WorldWideScience

Sample records for waste water environment

  1. UN Data: Environment Statistics: Waste

    Data.gov (United States)

    World Wide Human Geography Data Working Group — The Environment Statistics Database contains selected water and waste statistics by country. Statistics on water and waste are based on official statistics supplied...

  2. Pollution of the environment by tannery and textile waste waters in the areas of Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E.O.; Raoelina Andriambololona; Andrianarivo, R.R.; Randriamanivo, L.V.; Raboanary, R.

    2007-01-01

    Waste water pollution is a major problem throughout the world. It has affected the health and the environment in Antananarivo (capital of Madagascar). Undesirable and toxic heavy metals contained in waste water samples are measured by the technique of total reflection X-ray fluorescence. Chromium is a toxic metal for the environment associated to the tannery. Its concentration (2712.1 μg.L -1 ) is superior to the national norm (2000 μg.L -1 ). Regarding textile factories, the highest value of the conductivity (4670 μS.cm -1 ) is 23 times the national norm (200 μS.cm -1 ). The concentration of lead (251.0 μg.L -1 ) is higher than the national norm (200 μg.L -1 ) and the Belgium norm (100 μg.L -1 ). The present study illustrates the importance of the treatment of waste water of the factories before pouring them in the environment.

  3. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  4. A study conducted on the impact of effluent waste from machining process on the environment by water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kovoor, Punnose P.; Idris, Mohd Razif [Kuala Lumpur Univ. (Malaysia). Inst. of Product Design and Manufacturing, IPROM; Hassan, Masjuki Haji [Univ. of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering; Tengku Yahya, Tengku Fazli [Kuala Lumpur Univ., Melaka (Malaysia). Malaysian Inst. of Chemical and Bio Engineering Technology, MICET

    2012-11-01

    Ferrous block metals are used frequently in large quantities in various sectors of industry for making automotive, furniture, electrical and mechanical items, body parts for consumables, and so forth. During the manufacturing stage, the block metals are subjected to some form of material removal process either through turning, grinding, milling, or drilling operations to obtain the final product. Wastes are generated from the machining process in the form of effluent waste, solid waste, atmospheric emission, and energy emission. These wastes, if not recycled or treated properly before disposal, will have a detrimental impact on the environment through air, water, and soil pollution. The purpose of this paper is to determine the impact of the effluent waste from the machining process on the environment through water analysis. A twofold study is carried out to determine the impact of the effluent waste on the water stream. The preliminary study consists of a scenario analysis where five scenarios are drawn out using substances such as spent coolant, tramp oil, solvent, powdered chips, and sludge, which are commonly found in the effluent waste. The wastes are prepared according to the scenarios and are disposed through the Institute of Product Design and Manufacturing (IPROM) storm water drain. Samples of effluent waste are collected at specific locations according to the APHA method and are tested for parameters such as pH, ammoniacal nitrogen, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, and total suspended solids. A subsequent study is done by collecting 30 samples of the effluent waste from the machining operations from two small- and medium-scale enterprise locations and the IPROM workshop to test the quality of water. The results obtained from the tests showed high values of chemical oxygen demand, ammoniacal nitrogen, and total suspended solids when compared with the Standard B specification for inland water bodies as specified by the

  5. Characterisation, dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment

    DEFF Research Database (Denmark)

    Jakobsen, Lotte; Sandvang, Dorthe; Hansen, Lars H

    2008-01-01

    The aim of the study was to investigate the potential spread of gentamicin resistant (GEN(R)) Escherichia coli isolates or GEN(R) determinants from a Danish university hospital to the waste water environment. Waste water samples were collected monthly from the outlets of the hospital bed wards...... (aac(3)-II, aac(3)-IV, ant(2'')-I, armA), phenotypic resistance pattern, and virulence genes (hlyA, chuA, sfaS, fogG, malX, traT, iutA, fyuA, iroN, cnf1) to investigate if the hospital and waste water could be reservoirs of antimicrobial resistance and virulence. The ability for GEN(R) determinants......, indicating a potential spread of the gene from patient isolates to waste water isolates. Regardless of origin, most isolates exhibited multi-resistance and contained several virulence genes. In conclusion, our study showed a possible spread of aac(3)-II from the hospital to the waste water. Most of the GEN...

  6. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  7. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments

    Directory of Open Access Journals (Sweden)

    Folkard Asch

    2012-12-01

    Full Text Available Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source for agriculture in the vicinity of cities. Water scarcity often occurs in arid and semiarid regions affected by droughts and large climate variability and where the choice of crop to be grown is limited by the environmental factors. Jatropha has been introduced as a potential renewable energy resource since it is claimed to be drought resistant and can be grown on marginal sites. Sewage effluents provide a source for water and nutrients for cultivating jatropha, a combined plant production/effluent treatment system. Nevertheless, use of sewage effluents for irrigation in arid climates carries the risk of salinization. Thus, potential irrigation with sewage effluents needs to consider both the water requirement of the crop and those needed for controlling salinity build-up in the top soil. Using data from a case study in Southern Morocco, irrigation requirements were calculated using CROPWAT 8.0. We present here crop evapotranspiration during the growing period, required irrigation, the resulting nutrient input and the related risk of salinization from the irrigation of jatropha with sewage effluent.

  8. Reference waste package environment report

    International Nuclear Information System (INIS)

    Glassley, W.E.

    1986-01-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of ∼230 0 C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment

  9. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  10. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  11. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  12. Lixiviation of polymer matrix parcels of nuclear wastes in an environment with a low water content with respect to the standard characterisation test

    International Nuclear Information System (INIS)

    Reynaud, Vincent

    1996-01-01

    It is generally admitted that, in a nuclear waste storage site, a possible return of radionuclides towards the biosphere would mainly occur by leaching of coated items and their transport by natural waters. Therefore, lixiviation properties of coated nuclear wastes are among the most important. The objective of this research thesis is therefore to compare the activity release of samples of ion exchange polymer coated by a polymer (epoxy or polyester) matrix. Two types of tests have been performed: a standard test (sample immersion in water) and a lysimeter test (simulation of the geological environment by means of glass balls). The lixiviation of tritium-containing water is studied after a 300 day long experiment. The modelling of the release of tritium-containing water by using Fick equations gives good results. Factors influencing the lixiviation of cobalt ions and caesium ions are studied, and the lixiviation of these both ions is then modelled [fr

  13. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  14. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    Science.gov (United States)

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  15. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  16. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  17. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  18. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  19. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  20. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  1. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  2. Radioactive waste and the environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-07-01

    At its meeting in March the Board of Governors of the Agency decided that in view of the recent increase in concern regarding the environment and in the light of the Agency's statutory responsibilities and the substantial contribution already made by it in the field, one of its most important tasks, in which it should take the leading role, in close collaboration with competent organs of the United Nations, specialized agencies and other international organizations concerned, is the elaboration of recommended standards of safety concerning the dispersion into the environment of radioactive waste resulting from the peaceful use of nuclear energy. In its resolution the Board invited the Director General to promote useful research in this field in Member States and by other international organizations, and to include in the Agency's programme proposals aimed at obtaining the data necessary for the support of this research and for the elaboration of recommended standards of safety in this field; and to inform the United Nations Conference on the Human Environment of the foregoing decisions and of the Agency's pre-eminent interest in the matter, and to report back to the Board on the relevant deliberations of the conference. (author)

  3. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1991-10-01

    Waste waters have been generated as result of operations conducted at the Hanford Facility for over 40 years. These waste waters were previously discharged to cribs, ponds, or ditches. Examples of such waste waters include steam condensates and cooling waters that have not been in contact with dangerous or mixed waste and process condensates that may have been in contact with dangerous or mixed waste. Many measures have been taken to reduce the amount of contamination being discharged in these effluents. However, some of these waste waters still require additional treatment before release to the environment. Systems are being designed and built to treat these waste waters along with any future waste waters resulting from remediation activities on the Hanford Facility

  4. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  5. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  6. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  7. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  8. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.; Cooper, P.C.; Vandenburg, A.J.; Musselman, H.D.; Lowe, H.N.; Florida Inst. of Tech., Melbourne; Army Facilities Engineering Support Agency, Fort Belvoir, Va.

    1975-01-01

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.) [de

  9. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  10. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  11. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  12. Surface Disposal of Waste Water Treatment Plant Biosludge – an Important Source of Perfluorinated Compound Contamination in the Environment?

    Science.gov (United States)

    With more than a decade of intensive scientific research and increasing regulatory pressure worldwide, the sources of perfluoroalkyl acids (PFAA) in the environment and routes of human exposure still need to be fully characterized. Several studies have documented PFAA contaminat...

  13. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  14. Technologies 1995: environment and wastes treatment

    International Nuclear Information System (INIS)

    Anon.

    1995-03-01

    From new technical or scientific developments, new products launching, and markets evolutions, this catalog gives informations selection on research and development projects, new fabrication processes, activities and plants strategies, licences or technology transfers opportunities. The covered fields are: atmospheric pollution controls, water and liquid wastes treatment, polluted soils treatments, noise and odors treatments, municipal and industrial wastes treatments (metal, plastic, paper, glass), clean materials and technologies, radioactive wastes, and european cooperation programs. (A.B.)

  15. Wastes, effluents and pollution. impact on environment

    International Nuclear Information System (INIS)

    Ngo, Ch.; Regent, A.

    2008-01-01

    From concrete examples, the authors explain the nature, and the place of different pollution and wastes sources in our environment and the risks that make run. They bring some tracks to our modern communities that must react and imagine remedial actions to manage wastes, effluents and pollutions in order to make them harmless; this new edition enriches of a chapter on health and hygiene problems induced by the different contaminations of environment. (N.C.)

  16. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1983-11-01

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 10 5 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  17. Environment-friendly heat supply with natural refrigerants. Large heat pumps use industrial waste heat and waste water; Umweltschonende Waermeversorgung mit natuerlichen Kaeltemitteln. Grosswaermepumpen nutzen industrielle Abwaerme und Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-01-15

    Everywhere, where industrial processes occur or coldness is produced, simultaneously heat is produced. While many private houses use geothermal energy or ambient air for the production of heat, waste water and waste heat prove to be optimal energy sources for the industrial need due to higher output temperatures. By means of large heat pumps the residual heat is used for heating or the supply of hot water for example in local heat supply grids and makes an important contribution to climate protection.

  18. Discharge of water containing waste emanating from land to the ...

    African Journals Online (AJOL)

    containing waste (wastewater), which emanates from land-based sources and which directly impact on the marine environment. These sources include sea outfalls, storm water drains, canals, rivers and diffuse sources of pollution. To date ...

  19. The Maritime Environment - International Conference and Exhibition on Ballast Water, Waste Water and Sewage Treatment on Ships and in Ports Held in Bremerhaven, Germany on 12-14 September 2001. Conference Proceedings

    National Research Council Canada - National Science Library

    2001-01-01

    The Maritime International Conference on Ballast Water, Waste Water and Sewage Treatment on Ships and in Ports held in Bremerhaven, Germany on 12-14 September 2001 was cosponsored by Deerberg-Systems...

  20. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  1. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  2. Post emplacement environment of waste packages

    International Nuclear Information System (INIS)

    Knauss, K.G.; Oversby, V.M.; Wolery, T.J.

    1983-01-01

    Experiments have been conducted as part of the Nevada Nuclear Waste Storage Investigations Project to determine the changes in water chemistry due to reaction of the Topopah Spring tuff with natural groundwater at temperatures up to 150 0 C. The reaction extent has been investigated as a function of rock-to-water ratio, temperature, reaction time, physical state of the samples, and geographic location of the samples within the tuff unit. Results of these experiments will be used to provide information on the water chemistry to be expected if a high-level waste repository were to be constructed in the Topopah Spring tuff. 6 references, 5 figures, 1 table

  3. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  4. Fermentation of household wastes and industrial waste water; Vergaerung von haeuslichen Abfaellen und Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W [Arbeitsgemeinschaft Bioenergie ' arbi' , Maschwanden (Switzerland); Engeli, H [Probag AG, Dietikon (Switzerland); Glauser, M [Biol-Conseils SA, Neuchatel (Switzerland); Hofer, H [HTH-Verfahrenstechnik, Winterthur (Switzerland); Membrez, Y [EREP SA, Aclens (Switzerland); Meylan, J -H [Lausanne (Switzerland); Schwitzguebel, J -P [Swiss Federal Institute of Technology (EPFL), Genie biologique, Lausanne (Switzerland)

    1993-07-01

    This comprehensive brochure reviews various technologies for the environment-friendly treatment of organic wastes and residues. The principles of anaerobic digestion are discussed. Authorities, planners and engineers concerned with waste treatment are provided with an overview of current technology in the organic wastes area. The brochure emphasises the importance of fermentation processes in waste treatment, discusses the legal pre-requisites for biogas production, lists the biological and process-oriented fundamentals of fermentation and examines the energy potential of biogenic wastes and waste water. Further, details are given on the treatment of both industrial waste water and solid organic wastes and, finally, the economics of fermentation is examined. Useful data is presented in table form and the various processes described are illustrated by schematics and flow diagrams. An appendix lists suggestions for further reading on the subject.

  5. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  6. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  7. Academy President Sadykov on environment, water

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    Soviet scholars, supported by doctrines of Marxism-Leninism, propose to use natural resources without harming the environment. Institutes work on the use of nontraditional but productive ways to protect plants, filter industrial wastes and convert them to other uses, protect soil resources, set up plant and animal preserves, and protect geological conditions in steppe and semi-steppe areas. Scientific research on equipment to clean up wastes is not well established in the Soviet Union. When asked about the ecological harm of land reclamation, the president noted that newly reclaimed lands increase the demand for and increase the salt content of fresh water.

  8. Environment friendly solutions of plastics waste management

    International Nuclear Information System (INIS)

    Pirzada, F.N.; Riffat, T.; Pirzada, M.D.S.

    1997-01-01

    The use of plastics is growing worldwide. Consequently, the volume of plastic waste is also increasing. Presently, more than 100 million tons per year of plastic is being produced globally. In U.S. alone more than 10 million tons of plastic is being dumped in landfills as waste, where it can persist for decades. This has resulted in exhausting old landfills. Public awareness on environment is also making it difficult to find new sites for landfills. This has led to increased emphasis on treatment and recycling of plastic wastes. Volume reduction of plastic waste has some unique problems. They arise from the intrinsic chemical inertness of polymeric materials and toxic nature of their degradation byproducts. The paper reviews the present state of plastic waste management including land filling, incineration and recycling technologies. The technical problems associated with each of these processes have been discussed. There is also brief description of ongoing R and D for finding improved methods of plastic waste handling with their promises and problems. The role of tougher legislation in developing better recycling methods and degradable plastics has also been evaluated. The claims made by the proponents of degradable polymers have also been critically reviewed. (authors)

  9. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  10. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  11. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  12. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  13. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  14. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  15. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...... with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation...

  16. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were...... analysed in the waste water from different institutions and industries thought to be potential sources. These were: car wash centers, a hospital, a kindergarten, an adhesive industry and a industrial laundry. Furthermore, analysis of the deposition in the area were carried out. This made it possible...... to estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...

