the pilot plant are discussed. I was obtained in 6.8 to 7.6% yield (as a percentage of dry wood.

  2. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  3. Cord Wood Testing in a Non-Catalytic Wood Stove

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  4. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  5. FY 1994 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1994 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This 5-year joint project (FY 1990 to 1994) by Japan and the Philippines is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized in the Philippines into electric power, in which thermal decomposition/gasification of the wastes is combined with a gas engine system. The field tests of the demonstration plant successfully produce power of 100 kW by burning only the low-calorie gas with a heating value near critical level for self-sustained combustion, obtained by gasification of sawdust by the fluidized gasifier and refined, attaining the object of the project. It is confirmed that a 200 to 300 kW class commercial plant can be designed and constructed basically by scaling up the 100 kW demonstration plant. The other data obtained by the field tests include those for improved operability and maintainability, gas purification, and reducing sizes of the facilities, including utility facilities. (NEDO)

  6. Technology and distribution of pellets. Experience about the European network on wood pellets

    International Nuclear Information System (INIS)

    Rapp, S.W.

    1999-01-01

    Wood pellets might become the most important alternative to fossil fuels in the near future. As a bio-fuel it has the following characteristics: heat value, min 4.7 kWh/kg; ash fraction less than 1.0 vol. %; humidity less than 10 vol. %; diameter (rod shaped) min 6 mm and volumetric weight about 650 kg/m 3 . About 2.1 t pellets substitute 1000 l fuel oil. Sweden and Austria have more than 15 year experience in using wood pellets, followed by Germany. They are an environmentally friendly alternative for private houses, for district heating plants and especially suitable for densely built-up and inhabited areas. Having high energy density they can be transported to the areas with high energy requirements. Among their advantages are: low humidity, easy transport and storage, can be produced by renewable raw materials and provide new local jobs, fit for renewable energy systems with closed cycle. Disadvantages include: relatively more expensive for private houses compared to oil and gas and necessity of two times larger storage space than oil. Wood pellets are produced by all kind of paper waste and wood wastes from industry. They are especially suitable for small boiler plants and the oil burner can be replaced by a pellet burner in the same boiler. The leading producer of wood pellets is Sweden, of pellet stoves - USA. Pellet stoves, pellet burners and pellet boilers both for private houses and for heating plants are manufactured also in Sweden, Denmark,Finland, Germany, Austria and Ireland

  7. High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

    OpenAIRE

    Alipour, Yousef

    2013-01-01

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are...

  8. Application of near-infrared spectroscopy to preservative-treated wood

    Science.gov (United States)

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  9. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  10. Integrated production method for wood fuel and pulp wood in Northern Finland; Integroitu energiapuun tuotanto-menetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A [Hooli Oy, Kemi (Finland); Ranta, T [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    Hooli Oy, operating mainly in the Northern Finland has developed the production method suitable for bunch-processing of small wood. The mobile machine, consisting of delimber-debarker, and fuel fraction crusher units, produces debarked stemwood for pulping industry and branchwood-bark chips for thermal power stations. The basic method has been ready for demonstration and practical applications since in the beginning of year 1996. The objective of the project is to develop a method suitable for bundle processing of small wood, in which the trees are delimbed and debarked, and the formed waste wood is crushed using a machine unit, developed especially for this purpose. The method is based on utilisation of a separate delimbing-debarking unit, which operates separately from the pulpwood transportation chain, so the pulpwood transportations can be done at the proper time either as debarked roundwood or chips. Based on field experiments in 1995 - 1996, to attain the targets of the project looks promising. In 1997 there will happen technical modifications to the machine to improve the debarking results (target < 1 % bark content) of the bolts and to improve the logistic productivity of the whole production chain

  11. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  12. Developing wood construction in France in order to enhance energy independence, reduce greenhouse gas emissions and develop employment

    International Nuclear Information System (INIS)

    2015-05-01

    In France, forests represent a third of the surface of the whole country, whereas the national commercial balance on transformed wood shows a large deficit. A well designed development of wood production and transformation for the construction sector could induce many beneficial effects: diminution of greenhouse gas (CO_2) emissions related to the production of construction materials (cement, steel); substitution of a part of space heating fuels by wood collection and transformation by-products and wastes; and decrease of imports of hydrocarbons (through fuel substitution) and transformed woods (through a better transformation in France of timbers grown in French forests). Some recommendations concerning the development of the wood construction sector are given

  13. Obtaining fuel briquets from the solid municipal waste

    International Nuclear Information System (INIS)

    Armenski, Slave; Kachurkov, Gjorgji; Vasilevski, Goce

    1998-01-01

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  14. Wood as a raw commodity and energy carrier; Holz als Rohstoff und Energietraeger. Dynamisches Holzmarktmodell und Zukunftsszenarien - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, B.; Buergi, P.; Bruehlhard, S. [Schweizerische Hochschule fuer Landwirtschaft, Zollikofen (Switzerland); Thees, O.; Lemm, R.; Rosset, Ch. [Eidg. Forschungsanstalt fuer Wald, Schnee und Landschaft, WSL, Birmensdorf (Switzerland)

    2010-05-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at a dynamic wood-market model and the future prospects for the use of wood as a raw commodity and energy carrier. As an introduction, an overview of Swiss and international wood markets is provided. Various sorts of timber - from whole tree-trunks to waste wood for use as an energy source - are discussed. The international wood market is looked at and future developments are discussed. The report goes on to deal with four project stages which help provide an information basis in order to be able to review the current situation and the future developments in the Swiss wood industry. The first stage of the project involved the elaboration of a material-flow matrix for the year 2005. The sources of the data are discussed. Inconsistencies in the data are looked at and the Swiss wood market is analysed. This material-flow matrix provided the basis for a second step, the development of a product-oriented, dynamic wood market model. Here, all sources of wood from forests to waste wood are looked at and their use for building and as an energy resource is considered. Model development, variants and modelling factors are discussed. An expert-aided model is looked at. The market models developed were used for the third step, the development of scenarios for future development. Five scenarios were developed, including higher energy costs, a large, heavy storm event, increased per capita wood use, increasing global timber prices as well as the installation of a new, large-scale sawmill. In a final step, based on knowledge gained from the previous steps, suggestions for further action to be taken by politics were elaborated. Here, measures that would have an effect on supply and demand are suggested that could help decrease the costs for the harvesting of wood resources and support changes in the market behaviour of forest owners.

  15. Chapter 6: Wood energy and competing wood product markers

    Science.gov (United States)

    Kenneth E. Skog; Robert C. Abt; Karen Abt

    2014-01-01

    Understanding the effect of expanding wood energy markets is important to all wood-dependent industries and to policymakers debating the implementation of public programs to support the expansion of wood energy generation. A key factor in determining the feasibility of wood energy projects (e.g. wood boiler or pellet plant) is the long-term (i.e. 20-30year) supply...

  16. Wood adhesives : vital for producing most wood products

    Science.gov (United States)

    Charles R. Frihart

    2011-01-01

    A main route for the efficient utilization of wood resources is to reduce wood to small pieces and then bond them together (Frihart and Hunt 2010). Although humankind has been bonding wood since early Egyptian civilizations, the quality and quantity of bonded wood products has increased dramatically over the past 100 years with the development of new adhesives and...

  17. Proceedings of the DOE residue and waste fuels utilization program contract or review meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Commercialization of wood combustion was discussed at this meeting. The use of agricultural and wood wastes as energy sources was also discussed. Separate abstracts were written for individual items. (DC)

  18. A look at worldwide usage of residual wood for energy

    International Nuclear Information System (INIS)

    Ekstrom, H.; Hall, M.M.

    2007-01-01

    Wood Resources International was established in 1987, offering on-site evaluation services of forest resources and forest industry developments in over 20 countries worldwide. This presentation reviewed residual wood markets in North America and Europe. Wood chip trade and wood pellet markets were also reviewed. It is estimated that more than 50 per cent of the wood harvested worldwide is used for heating and cooking. Although sawmill wood residue has been typically used for particle board manufacturing, the energy sector in North America and Europe is now competing for low cost residuals, including sawdust, shavings and wood chips. With demand for renewable resources increasing, district heating plants have revived an interest in collecting the nearly 35 per cent of biomass left behind after traditional clear cutting. This biomass represents branches, tops and stumps left behind after the roundwood has been removed. In Canada, demand for mill residuals has grown and wood pellet manufacturers have the opportunity to invest in capacity while continuing to produce competitively priced pellets for the European market. It is anticipated that in the next decade, large volumes of beetle-killed wood are going to be available in British Columbia for energy consumption, including wood pellet production. Prices for sawdust have doubled over the past 3 years as a result of increased competition. The biomass supply potential in the United States is 7 times the current consumption. There is an increased interest in bioenergy in California due to the declining lumber sector. As such, the use of forest and agricultural waste is on the rise, along with prices for wood residues. There has also been a large increase in demand for wood biomass in Europe over the past 5 years, resulting in higher costs of all wood fiber sources used for energy. By 2020, Europe has set a target that all energy should come from renewable energy sources, with a minimum of 10 per cent being biofuel for

  19. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  20. FY 1992 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1992 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1992 as the third year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  1. FY 1991 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1991 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1991 as the second year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  2. FY 1990 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1990 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1990 as the initial year include negotiations with the Philippines, on-the-spot surveys for the demonstration plant sites and conditions, and conceptual designs of the demonstration plant. (NEDO)

  3. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    Directory of Open Access Journals (Sweden)

    Horváth Jozef

    2015-06-01

    Full Text Available With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m−2 and 50 kW.m−2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  4. In line wood plastic composite pyrolyses and HZSM-5 conversion of the pyrolysis vapors

    International Nuclear Information System (INIS)

    Lin, Xiaona; Zhang, Zhijun; Tan, Shun; Wang, Fengqiang; Song, Yongming; Wang, Qingwen; Pittman, Charles U.

    2017-01-01

    Graphical abstract: HZSM-5 can be used to catalytic convert Wood Fiber-Polypropylene or Wood Fiber-Polypropylene pyrolysis vapors into aromatic compounds in reasonable selectivities. This provides a recycling utilization WPCs wastes method. - Highlights: • Converting wood/plastic composites (WPC) wastes into aromatics. • Recycling WPC by fast pyrolysis coupled with vapor catalytic cracking. • Selective production of aromatics from WPCs and their components over HZSM-5. • Acid site concentration inside zeolite was critical for maximizing aromatic yield. • Synergistic effects between wood and plastics enhanced aromatics production. - Abstract: Wood powder-high density polyethylene (WPE) and wood powder-polypropylene (WPP) composites were pyrolyzed at 550 °C in the presence of HZSM-5 catalysts using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Immediately passing the pyrolysis vapors through the HZSM-5 changed the product distribution by producing aromatic hydrocarbons and eliminating tar formation. Zeolite HZSM-5 was employed with three different silica-to-alumina ratios (25, 50, 260). The influence of catalysts on the yields of aliphatic and aromatic hydrocarbons, furan derivatives, lignin-derived compounds and acetic acid was studied. High yields of aliphatic hydrocarbons formed in WPE or WPP pyrolysis alone. The highest yields of aromatic hydrocarbons from WPE or WPP pyrolysis vapors over HZSM-5 occurred with a zeolite framework Si/Al ratio of 25 (more acid sites), suggesting that the concentration of acid sites inside the zeolite was critical for maximizing aromatic yield. Exposing vapors to HZSM-5 increased the hydrocarbon yields and reduced the amount of acetic acid produced, resulting in increased calorific value. The yields of typical aromatics from catalytic pyrolysis of WPP mixture and composites were higher than those of the calculated values of poplar wood and PP catalytic pyrolysis individually, indicating that a

  5. Wood frame systems for wood homes

    Directory of Open Access Journals (Sweden)

    Julio Cesar Molina

    2010-12-01

    Full Text Available The use of constructive systems that combine strength, speed, with competitive differential techniques and mainly, compromising with the environment, is becoming more popular in Brazil. The constructive system in wood frame for houses of up to five stories is very interesting, because it is a light system, structured in reforested treated wood which allows the combination of several materials, besides allowing speed in the construction and total control of the expenses already in the project phase for being industrialized. The structural behavior of the wood frame is superior to the structural masonry in strength, thermal and acoustic comfort. However, in Brazil, the wood frame is still little known and used, due to lack of technical knowledge about the system, prejudice associated the bad use of the wood as construction material, or still, in some cases, lack of normalization. The aim of this manuscript consists of presenting the main technical characteristics and advantages of the constructive system in wood frame homes, approaching the main stages of the constructive process through examples, showing the materials used in the construction, in addition the main international normative recommendations of the project. Thus, this manuscript also hopes to contribute to the popularization of the wood frame system in Brazil, since it is a competitive, fast and ecologically correct system. Moreover, nowadays, an enormous effort of the technical, commercial and industrial section has been accomplished for the development of this system in the country.

  6. Bridging the gap between research and application -- business plan spreadsheets are helping wood recovery efforts

    Science.gov (United States)

    Philip A. Araman; E. Hager; A.L. Hammett

    1998-01-01

    Wood pallets break or end up in the wrong places where they are no longer useful. They become a waste problem that needs to be dealt with. Many find their way to recovery and repair facilities, but many don’t and most likely end up in landfills. Our charge is to reduce landfilling of unwanted and discarded wood pallets and to push them into highest value uses. To help...

  7. Hazardous air emissions potential from a wood-fired furnace

    International Nuclear Information System (INIS)

    Hubbard, A.J.

    1995-01-01

    During the first week of April, 1991 the Wisconsin Department of Natural Resources (WDNR) conducted a series of air emissions tests of a small industrial wood-fired boiler in northern Wisconsin. The boiler was firing a virgin hogged wood/wood waste fuel with a moisture content of about 35 percent. The pollutants measured were particulates, nitrogen oxides (NOx), carbon monoxide (GO), total hydrocarbons (THC), benzene, formaldehyde (CHOH), polycyclic organic matter (POM, e.g. Benzo (a) pyrene), aldehydes, and trace metals (As, Ba, Cu, Pb, Mn, Ni, K, Se, Na, and Zn). For two and a half days continuous emissions data were recorded by laboratory-certified continuous emissions monitors for CO, NOx, 0-2, THC, and COq2 while the EPA reference method stack tests were being conducted for the other pollutants. In addition, a WDNR test team measured CO, 0-2, and flue gas temperature with a Rosemount portable combustion analyzer for several hours over the course of those two and a half days. The principal purpose behind the study was to evaluate the hazardous air emissions potential of a small industrial furnace firing a virgin wood fuel. To that end, it was hoped that a surrogate pollutant could be identified which would represent the levels of hazardous air emissions (e.g., benzene) present in the wood-fired furnace flue gases. If a readily monitorable pollutant could be identified, then a regulatory strategy of measuring one representative pollutant could be put in place to continually assess the hazardous emissions potential of virgin wood combustion. (UK)

  8. Yearbook 1998. TULISIJA Research Programme for Wood Firing Technology; Vuosikirja - Aarsbok 1997. TULISIJA

    Energy Technology Data Exchange (ETDEWEB)

    Ljung, M.; Kilpinen, P. [eds.

    1999-11-01

    TULISIJA is the 3-year national research programme for small scale wood firing technology with the aim to assist manufacturers in their efforts to develop the most emission-free, yet efficient, wood firing equipment in the world. The following ten projects have been in progress during the year 1998: The behaviour of fuel; Computational fluid dynamics simulation of combustion in small scale wood ovens; computational fluid dynamics simulation of combustion in small scale wood ovens and modelling of emission chemistry; Modelling of heat transfer in fireplace walls and constructions; Detailed emission and temperature measurements in the TULISIJA test oven; Measurement environment for fireplace testing; Reduction of emissions from soapstone fireplaces; Development of a new modular method for fireplace manufacture; Replacement of energy intensive raw material with recycled industrial waste and further development of combustion processes in fireplaces and Instructions for dimensioning and design of fireplaces for optimum living atmosphere in residences

  9. Technical development of a retrofit wood burner for coal under-fed stokers in County Durham, and set up of demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.

    2002-07-01

    Durham County Council wishes to convert its coal-burning solid fuel boilers to make use of readily-available waste wood dust. It is intended that the wood dust be converted to pelleted fuel. The emphasis was on cost-cutting rather than boiler efficiency. The experimental studies were carried out at two schools where the boilers were welded steel and cast iron sectional boilers. Factors studied were air supply to the boilers, fuel feed systems, fuel storage, fuel delivery and pelletization. The results have shown that operating costs of wood burning boilers are a little greater than coal-burning but this is slightly offset by savings elsewhere. The environmental benefits were significant in terms of lower emissions from the boilers, reduced road transport, and the wood waste is no longer sent to landfill. Further areas of study are recommended. The contractor for this study was North Energy Associates Ltd, and the study was part of the DTI Sustainable Energy Programme.

  10. Wood ethanol: a BC value-added opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, B. W.; O' Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary.

  11. Wood ethanol: a BC value-added opportunity

    International Nuclear Information System (INIS)

    McCloy, B. W.; O'Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary

  12. Wood

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    come from? How is it harvested? How is it manufactured and treated ? How are the buildings detailed and protected against weather during construction to keep them dry and make them long-life ? In a period of climate change, forests are the last lungs of the planet to sequestrate CO2. Their global size......Wood – a sustainable building material ? For thousands of years and all over the planet, wood has been used as a building material and exciting architecture has been created in wood. The fantastic structural, physical and aesthetic properties of the material as well as the fact that wood...