  17. 226Ra adsorption on active coals from waste waters

    International Nuclear Information System (INIS)

    Panturu, E.; Georgescu, D.P.; Serban, N.; Filip, D.; Radulescu, R.

    2000-01-01

    During the mining and extraction of uranium, the principle means of protection measurement is to prevent uranium and its products diffusing into the environment. The main carriers of radioactive elements in the environment are air and water. Therefore, reduction of the pollution at a uranium mine can be achieved by the treatment of waste waters contaminated with 226 Ra Radium contaminated waste waters represent a major biological risk. This paper presents the results of the study of the sorption of 226 Ra on active coal mechanisme and the influence of the physical and chemical characteristics of fluid. The 226 Ra removal from the residue pond water at the uranium ore processing plant was studied using eight types of indigenous active coals. The experimental results for each type of active coal and their effect on removal of 226 Ra from waste waters are presented in this paper. (author)

  18. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  19. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  20. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  1. Effect of ionizing radiation on the waste package environment

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T. [Argonne National Lab., IL (USA); Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  2. Effect of ionizing radiation on the waste package environment

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-01-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab

  3. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    Alvarez Alduan, F.; Capdevila, C.

    1979-01-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  4. Baseline concentrations of nuclear fuel waste nuclides in the environment

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1992-04-01

    Protection of the environment is a key issue in the disposal of long-lived radioactive wastes. To assess the implications of undergound disposal, transport models are commonly used to predict radionuclide concentrations in soil and water. However, an appropriate framework needs to be established to ensure that the predicted concentrations do not impose unacceptable environmental impacts. Here, we suggest baseline environmental concentrations of the most important radionuclides in nuclear fuel waste. We summarize background concentrations of the nuclides in soil and surface water, and suggest Environmental Increments (EI) that could be added to soil and water without causing detectable effects. The EI values are based mostly on natural variability, but some alternative methods are used for radionuclides that are very rare in nature. The background concentrations and EI values are most useful as a screening tool to help identify potentially unacceptable concentrations arising from a disposal concept. When available, we also report data on concentrations that have been measured in the environment without causing an observable effect. This review focuses especially on concentrations applicable to the Canadian Precambrian Shield, as part of the Canadian concept of nuclear fuel waste disposal in a deep, stable geological formation

  5. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    Ringqvist, L.; Bergner, K.; Olsson, Tommy; Bystroem, P.

    1991-01-01

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  6. Heat disposal in water environment

    International Nuclear Information System (INIS)

    Harleman, D.R.F.

    1975-01-01

    The need for continuing development of techniques for predicting temperature distributions due to waste heat discharges into lakes, rivers, estuaries, and the oceans is presented. Diffusion of buoyant jets is examined, including heated surface jets and multiple jets issuing from a submerged multiport diffuser. In the near-field analysis of surface jets the important problems are related to the lateral spreading caused by buoyancy. Comparison of theoretical predictions with laboratory and field observations is given. The mechanics of multiport diffusers for heated discharges in shallow receiving waters are explained in contrast to sewage diffusers. The important problem is the degree to which stratification can be maintained in order to minimize local reintrainment and reduction of dilution capacity. Criteria for stable and unstable flow regimes are provided. A mathematical model for temperature distribution, with or without waste heat addition, in unsteady flows under time-varying meteorological conditions is given. (auth)

  7. State of Art About water Uses and Waste water Management in Lebanon

    International Nuclear Information System (INIS)

    Geara, D.; Moilleron, R.; Lorgeoux, C.; El Samarani, A.; Chebbo, Gh.

    2010-01-01

    This paper shows the real situation about management of water and waste water in Lebanon and focuses on problems related to urban water pollution released in environment. Water and waste water infrastructures have been rebuilt since 1992. However, waste water management still remains one of the greatest challenges facing Lebanese people, since water supply projects have been given priority over wastewater projects. As a consequence of an increased demand of water by agricultural, industrial and household sectors in the last decade, waste water flows have been increased. In this paper, the existing waste water treatment plants (WWTP) operating in Lebanon are presented. Most of them are small-scale community-based ones, only two large-scale plants, constructed by the government, are currently operational. Lebanese aquatic ecosystems are suffering from the deterioration of water quality because of an insufficient treatment of waste water, which is limited mostly to pre-treatment processes. In fact, domestic and industrial effluents are mainly conducted together in the sewer pipes to the WWTP before being discharged, without adequate treatment into the rivers or directly into the Mediterranean Sea. Such discharges are threatening the coastal marine ecosystem in the Mediterranean basin. This paper aims at giving the current state of knowledge about water uses and wastewater management in Lebanon. The main conclusion drawn from this state of art is a lack of data. In fact, the available data are limited to academic research without being representative on a national scale. (author)

  8. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  9. Environmental sustainability of waste water ozonation

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... and whole effluent toxicity have been developed. About 15 different waste water and sludge treatment technologies (or combinations) have been assessed. This paper will present the LCA results from running the induced versus avoided impact approach on one of the WWTTs, i.e. ozonation....

  10. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation....

  11. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  12. Methods for chemical analysis of water and wastes

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  13. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  14. Environment, Safety, Health and Waste Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Feed Materials Production Center (FMPC) is the production of high qaulity uranium metal for use by the US Department of Energy (DOE) in Defense Programs. In order to accomplish this mission and to maintain the FMPC as a viable facility in the DOE production complex, the facility must be brought into full compliance with all federal and state regulations and industry standards for environmental protection and worker safety. Where past practices have resulted in environmental insult, a comprehensive program of remediation must be implemented. The purpose of this combined Environment, Safety, Health and Waste Management Plan is to provide a road map for achieving needed improvements. The plan is structured to provide a comprehensive projection from the current fiscal year (FY) through FY 1994 of the programs, projects and funding required to achieve compliance. To do this, the plan is subdivided into chapters which discuss the applicable regulations;project schedules and funding requirements;details of the various programs for environment, safety, health and waste management;details of the ongoing National Environmental Policy Act (NEPA);the quality assurance program and the environmental monitoring program. 14 refs., 30 figs., 29 tabs

  15. X-ray fluorescence spectrometry characteristics of oily waste water from steel processing and an evaluation of its impact on the environment.

    Science.gov (United States)

    Pekol, Sefa

    2018-04-11

    Metal-cutting fluids, one of the most consumed materials in the metallurgy industry, turn into oily wastewater after being used in the metalworking processes. The amount of cutting fluids used can reach up to millions of tons. And these invaluable fluids are difficult to distil and expensive, and impossible to store. Even after it is disposed and recaptured, the end product has no commercial value. In this study, the effect of this mixture was examined on the ecosystem using the Allium cepa test system in which onion root tips were treated with three different concentrations of waste-cutting fluid, based on a 24- and 48-h cell cycle. The oily wastewater exhibited a mechanism which triggered the chromosomal and nuclear abnormalities in the onion root-tip meristem and reduced the mitotic index. Common abnormalities observed in the experimental groups based on the water concentration were chromosome stickiness, c-mitosis, and micronuclei formation. In the experimental group with the lowest water concentration, budding nuclei were observed at a different level than all of the other experimental groups. The x-ray fluorescence analysis showed that the concentrations of elements, such as silicon, calcium, iron, and zinc, were higher in the oily wastewater than those in the unused cutting oil.

  16. Solution of tasks concerning protection of underground waters and environment

    International Nuclear Information System (INIS)

    Dubinchuk, V.T.; Polyakov, V.A.

    1988-01-01

    Use of environment isotopes and indicators in solving problems concerning protection of underground waters and environment is discussed. The applied methods permit to study dynamics of underground waters and to estimate risk of their contamination; to follow the surface and underground waters interrelations using data on infiltration recharge estimation etc. Complex nuclear-geophysical and isotope studies may be applied to detect hindered water exchange zones where liquid industrial waste disposals could be placed with minimum damage to environment. 48 refs.; 74 figs.; 22 tabs

  17. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  18. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  19. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  20. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    at the right time is key to both lower plant electricity costs and actively help to balance the energy system. Predictions of the WWTP and sewer system operation could help a model based controller to adapt power consumption and production according to the energy system flexibility needs; incentivized through......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  1. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  2. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    Song Miaofa

    1990-01-01

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147 Pm contaminated waste water are reported

  3. Leidenfrost Driven Waste-Water Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — A Leidenfrost Driven Waste-Water Separator (LDS) is proposed in response to TA 6.1: Environmental Control and Life Support Systems and Habitation Systems. The LDS...

  4. Ecotoxicity of waste water from industrial fires fighting

    Science.gov (United States)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  5. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  6. Effects on the environment of the dumping of nuclear wastes

    International Nuclear Information System (INIS)

    1990-07-01

    Nationally and internationally accepted procedures and technologies are available for the safe handling and disposal of radioactive wastes. Authorized waste disposal practices are designed to ensure that there will be no significant impacts on man and his environment. 'Dumping' of nuclear wastes may result in the elimination of one or more of the multibarriers of protection inherent in an effective radioactive waste management system, thereby increasing the risk of radiological exposure to man and his environment. Quantitative assessments of the degree of environmental contamination and of the resulting hazards to man depend on the specific conditions surrounding the 'uncontrolled disposal' of radioactive waste. These include the nature and activity level of the waste, the physical form of the waste, the package that the waste is contained in and the characteristics of the dumping site. Depending on the scenario envisaged, the consequences of 'uncontrolled disposal' could vary from being insignificant to a situation where there is a significant hazard to an exposed population group. International transactions involving nuclear wastes are taking place between countries on the basis of bilateral agreements and under strict regulatory supervision so that radioactive wastes are transferred safely from one controlled area to another. Such transactions may increase in the future with increased international co-operation in sharing common waste repositories. No evidence exists that confirms that transboundary dumping of radioactive waste has occurred. Investigation of alleged dumping of radioactive wastes by the International Atomic Energy Agency has revealed that the 'suspect wastes' did not contain radioactive material. 2 tabs

  7. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-01-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  8. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  9. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  10. Volume of baseline data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes of the annual report 1988 'Environmental radioactivity and radiation exposure'

    International Nuclear Information System (INIS)

    Abelmann, S.; Buenger, T.; Fusban, H.U.; Ruehle, H.; Viertel, H.; Gans, I.

    1991-01-01

    This WaBoLu volume is a shortened version of the annual report by the Federal Ministry of the Environment, Nature Protection and Reactor Safety 'Environmental radioactivity and radiation exposure' and gives an overview of the data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes, compiled for the area of the Federal Republic of Germany in 1988 by the Institute of Water, Soil and Air Hygiene (WaBoLu) of the Federal Health Office. (BBR) With 22 figs., 15 tabs [de

  11. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    Science.gov (United States)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  12. Water supply, waste water cleaning and waste disposal. 2. rev. ed.

    International Nuclear Information System (INIS)

    Knoch, W.

    1994-01-01

    The first part of the book contains fundamentals of chemistry, always having environmental protection in mind. Numerous examples are calculated. The second part gives detailed explanations of the material-scientific and analytical bases of the indispensable resource water and its conditioning, waste water cleaning and sludge treatment. Collection, transport, handling, disposal and recycling of unavoidable wastes and toxic wastes are finally dealt with. (orig./EF) [de

  13. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  14. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    Energy Technology Data Exchange (ETDEWEB)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  15. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  16. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  17. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  18. Storage facilities for radioactive waste in tertiary education environment

    International Nuclear Information System (INIS)

    Sinclair, G.; Benke, G.

    1994-01-01

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  19. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  20. Nuclear waste water being cleaned in Paldinski

    International Nuclear Information System (INIS)

    Lahtinen, A.

    1995-01-01

    The cleaning of nuclear waste water in the former military base of Paldiski, Estonia, has started with Finnish assistance. During the Soviet era, Paldiski served as a site for training nuclear submarine crews. Spent fuel has already been removed from the two nuclear reactors on the base. The volume of water to be cleaned totals some 450 cubic metres. The work is estimated to take till May 1995. The filtering technique used for cleaning has been developed in cooperation by IVO International and the Department of Radiochemistry of the University of Helsinki. The project is one aspect of an extensive international cooperation programme for reducing environmental hazards arising from the base. The experience of the cleaning obtained so far has been positive. In the first water tank, filtering reduced the cesium activity of waste water from 1,500 becquerels to less than one becquerel. Two water tanks, however, have bottom sediment that probably cannot be treated during the present project. (orig.)

  1. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  2. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  3. Method of treating waste water

    Science.gov (United States)

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  4. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  5. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  6. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

      Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows...... to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow...... a safe use of waste water produced by small communities/industries (≤2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management....

  7. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  8. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  9. Tackling mine wastes for a better environment | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    develop effective methods to control mine waste pollution;; generate mine site ... where he is responsible for the "Mining Environment" module in the Earth Sciences ... partnering on a new initiative, aimed at reducing the emerging risk that.

  10. The microbiological effects of hospital wastes on the environment

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... pathological, infectious, hazardous chemicals, radioactive wastes, stock cultures, blood .... suppurative disease as stated by Ernest et al. (1984), C. equi has the .... Ministry of. Environment and Forest notification. New Delhi. p.

  11. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  12. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    OpenAIRE

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  14. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  15. Waste removal systems and recycling participation in residential environments

    DEFF Research Database (Denmark)

    Thøgersen, John

    2002-01-01

    Systems for the removal of waste are important although often overlooked elements of any residential environment. It is an old insight that when these systems are ineffective (and this is globally and historically the rule rather than the exception), human living conditions and often even human...... health are severely impaired (Pieters, 1989). More recently, resource waste and environmental hazards from waste have given rise to public and political concern as well, even when disposal systems are well managed. This concern has led to efforts to divert solid waste away from disposal and towards some...

  16. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  17. Reference waste form, basalts, and ground water systems for waste interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables.

  18. Reference waste form, basalts, and ground water systems for waste interaction studies

    International Nuclear Information System (INIS)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables

  19. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  20. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  1. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  2. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  3. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  4. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  5. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  6. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  7. The Impact of Urban Solid Waste Management on Urban Environment

    Directory of Open Access Journals (Sweden)

    خالد عبد الوهاب

    2017-03-01

    Full Text Available The growing population and the rising standard of living in cities as well as the increased commercial, industrial and agricultural activities around the world led to massive production of waste containing different materials and one of them is the municipal solid waste (MSW, so there is a major problem facing the cities around the world about the waste, how to collect, transfer it and how to discard it. Because the accumulation of wastes, whether in the city alleys or in its squares and especially in its residential areas affect the health of their populations besides this situation will be a major indication of the deteriorating quality of life in the city, as hygiene considered a fundamental criterion for the city beauty as well as an indication of the protection provided by the city to their environment and the level of protection provided to the health of city residence. The accumulated waste which is left in the city without treatment significantly affects the psychological behavior of the residence of these areas towards their community and environment and therefore their behavior towards their regions and their cities. From here emerged the general research problem concerning the modern civilization and its lifestyle that produced great amounts of (municipal solid waste, which became a big problem facing the modern cities concerning their collection, transportation and finally their disposal, how can these great amounts of waste be used whether by recycling, energy recovery or transferring to plant fertilizers ... etc. To serve the sustainable growth of these modern cities, this lead to the specific research problem concerning the lack of clarity concerning the impact of waste collection, transporting and treating and city urban environment and its townscape. Research Hypothesis: The process of collecting, transporting and. treating city solid waste or using it has a great impact on city urban environment and its townscape.