  13. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  14. Classification of waste wood treated with chromated copper arsenate and boron/fluorine preservatives; Classificacao de residuos de madeira tratada com preservativos a base de arseniato de cobre cromatado e de boro/fluor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, Suzana Frighetto; Santos, Heldiane Souza dos; Miranda, Luciana Gampert; Azevedo, Carla M.N.; Pires, Marcal J.R., E-mail: suzana.ferrarini@gmail.com [Faculdade de Quimica, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Maia, Sandra Maria [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-07-01

    Classification of waste wood treated with chromated copper arsenate (CCA) and boron/fluorine preservatives, according to NBR 10004, was investigated. The leaching test (ABNT NBR 10005) for As and Cr, and solubilization test (ABNT NBR 10006) for F, were applied to out-of-service wooden poles. Concentrations of As and Cr in leachates were determined by ICP-MS and of F by ESI. Values for As were higher than 1 mg L{sup -1} classifying the waste as hazardous material (Class I) whereas values for F (> 1.5 mg L{sup -1}) were non-hazardous but indicated non-inert material (Class IIA). (author)

  15. Effects of Different Agricultural Wastes on Some Growth Factors, Yield and Crude Polysaccharide Content of Fruit of “Reishi” A Medicinal Mushroom

    Directory of Open Access Journals (Sweden)

    Masoud Azimi

    2017-02-01

    , biological yield andcrude polysaccharide content and polysaccharide contents of fruits. Material and Methods:The main portion of the medium for production of Ganodermalucidum was wood chips as 5-10 mm long that supplemented with different agricultural wastes included black seed waste, tea waste, hazelnut waste, coconut waste, almond wasteand sesame waste, with two types of bran (wheat and rice. The statistical design was afactorial experiment on the basis of completely randomized design with threereplications. The treatment were included Wood chips (80 percent + black seed waste (10 percent + rice bran (10 percent Wood chips (80 percent + tea waste (10 percent + rice bran (10 percent Wood chips (80 percent + sesame waste (10 percent + rice bran (10 percent Wood chips (80 percent + hazelnut waste (10 percent + rice bran (10 percent Wood chips (80 percent + coconut waste (10 percent + rice bran (10 percent Wood chips (80 percent + black seed waste (10 percent + wheat bran (10 percent Wood chips (80 percent + almond waste (10 percent + wheat bran (10 percent Wood chips (80 percent + sesame waste (10 percent + wheat bran (10 percent Wood chips (80 percent + hazelnut waste (10 percent + wheat bran (10 percent Wood chips (80 percent + coconut waste (10 percent + wheat bran (10 percent At first Wood chips soaked in water for 2 days until the their moisture reached60-65 then the other agricultural waste materials added on the basis of the treatments and the autoclavable propylene bags filledwith the mixture and autoclaved for 2 hours at 121ºC. After cooling, all bags inoculated with wheat spawn of the Ganodermalucidium and the bags putunderdark condition in growth chamber with 85-95% humidity at 30ºC. After full colonization of the bags, they transfer to the light condition (200-500 Lux at 25ºC until primordial formation. Then the light increased to 500-700 Lux until fruiting body formation. Results and Discussion: The results of analysis of variance showed that the use of these

  16. Exhumation of radioactive solid wastes buried for fourteen years

    International Nuclear Information System (INIS)

    Horton, J.H.

    1977-03-01

    Twenty-five linear feet of a low-level beta-gamma waste trench was excavated fourteen years after the waste was buried. The waste included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials to deteriorate visibly. Apparently, decades would be required for all cellulose materials to decompose, and plastics and metals would survive indefinitely

  17. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    Science.gov (United States)

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Encapsulation and re-use of wood industry waste: varnish powder

    Directory of Open Access Journals (Sweden)

    Acosta, A.

    2006-06-01

    Full Text Available The present article describes the findings of the first stageof the analysis of xiloarcilla, a material made of clayand a wood industry by-product, namely the wood andpolyurethane varnish powder pump-suctioned off woodcomponents during sanding and polishing. This powderwas added to the clay in proportions of from 1% to 5%by weight. The prime materials as well as the xiloarcillacompound were characterized, in the latter case primarilyto determine its physical-mechanical properties andchemical and environmental feasibility as a constructionmaterial.En este articulo se presentan los resultados obtenidos,en una primera etapa, del estudio del material que denominaremoscomo xiloarcilla, compuesto por arcilla y porun subproducto de las industrias de la madera, que eneste caso son los polvos del lijado y del barnizado y excedentesde estos productos utilizados en el acabado demuchos componentes de madera (PLB, estos polvos seadicionaron a la arcilla en cantidades entre el 1% y el5% del peso total del compuesto. Se realizo un estudiode caracterizacion de los materiales aislados y posteriormentedel compuesto xiloarcilla, con enfasis en el comportamientofisico-mecanico y su respuesta quimica ymedioambiental, como material de construccion.

  19. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-01-01

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R and D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R and D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program

  20. Climate accounting for waste management, Phase I and II. Summary: Phase 1: Glass Packaging, Metal packaging, paper, cardboard, plastic and wet organic waste. Phase 2: Wood waste and residual waste from households; Klimaregnskap for avfallshaandtering, Fase I og II. Sammendrag: Fase 1: Glassemballasje, metallemballasje, papir, papp, plastemballasje og vaatorganisk avfall. Fase 2: Treavfall og restavfall fra husholdninger

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Modahl, Ingunn Saur; Lyng, Kari-Anne

    2009-09-15

    Background. On the basis of an increased focus on emissions of greenhouse gases in general, Waste Norway wanted to prepare a climate accounting for waste management in Norway. Oestfoldforskning was engaged to undertake the project. The aim of the project has been to develop a model for the calculation of net greenhouse gas emissions from different waste types of waste glass containers, metal containers, paper, cardboard, plastic, wet organic waste, wood waste and residual waste. The model is based on life cycle methodology and is used to calculate the net greenhouse gas emissions per kg of waste for the various waste management options and waste types, as well as to calculate the net greenhouse gas emissions for waste management for including waste types and quantities of 2006. There is an emphasis on developing a model so that municipalities / waste companies or regions can develop their own climate accounting for waste management in their region, based on site-specific conditions associated with types and amounts of waste, transport distances, type of treatment, exploitation and use of waste generated energy etc. The model can also be used as the basis for the preparation of useful documentation as the basis for information about waste systems utility in general, and as a basis for strategic reviews for Waste Norway and the waste sector in particular. Conclusions: The main conclusions from the project can be summarized as follows: 1. The results of the study clearly shows that to consider only one environmental indicator is too narrow approach to form the basis for decision making for selection of waste management solutions. 2. Net greenhouse gas emissions for waste management varies greatly, both between the different types of waste and treatment methods which are reviewed. The main results of the ranking of management methods in relation to the net greenhouse effect associated with the waste types and treatment methods are as follows: Recycling of materials

  1. STATUS OF LEAN MANUFACTURING IMPLEMENTATION ON SECONDARY WOOD INDUSTRIES INCLUDING RESIDENTIAL, CABINET, MILLWORK, AND PANEL MARKETS

    OpenAIRE

    Adrian Pirraglia; Daniel Saloni; Herman van Dyk

    2009-01-01

    Lean Manufacturing has helped several industries to achieve operational and manufacturing excellence by increasing productivity and enhancing quality, while reducing waste and costs. However, the wood industry has been historically slow in adopting this philosophy and its many tools. In times when overseas competition has taken big portions of the traditional market share for U.S based wood industries, it has become important that companies start to take actions in order to regain competitive...

  2. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  3. Removal of organics from radioactive waste. V. 2

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  4. EFFECTS OF EXTRACTIVES AND DENSITY ON NATURAL RESISTANCE OF WOODS TO TERMITE Nasutitermes corniger

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2015-12-01

    Full Text Available The evaluation of the natural resistance of wood to wood-destroying organisms is of fundamental importance in the choice of species to be used in buildings and furniture industry. Thus, the effects of extractives and wood density on biological resistance of Acacia mangium, Casuarina equisetifolia, Corymbia torelliana, Eucalyptus cloeziana, Tectona grandis and Caesalpinia echinata woods to the xylophagous termite Nasutitermes corniger was evaluated under laboratory conditions. Test samples, with dimensions of 2.00 x 2.54 x 0.64 cm (radial x tangential x longitudinal in four positions in pith-bark direction (internal heart, intermediate heart, outer heart and sapwood were taken. The woods were exposed to termite action for 28 days in no-choice feeding test. The samples not selected for the termite test were turned into sawdust and the extractive contents were obtained using the shavings that passed through the sieve of 40 and were retained in the sieve of 60 mesh. The wood natural resistance, within the pith-bark positions, for the studied species, is not correlated with the density and extractive content. However, among the woods, those with higher density and extractive content are more resistant. The woods with greater biological resistance to the termite Nasutitermes corniger (smaller mass loss, waste and survival time of insects are Corymbia torelliana and Caesalpinia echinata and of less resistance is Casuarina equisetifolia.

  5. Potential wood protection strategies using physiological requirements of wood degrading fungi

    NARCIS (Netherlands)

    Sailer, M.F.; Etten, B.D. van

    2004-01-01

    Due to the increasing restrictions in the use of wood preserving biocides a number of potential biocide free wood preserving alternatives are currently assessed. Wood degrading fungi require certain conditions in the wood in order to be able to use wood as a food source. This paper discusses the

  6. First Nation partner in wood-chip cogen project

    International Nuclear Information System (INIS)

    O'Gorman, P.

    1996-01-01

    The Ginoogaming First Nation is working with Long Lake Forest Products to develop a cogeneration plant at a local mill which would burn wood chips and waste wood to produce heat and electrical energy for the mill and the community. The plan is part of a larger development project by the community that calls for the construction of new infrastructure, services and business for the town of 250 people near Thunder Bay, Ontario. It is a widely held view that energy is a major factor in achieving self reliance for First Nations especially in remote communities. Concern was expressed by Ontario Hydro that if the town takes over its own electricity production, Ontario Hydro may still be legally required to maintain back up generation. The preferred remedy would be to lift Ontario Hydro's obligation to provide all power to remote communities of Ontario

  7. Making a meal out of wood wastes

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-23

    Researchers at Waterloo University, Canada, have developed a fungal based process for making animal feedstuffs from cellulose wastes. It could solve the severe pollution problems of the pulp and paper mills and save on imported soya meal at the same time.

  8. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    Science.gov (United States)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  10. Wood-gas / natural-gas combined-cycle power station for Switzerland - Potential and estimation of financial viability; Holzgas/Erdgas-Kombikraftwerk fuer die Schweiz: Potenzial und Wirtschaftlichkeitsabschaetzung. Input-Papier fuer die Stromangebots-Perspektiven 2035 des Bundesamts fuer Energie

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2005-07-01

    This paper was produced as an input to the Swiss Confederation's 'Electricity Perspectives 2035' study made by the Swiss Federal Office of Energy (SFOE). A concept for the combined use of wood and natural gas in a combined-cycle power station is presented. The gasification of wood to provide fuel for the gas turbines and waste-heat boilers of such power stations is proposed as an alternative to just burning wood to provide heat for steam generators. Figures are quoted on the quantities of biomass and wood usable for energy applications in Switzerland. The energetic and financial efficiencies of wood-powered generation of heat and electricity are examined, as are the investments necessary and the costs incurred. Comparisons are presented between wood from forests, sawmill-wastes, scrap wood and natural gas as fuels.

  11. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    of carbon. The same is likely to be true for managed forests in other temperate regions. If wood from additional felling is used, it would be most effective to use it in products that stay in circulation for a long time, only to be used for energy at the end of its service life. An increase in wood demand may lead to an intensification of forest management, which may temporarily increase carbon sequestration rates and biomass yields. This would eventually reduce the payback times. However, it must be noted that it would still take a substantial amount of time for the intensification of forest management to become effective, especially when it includes drastic measures, such as converting natural forests into plantations. Short rotation plantations with fast growing trees on agricultural land may be another option, but in these cases there are similarities with the direct and indirect land-use change effects related to energy crops. Further analysis is required to enable a clear judgment on the impact of these options. Products are not the only place of storing carbon with a beneficial effect on climate change. The combination of bioenergy and carbon capture and storage (CCS) on large industrial sites where biomass is converted into energy carriers, such as transport fuel and electricity, is projected to be beneficial, as well. Even landfill sites may serve as storage of carbon in wood waste, as pieces of wood hardly degrade.

  12. Wood Identification of 18th Century Furniture. Interpreting Wood Naming Inventoires

    Directory of Open Access Journals (Sweden)

    Rocio Astrid BERNAL

    2011-09-01

    Full Text Available The 18th century Portuguese church furniture represents an extraordinary richness recognised worldwide, which demands safeguarding and valorisation. The identification of the wood of furniture artworks is the most important component for its comprehension and preservation. In this work wood anatomical characters of an 18th century Portuguese decorative furniture set from the Colegiada de São Martinho de Cedofeita, in Porto, were analysed to identify the woods used for manufacturing and to clarify their common names. Furthermore, the objectives were to recognise some of the criteria for choice of wood as well as the source of each wood. The woods identified from 16 fragments belong to Apuleia sp., Acacia sp., Neolamarckia sp. and Castanea sativa. Apuleia sp. and Acacia sp. woods most likely arrived from Brazil, while the Neolamarckia sp. woods likely arrived from India and the C. sativa woods from Portugal. The results are in accordance with the known Portuguese colonial sea routes of the 15th -18th centuries. Interestingly the terms found in the inventories can refer to finishing methods instead to the name of the woods, as for instance “oil wood” can refer to “oiled wood” or “linseed oiled wood”. The species choice may be related to the mechanical properties of the wood as well as the original tree size. Two large planks of Acacia sp. were used for the top of the “Portuguese arcaz”, and Apuleia sp. was found on main structural elements of this set of furniture, suggesting that wood colour was also important. Woods from Neolamarckia sp. and C. sativa, were also identified, being Castanea wood present only in the most recent pieces of the furniture set.

  13. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  14. Wood-related occupations, wood dust exposure, and sinonasal cancer.

    Science.gov (United States)

    Hayes, R B; Gerin, M; Raatgever, J W; de Bruyn, A

    1986-10-01

    A case-control study was conducted to examine the relations between type of woodworking and the extent of wood dust exposure to the risks for specific histologic types of sinonasal cancer. In cooperation with the major treatment centers in the Netherlands, 116 male patients newly diagnosed between 1978 and 1981 with primary malignancies of epithelial origin of this site were identified for study. Living controls were selected from the municipal registries, and deceased controls were selected from the national death registry. Interviews were completed for 91 (78%) cases and 195 (75%) controls. Job histories were coded by industry and occupation. An index of exposure was developed to classify the extent of occupational exposure to wood dust. When necessary, adjustment was made for age and usual cigarette use. The risk for nasal adenocarcinoma was elevated by industry for the wood and paper industry (odds ratio (OR) = 11.9) and by occupation for those employed in furniture and cabinet making (OR = 139.8), in factory joinery and carpentry work (OR = 16.3), and in association with high-level wood dust exposure (OR = 26.3). Other types of nasal cancer were not found to be associated with wood-related industries or occupations. A moderate excess in risk for squamous cell cancer (OR = 2.5) was associated with low-level wood dust exposure; however, no dose-response relation was evident. The association between wood dust and adenocarcinoma was strongest for those employed in wood dust-related occupations between 1930 and 1941. The risk of adenocarcinoma did not appear to decrease for at least 15 years after termination of exposure to wood dust. No cases of nasal adenocarcinoma were observed in men whose first exposure to wood dust occurred after 1941.

  15. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  16. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.

  17. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  18. Wood fuel from early thinning and plantation cleaning. Summary of an international review

    International Nuclear Information System (INIS)

    Puttock, D.

    1998-01-01

    This paper summaries the results of an international of wood fuel from early thinning and plantation cleaning. The economic and biological benefits from early thinning have been well documented. However, removing forest biomass during early stages of stand development from sites which are low in one or more nutrients may contribute a loss of nutrients and organic matter. Depending on the pre-thinning density and the thinning intensity, the potential yield of wood fuel from early thinning may be as much as 79 dry tons per hectare. Thus, wood fuel from the thinnings could be an important source of revenue to forest owners and would contribute to domestic energy requirements. Motor-manual felling predominates in early thinning, mainly due to the lack of appropriate technology for thinning small trees. However, the productivity of motor-manual felling is greatly affected by the initial stand density and declines dramatically at densities greater than 10 000 stems per ha. Under these conditions, purpose-built wood fuel harvesters with small-tree harvesting capability offer the greatest potential for increasing felling productivity and reducing the cost of wood fuel. The cost of wood fuel from early thinnings varies widely between countries from USD 25.00 - 87.50 per dry ton depending on stand conditions, harvesting system, transport distance, domestic tax rates, and stumpage prices. At the low end of this range, wood fuel chips from early thinning are competitive with wood fuel produced from mill waste, the residues from clearfell operations, or from later thinnings

  19. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  20. Physical and chemical evaluation of furniture waste briquettes

    OpenAIRE

    Moreno Caballero, Ana Isabel; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified m...

  1. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  2. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental result...

  3. A choice of renewable or upgraded material from oil palm solid wastes

    International Nuclear Information System (INIS)

    Farid Nasir Ani; Wong Chuan Chin; Hussin Mohd Nor

    2006-01-01

    Malaysian palm oil industries are producing a large amount of solid wastes from the palm oil mills. Malaysia generates around 1.10 million tons of oil palm shells in year 1980 but this amount increased up to 4.11 million tons in year 2002 as wastes. Disposal of these wastes created environmental problems. Thus, a process was designed to reuse and recycle these wastes into value added products. This research used oil palm shells as a renewable material resource by thermo-chemical process to produce pyrolysis oil. The oil could be utilized as fuel or converted to valued added products. Since it contain a significant amount of phenols, it was extracted using solvent extraction technique to gain the useful phenol and phenolic compounds. The extracted oil-palm-shell-based phenol was used in the manufacturing of phenol formaldehyde wood adhesives. Then the capability of wood bonding was tested comparing with the petroleum-based phenol formaldehyde wood adhesives. For the commercial values of this research, the total global consumption of phenol in 2000 was 11.3 million metric ton that worth USD 10.0 billions. Thus, the commercial potentiality of this research is very high as the oil-palm-shell-based phenol could replace the petroleum-based phenol. The methods and products utilize low manufacturing cost from relatively simple technology and locally abundant raw material, comparable performances in wood bonding and competitive in price. It is estimated that around USD 900 / ton for petroleum-based, but just USD 250 / ton for palm-shell-based phenol

  4. Finishing of wood

    Science.gov (United States)

    R. Sam Williams

    1999-01-01

    The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...

  5. Wood fuels utilization in Central Europe - the wood fuels consumption and the targets of utilization

    International Nuclear Information System (INIS)

    Alakangas, E.

    1999-01-01

    Following subjects are discussed in this presentation: The share of bioenergy of the total energy consumption in EU region; the wood fuels consumption in EU region in 1995; the division of bioenergy utilization (households, wood- based district heating, wood consumption in industry, power generation from wood and residues, biofuels, biogas and sludges); wood fuels consumption in households in EU countries in 1995; wood consumption in France; the additional wood fuel consumption potential in France; Blan bois - wood energy program; French wood energy markets; German wood energy markets; energy consumption in Germany; wood consumption in Bavaria; the wood fuels potential in Bavaria; wood fuels consumption in households in Bavaria; wood fuels consumption for district heating in Bavaria; fuel prices in Bavaria; Environmental regulations in Germany; small boiler markets in Germany; Energy consumption in Austria; small-scale utilization of wood fuels; utilization of wood energy. (Slides, additional information from the author)

  6. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  7. Wood preservatives and pressure-treated wood: considerations for historic-preservation projects

    Science.gov (United States)

    Ronald W. Anthony; Stan T. Lebow

    2015-01-01

    Wood, an abundant resource throughout most of the world, has been used as a building material for thousands of years. Many historic buildings have been built primarily of wood, and masonry and stone buildings generally have wood elements, both structural and architectural. As a biological material, wood is both remarkably complex and yet quite durable if well...

  8. The waste minimization program at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Blasdel, J.E.; Crotzer, M.E.; Gardner, R.L.; Kato, T.R.; Spradlin, C.N.

    1987-01-01

    A waste minimization program is being implemented at the Feed Materials Production Center to reduce the generation of uranium-contaminated wastes and to comply with existing and forthcoming regulations. Procedures and plans are described which deal with process and non-process trash, contaminated wood and metals, used metal drums, and major process wastes such as contaminated magnesium fluoride and neutralized raffinate. Waste minimization techniques used include segregation, source reduction, volume reduction, material substitution and waste/product recycle. The importance of training, communication, and incentives is also covered. 5 refs., 11 figs

  9. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Yan-Jia Liou; Wu-Jang Huang

    2013-01-01

    The quantitative characterization of the graphene sheet content in carbon-containing materials is arguable and has not yet been developed.The authors report on a feasible method to characterize graphene sheet content quantitatively in pyrolized carbon materials using an X-ray diffraction (XRD) spectrometer.A direct carbonation at 300 ℃ followed by catalytic pyrolysis (heat-treatment temperature was set at 700-1400 ℃)under a vacuum condition was used for turning wood waste into pyrolized wood char powders.The graphene content in the samples was calculated through an analysis of full width at half maximum (FWHM) of the carbon (100) crystal plane at around 42°-43° in XRD.Results showed that the FWHM and the calculated graphene sheet content of pyrolized wood char powders depended on the heat-treatment temperature,and the FWHM of wood char powder with well-developed graphene sheets (100%) was determined to be 5.0.In addition,the trend to 100% graphene sheet-contained pyrolized carbon powder was obtained at a heattreatment temperature of 2700 ℃.The resistivity of the wood char powder with 100% graphene sheets was predicted to be 0.01 Ω cm,close to our experimental data of 0.012 and 0.006 Ω cm for commercial graphite and graphene products,respectively.

  10. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  11. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The production of new generation of wood preservatives (without addition of a co-biocide in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720 was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium. T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%. Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens

  12. Achievement report in fiscal 2000 on technological development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of recycling technology corresponding to grades of demolished building lumbers); 2000 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai no hin'i ni taioshita recycle gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to reduce wastes, and promote effective utilization of wood resources, research and development has been made on a demolished building material recycling technology. This paper summarizes the achievements in fiscal 2000. In developing the technology to manufacture high water resistant wood boards, discussions were given on resor type phenolic resin as an adhesive, and on the medium density fiberboard (MDF) being a substitute material for plywood as the wooden board. As a result, a highly water resistant MDF that can clear JIS E0 has been developed. In the research of a technology to enhance durability of wooden boards, the in-liquid roll press method was devised to perform impregnation of chemicals into board raw materials continually and simply, whose device was fabricated on a trial basis. With regard to recycling of medium to low grade wood-based wastes, researches were performed on pulverization of the wastes, fabrication of liquefied woods, and effective utilization of the liquefied woods. Both of a hammer mill and a chip saw crusher fabricated wood powder with nearly uniform grain size regardless of types of the wood-based wastes. Liquefaction of plywood and PB boards required more stringent reaction conditions than liquefaction of such ordinary members as pillar materials and laminated lumbers. (NEDO)

  13. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    International Nuclear Information System (INIS)

    Ahn, Sye Hee; Oh, Sei Chang; Choi, In-gyu; Han, Gyu-seong; Jeong, Han-seob; Kim, Ki-woo; Yoon, Young-ho; Yang, In

    2010-01-01

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl 2 (CC) and/or Na 2 B 4 O 7 .10H 2 O (B). With the addition of NH 4 OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  14. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sye Hee; Oh, Sei Chang [Department of Forest Resources, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Choi, In-gyu [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Han, Gyu-seong [Department of Wood and Paper Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Jeong, Han-seob [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Ki-woo [National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921 (Korea, Republic of); Yoon, Young-ho [KCI Co. Ltd., Seosan, Chungcheongnam-do 356-874 (Korea, Republic of); Yang, In, E-mail: dahadad2000@yahoo.com [Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1 Sillim-Dong, Kwanak-gu, Seoul 151-921 (Korea, Republic of)

    2010-06-15

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl{sub 2} (CC) and/or Na{sub 2}B{sub 4}O{sub 7}.10H{sub 2}O (B). With the addition of NH{sub 4}OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  15. Wood composites

    Science.gov (United States)

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...

  16. Determination of Plant-Available Nutrients in Two Wood Ashes: the Influence of Combustion Conditions

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Ochecová, P.; Száková, J.; Hanzlíček, Tomáš; Tlustoš, P.

    2016-01-01

    Roč. 47, 13/14 (2016), 1664-1674 ISSN 0010-3624 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : combustion condition * crystal phases * fertilizer * plant-available nutrients * wood ash Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.589, year: 2016

  17. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    Science.gov (United States)

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  19. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  20. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  1. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    International Nuclear Information System (INIS)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J.

    2010-01-01

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs.

  2. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. [US Naval Academy, Department of Mechanical Engineering, 590 Holloway Road, Annapolis, MD 21402 (United States)

    2010-06-15

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs. (author)

  3. Characterization of household waste in Greenland

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Christensen, Thomas Højlund

    2011-01-01

    The composition of household waste in Greenland was investigated for the first time. About 2tonnes of household waste was sampled as every 7th bag collected during 1week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants....... The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated...... by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste...

  4. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  5. Lignin-Retaining Transparent Wood.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Producing charcoal from wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, V.A.

    1983-01-01

    Experimental works to use wood wastes for producing charcoal are examined, which are being conducted in the Sverdlovsk assembly and adjustment administration of Soyuzorglestekhmontazh. A wasteless prototype installation for producing fine charcoal is described, along with its subsequent briqueting, which is made on the basis of units which are series produced by the factories of the country. The installation includes subassemblies for preparing and drying the raw material and for producing the charcoal briquets. In the opinion of specialists, the charcoal produced from the wastes may be effectively used in ferrous and nonferrous metallurgy and in the production of pipes.

  7. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  8. Arguing over public garden wastes

    International Nuclear Information System (INIS)

    Harmsen, B.

    1998-01-01

    During a seminar on energy production from garden and wood wastes, held in Amstelveen, Netherlands, 17 June 1998, and organized by the Netherlands Agency for Energy and the Environment (Novem), the options for municipalities to use biomass as a fuel were discussed. Also attention was paid to the interests of composting companies

  9. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  10. Bulky waste quantities and treatment methods in Denmark

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Petersen, Claus; Christensen, Thomas Højlund

    2012-01-01

    were identified of which ten were recyclable and constituted 50–60% of the total quantity. The others were combustible waste for incineration (30–40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste....... In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150–250 kg capita−1 year−1, and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions......, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled...

  11. Health assessment for Southern Maryland Wood Treating (SMWT) National Priorities List (NPL) Site, Hollywood, St. Mary's County, Maryland, Region 3. CERCLIS No. MDD980704852. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-10

    The Southern Maryland Wood Treating National Priorities List site is located in Hollywood, St. Mary's County, Maryland. Approximately 12,000 gallons of dioxin-contaminated wastes and 2,000 gallons of wastes contaminated with volatile organic compounds or polynuclear aromatic hydrocarbons, or both, remain in on-site tanks used during wood treatment operations. Until remediation of the site is completed there is a potential public health concern from dermal absorption, ingestion, or inhalation of contaminants from groundwater, surface water, sediments, soil, and contaminated on-site structures.

  12. Soil-wood interactions

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Boer, de Wietse

    2017-01-01

    Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs

  13. The importance of the wood biomass in environment protection

    Science.gov (United States)

    Spîrchez, Cosmin; Lunguleasa, Aurel; Croitoru, Cǎtǎlin

    2017-12-01

    Biomass is a natural vegetal component. As a form of storing energy is chemical form sun, biomass is one of the most popular and universal resource on Earth. Today biomass fuel can be used for various purposes from room heating to produce electricity and fuel for cars. Biomass is presented in various form for energy, including biodegradable fraction of products, remains and waste from agricultural, forestry and industrial wood processing residues from factories paste stationery and paper, remnants of industrial.

  14. Recycling waste-paper

    Science.gov (United States)

    Widener, Edward L.

    1990-01-01

    Perhaps 80 percent of papermaking energy is expended in chemical pulping of vegetable cellulose, a natural polymer. Commercial supplies of wood, bagasse, cotton and flax are valued as renewable resources and bio-mass assets; however, few enterprises will salvage waste-paper and cardboard from their trash. A basic experiment in the Materials Lab uses simple equipment to make crude handsheets. Students learn to classify secondary fibers, identify contraries, and estimate earnings.

  15. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.

    Science.gov (United States)

    De Silva, Rasike; Byrne, Nolene

    2017-10-15

    Cotton accounts for 30% of total fibre production worldwide with over 50% of cotton being used for apparel. In the process from cotton bud to finished textile product many steps are required, and significant cotton waste is generated. Typically only 30% of pre consumer cotton is recycled. Here we use cotton waste lint to produce regenerated cellulose fibres (RCF). We find the RCF from waste cotton lint had increased mechanical properties compared to RCF produced from wood pulp. We show that this is likely linked to the higher degree of polymerization (DP) of waste cotton lint. An ionic liquid is used to dissolve the cotton lint and the rheology of the spinning is measured. The properties of the RCF are characterized and compared to wood pulp RCF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Wood energy-commercial applications

    Science.gov (United States)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  17. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    DEFF Research Database (Denmark)

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid...... and formic acid also led to similar removal efficiencies. In these experiments, the target elements were accumulated in both the anode and cathode compartments of the electrodialytic cell due to the formation of negatively charged complexes with the organic acids used besides the free cationic forms...

  18. A demonstration of applying ATS thermal screw technology to the processing of separated construction and other waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Golan, A.; Bosschieter, H.A.

    1991-06-01

    A demonstration was carried out by Spider Recycling, a waste haulage company, to determine how to sort, process and recycle or reuse waste disposed of by the company, using a new processing system based on the ATS thermal screw press technology. Selected loads of waste totalling one thousand tonnes from construction, sawmill, landscape and tire industries located around greater Toronto were delivered to a pilot separation and processing site and separated into piles of similar material such as wood, drywall and tires. The separated piles were drawn on as feedstock for processing through the ATS thermal screw press system to produce useable forms of product and raw material. The applications included: turning wood waste into firelogs or wood fuel; yard waste into mulch; waste drywall into gypsum powder; tires into crumb rubber; asphalt shingles into a bitumix; and mixed garbage into densified logs or flakes. Wide ranges of throughput were found depending on the material processed, material size, density, moisture content and model of the ATS thermal screw press used. It was shown that it is practical to separate selected wastes from industry and process them with the ATS machine, and that the system could probably offer recycling and reuse solutions to separable waste where product markets are available and in some cases where the operation could collect the estimated $100/tonne tipping fees available in southern Ontario. 37 figs., 20 tabs.

  19. Use of wood as an energy source in the state of Maine

    Energy Technology Data Exchange (ETDEWEB)

    von Foerster, T.

    1978-09-01

    A detailed study is presented of the availability and use of wood as an energy resource for the State of Maine. Although there are no good data on the total resources of Maine's forests, the best estimates indicate that one could obtain about 1/2 quad (10/sup 15/ Btu) per year from thinning overstocked stands and harvesting dead trees; current logging operations could produce about the same amount of energy in the form of logging residues and thinnings, an amount that could be increased manyfold by intensive forest management. The costs of wood for fuel can be estimated on the basis of current logging and transportation costs. The corresponding energy prices, while high, are competitive with current fossil fuel prices. Using any energy source requires not only the fuel but also a furnace. The total energy costs are thus not only the cost of current fuel use but also those of the capital investment in the furnace. We have estimated these for systems of two sizes, one for a small house, the other for an apartment building or small commercial establishment. In both cases, our estimated indicate, that woodfueled systems can be economically competitive. Wood is currently used as a fuel on a large scale in the pulp and paper industry. With some increase in wood harvesting efforts and some alterations of furnaces that industry could achieve energy self sufficiency. Other large-scale uses are still speculative but deserve further investigation. A state-owned energy corporation could serve to provide a market for currently wasted wood and to investigate the conversion of wood to other forms of energy. The combustion of wood is not associated with environmental effects that are different kind in magnitude from those associated with the combustion of fossil fuel.

  20. Gasification of waste from furniture industries for generation of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.L.; Silva, J.N.; Pereira, E.G.; Machado, C.S.; Da Conceicao, M.; Bezerra, T. [Federal Univ. of Vicosa, Minas Gerais State (Brazil)

    2010-07-01

    The global interest in renewable energy is attributed to the decline in fossil fuel sources and the need for technical, economic, social and environmental sustainability. This study focused on the new techniques that have been developed for the use of biomass for energy from wood wastes from the forest-based industry. As an energy source, wood waste contributes positively to the environment by reducing environmental problems related to contamination of soil, air and water through improper disposal of waste. Biomass gasification has the advantage of converting biomass into a combustible gas that can be used for heat generation, electricity and synthesis of chemicals. Syngas produced from gasification of eucalyptus residues has significant potential, with an average High Heating Value of 6.60 MJ/m{sup 3}, and regular composition during the process, with predominance of carbon monoxide, followed by hydrogen, carbon dioxide and methane.

  1. Who's Counting Dead Wood ?

    OpenAIRE

    Woodall, C. W.; Verkerk, H.; Rondeux, Jacques; Ståhl, G.

    2009-01-01

    Dead wood in forests is a critical component of biodiversity, carbon and nutrient cycles, stand structure, and fuel loadings. Until recently, very few countries have conducted systematic inventories of dead wood resources across their forest lands. This may be changing as an increasing number of countries implement dead wood inventories. A recent survey looks at the status and attributes of forest dead wood inventories in over 60 countries. About 13 percent of countries inventory dead wood gl...

  2. The Construction Solid Waste Minimization Practices among Malaysian Contractors

    Directory of Open Access Journals (Sweden)

    Che Ahmad A.

    2014-01-01

    Full Text Available The function of minimization of construction solid waste is to reduce or eliminates the adverse impacts on the environment and to human health. Due to the increase of population that leads to rapid development, there are possibilities of construction solid waste to be increased shortly from the construction works, demolition or renovation works. Materials such as wood, concrete, paint, brick, roofing, tiles, plastic and any other materials would contribute problem involving construction solid waste. Therefore, the proper waste minimization is needed to control the quantity of construction solid waste produced. This paper identifies the type of construction solid waste produced and discusses the waste minimization practice by the contractors at construction sites in Selangor, Kuala Lumpur and Putrajaya, Malaysia.