  8. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  9. Types Of Wastes And Their Effect On The Environment In Enugu ...

    African Journals Online (AJOL)

    Journal of Technology and Education in Nigeria ... waste of coconut fiber, waste of pure water bags were the types of wastes identified in the study area. ... is a predisposing factor to infectious disease and waste refuse causes air pollution.

  10. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  11. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  12. Radioactive waste: first report from the Environment Committee

    International Nuclear Information System (INIS)

    1986-01-01

    In the first report of the Environment Committee of the House of Commons, session 1985/86, on radioactive waste the types and classification of wastes are described and the general management and disposal of contained wastes discussed. Health hazards from waste sources and dose limits are discussed. The role of reprocessing and its justification are discussed and recommendations made. The need to bridge the gap between the nuclear industry and the public by the publication of more information and a more open approach are stressed. The report closed with an account of government policy and regulations regarding radioactive wastes and the enforcement of such regulations. The proceedings of the committee end the report. (U.K.)

  13. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  14. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  15. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  16. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  17. Environment, Environmental Restoration, and Waste Management Field Organization Directory

    International Nuclear Information System (INIS)

    1993-07-01

    This directory was developed by the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) from an outgrowth of the Departments efforts to identify and establish the regulatory response lead persons in the Field Organizations. The directory was developed for intemal EH-231 use to identify both the DOE and DOE contractor Field Organizations in the Environment, Environmental Restoration and Waste Management areas. The Field Organization directory is divided into three substantive sections: (1) Environment; (2) Environmental Restoration; and (3) Waste Management which are organized to correspond to the management hierarchy at each Field Organization. The information provided includes the facility name and address, individual managers name, and telephone/fax numbers

  18. Improving Public Health and Environment through Plastic Waste Management in Mumbai Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Sanjay RODE

    2015-12-01

    Full Text Available The Mumbai Metropolitan Region is growing in terms of population, industry, educational and commercial units. The daily requirements of commodities and services by all units have increased fast. Plastic is used extensively for packing, protection and service of various commodities. The use of plastic is much higher by industry and households in region. In Brihan Mumbai Municipal Corporation, the density of population is higher. The concentration of small and large industries is more. Therefore the plastic use is much higher for different purposes. It leads to more waste of plastic. In Ulhasnagar Municipal Corporation, the population and industrial units are less. Therefore plastic waste is less generated. Theaters are generating less plastic waste in metropolitan region. The Brihan Mumbai Municipal Corporation (BMC and municipal corporations in Thane district will continuously generate more plastic waste in future. The Tobit regression model shows that plastic waste is positively co-related and statistically significant with pollution and industry in region. Therefore the comprehensive policies are required to reduce plastic waste. This is because plastic waste is affecting on the health of human being. It also affects negatively on soil, air and water. The entire food supply chain gets affected due to plastic waste. The water logging is common due to plastic waste in region. It chock ups the drainage system and it becomes the ground for mosquitoes. It further leads to dengue, malaria and other diseases in region. Municipal corporations must collect plastic in separate bins and process it. The plastic and e-waste can be utilized for road construction in region. All the policies will certainly help to reduce the plastic waste and maintain the clean environment in region.

  19. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  20. Concept for waste package environment tests in the Yucca Mountain exploratory shaft

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1985-05-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is studying a tuffaceous rock unit located at Yucca Mountain on the western boundary of the Nevada Test Site, Nye County, Nevada. The objective is to evaluate the suitability of the volcanic rocks located above the water table at Yucca Mountain as a potential location for a repository for high level radioactive waste. As part of the NNWSI project, Lawrence Livermore National Laboratory is responsible for the design of the waste package and for determining the expected performance of the waste package in the repository environment. To design an optimal waste package system for the unsaturated emplacement environment, the mechanisms by which liquid water can return to contact the metal canister after peaking of the thermal load must be established. Definition of these flux and flow mechanisms is essential for estimating canister corrosion modes and rates. Therefore, three waste package environment tests are being designed for the in situ phase of exploratory shaft testing. These tests emphasize measurement techniques that offer the possibility of characterizing the movement of water into and through the pores and fractures of the densely welded Topopah Spring Member. Other measurement techniques will be used to examine the interactions between moisture migration and the thermomechanical rock mass behavior. Three reduced-scale heater tests will use electrical resistive heaters in a horizontal configuration. All three tests are designed to investigate moisture conditions in the rock during heating and cooling phases of a thermal cycle so that the effects of these moisture conditions on the performance of the waste package system may be established. 28 refs., 4 figs., 3 tabs

  1. Nanowastes and environment: A new approach in waste management

    Directory of Open Access Journals (Sweden)

    Merve ÖZKALELİ

    2016-06-01

    Full Text Available Naturally occurring nanoparticles (NPs have been synthesized to be used in many sectors, and their physical and chemical properties have been modified for intended usages. Especially in the last 20 years, in parallel with an increase in production and application of NP and nanoproducts, a rapid increase in the amount of waste has been considered. Wastes occurred from production to consumption of NPs at several stages are discharged into the receiving environment. However, nanowastes cannot be discussed efficiently due to the lack of a proper determination of nanowaste quantity and characterization. In order to minimize the toxic effects of nanowastes, within an effective and sustainable framework, waste definition and necessary plans and practices need to be applied. In this study, definition, classification and recommendations on disposal of nanowastes are presented taking into account the existing international waste management legislatives.

  2. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  3. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  4. Radioactive waste in the marine environment

    International Nuclear Information System (INIS)

    Lowman, F.G.

    1975-01-01

    The introduction of radionuclides into near-shore marine areas is considered in relation to Federal Regulations and to the hazards posed to man and to marine organisms living near the site of introduction of the contaminants. The use of the critical pathway concept, for evaluating hazards to man from radionuclides in his food, is discussed and the specific activity concept is applied to demonstrate the degree of hazard to man which could result from normal reactor operation using sea water for the coolant. The relative hazards to marine organisms from naturally occurring and reactor-produced radionuclides are also evaluated. (U.S.)

  5. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  6. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  7. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  8. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  9. Transient Localization in Shallow Water Environments

    National Research Council Canada - National Science Library

    Brune, Joachim

    1998-01-01

    .... A full-wave PE model is used to produce broadband replicas. Both model-generated synthetic signals, which provide baseline results, and measured pulses in a shallow water environment are analyzed...

  10. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  11. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  12. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    Science.gov (United States)

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The presence of medicines and drugs in wastes water; Presencia de farmacos y drogas en aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, C.; Gros, M.; Kuster, M.; Petrovic, M.; Lopez de Alda, M.; Barcelo, D.

    2008-07-01

    Medicines and drugs are emerging pollutants. The presence of medicines, especially oestrogens, in the aquatic environment has already been much studied; more recently attention has also turned to detecting drugs. Their effect on the aquatic environment is through waste waters, after they have passed through a waste water treatment plant or not. The levels of each of the types of substances considered medicines in general, estrogens and drugs and their subgroups, detected in waste waters are reported together with the relationship between these levels and aspects such as the volume of the substances consumed, their metabolism and where they end up in the environment. (Author) 106 refs.

  14. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  15. The Effects of Abattoir Waste on Water Quality in Gwagwalada ...

    African Journals Online (AJOL)

    This paper examined the impact of abattoir wastes on water quality around an abattoir site in Gwagwalada. The work was premised on the fact that untreated wastes from the abattoir are discharged directly into open drainage which flows into a nearby stream. Leachates from dumped and decomposed wastes have also ...

  16. The Maritime Environment - International Conference and Exhibition on Ballast Water, Waste Water and Sewage Treatment on Ships and in Ports Held in Bremerhaven, Germany on 12-14 September 2001. Conference Proceedings.

    Science.gov (United States)

    2001-09-01

    Cheese & Yogurt • Biochemical Processes: Digestion • Organic Waste Reduction: Wastewater Treatment Bacterial Growth Curve Time C el l C ou nt s C el...bottom and ferment . In addition, the slope and configuration of double bottom tanks is conducive to anaerobic solid accumulation. This is potentially

  17. Waste from rearing and slaughter of poultry – treat to the environment or feedstock for energy

    Directory of Open Access Journals (Sweden)

    Sylwia Myszograj

    2012-09-01

    Full Text Available Consumption of poultry has systematically grown for over 10 years. In 2007, Poland, with the participation of 11% dealt third place in Europe in the production of poultry meat with the input of 11% has taken the third place in Europe after France and the UK (about 14%. Intensification of poultry production on one hand provides to higher profitability, on the other hand generates more and more waste products, such as manure, slaughter wastes, dead birds, and the emission of gases (e.g. ammonia into the environment. Management of waste in breeding and slaughter plants of poultry rarely complies with current regulations. This is connected with high costs of waste disposal hazardous to the environment, harmful and dangerous to human health. because of chemical composition and potential health risks. The article, based on literature data and our own research, characterizes the waste from rearing and slaughter of poultry and define the possible ways to negative impact on human health: directly by microbial infections or indirectly by emissions of ammonia to the atmosphere, the migration of pollutants into groundwater and surface water. Options of waste utilization in methane fermentation process have been presented. This technology reduces the risk of environmental hazard , while allowing for recovery renewable energy of biogas from biowaste. Waste from the turkey farm and slaughterhouse (the size of slaughterhouse about 26,000 units per week were of mesophilic anaerobic digestion. Nine types of waste: turkey manure on straw, fresh straw used for bedding, heads, guts, feet and feathers were chosen. Flotation sediment, sewage from the slaughtering and chemical sludge was also fermented. High potential for methane from slaughterhouse waste (ca. 73% and manure (63%, indicate for simultaneous disposal and energy recovery from methane fermentation process.

  18. Ariab acidic min-influenced water: a waste to waste treatment

    International Nuclear Information System (INIS)

    Elamin, M. R.; Abd El Aziz, M. E.

    2009-01-01

    Six samples of acidic mine-influenced water (AMIW) from Ariab area, Red Sea Hills, northeastern part of Sudan, were analyzed for some waste water parameters. The investigation showed that, the pH ranged between 1.30 to 1.88, sulphate content between 40200 to 235300 mg/1, total iron 9879 to 103969 mg/1, copper, 280.0 to 1112.5 mg/1, zinc, 1825 to 3345 mg/1, manganese, 210.0 to 570.0 mg /1 in addition to high contents of cobalt and cadmium which are known for their negative impact on the environment. Khartoum Refinery Sour Water (KRSW) sample was analyzed for some pollutants, the analysis showed that it is alkaline industrial waste having a pH of 10.10, alkalinity of 26381 mg/1 as CaC 3 /1, Chemical Oxygen Demand (COD) of 29400 mg/1 as O 2 . It was found to be relatively free of heavy and environmentally hazardous elements such as Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb and Mg. A waste to waste treatment was carried to Ariab AMIW with KRSW, satisfactory results were obtained in reduction of the parameters studied in the treated effluent. The pH of AMIW was raised to about 8.50, and the element contents of Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb were either completely removed or reduced to levels that meet the allowed limits of the industrial effluent disposal threshold. Sulphate content, however, decreased due to dilution, but still above the specified limits of the effluent disposal. (Author)

  19. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  20. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  1. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  2. A method for the treatment of waste waters

    International Nuclear Information System (INIS)

    McLaughlin, M.E.

    1974-01-01

    The invention relates to a method for the cooling of waste waters. It is characterized in that it comprises the steps of introducing waste waters into a tank in communication with a basin through gate-controlled orifices, successively opening and closing the gates so as to intermitently release an adjustable amount of water stored in the tank in order to generate waves promoting the airing of waste waters and their cooling, then expelling waters downstream of the basin. The invention relates to thermal and nuclear power stations [fr

  3. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  4. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  5. [Toxicologic evaluation of purified municipal and industrial waste water].

    Science.gov (United States)

    Prokopov, V A; Tolstopiatova, G V; Byshovets, T F; Andrienko, L G; Martyshchenko, N V; Nadvornaia, Zh N; Poviĭchuk, E R; Teteneva, I A

    1993-07-01

    Analysis of waters sewage in Kiev and of waste water of a textile and se wing enterprise in Chernigov has shown that treatment by biological method and with activated carbon was fairely efficient in toxicity reduction.

  6. Geographic patterns of cigarette butt waste in the urban environment.

    Science.gov (United States)

    Marah, Maacah; Novotny, Thomas E

    2011-05-01

    This reports the initial phase of a study to quantify the spatial pattern of cigarette butt waste in an urban environment. Geographic Information Systems (GIS) was used to create a weighted overlay analysis model which was then applied to the locations of businesses where cigarettes are sold or are likely to be consumed and venues where higher concentrations of butts may be deposited. The model's utility was tested using a small-scale litter audit in three zip codes of San Diego, California. We found that cigarette butt waste is highly concentrated around businesses where cigarettes are sold or consumed. The mean number of butts for predicted high waste sites was 38.1 (SD 18.87), for predicted low waste sites mean 4.8 (SD 5.9), psales and consumption. A GIS and weighted overlay model may be a useful tool in predicting urban locations of greater and lesser amounts of cigarette butt waste. These data can in turn be used to develop economic cost studies and plan mitigation strategies in urban communities.

  7. The waste isolation pilot plant: A new regulatory environment

    International Nuclear Information System (INIS)

    Frei, M.W.; Schneider, S.P.; Saris, E.C.; Austin, P.W.

    1993-01-01

    The US Department of Energy (DOE) is ready to embark on a multiyear test program, using radioactive waste, at the Waste Isolation Pilot Plant (WIPP). The WIPP is a deep geologic repository, constructed in ancient salt beds in southeastern New Mexico. It was authorized by Congress in 1979 as a research and development facility to demonstrate safe disposal of the nation's defense transuranic (TRU) waste. Nonradioactive testing in the repository has been under way for several years. The DOE is now ready to begin underground experiments at WIPP with small amounts of TRU waste. Radioactive waste testing in an actual repository environment will reduce uncertainties associated with predictions of long-term repository performance. However, the authority for DOE to begin this new phase of the test program no longer resides within the department. The WIPP is now subject to a new level of regulatory oversight by the Environmental Protection Agency (EPA) and other federal agencies, as set forth by Public Law 102-579, the WIPP Land Withdrawal Act, signed by the President on October 30, 1992. This paper discusses the act's new regulatory requirements for WIPP

  8. Fostering community and environment friendly disposal of biomedical wastes

    Directory of Open Access Journals (Sweden)

    Saurabh RamBihariLal Shrivastava

    2015-01-01

    Full Text Available Health care waste is the waste generated from any health care activities in health care organizations, research institutes or laboratories. Almost, three-fourth of the health care wastes is nonhazardous, while the remaining fraction is hazardous, and is referred as biomedical waste (BMW. Inappropriate management of BMW is associated with significant potential risks to the health care workers, patients, communities, their future generations and their environment. To ensure the correct disposal of the generated BMW, they have been categorized in different classes and appropriate methods of disposal have been specified to prevent a health hazard to the health care providers and the general community. In addition, to render the BMW produced from a health care setting implementation of multiple measures have been proposed to reduce the menace of public health concerns. To conclude, to mitigate the magnitude of the health concerns emerging secondary to the improper disposal of BMW, development of a comprehensive waste management policy, in addition to establishing training programs for all healthcare workers is the need of the hour.