  3. Occurrence patterns of dead wood and wood-dependent lichens in managed boreal forest landscapes

    OpenAIRE

    Svensson, Måns

    2013-01-01

    Dead wood is a key resource for biodiversity, on which thousands of forest organisms are dependent. Because of current forest management, there has been a large-scale change in dead wood amounts and qualities, and consequently, many wood-dependent species are threatened. The general aim of this thesis is to increase our understanding of habitat requirements and occurrence patterns of wood-dependent lichens in managed, boreal forest landscapes. We surveyed dead wood and wood-dependent lichens ...

  4. Wastes and by-products - alternatives for agricultural use

    International Nuclear Information System (INIS)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-01-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams

  5. Environmental costs connected to various types of waste; Miljoekostander knyttet til ulike typer avfall

    Energy Technology Data Exchange (ETDEWEB)

    Vennemo, Haakon

    1995-07-01

    The report estimates environmental costs (external impacts) from municipal waste through discharges into air, water and soil. We look at the wastes paper/cardboard, plastic, metal, wood and glass and give separate estimates for wastes at fillings with and without gaseous collection and combusted waste. The figure estimates are uncertain. Paper/cardboard at fillings without gas exhaust have the highest external impacts, about 2.5 pr. kg as the best estimate. The main reason is methane discharge. Plastic and wood at fillings also have high external impacts. These components ought to be combusted if the aim is low environmental costs. Metal and glass have external impacts beneath 0.01 pr. kg at the fillings. This is due to discharges from the fillings take long time and do not go into air. These components ought to be deposited if the aim is low environmental costs.

  6. Energy from wood - an overview

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2000-01-01

    The present publication is the introduction to a series of papers on fundamentals and applications of wood energy. It summarizes figures and data of the actual situation of fuel wood utilization in Switzerland and its potential for the future. Further, the advantages of bio-energy are discussed and the possibilities of funding for bio-energy in Switzerland are described. Wood contributes with 2.5% to the total energy demand in Switzerland nowadays. However, the utilization of wood energy can be more than doubled, which is one of the targets of the Swiss energy policy. The supply chains for the different types of fuel wood are described and specifications and prices of log wood, forestry wood chips and wood residues are presented. The main applications of wood energy are residential heating with manually operated wood boilers and stoves, on the one hand, and heat production with automatic wood furnaces in industry and communities, on the other hand. Automatic furnaces have been promoted in the past ten years and hence they contribute nowadays with more than 50% to the energy supply from wood with a further growing share. As an assistance for further information, a list of institutions and addresses in the field of wood energy in Switzerland is given in the paper. (author)

  7. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    International Nuclear Information System (INIS)

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  8. Waste treatment of ships. Change in understanding of wastes and trend of waste treatment systems; Senjo no haikibutsu shori. 1. Haikibutsu ni taisuru ninshiki no henka to shori hoshiki no doko

    Energy Technology Data Exchange (ETDEWEB)

    Inatomi, M. [Hitachi Zosen Corp., Osaka (Japan)

    1996-07-25

    This paper explains treatment of wastes produced in ships. Wastes produced in ships should be essentially treated on ships. Since storage and transport of difficult-to-treat wastes to harbor for land treatment is expensive, wastes produced in ships are treated on ships as much as possible. Combustibles such as waste oil, plastics, paper and wood fiber waste are treated by incinerator. Food waste is dumped into the sea after crushing by disposer. Excrement and urine are dumped into the sea through a waste water treatment plant. Oil content in oily bilge is burned after heating and vapor separation. Food waste is temporarily stored in ships because its dumping along the coast and into harbor is impossible. Kitchen refuse decomposer utilizing bacteria was proposed for ships. Press for used cans and crushing/thermal compaction/storage equipment for plastics were also put on the market. The primary regulation on diesel engine exhaust gas may be cleared by improvement of engine bodies. 1 ref., 1 fig., 1 tab.

  9. Wood preservative testing

    Science.gov (United States)

    Rebecca Ibach; Stan T. Lebow

    2012-01-01

    Most wood species used in commercial and residential construction have little natural biological durability and will suffer from biodeterioration when exposed to moisture. Historically, this problem has been overcome by treating wood for outdoor use with toxic wood preservatives. As societal acceptance of chemical use changes, there is continual pressure to develop and...

  10. Specifications in the application form for environmental assessment of wood preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Lucks, U J [ed.

    2000-09-01

    In 1990 the former Federal Health Office (Bundesgesundheitsamt) and the Federal Environmental Agency (Umweltbundesamt) jointly elaborated a catalogue of test requirements necessary for assessing the impact of wood preservatives on man and environment. Based on several years of experience, a revision was deemed necessary. Complying with the provisions of the Directive 98/8/EC of the European Parliament and the Council of 16 February 1998 concerning the placing of biocidal products on the market, which have to be transposed into national laws, the regulatory bodies BAM, BgVV and UBA, in cooperation with industry and academia (IUCT), developed an amended application form for wood preservatives. The provisions laid down there include different sets of data for wood preservatives, depending on the intended uses/hazard classes, e.g. physico-chemical and ecotoxicological properties, data on exposure, fate and behaviour in the environment and on waste management. The tests should be conducted according to standardized test protocols. Next to the list of data requirements explanations and justifications are given on why the data are needed and how they contribute to the risk assessment. Furthermore, recommendations are given on which test guidelines should preferably be followed to generate the data. In addition, annex I includes a proposal for a test guideline on how to screen leachates from preservative-treated wood surfaces for their ecotoxic potential to aquatic organisms. (orig.)

  11. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  12. Wood Smoke

    Science.gov (United States)

    Smoke is made up of a complex mixture of gases and fine, microscopic particles produced when wood and other organic matter burn. The biggest health threat from wood smoke comes from fine particles (also called particulate matter).

  13. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  14. Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels

    International Nuclear Information System (INIS)

    Palander, Teijo

    2011-01-01

    In this paper, a multiple objective model to large-scale and long-term industrial energy supply chain scheduling problems is considered. The problems include the allocation of a number of fossil, peat, and wood-waste fuel procurement chains to an energy plant during different periods. This decision environment is further complicated by sequence-dependent procurement chains for forest fuels. A dynamic linear programming model can be efficiently used for modelling energy flows in fuel procurement planning. However, due to the complex nature of the problem, the resulting model cannot be directly used to solve the combined heat and electricity production problem in a manner that is relevant to the energy industry. Therefore, this approach was used with a multiple objective programming model to better describe the combinatorial complexity of the scheduling task. The properties of this methodology are discussed and four examples of how the model works based on real-world data and optional peat fuel tax, feed-in tariff of electricity and energy efficiency constraints are presented. The energy industry as a whole is subject to policy decisions regarding renewable energy production and energy efficiency regulation. These decisions should be made on the basis of comprehensive techno-economic analysis using local energy supply chain models. -- Highlights: → The energy policy decisions are made using comprehensive techno-economic analysis. → Peat tax, feed-in tariff and energy efficiency increases renewable energy production. → The potential of peat procurement deviates from the current assumptions of managers. → The dynamic MOLP model could easily be adapted to a changing decision environment.

  15. Combustion of impregnated wood. Test combustion in a biofuel boiler at Orrefors; Foerbraenning av impregnerat virke. Testfoerbraenning i en biobraenslepanna, Orrefors

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Goeran; Erlandsson, Martin; Hemstroem, Kristian; Hoegberg, Bengt; Oesterberg, Helen

    2010-10-15

    It is possible to burn impregnated wood containing copper in a biofuel boiler if the boiler has suitable flue gas cleaning equipment. The studied facility needs to complete its flue gas treatment with a dust control step (such as electrostatic precipitator, fabric or bag filter). If the incineration surpasses 50 tonnes of waste per year a special permission is required. Smaller quantities requires only a notification. In combustion of wood chips with an admixture of up to 20% copper-impregnated wood (50% sapwood and 50% kernel) the bottom ash stands clear of all minimum and maximum levels according to the Forestry Board's recommendations for using the ash as a fertilizer in forestry. The findings from the ash leaching tests show that chromium leaching from bottom ash of samples 4 and 5 is too high to allow deposition of the ashes in landfills along with non-hazardous wastes (the rest of the ash passed all the benchmarks). A hazard analysis has been carried out where the concept of toxicity index (TI) has been applied

  16. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay.

    Science.gov (United States)

    Fackler, Karin; Schwanninger, Manfred

    2012-11-01

    Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.

  17. Wood chip drying in connection with combined heat and power or solar energy in Finland

    Directory of Open Access Journals (Sweden)

    Rinne Samuli

    2014-01-01

    Full Text Available 20% of the Finnish district heating (DH power plant fuels are wood-based and the share is increasing. The wood fuel demand probably exceeds the potential supply in the future. The wood fuel drying with waste heat is one profitable opportunity to gain more wood fuel. If the drying energy can be produced with lower primary energy use than combusting the fuel directly, the drying potentially improves the system efficiency. In this study, the drying feasibility in the connection of a combined heat and power (CHP system, possibly with solar collectors, is calculated. The wood fuel heating can be increased profitably by 6%, using the heat from CHP for drying only when the marginal cost of the heat is low enough, i.e. the electricity price is high enough and there is free capacity after the DH demand. Although the drying is profitable, a larger heat storage can also increase the annual result similarly. The best investment choice depends on the plant properties. Here the optimal system enables 20% DH production cost savings. Solar heat may be profitable, when the solar heat has a 2–3% share of the annual heat demand. However, the dryer or larger storage tank are more profitable investments.

  18. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  19. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  20. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

    International Nuclear Information System (INIS)

    Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

  1. Leachates from wood ash - effects of storage on soil; Lakvatten fraan skogsbraensleaska - markpaaverkan av lagring

    Energy Technology Data Exchange (ETDEWEB)

    Valeur, Inger; Thelin, Gunnar (EkoBalans FenixAB, Lund (Sweden))

    2012-02-15

    In this study we monitored leachate from wood ash stored in a pile in an outdoor environment during six months. Our aim was to contribute with knowledge about leaching behavior and risks connected to storages of wood ash, and more generally leaching from piles affected by various weather conditions. Impacts on soil from storage of wood ash was also included in the study as well as different transport scenarios for recycling wood ash to the forest. Bioenergy output from Swedish forests has more than doubled the last 10 years and as nutrient rich parts as needles and branches (grot) is also taken out, the nutrient export from the forest site has increased by a factor of three to five. To counteract depletion of nutrients in forest soils, wood ash is returned to the forest. Apart from nitrogen, wood ash contains all the nutrients and trace elements that were in the wood before combustion. The wood ash must be hardened before spreading to make it less reactive. The ash self hardens when stored in an outdoor environment for 3 to 6 months and according to the waste act this should be done on a paved area. However, wood ash which is meant to be recycled to the forest has naturally very low amounts of polluting elements and shall also fulfill limit values, set up by the Swedish Forest Agency. As it is so that the storage is during a limited period of time and the ash shall be transported, not only to one place but too several smaller areas, this has given rise to the thought of storing the ash closer to the spreading area. However, the ash would then probably be stored in a non paved area, as the number of paved areas in forests is scarce. If storage close to the spreading area could be done, the distance for transports connected to recycling the ash would presumably be decrease by a factor of two or three. To get permission to store ash on a non paved area, there must be enough data available which can ensure that there are no environmental risks associated to the storage

  2. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  3. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material

    Directory of Open Access Journals (Sweden)

    Faridullah

    Full Text Available Abstract Contaminants like nitrate (NO3, phosphorus (P and heavy metals in water are often associated with agricultural activities. Various soil and water remediation techniques have been employed to reduce the risk associated with these contaminants. A study was conducted to examine the extent of leaching of heavy metals (Cd, Ni, Pb and Cr, NO3 and P. For this purpose sandy and silt loam soils were amended with different waste materials, namely wood ash, solid waste ash, vegetable waste, charcoal, and sawdust. The soils were saturated with wastewater. Irrespective of the waste applied, the pH and EC of the amended soils were found to be greater than the control. Charcoal, sawdust and wood ash significantly decreased heavy metals, nitrate and phosphorus concentrations in the leachate. Treatments were more efficient for reducing Ni than other heavy metals concentrations. Waste amendments differed for heavy metals during the process of leaching. Heavy metals in the soil were progressively depleted due to the successive leaching stages. This research suggests that waste material may act as an adsorbent for the above contaminants and can reduce their leachability in soils.

  4. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  5. Radioactivity of Wood and Environment

    International Nuclear Information System (INIS)

    Hus, M.; Kosutic, K.; Lulic, S.

    2003-01-01

    Nuclear experiments in the atmosphere and nuclear accidents caused global deposition of artificial radionuclides in the soil of Earth's northern hemisphere, the territory of the Republic of Croatia included. Soil contamination by radionuclides resulted in their deposition in plants growing on the contaminated soil as well as in the trees. Large area of the Republic of Croatia is covered with wood, which is exploited in manufacture of industrial wood and for firewood. From approximately 3 million cubic metres of wood exploited annually, nearly one third serves for firewood. In the process of burning a smaller portion of radionuclides deposited in the wood evaporates and goes to atmosphere while a larger portion is retained in the ash. In this paper are presented the results of natural radionuclides 4 0K , 2 32T h and 2 38U as well as of artificial radionuclide 1 37C s content determination in the wood, wood briquette, charcoal and in ash remained after burning the wood, wood briquette and charcoal. The obtained results are discussed from wood radiocontamination aspect and from the aspect of potential environmental radiocontamination by the products from wood burning process. (author)

  6. Wood construction under cold climate

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2014-01-01

    As wood constructions increasingly use engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives system. The glueline stability is a crucial issue for engineered wood application, especially under cold climate. In this study, Norway spruce (Picea abies...... affected shear strength of wood joints. As temperature decreased, the shear strength decreased. PUR resin resulted in the strongest shear strength at all temperatures tested. MF resin responded to temperature changes in a similar ways as the PUR resin. The shear strength of wood joints with EPI resins...... specimens need to be tested in further work to more completely present the issue. The EN 301 and EN 302 may need to be specified based on wood species....

  7. European wood-fuel trade

    International Nuclear Information System (INIS)

    Hillring, B.; Vinterbaeck, J.

    2001-01-01

    This paper discusses research carried out during the l990s on European wood fuel trade at the Department of Forest Management and Products, SLU, in Sweden. Utilisation of wood-fuels and other biofuels increased very rapidly in some regions during that period. Biofuels are replacing fossil fuels which is an effective way to reduce the future influence of green house gases on the climate. The results indicate a rapid increase in wood-fuel trade in Europe from low levels and with a limited number of countries involved. The chief products traded are wood pellets, wood chips and recycled wood. The main trading countries are, for export, Germany and the Baltic states and, for import, Sweden, Denmark and to some extent the Netherlands. In the future, the increased use of biofuel in European countries is expected to intensify activity in this trade. (orig.)

  8. Pleurotus pulmonarius cultivation on amended palm press fibre waste

    African Journals Online (AJOL)

    Bola

    2015-05-13

    May 13, 2015 ... Seven different substrates (A to G) were prepared from saw dust, palm press ... can grow in a wide range of soil types with relatively low ..... documented to include; cotton waste, sugar cane ..... Canada wood ash sources. Can.

  9. Production of renewable energy from biomass and waste materials using fluidized bed technologies

    International Nuclear Information System (INIS)

    Rozainee, M.; Rashid, M.; Looi, S.

    2000-01-01

    Malaysian industries generate substantial amount of biomass and waste materials such as wastes from agricultural and wood based industries, sludge waste from waste-water treatment plants and solid waste from municipals. Incinerating these waste materials not only produces renewable energy, but also solving their disposal problems. Fluidized bed combustors are widely used for incinerating these biomass materials. The significant advantages of fluidized bed incineration include simple design, efficient, and ability to reduce air pollution emissions. This paper discusses the opportunities and challenges of producing the green energy from biomass materials using the fluidized bed technologies. (Author)

  10. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  11. Reliable and non-destructive positioning of larvae of wood-destroying beetles in wood

    International Nuclear Information System (INIS)

    Kerner, G.; Thiele, H.; Unger, W.

    1980-01-01

    Living larvae of wood-destroying insects (house longhorn beetle, deathwatch) can be determined in wood by both X-ray technique and vibration measurements. For such examinations convenient commercial devices were used and tested under laboratory conditions. The methods complement each other and lead to a rationalization of the tests of wood preservatives against wood-destroying insects. It seems to be promising to apply the test methods also to timber already used for building

  12. MUNICIPAL SOLID WASTE AND RECOVERY POTENTIAL: BANGLADESH PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    M. Alamgir, A. Ahsan

    2007-04-01

    Full Text Available A total of 7690 tons of municipal solid waste generated daily at the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal and Sylhet, as estimated in 2005. Sampling was done at different waste generation sources such as residential, commercial, institutional and open areas, in different seasons. The composition of the entire waste stream was about 74.4% organic matter, 9.1% paper, 3.5% plastic, 1.9% textile and wood, 0.8% leather and rubber, 1.5% metal, 0.8% glass and 8% other waste. The per capita generation of municipal solid waste was ranged from 0.325 to 0.485 kg/cap/day while the average rate was 0.387 kg/cap/day as measured in the six major cities. The potential for waste recovery and reduction based on the waste characteristics are evaluated and it is predicted that 21.64 million US$/yr can be earned from recycling and composting of municipal solid waste.

  13. Request for wood samples

    NARCIS (Netherlands)

    NN,

    1977-01-01

    In recent years the wood collection at the Rijksherbarium was greatly expanded following a renewed interest in wood anatomy as an aid for solving classification problems. Staff members of the Rijksherbarium added to the collection by taking interesting wood samples with them from their expeditions

  14. SUSTAINABLE MANAGEMENT OF CAMEROON FORESTS RESOURCES: PROVIDING TIMBER WASTE TO THE POOR POPULATIONS AS ALTERNATIVE SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    Serge Benjamin Noumo Foko

    2014-01-01

    Full Text Available Cameroon is covered by about 20 million hectares of forests. Timber exploitation is the second source of external income after petroleum. Besides, Cameroon’s forest has several other functions. Yet the threat to the very existence and survival of this forest is rapidly increasing due to overexploitation by logging companies and for firewood. Despite its usefulness, a substantial volume of the wood felled by timber exploiters is abandoned as waste to rot. This waste can be used as firewood by households even for building and making of furniture by small-scale users like carpenters if they had access to it. This paper encourages the use of timber waste as an alternative to kerosene, which has become very expensive and unaffordable due to the general rise in the price of petroleum products in recent years. The overexploitation of forests can therefore be limited by putting the waste timber into use. It will go along to reduce freshly cut wood which is usually cut illegally and uncontrollably and which is a major source of depletion of forest resources. This project, once achieved will forever last because it will always generate revenue to the groups involve in the collection and the distribution of forest waste which will make money from sales even if they were to sell cheaper since the major cost is transportation and the waste wood is also cheap to obtain from the logging companies or even costless since they have less interest in it.

  15. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  16. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  17. Effectiveness of three bulking agents for food waste composting

    International Nuclear Information System (INIS)

    Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose; King, Susan

    2009-01-01

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment

  18. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  19. Economy of wood supply

    International Nuclear Information System (INIS)

    Imponen, V.

    1993-01-01

    Research and development of wood fuels production was vigorous in the beginning of the 1980's. Techniques and working methods used in combined harvesting and transportation of energy and merchantable wood were developed in addition to separate energy wood delivery. After a ten year silent period the research on this field was started again. At present the underutilization of forest supplies and the environmental effects of energy production based on fossil fuels caused the rebeginning of the research. One alternative for reduction of the price of wood fuels at the utilization site is the integration of energy and merchantable wood deliveries together. Hence the harvesting and transportation devices can be operated effectively, and the organizational costs are decreased as well. The wood delivery costs consist of the stumpage price, the harvesting and transportation costs, and of general expenses. The stumpage price form the largest cost category (over 50 %) of the industrial merchantable wood delivery, and the harvesting and transportation costs in the case of thinningwood delivery. Forest transportation is the largest part of the delivery costs of logging residues. The general expenses, consisting of the management costs and the interest costs of the capital bound to the storages, form a remarkable cost category in delivery of low-rank wood for energy or conversion purposes. The costs caused by the harvesting of thinningwood, the logging residues, chipping and crushing, the lorry transportation are reviewed in this presentation

  20. An Analysis of the U.S. Wood Products Import Sector: Prospects for Tropical Wood Products Exporters

    Directory of Open Access Journals (Sweden)

    W.A.R.T.W. Bandara

    2012-10-01

    Full Text Available The U.S. has dramatically altered its wood product imports and exports during the past few years,and at present, it is the second largest wood product importer in the world. Hence, an understanding ofmarket structures, factors in selecting foreign suppliers, and the emphasis placed on environmentalissues/certification are critical to understand from the perspective of wood products importers in the U.S.This study provides an analysis of the U.S. wood products import sector with special emphasis on currentand future opportunities for tropical wood products exporters to the U.S. market.In this study, 158 wood products importers in the U.S. were surveyed using a mailingquestionnaire. The adjusted response rate was 40.6 percent. Results indicated that most of the respondentswere small to medium scale firms, but major importers of wood products. According to respondents,wood products to the U.S. mainly come from Brazil, Chile, and China. From the importers’ perspective,Brazilian wood products ranked first for its quality followed by wood products from Chile and Finland.Product quality, long term customer relationships, on-time delivery of orders, fair prices, and supplierreputation were the factors deemed important in selecting overseas suppliers. Majority of respondentswere importing certified wood products. FSC, SFI, and ISO 14000 were the mostly accepted certificationprograms. However, certification was not a major factor in foreign supplier selection criteria. Whenconsidered the U.S. wood products importers’ tendency to diversify their products and species imported,attractive opportunities exist for wood products suppliers from tropical countries.

  1. Bioconversion of organic wastes for fuel and manure

    International Nuclear Information System (INIS)

    Jain, M.C.

    1993-01-01

    Major source of fuel in rural areas is still fire wood, cowdung and crop residues. Cowdung and crop residues can be effectively used as manure too. Bioconversion of organic wastes for fuel and manure can solve the twin problems. The paper deals with various kinds of organic wastes used as fuel, manure and for both, other organic wastes as alternate and supplemental feedstocks, impact of their bioconversion on rural energy and environment, dry fermentation technology, manurial value of the biogas slurry, etc. Important constraints in popularizing the biogas programme have been mentioned and their remedial measures have also been suggested. (author). 32 refs., 4 tabs., 3 figs

  2. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  3. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  4. Wood preservation

    Science.gov (United States)

    Rebecca E. Ibach

    1999-01-01

    When left untreated in many outdoor applications, wood becomes subject to degradation by a variety of natural causes. Although some trees possess naturally occurring resistance to decay (Ch. 3, Decay Resistance), many are in short supply or are not grown in ready proximity to markets. Because most commonly used wood species, such as Southern Pine, ponderosa pine, and...

  5. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  6. Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Astrup, Thomas; Hansen, Kurt Kielsgaard; Hoffmeyer, Preben

    2005-01-01

    Modelling of moisture transport in wood is of great importance as most mechanical and physical properties of wood depend on moisture content. Moisture transport in porous materials is often described by Ficks second law, but several observations indicate that this does not apply very well to wood....... Recently at the Technical University of Denmark, Department of Civil Engineering, a new model for moisture transport in wood has been developed. The model divides the transport into two phases, namely water vapour in the cell lumens and bound water in the cell walls....

  7. Atmospheric deposition of trace elements around point sources and human health risk assessment. II: Uptake of arsenic and chromium by vegetables grown near a wood preservation factory

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Moseholm, Lars; Nielsen, Margot M.

    1992-01-01

    Kale, lettuce, carrots and potatoes were grown in 20 experimental plots surrounding a wood preservation factory, to investigate the amount and pathways for plant uptake of arsenic and chromium. Arsenate used in the wood preservation process is converted to the more toxic arsenite by incineration...... of waste wood and is emitted into the atmosphere. Elevated concentrations of inorganic arsenic and chromium were found both in the test plants and in the soil around the factory. Multivariate statistical analysis of the results indicated that the dominating pathway of arsenic and chromium from the factory...

  8. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  9. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  10. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  11. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    Science.gov (United States)

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  12. Generation of electricity and combustible gas by utilization of agricultural waste in Nara canal area water board

    International Nuclear Information System (INIS)

    Joyo, P.; Memon, F.; Sohag, M.A.

    2005-01-01

    Biomass in an important source of energy, however, it is not fully utilized in Sindh. The various types of biomass normally used for the generation of energy are extensively available in the province. These are forest debris and thinning; residue from wood products industry; agricultural waste; fast-growing trees and crops; wood and wood waste; animal manures and non-hazardous organic portion of municipal solid waste. Since agriculture is pre-dominant in Sindh, it has a large amount of agricultural waste available in most of the areas. Agriculture wastes like rice husk, wheat straw, cotton stalks, and sugarcane bagasse can be utilized to produce gas and afterwards electricity. Pakistan Agricultural Research Council (PARC) has found that at most of the locations of Sindh, agricultural waste is available more than the energy requirements of that particular area. Biomass can also generate electricity (or heat) in one of the several processes, can be used in a piston driven engine, high efficiency gas turbine generator or a fuel cell to produce electricity. Biomass gasifies have gained attention for their efficiency, economy and environment-friendly. The Nara Canal Area Water Board is facing acute problem of electricity in the O and M of its drainage network and running of tube wells. The frequent breakdown and irregular supply of power is badly affecting in the management of drainage system and control of rising water-table, however, it is anticipated that the generation of electricity through biomass can address this acute problem and greatly help in controlling water logging and salinity in Sindh. (author)

  13. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  14. Inside the guts of wood-eating catfishes: can they digest wood?

    Science.gov (United States)

    German, Donovan P

    2009-11-01

    To better understand the structure and function of the gastrointestinal (GI) tracts of wood-eating catfishes, the gross morphology, length, and microvilli surface area (MVSA) of the intestines of wild-caught Panaque nocturnus, P. cf. nigrolineatus "Marañon", and Hypostomus pyrineusi were measured, and contrasted against these same metrics of a closely related detritivore, Pterygoplichthys disjunctivus. All four species had anatomically unspecialized intestines with no kinks, valves, or ceca of any kind. The wood-eating catfishes had body size-corrected intestinal lengths that were 35% shorter than the detritivore. The MVSA of all four species decreased distally in the intestine, indicating that nutrient absorption preferentially takes place in the proximal and mid-intestine, consistent with digestive enzyme activity and luminal carbohydrate profiles for these same species. Wild-caught Pt. disjunctivus, and P. nigrolineatus obtained via the aquarium trade, poorly digested wood cellulose (<33% digestibility) in laboratory feeding trials, lost weight when consuming wood, and passed stained wood through their digestive tracts in less than 4 h. Furthermore, no selective retention of small particles was observed in either species in any region of the gut. Collectively, these results corroborate digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes' GI tracts, suggesting that the wood-eating catfishes are not true xylivores such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae.

  15. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    Science.gov (United States)

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. AFBnet - Wood and field energy information from Europe

    International Nuclear Information System (INIS)

    Alakangas, E.

    2001-01-01

    The objective of EU's ALTENER program is to promote the use of renewable energy sources. The European bioenergy network AFBnet produces and delivers information on bioenergy research and utilization of them in different countries. Import and export of biofuels, as well as the prices of biofuels in twenty European countries have been studied during past two years. The potential of combined heat and power generation with biofuels has also been estimated. The network has evaluated these projects and the factors, which have affected the successfulness and unsuccessfulness of the projects in different countries. In Finland the promotion of the utilization of wood fuels in municipal projects was evaluated in a 'Heat Entrepreneur competition' carried out first time in 2000. AFBnet analyzed the operation of 21 plants using mixed fuels as energy sources. One of the objectives was to collect information on experiences of production and processing phase of fuels at district heating and power plants in Finland, Italy, Austria, Portugal, Sweden, Germany and Denmark. The plants consumed different kinds of biofuels (industrial wood residues, straw and other agricultural wastes) and the mixture of them. Plants using different combustion technologies (grate, fluidized bed and pulverized fuel combustion, and biomass gasifiers). The consumption rate of wood and agricultural biofuels in plants was about 30% of the total fuel consumption. The main mixed fuel was coal, the share of which was 28% of the total. A detailed report has been published on all the plants. The reports analyze the fuel production and processing chains of the plants up to the boiler. Data was gathered also from the investments and maintenance costs of the plants. In EU countries there is no comprehensive survey on the prices of biofuels. Only Sweden publishes the prices of biofuels regularly. AFBnet collected in 1999 data on fuel prices, import and export of the fuels, and present utilization and potential of

  17. Reactivity and burnout of wood fuels

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo

    This thesis deals with the combustion of wood in pulverised fuel power plants. In this type of boiler, the slowest step in the wood conversion process is char combustion, which is one of the factors that not only determine the degree of fuel burnout, but also affect the heat release profile...... of different aspects relevant to wood combustion, including wood structure and composition, wood pyrolysis, wood char properties and wood char oxidation. The full scale campaign, which is the subject of Chapter 3, included sampling of wood fuel before and after milling and sampling of gas and particles...... at the top of the combustion chamber. The collected samples and data are used to obtain an evaluation of the mills in operation at the power plant, the particle size distribution of the wood fuel, as well as the char conversion attained in the furnace. In Chapter 4 an experimental investigation...

  18. Determination of Cu, Cr, and As in preserved wood (Eucalyptus sp.) using x-ray fluorescent spectrometry techniques

    International Nuclear Information System (INIS)

    Sergio Matias Pereira Junior; Vera Akiko Maihara; Edson Goncalves Moreira; Vera Lucia Ribeiro Salvador; Ivone Mulako Sato

    2016-01-01

    Energy dispersive (EDXRF) and Portable (PXRF) X-ray fluorescence techniques are proposed for wood treatment control process and wood waste assortment. In this study, different retentions of chromated copper arsenate preservative were applied to Eucalyptus sp. sapwood samples. Cu, Cr and As were determined by XRF techniques in treated sapwood massive blocks and treated sapwood sawdust samples were analyzed by FAAS spectrometry (Flame Atomic Absorption) and INAA (Instrumental Neutron Activation Analysis). Cu, Cr and As mean values, obtained by FAASS and INAA, showed to be statically equal; however, XRF analysis showed considerable deviations, presenting the absorption and the enhancement effects in analytical lines. (author)

  19. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1996-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels cannot compete effectively in the current market without tax credits, subsidies and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions which favor and create market pull for biomass and waste fuel energy. Using the final results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, direct combustion in dedicated mass burn, stoker and fluidized bed boilers, and wood gasification/combined cycle-power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this approach is economically feasible only when the fuel is delivered at a deep discount relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. (author)

  20. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    OpenAIRE

    Elena Bobeková; Michal Tomšovský; Petr Horáček

    2008-01-01

    The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit). The experiment based on dry rot fungus (Serpula lacrymans) detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was ide...

  1. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  2. Analysis of experimental researches of wood gasification process in a continuous layer

    OpenAIRE

    Lys, Stepan; Rymar, Tetyana; Yurasova, Oksana; Bura, Mykhaylo

    2017-01-01

    For today are known quite a bit methods redoing of wood and its wastes in energy, but one of the most perspective is gasification. The construction of the gazogene, on which the row of experiments is conducted with the aim of determination of conformity to law of influence of entrance factors which influence on the process of gasification and on quality of synthesis-gas, was worked out for this purpose. The statistical processing of experimental data enables to define ...

  3. Composite structure of wood cells in petrified wood

    International Nuclear Information System (INIS)

    Nowak, Jakub; Florek, Marek; Kwiatek, Wojciech; Lekki, Janusz; Chevallier, Pierre; Zieba, Emil; Mestres, Narcis; Dutkiewicz, E.M.; Kuczumow, Andrzej

    2005-01-01

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, μ-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of μ-Raman and μ-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested

  4. Composite structure of wood cells in petrified wood

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jakub [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Florek, Marek [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, Wojciech [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Lekki, Janusz [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Chevallier, Pierre [LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Zieba, Emil [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona (ICMAB), Campus de la UAB, E-08193-Bellaterra (Spain); Dutkiewicz, E.M. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Kuczumow, Andrzej [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland)

    2005-04-28

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, {mu}-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of {mu}-Raman and {mu}-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested.

  5. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1993-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels can not compete effectively in the current market without tax credits, subsidies, and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions that favor and create market pull for biomass and waste fuel energy. Using the interim results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires, and tire-derived fuel, scrap tires, and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, and wood gasification/combined cycle power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. In order to increase future use of biomass and waste fuels, a joint initiative, involving government, industry, and fuel suppliers, transporters, and users, is needed to develop low-cost and efficient energy crop production and power technology

  6. Modelling piloted ignition of wood and plastics

    International Nuclear Information System (INIS)

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-01-01

    Highlights: ► We model piloted ignition times of wood and plastics. ► The model is applied on a packed bed. ► When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  7. Possibilities for the Use of Wood Ashes in Agriculture

    Directory of Open Access Journals (Sweden)

    Barbara Symanowicz

    2018-05-01

    The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes obtained from the combustion of wood in a fireplace furnace, the following parameters were determined: pH H2O, pHKCl (1 mole dm-3 KCl, pHCaCl2 (0.01 mole dm-3 CaCl2 and total alkalinity in terms of the suitability of ashes as a liming agent. The contents of Ctot. and Ntot. were determined with a CHNS/O elemental analyser by Perkin-Elmer and the contents of other elements (macronutrients and heavy metals were specified using the method of atomic emission spectrometry with inductively coupled plasma ICP-AES. Wood ashes are a source of macronutrients for plants. Their contents can be presented in the following series of decreasing values: Ca > C > K > Mg > P > S > N. Out of 1 t of wood ash, approx. 160 kg C, 6 kg N, 20 kg P, 98 kg K, 302 kg Ca, 39 kg Mg and 18 kg S can be introduced into the soil. The content of heavy metals in the analysed ashes was low, and exceeded the acceptable standards for their content in waste materials intended for liming soils. The analysed ashes exhibit good physical and chemical properties. They can be suitable for use in agriculture as a liming agent to be applied on medium and heavy soils.

  8. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods; Facteurs d'emission. Emissions de dioxines, de furanes et d'autres polluants liees a la combustion de bois naturels et adjuvantes

    Energy Technology Data Exchange (ETDEWEB)

    Collet, S

    2000-02-15

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  9. Structure and function of wood

    Science.gov (United States)

    Alex Wiedenhoeft

    2010-01-01

    Wood is a complex biological structure, a composite of many chemistries and cell types acting together to serve the needs of a living plant. Attempting to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood evolved over the course of millions of years to serve three main functions in plants― conduction of water...