  9. PROFILE OF PLASTIC WATER BOTTLES WASTES PROCESSING BUSINESS UNIT FOR WASTE PICKERS

    Directory of Open Access Journals (Sweden)

    Herijanto P.

    2017-09-01

    Full Text Available Used plastic water bottles waste pickers can be categorized as one of the informal sector’s component. They work for themselves by picking up used water bottles and selling them to the waste collectors. The problem to be solved in this research is How the Most Appropriate Used Plastic Water Bottles Business Model for Waste Pickers Is that enables them to be categorized as formal sector. From the result of the interview with 120 waste pickers, 96 results were qualified to be analyzed. The interview was located in several waste collectors, which were visited by waste pickers at certain hours. The data were analyzed descriptively based on six business aspects. Specifically for production facilities, Quality Function Deployment (QFD and Value Engineering (VE analysis were performed. The results of the analysis indicate that the business is practicable for waste pickers and has the potential to enable them run a formal business sector.

  10. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  11. Environment Canada defends decision to ban PCB waste exports

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The position of Environment Canada in banning the export of PCB waste to the United States was defended as falling within their jurisdiction under provisions of the the Canadian Environmental Protection Act. The United States had previously banned the import of Canadian PCBs, but when it reversed its decision Environment Canada posted an Interim Order, upholding the ban. The decision to do so was based on protection of the large investment that was made to develop the Canadian PCB incineration facility in Swan Lake, Alberta. Canada also had an obligation under the Basel Convention to reduce it cross boundary movement of hazardous waste and provide adequate destruction facilities in Canada. Legal implications of PCB exports and the uncertainty of continuing access to American facilities were also cited as reasons for issuing the Interim Order

  12. Water reuse achieved by zero discharge of aqueous waste

    International Nuclear Information System (INIS)

    Kelchner, B.L.

    1976-01-01

    Plans for zero discharge of aqueous waste from ERDA's nuclear weapons plant near Denver are discussed. Two plants - a process waste treatment facility now under construction, and a reverse osmosis desalting plant now under design, will provide total reuse of waste water for boiler feed and cooling tower supply. Seventy million gallons of water per year will be conserved and downstream municipalities will be free of inadvertent pollution hazards

  13. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  14. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  15. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  16. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  17. POSSIBILITIES FOR WASTE WATER UTITLIZATION FROM CANNING INDUSTRY

    Directory of Open Access Journals (Sweden)

    A. Kraevska

    2014-03-01

    Full Text Available Waste waters from the different processing sectors (branch, activities of the canning factories was investigated. It was established that the greatest organic pollution is a result of the production of frozen half-fried potatoes. The possibilities of reducing of the organic pollution by cultivating fungi of the genus Aspergillus and Trichoderma in the waste waters was studied.

  18. Radioactivity in waste water samples from COGEMA supplied by Greenpeace

    International Nuclear Information System (INIS)

    Reinen, H.A.J.M.; Kwakman, P.J.M.; Overwater, R.M.W.; Tax, R.B.; Nissan, L.A.

    1999-01-01

    The environmental organization Greenpeace sampled waste water from the reprocessing plant COGEMA in La Hague, France, in May 1999. On request of the Inspection Environmental Hygiene, The Dutch National Institute for Public Health and Environmental Protection (RIVM) determined the radioactivity of the waste water samples. 5 refs

  19. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    Queiser, H.

    1976-01-01

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.) [de

  20. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Science.gov (United States)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  1. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  2. Effect of color removal agent on textiles waste water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakknu, Sarala; Jamaliah Shariff; Ting, Teo Ming; Khairul Zaman Dahlan

    2010-01-01

    The effect of color removal agent (CRA) on textile waste water has been studied. The aim of this work is to determine the optimum condition for CRA to react on the textile waste water and to see the effect of CRA on waste water with different Chemical Oxygen Demand. 8 ml CRA was used to treat 800 mls of sample with various COD ranging between 2500 mg/ l-500 mg/ l. The results showed that CRA totally remove the colour of textile waste water at pH ranging from 6 to 8. At an optimum condition CRA works efficiently on waste water with COD 2300 mg/ l for reduction of suspended solid and turbidity. It also observed, sludge accumulation was depended on COD concentration. Color removal curves for different initial COD concentration also obtained. (author)

  3. Guidelines for the disposal of dangerous and toxic wastes so as to minimize or prevent environmental and water pollution

    CSIR Research Space (South Africa)

    Rudd, RT

    1978-01-01

    Full Text Available Modern society is producing ever increasing quantities of dangerous and/or toxic wastes, which require safe and effective disposal if they are not to pose a threat to our water supplies or the environment in general....

  4. The reuse of scrap and decontamination waste water from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Xie Xiaolong

    2010-01-01

    Huge amount of radioactive scrap with low activity will be generated from reactor decommissioning; the decontamination is concentrated in the surface layer of the scrap. The decontaminated substance can be removed by high pressure water jet to appear the base metal and to reuse the metal. Big amount of radioactive waste water will be generated by this decontamination technology; the radioactive of the waste water is mainly caused by the solid particle from decontamination. To remove the solid particle as clean as possible, the waste water can be reused. Different possible technology to remove the solid particle from the water had been investigated, such as the gravity deposit separation, the filtration and the centrifugal separation etc. The centrifugal separation technology is selected; it includes the hydraulic vortex, the centrifugal filtration and the centrifugal deposit. After the cost benefit analysis at last the centrifugal deposit used butterfly type separator is selected. To reuse the waste water the fresh water consumption and the cost for waste water treatment can be reduced. To reuse the radioactive scrap and the waste water from decommissioning will minimize the radioactive waste. (authors)

  5. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  6. Water Fountains in Environment Transformation Correcting

    Science.gov (United States)

    Sidorenko, M. Yu; Ponomareva, Zh V.

    2017-11-01

    The article provides information on the means and principles for adjusting the process of the urban environment transformation. The interest in the topic is caused by the fact that the surrounding artificial environment is turning into a dangerous factor in the mechanism of human visual perception which requires immediate, effective intervention in the adjustment of the existing modern buildings. The paper considers The correction with the help of new dominants, small architectural forms, in particular, water fountains. Fountains are an important part of the measures to create a comfortable, environmentally friendly urban human environment. Their planning and functional links with the system of streets, squares, traffic arteries can create the urban plan basis.

  7. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  8. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  9. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  10. Water and environment news. No. 16

    International Nuclear Information System (INIS)

    2002-11-01

    This issue of the Water and Environment Newsletter covers the status of the Global Network of Isotopes in Precipitation (GNIP), highlights of the Coordinated Research Project on 'Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate' and perspectives on river basin hydrology and monitoring

  11. Water and waste water reclamation in a 21st century space colony

    Science.gov (United States)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  12. The removal of uranium from mining waste water using algal/microbial biomass

    International Nuclear Information System (INIS)

    Kalin, Margarete; Wheeler, W.N.; Meinrath, G.

    2004-01-01

    We describe a three step process for the removal of uranium (U) from dilute waste waters. Step one involves the sequestration of U on, in, and around aquatic plants such as algae. Cell wall ligands efficiently remove U(VI) from waste water. Growing algae continuously renew the cellular surface area. Step 2 is the removal of U-algal particulates from the water column to the sediments. Step 3 involves reducing U(VI) to U(IV) and transforming the ions into stable precipitates in the sediments. The algal cells provide organic carbon and other nutrients to heterotrophic microbial consortia to maintain the low E H , within which the U is transformed. Among the microorganisms, algae are of predominant interest for the ecological engineer because of their ability to sequester U and because some algae can live under many extreme environments, often in abundance. Algae grow in a wide spectrum of water qualities, from alkaline environments (Chara, Nitella) to acidic mine drainage waste waters (Mougeotia, Ulothrix). If they could be induced to grow in waste waters, they would provide a simple, long-term means to remove U and other radionuclides from U mining effluents. This paper reviews the literature on algal and microbial adsorption, reduction, and transformation of U in waste streams, wetlands, lakes and oceans

  13. The radiation monitoring of environment around place of treatment and storage of radioactive wastes

    International Nuclear Information System (INIS)

    Vdovina, E.D.

    2001-01-01

    Full text: Large success was attained in the field of radiation protection of research nuclear center, but it is necessary to carry out works in this way around place of treatment and storage of radioactive wastes too. Moreover, for protection of environment it is necessary to control radiation condition of system (radioactive wastes of nuclear center - environment). There is large amount of natural and man-made radionuclides in environment and it is important to solve problem to control individual radionuclides, polluting natural environment. Also, it is necessary to control concentrations of specific radionuclides, which are marks of definite radioactive source. The radionuclides 137 Cs, 90 Sr, 60 Co, 141 Ce, 144 Ce, 95 Zr, 95 Nb, 131 I and natural radionuclides of uranium, thorium and their products of decay are basic radionuclides. The 57 Co, 35 S, 32 P are considered also basic radionuclides taking into consideration specialization of our Institute. The basic problems of control of environment are following: observation of radioactive pollution level of environment objects; estimation of radioactive pollution level with the purpose of warning of possible negative consequences; investigation of dynamics of radioactivity and prognosis of radioactive pollution of environment objects; influence on sources of radioactive pollution. There is large volume information, characterizing radiation condition of environment around research nuclear center and around place of treatment and storage of radioactive wastes. The bank of environment object analysis result date was build for investigation of information. The system of protection around location of treatment and storage of radioactive wastes and around nuclear center consists of control of radioactive wastes, superficial and underground water, soil, plants, atmospheric precipitation. There are analysis of total β- activity, α-activity and γ-spectrometry. This control includes estimation of throw down values

  14. Deactivation of waste waters in the Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    Priban, V.

    1978-01-01

    Deactivation techniques are described used for the treatment of waste waters from uranium mines and uranium chemical treatment plants. With treatment plant waters this is done either by precipitation of radium with barium sulfate or using multistage evaporating units. Mine waste waters are deactivated by sorption on ion exchangers; strongly basic anion exchangers, mostly Wofatit SBW, Varion AP or Ostion AU are used for uranium, while the strongly acidic Ostion KS is used for radium. (Z.M.)

  15. Thermomechanical scoping calculations for the waste package environment tests

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.

    1986-03-01

    During the site characterization phase of the Nevada Nuclear Waste Storage Investigation Project, tests are planned to provide field information on the hydrological and thermomechanical environment. These results are needed for assessing performance of stored waste packages emplaced at depth in excavations in a rock mass. Scoping calculations were performed to provide information on displacements and stress levels attained around excavations in the rock mass from imposing a thermal load designed to simulate the heat produced by radioactive decay. In this way, approximate levels of stresses and displacements are available for choosing instrumentation type and sensitivity as well as providing indications for optimizing instrument emplacement during the test. 7 refs., 9 figs., 1 tab

  16. THE IMPACT OF INDUSTRIAL WASTE LANDFILL ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Janas

    2017-06-01

    Full Text Available The aim of the study is to assess the environmental impact of a shut down industrial waste landfill. A detailed analysis of the quality of groundwater around the landfill in the years 1995-2016 was conducted. Assessment of the status of groundwater in the landfill area was made based on the results of monitoring tests. It includes the measurement of pH, specific electrical conductivity (SEC and the content of chlorides, sulfates, phosphates, heavy metals: copper (Cu, lead (Pb, chromium (Cr and a number of other pollution indicators. The analysis confirms that the landfill during the operation did not constitute a threat because of a number of employed security measures and sealing layers. Only in recent years, the industrial waste landfill which is already out of operation has become an extremely serious environmental threat. The results of water analyses from the piezometers clearly indicate that there is a problem of groundwater contamination. There was a significant increase in the value of some of the analyzed indicators (such as chlorides and sulfates, mainly in the piezometers located on the flow line of groundwater in the landfill area. The observed situation is probably a result of damage to the sealing layers and leaching of pollutants from waste deposited in the landfill by rain water.

  17. Waste management at Los Alamos: Protecting our environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section

  18. Waste management at Los Alamos: Protecting our environment

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section.

  19. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  20. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  1. W1045 environment surf drip shield and waste package outer barrier

    International Nuclear Information System (INIS)

    Gdowski, G.

    1999-01-01

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall

  2. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  3. Transfer factor for 137Cs in fresh water aquatic environment

    International Nuclear Information System (INIS)

    Varughese, K.G.; Ramkumar, S.; John, Jaison T.; Rajan, M.P.; Gurg, R.P.

    2002-01-01

    137 Cs is one of the most abundant radionuclides produced in nuclear fission and due to its long radiological half-life and chemical similarity to potassium it has greater biological significance. Radioactive waste materials generated at nuclear facilities are generally disposed within the plant premises under its administrative control for effective radiation protection practices. However trace quantities of radionuclides are released into the environment through liquid and gaseous releases under the guidelines of regulatory agencies. The concentration of these radioactive elements in the environment is not detectable under normal circumstances due to the large dispersion and dilutions available in the environment. But these radionuclides can get accumulated in environmental matrices like silt, weed etc. and indicate the presence of radioactivity in the environment. This paper presents the results of a face-controlled studies conducted at Environmental Survey Laboratories at the Rajasthan Atomic Power Station (RAPS) and Kakrapar Atomic Power Station (KAPS) to estimate distribution of low-level radioactivity in the fresh water system. An attempt has been made to derive the Transfer Factor for 137 Cs in fish, weed, and silt and to evaluate the concentration of 137 Cs in water samples, which is otherwise not detectable under normal procedure of measurement. (author)

  4. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers

    Science.gov (United States)

    The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...

  5. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    Science.gov (United States)

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  6. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  7. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick

    International Nuclear Information System (INIS)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F.

    2011-01-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  8. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  9. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1994-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  10. Actual problems of municipal cleaner’s waste waters

    Directory of Open Access Journals (Sweden)

    Konko¾ová Patrícia

    2000-03-01

    Full Text Available In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner’s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  11. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  12. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  13. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  14. Technical approach for the management of UMTRA ground water investigation-derived wastes

    International Nuclear Information System (INIS)

    1994-02-01

    During characterization, remediation, or monitoring activities of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project, ground water samples are collected to assess the extent and amount of waterborne contamination that might have come from the mill tailings. This sampling sometimes occurs in contaminated areas where ground water quality has been degraded. Ground water sampling activities may result in field-generated wastes that must be disposed of in a manner protective of human health and the environment. During ground water sampling, appropriate measures must be taken to dispose of presampling purge water and well development water that is pumped to flush out any newly constructed wells. Additionally, pumping tests may produce thousands of gallons of potentially contaminated ground water that must be properly managed. In addition to the liquid wastes, there is the potential for bringing contaminated soils to the ground surface during the drilling and installation of water wells in areas where the subsurface soils may be contaminated. These soils must be properly managed as well. This paper addresses the general technical approach that the UMTRA Project will follow in managing field-generated wastes from well drilling, development, sampling, and testing. It will provide guidance for the preparation of Technical Assistance Contractor (TAC) Standard Operating Procedures (SOP) for the management and disposal of field-generated wastes from ground water monitoring and remediation activities

  15. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    Science.gov (United States)

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  16. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  17. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    OpenAIRE

    Gogina Elena; Pelipenko Alexey

    2016-01-01

    The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW), on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities,...