  10. Wood pellets : a worldwide fuel commodity

    International Nuclear Information System (INIS)

    Melin, S.

    2005-01-01

    Aspects of the wood pellet industry were discussed in this PowerPoint presentation. Details of wood pellets specifications were presented, and the wood pellet manufacturing process was outlined. An overview of research and development activities for wood pellets was presented, and issues concerning quality control were discussed. A chart of the effective calorific value of various fuels was provided. Data for wood pellet mill production in Canada, the United States and the European Union were provided, and various markets for Canadian wood pellets were evaluated. Residential sales as well as Canadian overseas exports were reviewed. Production revenues for British Columbia and Alberta were provided. Wood pellet heat and electricity production were discussed with reference to prefabricated boilers, stoves and fireplaces. Consumption rates, greenhouse gas (GHG) emissions, and fuel ratios for wood pellets and fossil fuels were compared. Price regulating policies for electricity and fossil fuels have prevented the domestic expansion of the wood pellet industry. There are currently no incentives for advanced biomass combustion to enter British Columbia markets, and this has led to the export of wood pellets. It was concluded that climate change mitigation policies will be a driving force behind market expansion for wood pellets. tabs., figs

  11. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  12. Achievement report in fiscal 2000 on technical development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of wooden board manufacturing technology using demolished building lumbers); 2000 nendo kenchiku glass nado recycle gijutsu kaihatsu seika hokokusho. Kenhciku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai wo mochiita mokushitsu board seizo gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on a wooden board manufacturing technology re-utilizing demolished building lumbers and waste plastics with an intention of saving resources and reducing wastes. This paper summarizes the achievements in fiscal 2000. In developing the technology to re-use demolished building lumbers, a method for removing metals attached to demolished building lumbers was established by using a magnetic separator and a metal detector, with which it was verified that iron can be removed nearly 100%. With regard to waste plastics, simultaneous use of specific gravity separation utilizing centrifugal force and electrostatic separation provided a prospect that metals and plastics of high melting points can be removed from mixed resins in waste household electric appliances, and that polypropylene (PP), polystyrene (PS), and ABS can be classified at high accuracy. In manufacturing waste wood and waste plastic boards, pilot plants were built to use the 'melt spray method', 'melt blow method', and 'laminating method' as the means to spray molten resin onto wood raw materials, wherein trials were performed on mixing molten resins with wood flakes, and on board forming. (NEDO)

  13. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  14. Survival, growth, wood basic density and wood biomass of seven ...

    African Journals Online (AJOL)

    A performance comparison of seven-year-old individuals of 13 Casuarina species/provenances in terms of survival, growth (diameter, height and volume), wood basic density and wood biomass was undertaken at Kongowe, Kibaha, Tanzania. The trial was laid out using a randomised complete block design with four ...

  15. Chapter 9: Wood Energy

    Science.gov (United States)

    Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren  Mabee

    2016-01-01

    The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels.  Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources.  There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...

  16. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  17. In Situ Gamma Irradiation and Thermal Treatment Effects on the Static Bending Properties of Particle boards Based on Waste Materials and Different Adhesives

    International Nuclear Information System (INIS)

    Khafaga, M.R.; El-Naggar, A.M.; Zahran, A.H.; Kandeel, K.A.

    2000-01-01

    Particle boards based on different waste materials and different polymers as adhesives have been prepared by compression molding in a hot press at 120 degree and constant pressure. The used waste materials were cotton stalks, flax stalks and wood saw-dust whereas urea formaldehyde (UF), polystyrene (PS) and the epoxy resins 103 (E 103) and 150 (E 150) were used as adhesives. The thermally treated particleboard woods were subsequently exposed to gamma radiation. The static bending parameters of the different factors that may affect the mechanical properties such as irradiation dose, time of thermal treatment and adhesive content were also investigated. In general it was found that the highest mechanical properties of the unirradiated woods were obtained when the preparation was carried out under hot press for 20 min and the adhesive content was 20 wt.% (based on weight of waste material). The obtained results showed that the mechanical properties were greatly increased with increasing irradiation dose from 3 to 5 Mrad. Meanwhile, particleboard based on cotton or flax stalks and the epoxy resins 103 and 150 displayed higher mechanical properties than these based on wood saw-dust and the same adhesives

  18. On-line automatic detection of wood pellets in pneumatically conveyed wood dust flow

    Science.gov (United States)

    Sun, Duo; Yan, Yong; Carter, Robert M.; Gao, Lingjun; Qian, Xiangchen; Lu, Gang

    2014-04-01

    This paper presents a piezoelectric transducer based system for on-line automatic detection of wood pellets in wood dust flow in pneumatic conveying pipelines. The piezoelectric transducer senses non-intrusively the collisions between wood pellets and the pipe wall. Wavelet-based denoising is adopted to eliminate environmental noise and recover the collision events. Then the wood pellets are identified by sliding a time window through the denoised signal with a suitable threshold. Experiments were carried out on a laboratory test rig and on an industrial pneumatic conveying pipeline to assess the effectiveness and operability of the system.

  19. Wood energy and European trade patterns: why Sweden is the No. 1 biofuel importer in Europe

    International Nuclear Information System (INIS)

    Hillring, B.; Vinterbaeck, J.

    1999-01-01

    A high tax on fossil fuels in Sweden and more extensive waste legislation in some densely populated European countries, e.g., Germany and the Netherlands, explain why the Swedish imports of wood-fuels and recycled wood-fuels have increased dramatically in the past few years. The industrial use of wood-fuels is strongly dependent on prices of competitive fuels, i.e., fossil fuels, but it is also affected by policy instruments. Energy policies have up to now mainly been national. The expected common energy policy of the European Union, stated in the EU white paper, will have important influences on biofuel trade. Sweden experienced a massive development of district heating systems during the last 20 years. Mainly due to the tax system's carbon dioxide tax, wood-fuels compete successfully on this market with fossil fuels and other untaxed biofuels. Imports help replace fossil fuels. This study, which is a follow-up of a 1993 trade study, examines the forces that drive the increasing biofuel trade in Europe and analyzes the Swedish trade in biofuels. In 1997 imports amounted to 15-24 PJ which is about one fourth of the total biofuel consumed by Swedish district heating and about three times that projected in earlier studies. Out of this, about half was classified as wood-fuels. (author)

  20. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  1. Waste minimization assessment for a manufacturer of baseball bats and golf clubs. Environmental research brief

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, M.; Kirsch, F.W.; Maginn, J.C.

    1993-09-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Center (WMAC) at the University of Louisville performed an assessment at a plant manufacturing baseball bats and golf clubs -- approximately 1,500,000 bats/yr and 550,000 golf clubs/yr. To make the bats, wood billets are oven-dried and machined to a standard dimension. After sanding they are branded and finished. The golf clubs are made by finishing and assembling purchased heads and shafts. The team's report detailing findings and recommendations, indicated that the most waste, other than rinse water discharged to the publicly owned treatment works (POTW) and wood turnings which are sold, consists of scrap cardboard and paper from the shop and offices, and that the greatest savings, including new income, could be obtained by segregating the cardboard and paper wastes for sale to a local recycler.

  2. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  3. Experimental apparatus for furfural production from logging waste products by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karlivans, V.; Krumina, Z.; Zemite, G.; Kulkevics, A.; Pugulis, J.; Zav' yalov, V.A.; Ievins, I.; Daugavietis, M.; Tsirlin, Yu.A.; Fedotova, S.A.

    1981-01-01

    An experimental apparatus was developed for the manufacture of furfural (I) -containing condensates by pyrolysis of wood waste in the presence of 1.8% H2SO4. The highest yield of I (7.6%) was obtained when the waste was pyrolyzed at 210 degrees. The heat required for the manufacture of I-containing condensates is 712 kcal/kg. Commercial I isolated from the condensates meets the standards of GOST 10337-71.

  4. WOOD BIOMASS FOR ENERGY IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gradimir Danon

    2010-01-01

    Full Text Available Wood biomass has got its place in the energy balance of Montenegro. A little more than 6% of the total energy consumption is obtained by burning wood. Along with the appropriate state measures, it is economically and environmentally justified to expect Montenegro to more than double the utilization of the existing renewable energy sources including wood biomass, in the near future. For the purpose of achieving this goal, ‘Commercial Utilisation of the Wood Residue as a Resource for Economic Development in the North of Montenegro' project was carried out in 2007. The results of this project were included in the plan of the necessary interventions of the Government and its Agencies, associations or clusters, non-government organisations and interested enterprises. The plan was made on the basis of the wood residue at disposal and the attitude of individual subjects to produce and/or use solid bio-fuels and consists of a proposal of collection and utilisation of the wood residue for each individual district in the north of Montenegro. The basic factors of sustainability of future commercialisation of the wood residue were: availability of the wood raw material, and thereby the wood residue; the development of wood-based fuel markets, and the size of the profit.

  5. Guide for construction of wood power systems. Construction - economic efficiency - technology; Leitfaden fuer die Errichtung von Holzenergie-Anlagen. Umsetzung - Wirtschaftlichkeit - Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Ruchser, M. [Forum fuer Zukunftsenergien e.V., Bonn (Germany)

    2001-07-01

    The Guidebook serves as a handbook for the entire operational sequence, which is necessary for the establishment of a wood combustion plant in Germany with an installed capacity larger than 100 kW{sub th}, for the use of fuel woods such as forest chips, wood and forest residues, pellets, wood waste, etc. within the limits of the laws and regulations prescribed for the respective performance classes. The Guidebook's purpose is to give potential investors and operators of wood combustion plants as well as the appropriate authorities a quick and global overview of the energetic use of wood in order to contribute to an increased application of this technology. The Guidebook introduces a Quality Model in Chapters 2 and 3, which describes the establishment of a wood combustion system in six phases. Eleven Management Aspects are differentiated, which can be helpful during the conversion of a project. Thus, potential investors and operators of wood combustion plants become acquainted with the most important aspects of this kind of project conversion. In addition, Chapter 4 provides an overview of the operating costs of wood combustion plants. The relevant licensing and planning procedures depending on the installed capacity and fuelwood use are comprehensively described in Chapter 5. Chapter 6 supplies a concrete overview of the environmental aspects and emissions of wood combustion. Since wood combustion plants must be - as all other investments - financially secured Chapter 7 provides a description of the relevant information on public means and subsidies. Besides all important promotion programmes, the new German Renewable Energy Law (Erneuerbare-Energien-Gesetz - EEG) of April 2000 is described in detail. Many examples of already realised wood combustion plant projects are described in Chapter 8. As an additional service, all significant addresses from ministries to energy agencies and associations are listed in Chapter 9. (orig.)

  6. Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This document compiles recent research findings related to corrosion of metals in preservative treated wood into a single report on corrosion of metals in wood. The research was conducted as part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The...

  7. Effectiveness of policy instruments for supporting the use of waste wood as a renewable energy resource in the Czech Republic

    International Nuclear Information System (INIS)

    Jehlickova, Bohumira; Morris, Richard

    2007-01-01

    This paper focuses on an examination of the government's strategy for encouraging the use of wood as a renewable fuel in Czech households. It examines the development of modern combustion technology and its impact on the environment. It describes the estimated requirement for wood by an average household and examines the overall availability of wood as a renewable fuel in the Czech Republic. The paper analyses in detail the policy instruments used by the Czech government to promote the use of this technology. It evaluates the impact of this policy on the users of the technology and practical achievements of the policy measures with respect to the overall objective that is the promotion of generation of renewable energy

  8. Volumes of common industrial wastes: a study report; Dechets industriels banals: quel tonnage? rapport d`etude

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The total common industrial waste volume production in France has been evaluated, taking into consideration all the industrial and commercial sectors and the following materials: glass, metals, plastics, rubber, textiles, papers, cardboard, wood, leather, organic matters, building wastes, mixtures. Results are presented for the various regions of France, as a function of enterprise size, waste type and destination; data are also given concerning packaging materials, and waste collection and processing. Comparisons are made with data from other information sources and calculations

  9. Status of wood energy applications

    International Nuclear Information System (INIS)

    Zerbe, J.I.

    1991-01-01

    In this address, the potential of wood and wood residues to supply future energy needs is examined. In addition, the possible environmental impact of the use of wood fuels on global climate change is discussed. Technologies for the development of new fuels are described

  10. Choosing Wood Burning Appliances

    Science.gov (United States)

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  11. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005

    Science.gov (United States)

    Steeb, Nicolas; Rickenmann, Dieter; Badoux, Alexandre; Rickli, Christian; Waldner, Peter

    2017-02-01

    The extreme flood event that occurred in August 2005 was the most costly (documented) natural hazard event in the history of Switzerland. The flood was accompanied by the mobilization of > 69,000 m3 of large wood (LW) throughout the affected area. As recognized afterward, wood played an important role in exacerbating the damages, mainly because of log jams at bridges and weirs. The present study aimed at assessing the risk posed by wood in various catchments by investigating the amount and spatial variability of recruited and transported LW. Data regarding LW quantities were obtained by field surveys, remote sensing techniques (LiDAR), and GIS analysis and was subsequently translated into a conceptual model of wood transport mass balance. Detailed wood budgets and transport diagrams were established for four study catchments of Swiss mountain streams, showing the spatial variability of LW recruitment and deposition. Despite some uncertainties with regard to parameter assumptions, the sum of reconstructed wood input and observed deposition volumes agree reasonably well. Mass wasting such as landslides and debris flows were the dominant recruitment processes in headwater streams. In contrast, LW recruitment from lateral bank erosion became significant in the lower part of mountain streams where the catchment reached a size of about 100 km2. According to our analysis, 88% of the reconstructed total wood input was fresh, i.e., coming from living trees that were recruited from adjacent areas during the event. This implies an average deadwood contribution of 12%, most of which was estimated to have been in-channel deadwood entrained during the flood event.

  12. Retrieval of buried waste using conventional equipment

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1994-01-01

    A field test was conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive test pit 841 m 3 in volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, vessels, vaults, pipes, and beams were also placed in the pit. These materials were intended to simulate the type of waste found in existing TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were also observed

  13. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  14. Wood power in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, J.G.; Guessous, L. [Research Triangle Institute, Research Triangle Park, NC (United States)

    1993-12-31

    North Carolina (NC) is one of the most forested states, and supports a major wood products industry. The NC Department of Natural Resources sponsored a study by Research Triangle Institute to examine new, productive uses of the State`s wood resources, especially electric power generation by co-firing with coal. This paper summarizes our research of the main factors influencing wood power generation opportunities, i.e., (1) electricity demand; (2) initiative and experience of developers; (3) available fuel resources; (4) incentives for alternate fuels; and (5) power plant technology and economics. The results cover NC forests, short rotation woody crops, existing wood energy facilities, electrical power requirements, and environmental regulations/incentives. Quantitative assessments are based on the interests of government agencies, utilities, electric cooperatives, developers and independent power producers, forest products industries, and the general public. Several specific, new opportunities for wood-to-electricity in the State are identified and described. Comparisons are made with nationwide resources and wood energy operations. Preferred approaches in NC are co-generation in existing or modified boilers and in dedicated wood power plants in forest industry regions. Co-firing is mainly an option for supplementing unreliable primary fuel supplies to existing boilers.

  15. Dioxine and PAH-emissions from private incineration of wastes; Dioxin- und PAK-Emissionen der privaten Abfallverbrennung: Umwelt-Materialien Nr. 172 Luft

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2004-07-01

    This report published by the Swiss Agency for the Environment, Forests and Landscape (SAEFL) presents the results of a literature study and situation analysis on the burning of wastes at the domestic level. The private burning of municipal solid waste, urban waste wood and other wastes as a potential source of toxic emissions and residues is discussed. Beside the heavy metals found in ash and flue gas, the paper looks at organic substances such as polycyclic aromatic hydrocarbons (PAH) and polychlorinated dibenzo-p-dioxines and polychlorinated dibenzofuranes (PCDD/F) that can be emitted in relevant concentrations. The aim of the study - to evaluate emission factors of PCDD/F and PAH from private waste incineration in wood stoves and boilers, in barrels, and in open fires - is discussed. A survey of recent investigations in Europe and the United States and the correlation between the most relevant emission factors is looked at. Critical situations leading to extremely high PCDD/F emissions are described.

  16. The Carbon Impacts of Wood Products

    Science.gov (United States)

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  17. The influence of irradiated wood filler on some properties of polypropylene - wood composites

    Directory of Open Access Journals (Sweden)

    Điporović-Momčilović Milanka

    2007-01-01

    Full Text Available The problem of compatibility between the wood filler and thermoplastic matrix is of essential importance in composite production. Numerous methods have been developed for increasing this compatibility, which is still representing a challenging objective of composite research throughout the world. The research into these methods is primarily directed towards their efficiency from the viewpoint of the composite performance and their economical acceptability. The latter is of particular importance for the composite production in the developing countries with respect to the shortage of the corresponding funds. With this respect, the utilization of ionizing radiation might have considerable advantages. In this research, the beech wood flour was irradiated by a dose of 10 kGy of 60Co gamma rays for purpose of provoking the changes by the ionizing effect. The effects of ionizing radiation upon the properties of wood particles have been examined by IR spectroscopy and by determination of contents of hydroxyl groups in wood by acetylating as an indirect method. All these methods have been expected to reveal the chemical effects of the applied radiation treatment. The irradiated and the control wood flour were used in order to produce the samples of composite with polypropylene. The polypropylene-wood flour (PP-WF composites were produced with 40% of wood particles having fraction size 0.3 mm. The melt-blended composites were modified with amido-acrylic acid (AMACA as a new coupling agent synthesized for this propose in amount of 6 wt.% (based on wood filler and successively with 0.05 wt.% (based on PP of organic peroxide during mixing step. The composites containing coupling agents showed superior mechanical properties, compared to the untreated one. The highest extent of improvement of tensile was achieved in PP-WFl composites modified with AMACA coupling agent.

  18. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  19. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  20. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings.

    Science.gov (United States)

    Thomas, D S; Montagu, K D; Conroy, J P

    2007-02-01

    Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.

  1. The central role of wood biology in understanding the durability of wood-coating interactions

    Science.gov (United States)

    Alex C. Wiedenhoeft

    2007-01-01

    To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...

  2. Wood as a home heating fuel

    International Nuclear Information System (INIS)

    Wood, K.

    1991-01-01

    This article describes the development of clean-burning technology in three types of wood-burning appliances: catalytic, non-catalytic, and pellet stoves. A recent study by the Washington State Energy Extension Office concluded that in homes that use both electricity and wood, 73 megawatts of electricity/yr were saved by using wood. Since wood-burning stoves can now meet air quality standards, wood could be considered to be a greenhouse-neutral fuel if more trees are planted as they are consumed

  3. Characterization of household waste in Greenland

    International Nuclear Information System (INIS)

    Eisted, Rasmus; Christensen, Thomas H.

    2011-01-01

    The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

  4. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    Science.gov (United States)

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  5. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    Directory of Open Access Journals (Sweden)

    Elena Bobeková

    2008-01-01

    Full Text Available The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit. The experiment based on dry rot fungus (Serpula lacrymans detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was identified using the PCR–based methods including species-specific PCR and sequencing of amplified ITS region of ribosomal DNA.

  6. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  7. FLEXURAL TESTING OF WOOD-CONCRETE COMPOSITE BEAM MADE FROM KAMPER AND BANGKIRAI WOOD

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-07-01

    Full Text Available Certain wood has a tensile strength that almost equal with steel rebar in reinforced concrete beams. This research aims to understand the capacity and flexural behavior of concrete beams reinforced by wood (wood-concrete composite beam. Two different types of beams based on placement positions of wood layers are proposed in this study. Two kinds of wood used are consisted of Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, meanwhile the concrete mix ratio for all beams is 1 cement : 2 fine aggregates : 3 coarse aggregates. Bending test is conducted by using one-point loading method. The results show that composite beam using Bangkirai wood is stronger than beams using Kamper wood. More thicker wood layer in tensile area will increase the flexural strength of beams. Crack patterns identified could be classified into flexural cracks, shear cracks, and split on wood layer   Beberapa jenis kayu tertentu memiliki kekuatan tarik yang hampir sama dengan tulangan baja pada balok beton bertulang. Penelitian ini bertujuan memahami kapasitas dan perilaku lentur balok beton bertulang yang diperkuat menggunakan kayu (balok komposit beton-kayu. Dua tipe balok yang berbeda berdasarkan posisi penempatan kayu digunakan dalam penelitian ini. Dua jenis kayu yang digunakan adalah kayu Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, sementara itu rasio campuran beton untuk semua balok menggunakan perbandingan 1 semen : 2 agregat halus : 3 agregat kasar. Pengujian lentur dilakukan menggunakan metode one-point loading. Hasil penelitian menunjukkan bahwa balok komposit dengan kayu Bangkirai lebih kuat dibandingkan balok dengan kayu Kamper. Semakin tebal lapisan kayu yang berada di daerah tarik akan meningkatkan kekuatan lentur balok. Pola kerusakan yang teridentifikasi dapat diklasifikasikan menjadi retak lentur, retak geser, dan pecah pada kayu REFERENCES Boen T. (2010. Retrofitting Simple Buildings Damaged by Earthquakes. World Seismic

  8. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  9. Waste Management: DOD Has Generally Addressed Legislative Requirements on the Use of Burn Pits but Needs to Fully Assess Health Effects

    Science.gov (United States)

    2016-09-01

    such as tires , treated wood, and batteries) in burn pits during contingency operations. GAO found that DOD’s report fully addressed four of the seven...regulations prohibiting the disposal of covered waste (including certain types of hazardous waste, medical waste, and items such as tires , treated...required contractors to segregate non-hazardous, hazardous, and recyclable materials; establish recycling systems; and maintain all solid waste operations

  10. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  11. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  12. Macrophotographic wood atlas of Annonaceae.

    NARCIS (Netherlands)

    Koek-Noorman, J.; Westra, L.I.T.

    2012-01-01

    In this article, a general description of the microscopic wood anatomy of Annonaceae is given. We provide a description of the wood anatomical features of the family and of all subfamilies and tribes, all from material in the Utrecht Wood collection. Hand-lens images can be an important help in

  13. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  14. FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.

    Science.gov (United States)

    PURCELL, FRANK X.

    A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…

  15. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wicakso, Doni Rahmat [Chemical Engineering Department, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM. 36 Banjarbaru, 70714, South Kalimantan (Indonesia); Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Sutijan; Rochmadi [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta, 55281 (Indonesia)

    2016-06-03

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.

  16. Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin

    Science.gov (United States)

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...

  17. Cleaner Production Applied in a Small Furniture Industry in Brazil: Addressing Focused Changes in Design to Reduce Waste

    Directory of Open Access Journals (Sweden)

    Carlos Mario Gutiérrez Aguilar

    2017-10-01

    Full Text Available The wood industry is known for being among the biggest resource consumers, having a relatively low yield. The wood furniture industry as part of the wood industry also remains a big generator of residues and a big consumer of resources. Diverse solutions and technologies have been developed to deal with the residues generated, but those technologies are mostly applied at the end of the production chain with limited results. Cleaner production represents a program based on continuous strategies applied to a more sustainable use of materials and energy, minimizing waste and pollution. This paper presents a case study of a cleaner production program developed in a small furniture industry in Salvador de Bahia, Brazil, applying the concepts of cleaner production with parameters of ecodesign developed for the furniture industry. The object of study was the production of a wooden chair made from eucalyptus wood. The application of the cleaner production program and ecodesign parameters allowed a detailed characterization of the waste, resulting in opportunities for a reduction of the use of raw material by 30%, a reduction in waste by 49% and allowing a reduction in energy by 36% due to simplification of the productive process. Among the strategies applied were reshaping pieces, redesigning, and the substitution of materials. The results suggest that despite the existence of more complex environmental methods and approaches, the application of cleaner production plus ecodesign parameters could be more achievable for micro and small furniture industries.

  18. The wood energy in France

    International Nuclear Information System (INIS)

    Douard, F.; Oremus, Y.; Garsault-Fabbi, A.

    2007-01-01

    The program law fixing the energy policy (POPE Law of the 13 july 2005) fixes an objective of 50% of growth for the renewable heat. As this renewable heat is today generated by the biomass, it seems necessary to adjust all the efforts on this sector. This document proposes to takes stock on the wood energy in France. It presents the wood fuels, an evaluation of the Wood-Energy Plan decided by the ADEME in 2000, the wood heat networks, and some example of installations. (A.L.B.)

  19. Development of thermoacoustic engine operating by waste heat from cooking stove

    Science.gov (United States)

    Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.

    2012-06-01

    There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

  20. Additional methods for the processing of solid radioactive wastes

    International Nuclear Information System (INIS)

    Tittlova, E.; Svrcek, A.; Hazucha, E. at el.

    1989-01-01

    An account is given of the work performed within the A 01-159-812/05 State Project concerned with the technology of and technical means for the processing of solid wastes arising during the operation of nuclear power plants. This included the development of the incineration equipment, development of the process of air filter disposal and equipment therefor, manufacture of a saw for fragmentation of wood, manufacture of a sorting box, ultimate solution of the problem of waste sorting, and use of high-pressure compression technology. (author). 1 tab., 9 refs

  1. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  2. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    Science.gov (United States)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  3. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    Science.gov (United States)

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  4. Photodegradation of wood and depth profile analysis

    International Nuclear Information System (INIS)

    Kataoka, Y.

    2008-01-01

    Photochemical degradation is a key process of the weathering that occurs when wood is exposed outdoors. It is also a major cause of the discoloration of wood in indoor applications. The effects of sunlight on the chemical composition of wood are superficial in nature, but estimates of the depth at which photodegradation occurs in wood vary greatly from 80 microm to as much as 2540 mic rom. Better understanding of the photodegradation of wood through depth profile analysis is desirable because it would allow the development of more effective photo-protective treatments that target the surface layers of wood most susceptible to photodegradation. This paper briefly describes fundamental aspects of photodegradation of wood and reviews progress made in the field of depth profile study on the photodegradation of wood. (author)

  5. Robert Williams Wood: pioneer of invisible light.

    Science.gov (United States)

    Sharma, Shruti; Sharma, Amit

    2016-03-01

    The Wood's lamp aids in the diagnosis of multiple infectious, inflammatory and neoplastic dermatologic conditions. Although the Wood's lamp has many applications, which have improved both the diagnosis and management of disease, the man credited for its invention is relatively unknown in medicine. Robert Williams Wood, a prominent physicist of the early 20th century, is credited for the invention of the Wood's lamp. Wood was the father of infrared and ultraviolet photography and made significant contributions to other areas in optics and spectroscopy. Wood's work encompassed the formative years of American Physics; he published over 200 original papers over his lifetime. A few years after the invention of the Wood's lamp for ultraviolet photography, physicians in Europe adopted the Wood's lamp for dermatologic applications. Wood's lamp remains popular in clinics globally, given its ease of use and ability to improve diagnostic precision. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    Directory of Open Access Journals (Sweden)

    Jean-François Bastin

    Full Text Available Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing. However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass.Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood.Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity

  7. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    Science.gov (United States)

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was

  8. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.

    1999-01-01

    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  9. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  10. Continued growth expected for wood energy despite turbulence of the economic crisis : wood energy markets, 2008-2009

    Science.gov (United States)

    Rens Hartkamp; Bengt Hillring; Warren Mabee; Olle Olsson; Kenneth Skog; Henry Spelter; Johan Vinterback; Antje Wahl

    2009-01-01

    The economic crisis has not reduced the demand for wood energy, which is expected to continue to grow. The downturn in sawmill production caused a shortage of raw material supply for wood pellet producers. With decreased demand for pulpwood-quality roundwood for wood and paper products in 2009, some pulpwood is being converted into wood energy. Economies of scale are...

  11. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types

    Science.gov (United States)

    Alves, Célia; Gonçalves, Cátia; Fernandes, Ana Patrícia; Tarelho, Luís; Pio, Casimiro

    2011-08-01

    Wood from seven species of trees grown in the Portuguese forest ( Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europea and Quercus ilex rotundifolia), and briquettes produced from forest biomass waste were burned in a fireplace and in a woodstove to determine the chemical composition of fine particle (PM 2.5) emissions. Samples were analysed for organic and elemental carbon (OC/EC), water soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) and 67 elements. The PM 2.5 emission factors (g kg - 1 fuel burned, dry basis) were in the ranges 9.9-20.2 and 4.2-16.3, respectively, for the fireplace and the woodstove. Organic carbon contributed to about 50% of the fine particle mass in the emissions from every wood species studied in both burning appliances. The carbonaceous component of PM 2.5 was dominated by organic carbon, accounting for more than 85% of the total carbon (TC): OC/TC ranged from 0.85 to 0.96 (avg. 0.92) for the fireplace and from 0.86 to 0.97 (avg. 0.93) for the woodstove. The water-soluble ions accounted for 0.64 to 11.3% of the PM 2.5 mass emitted from the fireplace, whereas mass fractions between 0.53 and 13.6% were obtained for the woodstove. The golden wattle wood smoke showed a much higher ionic content than the emissions from the other wood types. Trace elements represented 0.4 to 2.5% and 0.2 to 2.2% of the PM 2.5 mass emitted, respectively, from the fireplace and the woodstove, which corresponded to average total emissions of 132 ± 77.3 mg kg - 1 and 93.4 ± 60.8 mg kg - 1 of wood burned. Among these, K, Pb, Al, Mn and Sr were present in all samples. From the emission profiles of the individual experiments, composite wood combustion profiles are suggested with the aid of a cluster analysis.

  12. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  13. Robert Wood Johnson Foundation

    Science.gov (United States)

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants ... Learn more For Grantees and Grantseekers The Robert Wood Johnson Foundation funds a wide array of programs ...

  14. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    Science.gov (United States)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Advantages of the use of energy wood

    International Nuclear Information System (INIS)

    Kaerhae, K.; Aarnio, J.; Maekinen, P.

    2000-01-01

    According to the Regional Forestry Associations it would be possible to develop the harvesting of energy wood by increasing the use of it. The study was made at the areas of 34 regional forestry associations as an inquiry to the executive managers, as well as the persons responsible for timber trade, harvesting or regional affairs. The inquiries studied the use of energy wood and the user of them at the areas of the associations, as well as the amounts of harvesting and the realization of it. Only a third of the associations have large energy wood consuming plants (using more than 500 m 3 energy wood per year). The closest large energy wood consuming plant was in the average 31 km from the office of the association. The average energy wood use of the plant was 20 000 m 3 /a, the variation being 700 - 200 000 m 3 /a. The energy wood purchase range of the plants varied from few kilometers to hundred kilometers, the average being 47 km. Most of the energy wood was harvested from forest regeneration areas. Some of the energy wood is also harvested from young forest maintenance and thinning areas. The estimated harvesting of energy wood in 1999 was 6300 m 3 . A part of the energy wood is used for heating the farms and other small real estates, and a part is used for heating larger buildings like schools, hospitals, factories. The fees to the associations for purchase of energy wood varied significantly. The range was 2.00 - 11.00 FIM/m 3 . One association charged 300 FIM/parcel, and in one association the price depend on the amount of wood acquired from the lot, the unit price being 0.5 FIM/m 3 . It appeared that the associations estimated the use of energy wood to increase. The level in 1999 was 6300 m 3 and it is estimated to increase to 14 300 m 3 in 2005. The associations estimated that the levels can only be achieved if the stumpage price of energy wood may not be 0.0 FIM. Even a marginal price would lead to an increased harvesting of energy wood. The associations

  16. Inoculation Expedition of Agar wood

    International Nuclear Information System (INIS)

    Peng, C.S.; Mohd Fajri Osman; Rusli Zakaria

    2015-01-01

    Inoculation expedition of agar wood is a main field works for researcher in Nuclear Malaysia to prove the real inoculation of agar wood in real jungle. These expeditions was conducted fourth times in the jungles of Malaysia including Gunung Tebu in Terengganu, Murum in Belaga, Sarawak, Kampung Timbang in Kota Belud, Sabah and Nuclear Malaysia itself. This expedition starts from preparation of samples and equipment, transportation into the jungle, searching and recognition of agar wood and lastly, inoculation of the agar wood. Safety aspects precedence set out in the preparation and implementation of this expedition. (author)

  17. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  18. P.E.I. wood fuel survey, 1990-91

    International Nuclear Information System (INIS)

    1991-04-01

    In 1991 a wood fuel survey of 450 randomly selected households, representing 1% of the total number of households in Prince Edward Island, was conducted. The survey indicated that 49.8% of the households burned wood, up from 42.1% of households in the 1988-1989 survey. The wood burning households consumed an average of 4.92 cords of wood, consistent with the 4.90 cords in the 1989 survey. The total residential wood consumption was estimated at ca 100,377 cords, an increase from the 89,000 cords used in 1988-89. Wood cutters represented 23.4% of respondents, with buyers representing 25.4% of respondents. The wood burning appliances used by the respondents were: airtight wood stove 39.9%, wood furnace 22.5%, kitchen wood stove 15.7%, combined wood/oil furnace 8.9%, Franklin/non-airtight 4.4%, Kemac unit 4.4%, fireplace insert 3.1%, and open fireplace 1%. The most frequent response among rural wood users cited price as an advantage of wood fuel, while the most frequent response of urban users cited the quality of the heat. 9 figs., 47 tabs

  19. Wood for the trees

    Directory of Open Access Journals (Sweden)

    Rob Garbutt

    2013-10-01

    Full Text Available Our paper focuses on the materiality, cultural history and cultural relations of selected artworks in the exhibition Wood for the trees (Lismore Regional Gallery, New South Wales, Australia, 10 June – 17 July 2011. The title of the exhibition, intentionally misreading the aphorism “Can’t see the wood for the trees”, by reading the wood for the resource rather than the collective wood[s], implies conservation, preservation, and the need for sustaining the originating resource. These ideas have particular resonance on the NSW far north coast, a region once rich in rainforest. While the Indigenous population had sustainable practices of forest and land management, the colonists deployed felling and harvesting in order to convert the value of the local, abundant rainforest trees into high-value timber. By the late twentieth century, however, a new wave of settlers launched a protest movements against the proposed logging of remnant rainforest at Terania Creek and elsewhere in the region. Wood for the trees, curated by Gallery Director Brett Adlington, plays on this dynamic relationship between wood, trees and people. We discuss the way selected artworks give expression to the themes or concepts of productive labour, nature and culture, conservation and sustainability, and memory. The artworks include Watjinbuy Marrawilil’s (1980 Carved ancestral figure ceremonial pole, Elizabeth Stops’ (2009/10 Explorations into colonisation, Hossein Valamanesh’s (2008 Memory stick, and AñA Wojak’s (2008 Unread book (in a forgotten language. Our art writing on the works, a practice informed by Bal (2002, Muecke (2008 and Papastergiadis (2004, becomes a conversation between the works and the themes or concepts. As a form of material excess of the most productive kind (Grosz, 2008, p. 7, art seeds a response to that which is in the air waiting to be said of the past, present and future.