  18. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  19. Waste management in light-water reactors

    International Nuclear Information System (INIS)

    Meininger, S.

    1982-01-01

    The most important objectives of concentrate and solid waste treatment are reduction of the waste to the smallest volume, radioactive exposure of the personnel of the power plants and outside for operation, handling and transportation, protection against migration of the concentrated radioactive substances after final disposal and observance of shipping requirements, national laws and ministerial waste storage regulations. A variety of technologies is available for the realization of these objectives. Important parameters for the selection and design of concentrate and solid waste treatment processes are waste type, quantity, activity, means for immobilization and the achievable reduction factors. The most important technologies for the treatment of liquid concentrates, combustible and non-combustible solid waste are available for example: In-Drum-Drying, Borate-Solidification (PWR), Drum Drier, Residue Filter Drying, Bituminization, Solidification with cement, Incineration, Shredding, Compacting etc. and of course combinations of the various mentioned procedures which result in the best possible waste disposal for the entire power plant. (orig./RW)

  20. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Costello, J.M.; Hardy, C.J.

    1981-05-01

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  1. Parametric study of the effects of thermal environment on a waste package for a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J K; Sundberg, W D; Krumhansl, J L [Sandia National Laboratories Albuquerque, NM, (USA)

    1982-12-31

    The thermal environment has been modeled in a simple reference waste package in a tuff repository for a variety of variables. The waste package was composed of the waste form, canister, overpack and backfill. The emplacement hole was 122cm dia. Waste forms used in the calculations were commercial high level waste (CHLW) and spent fuel (SF). Canister loadings varied from 50 to 100 kW/acre. Primary attention was focused on the backfill behavior in the thermal and chemical environment. Results are related to the maximum temperature calculated for the backfill. These calculations raise serious concerns about the effectiveness of the backfill within the context of the total waste package.

  2. Fate of antibiotic resistance genes within the microbial communities of three waste water treatment plants

    OpenAIRE

    Di Cesare, Andrea; Eckert, Ester; D'Urso, Silvia; Doppelbauer, Julia; Corno, Gianluca

    2016-01-01

    Although Waste Water Treatment Plant (WWTP) are designed to reduce the biological pollution of urban waters, they lack a specific action against antibiotic resistance bacteria (ARB) or antibiotic resistance genes (ARGs). Nowadays, it is well documented that WWTPs constitute a reservoir of antibiotic resistances and, in some cases, they can be a favorable environment for the selection of ARB. This represent a serious concern for the public health, because the effluents of the WWTPs can be reus...

  3. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  4. Session 1984-85. Radioactive waste. Minutes of evidence, Wednesday 19 June 1985. Natural Environment Council

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Natural Environment Research Council, on the management and disposal of radioactive waste, under the headings: introduction; role of NERC in research relating to radioactive waste disposal; current NERC research; disposal of wastes in geological strata on land; disposal of wastes in the deep oceans; general comments on high level wastes; effluents discharged to the Irish Sea (dispersion in the Irish Sea; dispersion from the Irish Sea into other environments); concluding observations. Representatives of NERC were examined on the subject of the memorandum and the Minutes of Evidence are recorded. (U.K.)

  5. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  6. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  7. Investigations on the treatment of waste waters from pig breeding

    Energy Technology Data Exchange (ETDEWEB)

    Cute, E; Mambet, E; Juriari, E; Murgoci, C

    1967-01-01

    The introduction of intensive methods of pig breeding has caused changes in the characteristics, particularly the strength, of the piggeries waste waters; analytical data are tabulated for waste waters from 3 pig-breeding farms and 1 large pig-breeding combine in Romania. At older piggeries, waste waters are treated by sedimentation and sludge digestion in Imhoff tanks. In more recent establishments, treatment comprises primary sedimentation followed by storage of the settled waste waters in ponds to be used for irrigation, and separate digestion of sludge in open tanks. Experiments showed that precautions are necessary to prevent blocking of the sewerage system by easily-settleable material before reaching the sedimentation tanks; sedimentation is more efficient in horizontal sedimentation tanks than in the older Imhoff tanks; biological treatment is possible without addition of nutrients, but the waste waters must be diluted; and digestion requires a longer period than that for sewage sludge, difficulties being caused by the presence of coarse suspended particles of waste feeding stuffs.

  8. Problems of the water environment and water consumption

    International Nuclear Information System (INIS)

    Raetsep, Aavo

    1999-01-01

    Water extraction and consumption in Ida-Viru County are based mainly on the groundwater and surface water. The major part of the surface water is consumed by power engineering, while households and industry are the main consumers of groundwater. The difference between water extraction and consumption shows that the unused mine water pumped up for draining the oil shale mines and open pits and discharged into rivers forms an essential part (on the average 86%, quantitatively 159-226 millions m 3 /yr.). Serious water supply problems have risen in connection with oil shale mining: numerous village and household wells have been depleted due to a deep drawdown cone, the groundwater of the upper aquifers is polluted with nitrates, phenols and oil products. The poor condition of water-pipes and great leakages (up to 60%) make it difficult to supply townspeople and villagers with high-grade drinking water meeting the Estonian general standard EVS 663:1995. Water pollution is conditioned by poorly treated wastewaters and sewage directed practically into all the major rivers and lakes of the county by industrial and power engineering enterprises and towns and rural settlements. The rivers of the Purtse basin have been continuously under a heavy pollution load: both the mine waters with high minerality and phenolic wastewaters (so-called ash hill waters) of the oil shale thermal processing have been discharged into the rivers. Various water contamination from land areas has led to excessive pollution of Northeast Estonian coastal waters of the Gulf of Finland with toxic organic compounds and nutrients, specially in the regions of Purtse, Saka, Sillamaee and Narva-Joesuu. Up to now, Estonia has not managed completely fulfil the recommendations of the Helsinki Commission (HELCOM) of the Convention on the Protection of the Marine Environment of the Baltic Sea Area. In 1998-2010, water management in Ida-Viru County should be directed towards achieving two Principal objectives

  9. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    Science.gov (United States)

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  10. Water and environment news. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This issue of Water and Environment Newsletter is being released on the occasion of the 3rd World Water Forum in Kyoto, Japan from 16-23 March 2003. The Isotope Hydrology Section is contributing to the Forum through various theme sessions, in particular those related to groundwater and partnerships with other organizations. The Forum aims to increase political commitments for concrete action to improve water availability and sustainable resource management worldwide. A successful Forum will go a long way in improving the present and future water availability on a global scale. The Kyoto Forum will build on the outcomes of the recent World Summit on Sustainable Development (WSSD) held in Johannesburg, South Africa. The Agency participated in the WSSD and its side events, and announced a partnership initiative with UNESCO and others on improved capacity building and technology applications for water resource and coastal zone management. The WSSD implementation plan recognizes the following four actions for the sustainable development and management of water resources: 'Develop integrated water resources management and water efficiency plans by 2005, with support to developing countries, through actions at all levels to develop and implement national/regional strategies, plans and programmes with regard to integrated river basin, watershed and groundwater management, ...'; 'Support developing countries and countries with economies in transition in their efforts to monitor and assess the quantity and quality of water resources, ...'; 'Improve water resource management and scientific understanding of the water cycle through cooperation in joint observation and research, ...'; 'Promote effective coordination among the various international and intergovernmental bodies and processes working on water-related issues, both within the United Nations system and between the United Nations and international financial institutions, ...' Through recent re-alignments in the Agency

  11. Water and environment news. No. 17

    International Nuclear Information System (INIS)

    2003-03-01

    This issue of Water and Environment Newsletter is being released on the occasion of the 3rd World Water Forum in Kyoto, Japan from 16-23 March 2003. The Isotope Hydrology Section is contributing to the Forum through various theme sessions, in particular those related to groundwater and partnerships with other organizations. The Forum aims to increase political commitments for concrete action to improve water availability and sustainable resource management worldwide. A successful Forum will go a long way in improving the present and future water availability on a global scale. The Kyoto Forum will build on the outcomes of the recent World Summit on Sustainable Development (WSSD) held in Johannesburg, South Africa. The Agency participated in the WSSD and its side events, and announced a partnership initiative with UNESCO and others on improved capacity building and technology applications for water resource and coastal zone management. The WSSD implementation plan recognizes the following four actions for the sustainable development and management of water resources: 'Develop integrated water resources management and water efficiency plans by 2005, with support to developing countries, through actions at all levels to develop and implement national/regional strategies, plans and programmes with regard to integrated river basin, watershed and groundwater management, ...'; 'Support developing countries and countries with economies in transition in their efforts to monitor and assess the quantity and quality of water resources, ...'; 'Improve water resource management and scientific understanding of the water cycle through cooperation in joint observation and research, ...'; 'Promote effective coordination among the various international and intergovernmental bodies and processes working on water-related issues, both within the United Nations system and between the United Nations and international financial institutions, ...' Through recent re-alignments in the Agency

  12. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  13. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  14. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  15. The geochemical environment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1995-01-01

    The concept for disposal of Canada's nuclear fuel waste in a geologic environment on the Canadian Shield has recently been presented by Atomic Energy of Canada Limited (AECL) to governments, scientists, and the public, for review. An important part of this concept concerns the geochemical environment of a disposal vault and includes consideration of rock and groundwater compositions, geochemical interactions between rocks, groundwaters, and emplaced vault materials, and the influences and significance of anthropogenic and microbiological effects following closure of the vault. This paper summarizes the disposal concept and examines aspects of the geochemical environment. The presence of saline groundwaters and reducing conditions at proposed vault depths (500-1000 m) in the Canadian Shield has an important bearing on the stability of the used nuclear fuel, its container, and buffer and backfill materials. The potential for introduction of anthropogenic contaminants and microbes during site investigations and vault excavation, operation, and sealing is described with examples from AECL's research areas on the Shield and in their underground research laboratory in southeastern Manitoba. (author)

  16. Water and environment news. No. 5

    International Nuclear Information System (INIS)

    1998-10-01

    This issue provides information on the Agency's involvement in a topical field, the application of isotope techniques in climate change studies. It also contains contributions on noble gas isotopes and applications and on the Canadian network for isotopes in precipitation. the issue also highlights the scientific forum on 'Nuclear Technology in Relation to Water Resources and the Aquatic Environment' held from 22 to 24 September 1998 at the IAEA in Vienna and the achievements of the Agency's Co-ordinated Research Project on 'Use of isotopes for analyses of flow and transport dynamics in groundwaer systems'

  17. Water and environment news. No. 1

    International Nuclear Information System (INIS)

    1997-09-01

    This news bulletin will brief the reader on news related to isotope applications in the water and environment sector. It will bring the reader up to date on what is going on in the various projects constituting the IAEA sub programme entitled D evelopment and Management of Water Resources , and will highlight new results and achievements made in implementing the programme activities, including those jointly carried out with other organizations and institutes. Furthermore, the news bulletin will serve as an international open forum for the exchange of information in isotope hydrology and related fields. The first issue will make readers acquainted with general aspects of the Agency's sub-programme mentioned above, give an overview on past activities and achievements, and highlight current ones. The Agency's staff involved in all these activities is briefly introduced

  18. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  19. The impact of nuclear waste disposals to the marine environment

    International Nuclear Information System (INIS)

    Taylor, P.J.

    1982-03-01

    This report provides a critical review of current scientific literature concerning the environmental impact of discharges and dumping of radioactive waste to the coastal marine and deep ocean environments. It concludes that although knowledge of the effects of dispersed radioactivity has greatly increased in the last two decades, there are still significant areas of uncertainty which have major implications for current and future nuclear waste management policy. For example, there is now evidence of discharged plutonium formerly thought to be locked on sediments returning to man via biogeochemical cycles. Discharges of this extremely toxic element have been banned elsewhere because of this eventuality, and the report recommends elimination of plutonium discharges, and in the light of recent radiobiological evidence, a fivefold reduction in exposures to the public as a result of the other Windscale discharges. In the case of ocean dumping, the report acknowledges that there is no evidence of health effects from past disposals. However, recent monitoring shows contamination of the ocean bed due to leaking containers, and it is argued that oceanographic and radioecological data are insufficient to predict future effects, especially having regard to the steadily increasing quantities dumped. (author)

  20. Water and environment news. No. 15

    International Nuclear Information System (INIS)

    2002-03-01

    This issue of Water and Environment Newsletter is being released to coincide with World Water Day on 22 March 2002. The UN General Assembly in 1992 resolved to observe 22 March of each year as the World Water Day to raise public awareness of freshwater issues. The theme for the WWD this year is 'Water for Development' and the IAEA, for the first time, is the lead agency for coordinating UN system's activities for this day. By being the lead agency, a greater awareness is also being achieved on the role of IAEA in the water sector and on the role of isotopes in hydrology. The IAEA has played a pivotal role in promoting and expanding the field of isotope hydrology over the last four decades. Isotope hydrology today is practiced in most countries although the field began nearly 50 years ago with a few research centres in the developed countries involved in understanding the distribution of isotopes in natural waters. The number of analytical facilities has increased steadily as indicated by the increasing number of laboratories participating in IAEA's inter-laboratory comparisons. A significant number of these laboratories in the developing countries have been established with IAEA's support. In addition to geographical spread, the sheer number of hydrological studies with isotopes has shown a substantial increase. Isotopes were used in less than 100 reports of hydrological research and applications in major scientific journals in the period 1960 to 1954. During 1995-2000, however, more than 7000 such reports were published. The primary field of application in the early reports was related to groundwater, but applications in climate change studies, that were nearly nonexistent in 1960, grew to nearly equal to groundwater applications in 1995-2000

  1. Water and environment news. No. 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    This issue of Water and Environment Newsletter is being released to coincide with World Water Day on 22 March 2002. The UN General Assembly in 1992 resolved to observe 22 March of each year as the World Water Day to raise public awareness of freshwater issues. The theme for the WWD this year is 'Water for Development' and the IAEA, for the first time, is the lead agency for coordinating UN system's activities for this day. By being the lead agency, a greater awareness is also being achieved on the role of IAEA in the water sector and on the role of isotopes in hydrology. The IAEA has played a pivotal role in promoting and expanding the field of isotope hydrology over the last four decades. Isotope hydrology today is practiced in most countries although the field began nearly 50 years ago with a few research centres in the developed countries involved in understanding the distribution of isotopes in natural waters. The number of analytical facilities has increased steadily as indicated by the increasing number of laboratories participating in IAEA's inter-laboratory comparisons. A significant number of these laboratories in the developing countries have been established with IAEA's support. In addition to geographical spread, the sheer number of hydrological studies with isotopes has shown a substantial increase. Isotopes were used in less than 100 reports of hydrological research and applications in major scientific journals in the period 1960 to 1954. During 1995-2000, however, more than 7000 such reports were published. The primary field of application in the early reports was related to groundwater, but applications in climate change studies, that were nearly nonexistent in 1960, grew to nearly equal to groundwater applications in 1995-2000.

  2. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  3. Phenols biodegradation in waste waters from petroleum industry

    International Nuclear Information System (INIS)

    Grosso V, J.L.; Diaz M, M.P.; Leon, G.

    1995-01-01

    Practical methods to isolate, adapt and propagate phenol biodegradation microorganisms were established. Fifteen different microorganism group were obtained, capable of eliminating phenol contained in production water, sour water and waste water from Barrancabermeja's Refinery (Colombia), and dehydration water from heavy oil-in-water emulsions. Elimination efficiencies higher than 95% in periods of time shorter than 24 hour were achieved at laboratory and pilot plant scales. A continuos system using this technology was successfully implemented in April 1994, for the treatment of waste water from Colombia's biggest refinery. Existing stabilizing pools were converted into bioreactors capable of handling water flow rates between 16.000 to 32.000 m3/d. Efficiencies close to 95% have obtained under controlled acidity, aeration and flow rate conditions. This technology is being implemented in other Ecopetrol refineries and production fields

  4. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  5. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    Science.gov (United States)

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  6. Technological features of contamination and purification of drilling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Striletskiy, I V

    1981-01-01

    The most efficient solution to the problem of preventing contamination of the reservoirs with waste water is their reuse for water supply of the borehole. Requirements are presented which the purified waste water must meet. As a result of the conducted studies it has been established that in reservoirs, only coarsely dispersed mixture, weighting compounds and floating petroleum products are removed from the water. Finely dispersed suspension and colloid particles have a sedimentation stability and do not settle out under the influence of the gravity force. For drilling waste water there is a characteristic inconsistency in the degree of contamination both at the different boreholes and at one borehole with the passage of time. Physical-chemical characteristics of the waste waters are presented. The greatest degree of contamination of water is observed when such operations are performed as replacement of the drilling fluid, lifting of the drilling tool, cementing as well as the development of emergencies. Studies on the purification of drilling water were conducted on an experimental-industrial unit.

  7. Improvement in, or relating to, waste-waters

    International Nuclear Information System (INIS)

    Crossley, T.J.

    1974-01-01

    The invention relates to a method for eliminating impurities consisting of fluorides, ammonia and uranium traces from waste waters. That method eliminates fluorides through precipitating alkaline earth fluoride, ammonia through evaporation and the excess alkaline earth metal through passing over an ion exchange resin. The water resulting from such a treatment contains but uranium traces and is suitable for re-cycling. The method can be applied to the treatment of waste waters resulting from the preparation of ammonium di-uranate from uranium hexafluoride [fr

  8. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  9. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  10. Bacteriological quality and solid wastes at five coastal marine environments of Costa Rica

    International Nuclear Information System (INIS)

    Garcia, Vera; Acuna Gonzalez, Jenaro; Vargas Zamora, Jose A.; Garcia Cespedes, Jairo

    2006-01-01

    Anthropogenic waste and water bacteriological quality were surveyed twice a year in 2000 and in 2002 at five coastal marine environments in Costa Rica, one in the Caribbean (Bahia de Moin) and four in the Pacific (Bahia de Culebra, Golfo de Nicoya, Estero de Puntarenas, Bahia de Golfito). The most probable number (MPN)/100 mL of coliform bacteria was calculated after incubation series of five test tubes. A total of 14 coastal and two river water samples were collected in the Caribbean, and 32 coastal, nine estuarine and one tap water samples in the Pacific, plus 25 samples investigated for Escherichia coli in 2002. The means of 2 MPN/100 mL in June 2000 and 17 MPN/100 mL in May 2002, and faecal coliforms [es

  11. Removal of Chromium from Waste Water of Tanning Industry Using Bentonite

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2009-01-01

    Tanning industry is considered as one of the oldest industries in the world, which produces solid and liquid wastes, where the Chromium-containing liquid wastes are considered to be as the main liquid pollutant to the environment. In this research, a new method is applied to remove the chromium from the industrial water wastes, which are produced by tanning industry using the Aleppo Bentonite.The experiments on laboratory- prepared samples and collected samples from some tanning factories in Damascus have proved that chromium removal from tanning waste water is very effective for solution of 85-98 %. Moreover, the optimal conditions for the treatment process of tanning waste water by Aleppo Bentonite have determined and found to be (pH=4, Bentonite concentration = 20 g l -1 when chromium concentration is 0.8 g l -1 , solution temperature = 30 degree centigrade, and Bentonite particle size < 90 μm). However, the proposed method can be considered to be an environmental solution for the treatment of tanning industrial wastes in Syria. (author)

  12. Direct oxidation of strong waste waters, simulating combined wastes in extended-mission space cabins

    Science.gov (United States)

    Ross, L. W.

    1973-01-01

    The applications of modern technology to the resolution of the problem of solid wastes in space cabin environments was studied with emphasis on the exploration of operating conditions that would permit lowering of process temperatures in wet oxidation of combined human wastes. It was found that the ultimate degree of degradation is not enhanced by use of a catalyst. However, the rate of oxidation is increased, and the temperature of oxidation is reduced to 400 F.

  13. Environmental aspects of using waste waters and sludges in energy forest cultivation

    International Nuclear Information System (INIS)

    Nielsen, K.H.

    1994-01-01

    From a waste management point of view, energy crops offer the advantage of being non-food crops. Poplar and willow coppice have longer growing seasons and deeper, longer lasting root systems than annual crops, which enables them to have better utilization of mineralised nutrients from waste products. When using waste waters they have the further advantage of a high evapotranspiration. The removal of nutrients from the growth system by harvests is limited, however, and the applied amounts should be regulated accordingly, to avoid leaching of nutrients. Heavy metal contents of waste products for land use are controlled by national regulations. Applications several times higher than is now allowed has had little documented effect on the environment due to the binding of metals to soil particles. The nitrogen content of wood fuels converts mainly to atmospheric nitrogen, but with high temperatures where the combustion is most efficient, there is also some conversion to nitrogen oxides. (author)

  14. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  15. The impact of radioactivity of brine water on environment on the territory of the Caspian sea

    International Nuclear Information System (INIS)

    Mamedov, F.I.; Gurbanova, E.K.

    2015-01-01

    At the present, the problem of purification of the petroleum polluted areas is getting essential. The reason of that is the increased scope of work on oil producing and oil refining. Consequently, the risk of contamination of the environment increases. So far, experts have considered that hydrocarbons which are contained in composition of oil waste are most dangerous for environment. In the last decade were discovered tens of different metals, halogens and radioactive elements in the oil, the gas and the brine water.

  16. Disposal of radioactive wastes into fresh water

    Energy Technology Data Exchange (ETDEWEB)

    1963-03-01

    The fate of radionuclides introduced into fresh water will be influenced not only by the volume of the water available for dilution, but also by a number of other physical, chemical and biological factors like replacement of the water mass, turbulence and location of the currents, chemical composition of effluent and receiving water, suspended materials, thermal characteristics and density differences, precipitation and sedimentation, ion-exchange and adsorption, incorporation by living organisms, and special features characteristics of the type of water body involved, i.e. whether stream, lake, estuary or sub-surface. 50 refs, 8 figs, 24 tabs.

  17. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  18. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  19. Water and environment news. No. 18

    International Nuclear Information System (INIS)

    2004-08-01

    The international symposium on Isotope Hydrology was held in May 2003. This symposium marked the 40th anniversary of these quadrennial IAEA symposia first convened in 1963 and was one of the contributions of the Agency to the International Year of Freshwater. The symposium drew a record 274 participants from 69 countries. The state-of-the-art in isotope techniques and their application to water resources management were reviewed, confirming that groundwater sustainability issues remain the mainstay for isotope applications, while application in climate modelling and watershed management is also becoming increasingly important. Water cycle research is one of the key elements of the Johannesburg Plan of Implementation resulting from the World Summit on Sustainable Development. As a result of the Agency's efforts since 2001, isotopes are now being integrated into the GEWEX (Global Energy and Water Cycle Experiment) project of WMO/ICSU's World Climate Research Programme project. An IAEA/GEWEX workshop evaluated the potential means of integrating precipitation isotope data in moisture source tracing models and, as a first step, initiated an international inter-comparison of the isotopic modules in different global circulation models. Two new research coordinated projects (CRPs) were recently initiated aimed at investigating the use of isotopes for groundwater sustainability assessment by characterizing the age of river baseflow, and for improved quantification of evaporation-transpiration fluxes by measuring isotopes in air, leaf and stem moisture. Each of these evinced tremendous response for participation by more than 20 research groups. Partnerships with other international agencies and programmes were further strengthened. A strong link was established with the UNEP/Global Environment Monitoring System/Water Programme (GEMS/Water) through a joint project to undertake inter-laboratory comparison exercises for water chemistry aimed at improving the quality of chemical

  20. Recycled agricultural wastes: biochars multifunctional role in agriculture and environment

    Science.gov (United States)

    The rapid population growth, urbanization and modernization worldwide have resulted in the significant increase of waste generated. Waste production is a major environmental problem in our society. In fact, recycling and using raw materials from the waste we generate are some of the environmental ch...

  1. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  2. Long-term management of radioactive waste. Ethics and the environment

    International Nuclear Information System (INIS)

    Pescatore, C.

    1999-01-01

    The protection of the environment and the ethical issues that it raises are important topics in the debate on the long-term management of radioactive waste. An overview of the general ethical principles developed in the wider context of the debate on the environment is presented and the specific case of the management of long-lived radioactive waste is addressed. (author)

  3. Challenges of E-Waste pollution to soil environments in Nigeria - A ...

    African Journals Online (AJOL)

    Challenges of E-Waste pollution to soil environments in Nigeria - A Review. ... of ewaste on the environment (including the soil fauna and flora) especially in Nigeria. ... Possible e-waste management strategies will also be highlighted on soil ...

  4. Treatment of low level waste water by reverse osmosis

    International Nuclear Information System (INIS)

    Li Kaijun; Zhang Chuanzhi; Xue Qinhua; Liu Meijun

    1987-11-01

    A Study on the removal of certain radioactive elements Such as 141 Ce, 51 Cr 134 Cu, 106 Ru and 131 I by Reverse Osmosis and the effect of surface activity agent on property of membrance are described in this paper. RO model is carried out to examine the treatment of actual reactor waste water and radioactive laundry waste water. The removal efficiency of total β is 98%. Three preprocessing (cloth pocket filtrator, hivefiltrator and zone) and membrane cleaning methods (acid, ozone and spongeball) are also investigated

  5. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  6. Efficient Assessment of the Environment for Integral Urban Water Management

    Science.gov (United States)

    Rost, Grit; Londong, Jörg

    2015-04-01

    required subjects/disciplines implies first sight expert knowledge or provided open access data. In the case of the need for a more detailed screening the next steps consist of scientifically based analysis and legal statutory analysis. Indexes (indicators) or benchmarks for each assessment scale will be summarized and linked to suitable measures. The trans- and interdisciplinary approach makes sure that technical, informative and administrative measures will be involved. A rating between the current situation and the determined target situation will help for effective derivation of measures. Conclusion: The claim of the stepwise assessment is to make the data possible to handle, and to summarize the knowledge of expert's effective environmental assessment methods. The universe, comprehensive assessment will be feasible by using the toolbox. The toolbox will be a planning tool for sustainable urban water management and closed loop recycling water management. GWP, INBO (2009) A Handbook for Integrated Water Resources Management in Basins. 104. Karthe D, Heldt S, Rost G, et al (2014) Modular Concept for Municipal Water Management in the Kharaa River Basin, Mongolia. Environ. Sci. Price RK, Vojinović Z (2011) Urban Hydroinformatics Data, Models and Decision Support for Integrated Urban Water Management. 520. Rost G, Londong J, Dietze S, Osor G (2013) Integrated urban water management - an adapted management approach for planning and implementing measures: Case study area Darkhan , Kharaa catchment, Mongolia. Submitt to Environ Earth Sci 19. Stäudel J, Schalkwyk B Van, Gibbens M (2014) Methods and strategies for community-based enhancement & up-scaling of sanitation & waste management in peri-urban areas in South Africa. SANO. Rhombos-Verlag, Weimar, pp 1-13

  7. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  8. Waste management in small hospitals: trouble for environment.

    Science.gov (United States)

    Pant, Deepak

    2012-07-01

    Small hospitals are the grassroots for the big hospital structures, so proper waste management practices require to be initiated from there. Small hospitals contribute a lot in the health care facilities, but due to their poor waste management practices, they pose serious biomedical waste pollution. A survey was conducted with 13 focus questions collected from the 100 hospital present in Dehradun. Greater value of per day per bed waste was found among the small hospitals (178 g compared with 114 g in big hospitals), indicating unskilled waste management practices. Small hospitals do not follow the proper way for taking care of segregation of waste generated in the hospital, and most biomedical wastes were collected without segregation into infectious and noninfectious categories.

  9. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  10. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE Model of Water Resources and Water Environments

    Directory of Open Access Journals (Sweden)

    Guohua Fang

    2016-09-01

    Full Text Available To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and output sources of the National Economic Production Department. Secondly, an extended Social Accounting Matrix (SAM of Jiangsu province is developed to simulate various scenarios. By changing values of the discharge fees (increased by 50%, 100% and 150%, three scenarios are simulated to examine their influence on the overall economy and each industry. The simulation results show that an increased fee will have a negative impact on Gross Domestic Product (GDP. However, waste water may be effectively controlled. Also, this study demonstrates that along with the economic costs, the increase of the discharge fee will lead to the upgrading of industrial structures from a situation of heavy pollution to one of light pollution which is beneficial to the sustainable development of the economy and the protection of the environment.

  11. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    Science.gov (United States)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  12. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.

    2012-04-26

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country\\'s treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  13. Restoration of wadi aquifers by artificial recharge with treated waste water.