  20. EFFECTS OF BURN RATE, WOOD SPECIES, MOISTURE CONTENT AND WEIGHT OF WOOD LOADED ON WOODSTOVE EMISSIONS

    Science.gov (United States)

    The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...

  1. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Science.gov (United States)

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  2. Full-scale retrieval of simulated buried transuranic waste

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd 3 volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed

  3. Energy wood procurement in connection with conventional wood procurement; Energiapuun hankinnan organisointi muun puunhankinnan yhteydessae - PUUT02

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, P. [Finnish Forest Research Institute, Vantaa (Finland)

    2001-07-01

    The research consisted of two sub-projects. The present role of forestry associations in procurement of energy wood was investigated in the first sub- project. The possibilities and willingness of them to increase the energy wood procurement were also studied. The role of forest machine and forestry service entrepreneurs in procurement of energy wood was investigated in the second sub-project. The effects of energy wood procurement on the operation of the forest machine companies in general were also studied in this sub-project. The sub-project three studied the requirements of the customer companies for the energy wood suppliers. All the material of the sub-projects was collected by personal inquiries. According to the executive directors of the forestry associations the role of the forestry associations in energy wood procurement varied between a by-stander and active participant. Active forestry associations announced the companies for stands available for cutting. They told also that they directed the harvesting to correct sites and deliver stems at the roadside. The role of the forestry association was emphasised especially when the associations on the basis of a letter of attorney carried out the timber trade. It was estimated that in the near future the operation of forest machine entrepreneurs in harvesting of energy wood would increase significantly. From the employment and turnover point of view the role of harvesting of energy wood was not seen as a significant matter. On the other hand, that harvesting of energy wood impede the harvesting of commercial timber was seen as a more significant matter. In the future the end-users of energy wood would like to have more competition in the energy wood markets. However, the energy wood suppliers were desired to be relative large so that the reliability of deliveries could be ensured. Simultaneously as the end-users wanted to decrease the price of forest chips, the machine entrepreneurs estimated the price to

  4. Strength loss in decayed wood

    Science.gov (United States)

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  5. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  6. Effect of Alternative Wood Species and First Thinning Wood on Oriented Strand Board Performance

    Directory of Open Access Journals (Sweden)

    Fabiane Salles Ferro

    2018-01-01

    Full Text Available This study aimed to evaluate the feasibility of using and influence of alternative wood species such as Cambará, Paricá, Pinus, and wood from first thinning operations on oriented strand board (OSB physical and mechanical properties. Besides that, an alternative resin, castor oil-based polyurethane, was used to bond the particles, due to the better environmental performance when compared to other resins commonly used worldwide in OSB production. Physical properties such as the moisture content, thickness swelling, and water absorption, both after 2 and 24 hours of water immersion, and mechanical properties such as the modulus of elasticity and resistance in static bending, in major and minor axes, and internal bonding were investigated. All tests were performed according to European code EN 300:2006. Results showed the influence of wood species on physical and mechanical properties. Panels made with higher density woods such as Cambará presented better physical performance, while those made with lower density woods such as Pinus presented better mechanical properties. Besides that, strand particle geometry was also influenced on all physical and mechanical properties investigated. Therefore, the feasibility of using alternative species and wood from first thinning and with castor oil-based polyurethane resin in OSB production was verified.

  7. The environmental assessment of the wood combustion

    International Nuclear Information System (INIS)

    Dinca, Cristian; Badea, Adrian; Apostol, Tiberiu

    2007-01-01

    In this paper, the authors analysed the emissions from residential boilers burning wood logs, bark pellets, wood briquettes and wood pellets. Three boilers, selected with respect to age, design, connection to heat storage tank, and type of biofuel, were included in the study. The emissions captured comprised carbon monoxide (CO), carbon dioxide (CO 2 ), oxygen (O 2 ), total organic carbons (TOC), nitrogen oxides (NO x ), polycyclic aromatic hydrocarbons (PAC) and 33 volatile organic compounds (VOC). We have used the Life Cycle Inventory method in order to identify the main stressors generated by the wood combustion stage. In this purpose, we have analysed one type of old boiler, one type of modern boiler and a multi-fuel boiler, which can burn wood logs, bark pellets, wood briquettes and wood pellets. In this article, we selected only the wood combustion stage because it is the most important according to the emissions produced. (authors)

  8. Cleanup Verification Package for the 600-47 Waste Site

    International Nuclear Information System (INIS)

    Cutlip, M.J.

    2005-01-01

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris

  9. Proximate composition of some agricultural wastes in Nigeria and ...

    African Journals Online (AJOL)

    MICHAEL

    on the removal of dye stuffs by saw dust(Poots et al. 1976),hard wood (Asfour et al. 1985),peanut shell(Voudrias et al. 1999). Since agricultural wastes are available abundantly at no or low costs,it has the potential to provide a low cost adsorbent for cleaning our environment.Adsorption onto activated carbon appears to be ...

  10. Mineralogy of Non-Silicified Fossil Wood

    Directory of Open Access Journals (Sweden)

    George E. Mustoe

    2018-03-01

    Full Text Available The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy.

  11. Waste from glued wood - A base for new products and/or bio-fuel?

    OpenAIRE

    Bjurman, Therese

    2009-01-01

      The Swedwood Company is a supplier to IKEA of wood furniture. They have grown larger concurrently with IKEA and at present they have 47 production units spread over twelve countries of which most are located in Eastern Europe. One of the factories is Zbaszynek which is located in Poland. They manufacture so called board-on-frame furniture. A board-on-frame is basically made out of particle board frames which are filled with special design paper that enfolds air. The frames are then covered ...

  12. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  13. Quantifying arthropod contributions to wood decay

    Science.gov (United States)

    Michael Ulyshen; Terry Wagner

    2013-01-01

    Termites carry large amounts of soil into dead wood, and this behaviour complicates efforts to measure their contributions to wood decay. A novel method for isolating termite soil by burning the wood is described, and some preliminary results are presented.

  14. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  15. Chapter 6: Above Ground Deterioration of Wood and Wood-Based Materials

    Science.gov (United States)

    Grant Kirker; Jerrold Winandy

    2014-01-01

    Wood as a material has unique properties that make it ideal for above ground exposure in a wide range of structural and non-strucutral applications. However, no material is without limitations. Wood is a bio-polymer which is subject to degradative processes, both abiotic and biotic. This chapter is a general summary of the abiotic and biotic factors that impact service...

  16. Low-speed shredder and waste shreddability tests

    International Nuclear Information System (INIS)

    Darnell, G.R.; Aldrich, W.C.

    1983-04-01

    Most waste drums and large crates in the nuclear industry are or will be opened by hand, in gloveboxes, or with manipulators. The Transuranic Waste Treatment Facility (TWTF), which was being designed for the Idaho National Engineering Laboratory (INEL), was no exception. The TWTF's manipulator concept required 4 to 6 hours to open and route a crate or drum for further processing; a costly operation. An alternative method was sought. Four of the relatively new low-speed shredders were tested on simulated transuranic waste packaged in 55-gal drums and 4- x 4- x 4-ft boxes. Three of the shredders were capable of shredding these containers and their contents in 1 to 15 minutes. Two were able to shred typical TWTF waste to acceptable particle size. The test waste included concrete, 1/4-in. steel plate (carbon and stainless), 1-in. rebar, rock, glass, plastic, paper, cloth, wood, steel cable, chain, etc. The two shredders were able to shred drums even with unshreddable items inside; the unshreddable items lay on top for later recovery by a manipulator while the other waste was being shredded

  17. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  18. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  19. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  20. On Erdos–Wood's conjecture

    Indian Academy of Sciences (India)

    In this article, we prove that infinite number of integers satsify Erdős–Woods conjecture. Moreover, it follows that the number of natural numbers ≤ satisfies Erdős–Woods conjecture with = 2 is at least /(log ) for some positive constant > 2.

  1. Steam gasification of oil palm trunk waste for clean syngas production

    International Nuclear Information System (INIS)

    Nipattummakul, Nimit; Ahmed, Islam I.; Kerdsuwan, Somrat; Gupta, Ashwani K.

    2012-01-01

    Highlights: ► Initial high values of syngas flow rate are attributed to rapid devolatilization. ► Over 50% of syngas generated was obtained during the first five minutes of the process. ► Increase in steam flow rate resulted in reduced gasification time. ► Variation in steam flow rate slightly affected the apparent thermal efficiency. ► Oil palm yielded more energy than that from mangrove wood, paper and food waste. -- Abstract: Waste and agricultural residues offer significant potential for harvesting chemical energy with simultaneous reduction of environmental pollution, providing carbon neutral (or even carbon negative) sustained energy production, energy security and alleviating social concerns associated with the wastes. Steam gasification is now recognized as one of the most efficient approaches for waste to clean energy conversion. Syngas generated during the gasification process can be utilized for electric power generation, heat generation and for other industrial and domestic uses. In this paper results obtained from the steam assisted gasification of oil palm trunk waste are presented. A batch type gasifier has been used to examine the syngas characteristics from gasification of palm trunk waste using steam as the gasifying agent. Reactor temperature was fixed at 800 °C. Results show initial high values of syngas flow rate, which is attributed to rapid devolatilization of the sample. Approximately over 50% of the total syngas generated was obtained during the first five minutes of the process. An increase in steam flow rate accelerated the gasification reactions and resulted in reduced gasification time. The effect of steam flow rate on the apparent thermal efficiency has also been investigated. Variation in steam flow rate slightly affected the apparent thermal efficiency and was found to be very high. Properties of the syngas obtained from the gasification of oil palm trunk waste have been compared to other samples under similar operating

  2. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  3. Users guide for WoodCite, a product cost quotation tool for wood component manufacturers [computer program

    Science.gov (United States)

    Jeff Palmer; Adrienn Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2014-01-01

    WoodCite is a Microsoft® Access-based application that allows wood component manufacturers to develop product price quotations for their current and potential customers. The application was developed by the U.S. Forest Service and Virginia Polytechnic Institute and State University, in cooperation with the Wood Components Manufacturers Association.

  4. Wood energy x 2 - Scenario for the development of wood energy use in Switzerland

    International Nuclear Information System (INIS)

    2004-01-01

    This study for the Swiss Agency for the Environment, Forests and Landscapes (SAEFL) and the Swiss wood-energy association (Holzenergie Schweiz) presents the results of a scenario-study that examined if, and under what conditions, doubling the use of wood energy in Switzerland could help reach carbon dioxide reduction targets. Two scenarios are presented that are based on high and low rates of growth for the number of automatic wood-chipping or pellets-fired installations. For both scenarios, figures are presented on the amount of wood used and the heating energy generated. The political and financial prerequisites for the scenarios are discussed and other boundary conditions are defined. The report draws conclusions from the study of the two scenarios and summarises the political action deemed necessary

  5. Implementation of new technologies in wood industry and their effect in wood products quality

    OpenAIRE

    ELVA ÇAUSHI; PANDELI MARKU

    2014-01-01

    There are about 300 companies producing furniture and about 250 small and medium enterprises (SME) producing sawn timber, which operate in the field of wood industry in Albania. This wood industry production is being challenged by the increasing demand in the domestic market, ranging from kitchen furniture to office and schools furniture, bedroom furniture, doors, windows, and saw timber in different dimensions. The production from the wood industry can fulfill about 80% of the domestic mark...

  6. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.

    Science.gov (United States)

    Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo

    2015-04-01

    The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Tenaglia, R.D.; McCall, J.L.

    1983-06-01

    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  8. Refraction and absorption of microwaves in wood

    International Nuclear Information System (INIS)

    Ziherl, Saša; Bajc, Jurij; Čepič, Mojca

    2013-01-01

    A demonstration experiment for physics students showing the dependence of the refractive index and absorption coefficient of wood on the direction of microwaves is presented. Wood and microwaves enable study of anisotropic properties, which are typically found in crystals. Wood is used as the persuasive representative of uniaxial anisotropic materials due to its visible structure and its consequent anisotropic properties. Wood can be cut in a general direction and wooden plates a few centimetres thick with well-defined fibre orientation are easily prepared. Microwaves are used because wood is transparent for microwaves and their centimetre-scale wavelength is comparable to the wood structure. (paper)

  9. Wood for fuel

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, D

    1986-01-01

    Growing wood for energy could contribute three million tonnes of coal equivalent per year by the end of the century. Research programmes in the UK involved with energy forestry are reported. Three systems of wood energy, modified conventional forestry, single stem timber cropping and short rotation coppicing are being investigated. The short rotation coppicing requires inputs similar to those of agricultural crops and the machinery geared towards agricultural operations is compatible with it. Single stem forestry has a medium rotation period of 20 years. The production of coppice wood fuels is discussed in further detail for different parts of the UK with recommendations for species selection and adaption of existing farming practices. A coppice willow harvester has been developed for harvesting during November - February. Weed control and fertilizer application are also briefly mentioned.

  10. The Swedish wood fuel market

    International Nuclear Information System (INIS)

    Hillring, Bengt

    1999-01-01

    In Sweden, wood fuels are traditionally used in the Swedish forest products industry and for heating of single-family houses. More recently they are also become established as an energy source for district heating and electricity production. Energy policy, especially the energy taxation system, has favoured wood fuels and other biofuels, mainly for environmental reasons. There is now an established commercial market for wood fuels in the district heating sector, which amounts to 45 PJ and is growing 20 per cent annually. Price levels have been stable in current prices for a decade, mainly because of good access to wood fuels. Price levels are dominated by production costs on a market that is largely governed by the buyer. It is expected that the use of wood fuels will increased in Sweden in the future, which will push a further development of this section on the market and bring about technological changes in the area. (Author)

  11. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  12. Wood and Sediment Dynamics in River Corridors

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  13. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  14. Radiation hygiene problems of uranium mine waste bank reclamation

    International Nuclear Information System (INIS)

    Skalicky, J.; Klener, V.; Thomas, J.; Romanidis, K.

    1982-01-01

    Using a comprehensive approach, the hygienic feasibility is evaluated of recultivation by forests of waste banks from uranium mines. The evaluation is based on the investigation of samples of soil, timber and dry grass from waste banks of ore mines from the 16th century and recent waste banks in the same area. Using model reflections and the data collected, it is concluded that various alternatives regarding the use of timber from these localities would not involve significant exposure of people. Neither the consumption of meat and milk from cattle and sheep grazing in these areas or the consumption of berries from the woods would cause a significant increase of exposure in extensive population groups, provided these products would only form part of the total diet. (author)

  15. Impregnating Systems for Producing Wood-Plastic Composite Materials and Resinified Woods by Radiochemical Means

    International Nuclear Information System (INIS)

    Laizier, J.; Laroche, R.; Marchand, J.

    1969-01-01

    The effect of the nature of the components in the impregnation mixture on the characteristics of wood-plastic combinations has been studied in the case of beech by applying a wide variety of compositions. In particular, the effect of water (in the impregnator, and in the form of moisture in the wood) on the characteristics of the products obtained has been determined. It has been shown that, in place of the conventional method for preparing resinified woods (using a ternary monomer-solvent-water mixture), it is possible to use a method involving comonomers, which obviate the need to dry the wood after treatment. The evaluation of the results obtained is based on the value of the impregnation rate and on the modifications in microscopic structure; these emphasize the differences between the types of filler and enable comparisons to be drawn with the dimensional stabilities observed. Measurements of variations in dimensions and the recurrence of moisture have made it possible to establish a classification based on the types of monomer used and the operating conditions. It is shown that a whole range of products is obtained, the properties of which differ widely and are comparatively easily adaptable to the purpose specified. These properties illustrate clearly the differences and characteristics of resinified woods as opposed to conventional wood-plastic materials. (author) [fr

  16. NorWood: a gene expression resource for evo-devo studies of conifer wood development.

    Science.gov (United States)

    Jokipii-Lukkari, Soile; Sundell, David; Nilsson, Ove; Hvidsten, Torgeir R; Street, Nathaniel R; Tuominen, Hannele

    2017-10-01

    The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. The German bakery waste incident; use of a combined approach of screening and confirmation for dioxins in feed and food

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.; Bovee, T.F.H.; Portier, L.; Weg, van der G.; Onstenk, C.G.M.; Traag, W.A.

    2004-01-01

    During the last six years several incidents have occurred with dioxins in feed, stressing the need for rapid screening methods for these compounds. The most recent incident was the contamination of bakery waste used for animal feed due to the use of waste wood for drying of the material. In addition

  18. Manufacturing methods and magnetic characteristics of magnetic wood

    International Nuclear Information System (INIS)

    Oka, H.; Hojo, A.; Osada, H.; Namizaki, Y.; Taniuchi, H.

    2004-01-01

    The relationship between wood construction and DC magnetic characteristics for three types of magnetic wood was experimentally investigated. The results show that the magnetic characteristics of each type of magnetic wood are dependent on the magnetic materials, the density of the magnetic material and the construction of the wood. Furthermore, it was determined that the relationship between the fiber direction and the magnetic path direction of the magnetic wood influenced the wood's magnetic characteristics

  19. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  20. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)