    Science.gov (United States)

    Missimer, Thomas M; Drewes, Jörg E; Amy, Gary; Maliva, Robert G; Keller, Stephanie

    2012-01-01

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  14. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    Science.gov (United States)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  15. Analysis of near-field thermal and psychometric waste package environment using ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1995-03-01

    The ultimate objective of the Civilian Radioactive Waste Management System (CRWMS) Program is to safely emplace and isolate the nations' spent nuclear fuel (SNF) and radioactive wastes in a geologic repository. Radioactive waste emplaced in a geologic repository will generate heat, increasing the temperature in the repository. The magnitude of this temperature increase depends upon (1) the heat source, i.e. the thermal loading of the repository, and (2) the geologic and engineered heat transport characteristics of the repository. Thermal management techniques currently under investigation include ventilation of the emplacement drifts during the preclosure period which could last as long as 100 years. Understanding the amount of heat and moisture removed from the emplacement drifts and near-field rock by ventilation, are important in determining performance of the engineered barrier system (EBS), as well as the corrosive environment of the waste packages, and the interaction of the EBS with the near-field host rock. Since radionuclide releases and repository system performance are significantly affected by the corrosion rate related to the psychometric environment, it is necessary to predict the amount of heat and moisture that are removed from the repository horizon using a realistic model for a wide range of thermal loading. This can be realized by coupling the hydrothermal model of the rock mass to a ventilation/climate model which includes the heat and moisture transport on the rock-air interface and the dilution of water vapor in the drift. This paper deals with the development of the coupled model concept, and determination of the boundary conditions for the calculations

  16. Effect of ingredients in waste water on property of ion exchange resin for uranium-contained waste water treatment

    International Nuclear Information System (INIS)

    Ren Junshu; Mu Tao; Zhang Wei; Yang Shengya

    2008-01-01

    The effect of ingredients in waste water on the property of ion exchange resin for uranium-contained waste water treatment was studied by the method of static ad- sorption combined with dynamic experiment. The experimental result shows that the efficiency or breackthrough volume of resin is reduced if there are other general anions, triethanolamine and oil in the solution. When the concentrations of CO 3 2- , HCO 3 - , SO 3 2- , Cl - in the solution are more than 0.24, 0.28, 0.23 and 0.09 mol/L, respectively, the concentrations of uranium in the outlet waste water will exceed 20 μg/L. The maximal allowable concentration of triethanolamine through the resin is no more than 250 mg/L. When the content of oil in the resin exceeds 1%(by quality), the breackthrough volume reduces by 16%, and when it exceeds 11%, the breackthrough volume almost loses at all. (authors)

  17. Preparation of Metal Immobilized Orange Waste Gel for Arsenic(V Removal From Water

    Directory of Open Access Journals (Sweden)

    Biplob Kumar Biswas

    2014-05-01

    Full Text Available Abstract - The toxicity of arsenic is known to be a risk to aquatic flora and fauna and to human health even in relatively low concentration. In this research an adsorption gel was prepared from agricultural waste material (orange waste through simple chemical modification in the view to remove arsenic (V from water. Orange waste was crushed into small particles and saponified with Ca(OH2 to prepare saponified orange waste, which was further modified by immobilizing gadolinium(III to obtain desired adsorption material (Gd(III-immobilized SOW gel. The effective pH range for arsenic adsorption was found to be 7.5 – 8.5. Adsorption capacity of the gel was evaluated to be 0.45 mol-arsenic (V/kg. Dynamic adsorption of arsenic (V in column-mode was conducted and a dynamic capacity was found to be 0.39 mol/kg. Elution of arsenate was tested after complete saturation of the column packed with gadolinium-immobilized orange waste adsorption gel. A complete elution of arsenate was achieved with the help of 1 M HCl and 28 times pre-concentration factor was attained. This study showed that a cheap and abundant agro-industrial waste material could be successfully employed for the remediation of arsenic pollution in aquatic environment. Keywords: Arsenic; Orange waste; Gadolinium(III; Adsorption; Elution.

  18. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  19. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  20. Improvement of the safety regulations in the management of radioactive waste accumulated in the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), the Siberian Chemical Plant (Seversk) and the Mining-Chemical Plant (Zheleznogorsk)

    International Nuclear Information System (INIS)

    Vishnevski, Y.G.; Kislov, A.I.; Irushkin, V.M.

    2002-01-01

    One of the most important problems of radiation safety in Russia is the decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). The liquid radioactive waste water basins were constructed in 1950-1960 for the collection and storage of liquid waste from the radiochemical plants. The potential hazards of the liquid in the radioactive waste water basins are: migration of radionuclides into the soil of the liquid radioactive waste water basin floors; wind-induced carry-over of radionuclides from the liquid radioactive waste water basins; hazards (radiation included) to the environment and population arising in case physical barriers and hydraulic structures are damaged; and criticality hazards. The classification of the liquid radioactive waste water basins were developed based on the collection and analyzes of the information on liquid radioactive waste water basin characteristics and the method of multicriterion expert assessment of potential hazards. Three main directions for the improvement of safety regulation in the management of radioactive waste accumulated in the liquid radioactive waste water basins were defined: 1. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories contaminated with radioactive substances. 2. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories, such as the liquid radioactive waste water basins. 3. Special directions for the regulatory activities in the area of operation and decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). As a result, concrete recommendations on safety regulation for the management of radioactive waste accumulated in the water basins were developed. (author)

  1. Processing method for contaminated water containing radioactive waste

    International Nuclear Information System (INIS)

    Tahara, Toshiaki; Fukagawa, Ken-ichiro.

    1994-01-01

    For absorbing contaminated water containing radioactive substances, a sheet is prepared by covering water absorbing pulps carrying an organic water absorbent having an excellent water absorbability is semi-solidified upon absorption water with a water permeable cloth, such as a non-woven fabric having a shape stability. As the organic water absorbent, a hydrophilic polymer which retains adsorbed water as it is used. In particular, a starch-grafted copolymer having an excellent water absorbability also for reactor water containing boric acid is preferred. The organic water absorbent can be carried on the water absorbing pulps by scattering a granular organic water absorbent to the entire surface of the water absorbing cotton pulp extended thinly to carry it uniformly and putting them between thin absorbing paper sheets. If contaminated water containing radioactive materials are wiped off by using such a sheet, the entire sheet is semi-solidified along with the absorption with no leaching of the contaminated water, thereby enabling to move the wastes to a furnace for applying combustion treatment. (T.M.)

  2. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  3. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  4. Treatment of waste water from uranium ore preparation

    International Nuclear Information System (INIS)

    Klicka, V.; Mitas, J.; Vacek, J.

    1976-01-01

    An improved closed-loop process is described for treating waste water resulting from chemical extraction of uranium from ore. The water is evaporated to form a concentrated solution and is then subjected to crystallization of the least soluble salt component thereof via further evaporation, or cooling or simultaneous cooling and a partial vacuum. The crystallized component is then separated from the mother liquor, whereupon the latter is fed back after removal of residual uranium therefrom to the extraction installation to replace the acids used therein. Additionally, the pure condensate produced during evaporation of the waste waters is employed as a replacement for the fresh water employed in processing of the ore. 6 claims, 2 figures

  5. UN Data- Environmental Statistics: Waste

    Data.gov (United States)

    World Wide Human Geography Data Working Group — The Environment Statistics Database contains selected water and waste statistics by country. Statistics on water and waste are based on official statistics supplied...

  6. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  7. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  8. Focus Cities: Improving water, sanitation, and solid waste ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Kelurahan Penjaringan, Jakarta's largest slum, thousands live without running water or waste disposal. With support from IDRC's Focus Cities Research Initiative, the American charity Mercy Corps worked with residents, local government, researchers, NGOs, and the private sector to tackle these problems.

  9. Thermoexoemission detectors for monitoring radioactive contamination of industrial waste waters

    International Nuclear Information System (INIS)

    Obukhov, V.T.; Sobolev, I.A.; Khomchik, L.M.

    1987-01-01

    Detectors on base of BeO(Na) monocrystals with thermoemission to be used for monitoring radioactive contamination of industrial waste waters are suggested. The detectors advantages are sensitivity to α and low-ehergy β radiations, high mechanical strength and wide range of measurements. The main disadvantage is the necessity of working in red light

  10. Antioxidative properties of some phototropic microalgae grown in waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Peter

    for the screening and selection of the species. In this study,the potential antioxidant activities of 12 micro algal sample from Chlorella., Spirulina., Euglena, Scenedesmus and Haematococcus species grown in waste water in Kalundborg micro algal facilities were evaluated using three antioxidant assays, including...

  11. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  12. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  13. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or...) Colonia. (See definition in Sec. 1777.4). The proposed project will provide water and/or waste disposal... of obtaining federal financing, receive economic benefits that exceed any direct economic costs...

  14. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  15. Evaluation of S-type fiberglass composites for use in high-level radioactive waste environments

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    Two types of S-type fiberglass materials were evaluated for use in a high-level radioactive waste environment. The S-type fiberglass composites tested were in the form of tubes and were exposed to a simulated high-level radioactive waste environment consisting of corrosive chemicals, high gamma radiation, and elevated temperatures. The physical properties of the exposed and unexposed tube samples were compared to determine the effects of the simulated environment on the S-type fiberglass composites

  16. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  17. Textural features of the beach sediments of Wast Water Lake, Northwest England

    Directory of Open Access Journals (Sweden)

    Bala Emilia

    2016-06-01

    Full Text Available This study is dedicated to Wast Water Lake (Northwest England, Great Britain and the character of its beach sediments. The aim of the study is to identify the textural features of the lake’s beach sediments based on two methods. The first is a granulometric analysis and the second a pebble shape analysis according to Zingg (1935 and Sneed & Folk (1958. Both analyses were carried out for all of the lake’s accessible beaches and the cliffs adjacent to them. The transport and deposition history of the examined sediments was identified through field research and laboratory analysis. The results show that the textural features of the sediments at Wast Water are more often typical of a fluvial environment, rather than having been changed by lacustrine water movements.

  18. effect of petroleum waste water on new calabar river and its ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    Petroleum waste water is the water produced from oil during or after drilling. During drilling the ensuing fluid is a water-oil-gas mixture since oil and gas reservoirs have a natural water layer which is petroleum waste water, which lies under the hydrocarbons. In some cases, additional water is usually injected into the.

  19. The microbiological effects of hospital wastes on the environment ...

    African Journals Online (AJOL)

    The effect of twenty four (24) hospital wastes samples taken from different hospitals waste dumpsites on its surrounding soil was examined. The counts of microorganisms in hospital dumpsite soil include the following; aerobic heterotrophic counts from 4.2 x 105 to 1.6 x 1010, anaerobic heterotrophic counts from 1.0 x 105 to ...

  20. Pure oxygen for the urban water waste treatment; Oxigeno puro para tratamiento de aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Estevez Pastor, F.S.; Ferrer Gaztambide, J. [EDAR La China (Spain)

    1995-11-01

    The pilot plant for waste water treatment in La China (Spain) is described. This plant used pure oxygen for the waste water treatment. The best depuration, the flexibility to experiment the fluctuations of flow and change are studied. (Author)

  1. Performance characterization of water recovery and water quality from chemical/organic waste products

    Science.gov (United States)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  2. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2018-01-01

    Full Text Available Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  3. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    Science.gov (United States)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  4. Online estimation of radionuclide transportation in water environment

    International Nuclear Information System (INIS)

    Yi-Jing Zhang; Li-Sheng Hu

    2017-01-01

    Transportation evaluation of the radionuclide waste discharged from nuclear power plants is an essential licensing issue, especially for inland sites. Basically, the dynamics of radionuclide transportation are nonlinear and time-varying. Motivated by its time-consuming computation, the work proposed an online estimation method for the radionuclide waste in water surface. After extracting the nonlinearity of factors influencing radionuclide transportation, the method utilizes transfer function and generalized autoregressive conditional heteroskedasticity models to perform deterministic and probabilistic estimations. It turns out that, the resulting predictions show high accuracy and can optimize the online discharge management of radioactive waste for nuclear power plants. (author)

  5. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    International Nuclear Information System (INIS)

    T. Wolery

    2005-01-01

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks

  6. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  7. PRIMING OF A LOW CAPACITY WASTE WATER TREATEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-12-01

    Full Text Available In wastewater treatment plants, secondary biologic treatment is generally compulsory for the localities having less than 10,000 equivalent inhabitants, with a supplementary removal of nutrients if the area is a sensitive one. For the areas which are not suitable for centralized household used water collecting network individual treatment devices or collective low capacity devices are recommended. For certain settlements, for instance for the mountainous dispersed villages, or for detached individual households or farms the collective devices can not be an economic solution as involves high maintenance costs and exploiting problems due to long pipes for low flow rates. Priming is one of the starting up processes of a waste water treatment plant. This is not a very difficult process and requires no specialized staff. However, for helping the owners of a low capacity treatment plant, priming of ORM 5 type mechanical - biological equipment consisting in a tank with four compartments, designed for five equivalent inhabitants was studied inside the plant of Timisoara municipality. For the experimental tests waste water from the Timisoara city sewage network was used. This is mixed waste water resulted from faecal/domestic, industrial and rain water. The study comprised tests in unfavorable technological conditions. The conclusions of the monitoring process underline the need of control of the aeration process and the negative technological and consequently the negative economic effect of the less effective process control.

  8. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  9. Method of detecting water leakage in radioactive waste containing vessel

    International Nuclear Information System (INIS)

    Ishioka, Hitoshi; Takao, Yoshiaki; Hayakawa, Kiyoshige.

    1989-01-01

    Lower level radioactive wastes formed upon operation of nuclear facilities are processed by underground storage. In this case, a plurality of drum cans packed with radioactive wastes are contained in a vessel and a water soluble dye material is placed at the inside of the vessel. The method of placing the water soluble dye material at the inside of the vessel includes a method of coating the material on the inner surface of the vessel and a method of mixing the material in sands to be filled between each of the drum cans. Then, leakage of water soluble dye material is detected when water intruding from the outside into the vessel is again leached out of the vessel, to detect the water leakage from the inside of the vessel. In this way, it is possible to find a water-invaded vessel before corrosion of the drum can by water intruded into the vessel and leakage of nuclides in the drum can. Accordingly, it is possible to apply treatment such as repair before occurrence of accident and can maintain the safety of radioactive water processing facilities. (I.S.)

  10. Processing method for discharged radioactive laundry water waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Kitsukawa, Ryozo; Tsuchiya, Hiroyuki; Kiuchi, Yoshimasa; Hattori, Yasuo.

    1995-01-01

    In order to process discharged radioactive laundry water wastes safely and decrease radioactive wastes, bubbling of a surface active agent in a detergent which causes a problem upon its condensation is suppressed, so that the liquid condensate are continuously and easily dried into a powder. A nonionic surface active agent is used against the bubbling of the surface active agent. In addition, the bubbling in an the evaporation can is reduced, and the powderization is facilitated by adding an appropriate inorganic builder. (T.M.)

  11. Methods of industrial waste water cleaning

    Directory of Open Access Journals (Sweden)

    Ján Brehuv

    2005-11-01

    Full Text Available The issue of „acid mine water“ (or AMD is well known in the world for some centuries. In the Eastern Slovakia, the most acid surface water occurs in the area of the old mine Smolník, which is closed and submerged for 15 years. The submitted contribution deals with the sulphateelimination at this locality. Recently, several methods of the sulphate-elimination from the mine water are applied. The best-known methods are the biological and physical-chemical oness and the chemical precipitation. The method described in this contribution deals with the chemical precipitation by polyaluminium chloride and calcium hydrate. By appliying of this method, very interesting results were obtained. The amount of SO42- anions decreased to almost zero-value, using optimal doses of the chemical reagents.

  12. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  13. Water Pollution, and Treatments Part III: Biodegradation of Oil in Refineries Waste Water and Oils Adsorbed in Agricultural Wastes by Selected Strains of Cyanobacteria

    International Nuclear Information System (INIS)

    El-Emary, M.M.; Ali, N.A.; Naguib, M.M.

    2011-01-01

    The main objective of this study is to determine the biological degradation of oil hydrocarbons and sulfur compounds of Marine Balayim crude oil and its refined products by selected indigenous Cyanobacteria strains. The oils used were Marine Balayim crude oil, skimmed oil and some refined products such as gasoline, kerosene, gas oil, fuel oil and petroleum coke. The selected organisms in the current study are the Blue-Green Algae Cyanobacteria, Oscillatoria limentica. This organism was collected from the hyper saline environment of the solar lake in Taba, Sinai, Egypt. The results obtained revealed that the utilization of such strains can be used for the bioremediation of oily waste water.

  14. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  15. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at...

  16. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  17. Chemical durability and characterization of nuclear waste forms in a hydrothermal environment

    International Nuclear Information System (INIS)

    Braithwaite, J.W.; Johnstone, J.K.

    1979-01-01

    The chemical durability of a simulated copper borosilicate waste glass and titanate waste ceramic has been studied in hydrothermal environments which could possibly be encountered in a bedded salt or sub-sealed waste isolation repository. The major parameters investigated which affect matrix corrosion and cesium solubilization include solution saturation and equilibrium phenomena, solution composition (especially the Mg +2 ion concentration), pH, particle size, temperature, and time

  18. Water and environment news. No. 19

    International Nuclear Information System (INIS)

    2005-09-01

    The integral role of water in international development has been acknowledged during the last two decades, with several international initiatives specifying goals that include water-related issues. The United Nations proclaimed the period 2005-2015 as the International Decade for Action, (Water for Life), to place a greater focus on water. It recommits countries to achieve the water-related targets of the Johannesburg Plan of Implementation from the 2002 World Summit on Sustainable Development as well as the United Nations Millennium Development Goals set in 2000. The IAEA, through its Water Resources Programme, is responding to global water issues, providing its Member States with science-based information and technical skills to better understand and manage their water resources

  19. Engineered photocatalysts for detoxification of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  20. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    Science.gov (United States)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  1. Environment impact of a very low level waste specific landfill

    International Nuclear Information System (INIS)

    Brun-Yaba, C.; Peres, J.M.; Besnus, F.

    1996-01-01

    Operating enrichment plants, nuclear power plants and reprocessing plants and the decommissioning of nuclear facilities will give rise to large volumes of waste material (concrete, steel and others metals, technological wastes heat insulators...) and most of them, in term of quantities, will be categorized as very low level wastes. This paper deals with the environmental impact of a specific landfill as a final destination for the very low level radioactive waste (VLLW) with the aim of providing technical elements for safer workers practices during the operational and the monitoring phases and for a public occupation after closure of the site. This study has been made on the basis of inventories in terms of estimated quantities and spectra of the French VLLW for a set of scenarios which are representative of practices in a landfill. (author)

  2. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Gibson, R.R.

    1995-01-01

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  3. The consequences of nuclear waste disposal facilities on public health and environment

    International Nuclear Information System (INIS)

    Rivasi, M.

    2000-01-01

    This report, from the French parliament office for the evaluation of scientifical and technological choices, makes a status of the effluents and waste stocks from different types of nuclear facilities and analyzes the consequences of these effluents and wastes on the public health and on the environment. Finally, it examines the necessary scientifical, technical and legal improvements. (J.S.)

  4. Studies on the behaviour of some radioactive pollutants into soil-fresh water environment

    International Nuclear Information System (INIS)

    Sayed, M.S.

    1989-01-01

    The overwhelming increase in the use of nuclear power plants comes to cover many purposes, such as generating of electricity, desalination of sea water, and producing radioactive isotopes in large quantities. There is no doubt that the continuous increase in the production of radioisotope, presents an outstanding potential health hazard to man and its environment. Many radio-nuclide wastes, may be released to the environment from nuclear research reactors, hospitals, universities etc in large quantities and low radioactive level which can contaminate drinking and underground water, plants, animals and air. The present work includes introduction which is a literature survey of uses of natural minerals and clays in the treatment of low level radioactive wastes and the different chemical methods used for their treatment e.g. co-participation, adsorption chromatography, ion exchange , solvent extraction, coagulation and flocculation etc

  5. Epidemiological risks of endoparasitoses spread by municipal waste water

    Directory of Open Access Journals (Sweden)

    Dudlová A.

    2015-09-01

    Full Text Available The occurrence of developmental stages of endoparasite germs (cysts, oocysts, protozoa, and helminth eggs as an indirect detection factor of endoparasitoses circulation in the environment, was examined in raw municipal wastewater, sludge and biologically cleaned waste water. Examination of municipal wastewater and sludge from five monitored wastewater treatment plants (WWTPs in east Slovakia, from various fractions of municipal wastewater, confirmed 35.87 % positivity of samples for the endoparasitic germs. Among of all analysed samples 11.09 % were protozoan oo(cysts and 20.87 % were helminth eggs. 3.91 % of samples showed positivity to both the helminth eggs and protozoan oo(cysts. In the raw wastewater the protozoa comprised of Giardia spp. (1.08 % and Entamoeba spp. (1.08 %. The helminth eggs primarily consisted of Ascaris spp. (4.35 % and strongyle-type eggs (3.26 %. No germs of protozoa or helminths were found in the treated wastewater. However, the highest presence of the germs was found in drained stabilised sludge. The average number of oo(cysts/kg was 2.86±0.24 and the average number of helminth eggs/kg was 5.77±0.09. In all kinds of sludge, obtained during the process of wastewater treatment, there were protozoan (Giardia spp., Cryptosporidium spp., Entamoeba spp. and helminths eggs (Ascaris spp., Trichuris spp., Taenia spp., Hymenolepis spp., or strongyle-type eggs presented. In drained (condensed stabilised sludge the eggs of Capillaria spp. and Toxocara spp. were also detected. From the epidemiological aspect the sewage sludge, due to high concentration of protozoal oo(cysts or helminth eggs, represents a significant epidemiological risk for the endoparasitoses dissemination.

  6. Research on changes of nitrate by interactions with metals under the wastes disposal environment containing TRU nuclide

    International Nuclear Information System (INIS)

    Wada, Ryutaro; Nishimura, Tsutomu; Masuda, Kaoru; Fujiwara, Kazuo; Imakita, Tsuyoshi; Tateishi, Tsuyoshi

    2003-02-01

    There exists the waste including a nitrate ion as a salt in the TRU waste materials. This nitrate ion can transferred to the nitrite ion and/or ammonia by reducing materials such as metals in the waste disposal environment, and has the possibility to affect on the disposal environment and nuclide transfer parameters. Therefore, electrochemical tests were conducted to evaluate the reaction rate parameters of the nitrate ion and metals under the low oxygen environment. The long-term reaction test using the glass-seal vessel was also conducted to grasp precisely the nitrate ion transition reaction rate and the gas generation rate caused by the reaction of metal and the nitrate ion coexist solution. (1) Reaction rate constants under various environments were obtained performing the potentiostatic holding tests with the parameters of the solution pH, temperature, and the nitrate and nitrite ion concentrations. The formula of the nitrate ion transition reaction rate was also examined based on these obtained data. (2) Conducting the immersion tests under the environment of the low oxygen and high-pH rainfall underground water site, the long-term reaction rate data were obtained on the reaction products (ammonia, hydrogen gas etc.) of metals (carbon steel, stainless steel and zircaloy etc.) with nitrate ion. The tests under the same conditions as in the past were also conducted to evaluate the test accuracy and error range of the long-term reaction test with the glass-seal vessels. (author)

  7. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    complex reacting phenomena in the system to observe with the naked eye. Therefore, a water mockup was carried out for the practical use of the data in the waste sodium treatment test

  8. Preciscavanje otpadnih voda u postupcima prerade i flegmatizacije eksploziva / Refining of waste waters in processes of manufacturing and coating of high explosives

    Directory of Open Access Journals (Sweden)

    Mirjana Anđelković-Lukić

    2002-03-01

    Full Text Available U radu su prikazani tehnološki postupci prerade (flegmatizacije eksploziva pri kojima dolazi do zagađenja okoline otpadnim vodama. Prikazani su neki od načina prerade otpadnih voda pre nego što se ispuste u javne vodotokove. / The paper deals with production processes of manufacturing and coating Ugh explosives which pollute environment with waste waters. Some methods of refining waste waters before letting them into open water current are presented.

  9. Water state changes during the composting of kitchen waste.

    Science.gov (United States)

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  11. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening

    Science.gov (United States)

    Albyn, Keith; Edwards, David; Alred, John

    2003-01-01

    Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  12. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  13. Projection and enterprises controlling in domestic waste water econom

    Directory of Open Access Journals (Sweden)

    Schröder Reinhard

    2000-03-01

    Full Text Available The development of the cost of communal waste water disposal is widely discussed among the population, among politicians and experts. Not only the absolute amount of the charged fees are the cause of concern, but also their increase over the last few years. As part of this thesis, the PC software SloVaKon, which facilitates project and operation decision, will be designed to apply the experience gained during the building and expansion of the waste water industry in Germany´s five new federal states to the conditions in the Slovak republic. For this, a comparison of both country´s topographical, technical, legal and economical conditions proved necessary.

  14. Membrane bioreactors in waste water treatment - status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Universitaet Berlin, Chair of Chemical and Process Engineering, Berlin (Germany); Drews, A. [HTW Berlin, FB II, Life Science Engineering, Berlin (Germany)

    2010-08-15

    Due to their unique advantages like controlled biomass retention, improved effluent quality, and decreased footprint, membrane bioreactors (MBRs) are being increasingly used in waste water treatment up to a capacity of several 100,000 p.e. This article reviews the current status of MBRs and reports trends in MBR design and operation. Typical operational and design parameters are given as well as guidelines for waste water treatment plant revamping. To further improve the biological performance, specific or hybrid process configurations are shown to lead to, e.g., enhanced nutrient removal. With regards to reducing membrane fouling, optimized modules, advanced control, and strategies like the addition of flux enhancers are currently emerging. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  16. Improvement for waste water treatment process of a uranium deposite and its effect

    International Nuclear Information System (INIS)

    Huang Jimao

    2013-01-01

    Uranium was recovered from alkaline uranium ores by heap leaching and traditional agitation leaching methods at a uranium mine, and the waste water (including waste water produced in hydrometallurgy process and mine drainage) was treated by using chemical precipitation method and chemical precipitation loading method. It was found that the removal rate of uranium by the waste water treatment process was not satisfactory after one year's run. So, the waste water treatment process was improved. After the improvement, removal rate of CO 3 2- ,HCO 3 - , U and Ra was enhanced and the treated waste water reached the standard of discharge. (author)

  17. Heavy metal removal from waste waters by ion flotation

    OpenAIRE

    Polat, Hürriyet; Erdoğan, D.

    2007-01-01

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under o...

  18. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  19. POSSIBLE METHODS FOR PREVENTING PLASTIC WASTE FROM ENTERING THE MARINE ENVIRONMENT

    OpenAIRE

    David, Minodora-Florentina; Burdukovska, Valentina; Heng, Chen

    2013-01-01

    The widespread use of plastic has become a huge threat for the marine environment. With problems such as the oceanic garbage patches increasing more and more in scale, the focus is set on how could plastic waste be prevented from entering the oceans and adversely affecting the wildlife. Since the largest accumulation of plastic waste is found in the North Pacific Gyre, we have looked at the surrounding countries with the highest waste generation. By using the pyramid of waste as a starting po...

  20. Treatment of waste water miscible cutting fluids in automobile manufacturing; Jidosha kogyo ni okeru suiyosei sessakuyuzai no haieki shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, H. [Yushiro Chemical Industry Co. Ltd., Tokyo (Japan)

    1995-09-01

    Water-soluble cutting fluids are able to be used for several months to several years if the proper periodical management is carried out. However, the used solution should be treated as waste water when the function-recovery thereof becomes remarkable difficult. On this occasion, the treated solution (drainage) ought to meet the environmental standards prescribed for the purpose of protecting globe environment. Many cases in Japan are that the strict rules are set by each urban and rural prefectures addition to the government ordinance. For carrying out the treatment of waste water efficiently, it is necessary to construct the treating system by mastering the characteristics of waste water and selecting the most suitable one from numerous treating methods. In this paper, after the description on the water-polluting substances and drainage standards, the general treating method of waste water miscible cutting fluids is described. Finally, the concrete cases with respect to the treatment of waste water treatment in automobile manufacturing factories are introduced. 5 refs., 5 figs., 5 tabs.

  1. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    OpenAIRE

    Michael B. Ellison; Rocky de Nys; Nicholas A. Paul; David A. Roberts

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation...

  2. The effect of using waste water for tomato

    International Nuclear Information System (INIS)

    Khan, M.J.; Jan, M.T.; Farahatullah; Khan, N.U.; Arif, M.; Perveen, S; Alam, S.; Jan, A.U.

    2011-01-01

    Field experiment near Palosi drain was conducted to study the effect of tube well (TW) and waste water (WW) with or without basal dose of NP and K on the yield and heavy metal uptake of tomato during 2008. The soil of the experimental site was sandy loam, slightly alkaline, moderately calcareous with phyto toxically high concentration of Cu, Fe and Mn while Cd, Cr, Ni, Pb and Zn were less than the levels considered toxic to the plants. The tomato biomass was significantly (p<0.05) affected by different treatments. Taller plants and higher biomass was produced in plots receiving WW with or without NP and K and TW water receiving basal dose of NP and K while lower biomass and shorter plants were produced in plots receiving only TW water indicating the nutritive value of WW application. The results of metal concentration in leaves and fruit showed that with exception of Cd, there were significant variation (p<0.05) in the plant uptake of metals when irrigated with different supply of irrigation water. The overall results showed that leaves accumulated higher concentration (with exception of Cu) of heavy metals studied compared to fruit. The concentration of Cr, Fe, Mn Pb and Zn in leaves was above the permissible limits when irrigated with waste water while waste water supplemented with fertilizers showed reduction in heavy metals uptake. The concentration of Fe and Pb was above the permissible limits in fruits indicating toxicity. It was also noted that plants receiving sole application of WW accumulated more heavy metals compared to WW plus half dose of NP and K while the TW irrigated plots accumulated less heavy metals indicating that their was no build up of heavy metals in the river bed soils because of its coarse texture. It can be concluded that tomato can be irrigated with effluents containing moderate supply of heavy metals on coarse textured soil. (author)

  3. Treatment of waste water by coagulation and flocculation using biomaterials

    Science.gov (United States)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  4. Water. State of the environment: Issue summary

    CSIR Research Space (South Africa)

    Strydom, W

    2010-03-01

    Full Text Available amongst the different national, provincial and local government agencies – some lacking in capacity and resources. The solution to the water deficit in many water management areas is not necessarily more dams and more transfer schemes, but the improvement...

  5. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  6. Nitrification of highly contaminated waste water with retention of biomass

    International Nuclear Information System (INIS)

    Weichgrebe, D.

    1992-09-01

    The AIF Research Project No 7698 was concerned with the nitrification of highly contaminated waste water with retention of biomass. A compact system for the nitrification was developed and optimized in the investigations. This is an over-dammed fixed bed reactor with structured packing elements and membrane gasification. The fixed bed reactor was successfully installed in a multi-stage compact plant on the laboratory scale for the biological treatment of dump trickled water. With the conclusion of the investigations, design data are available for the technical scale realisation of nitrification in fixed bed reactors. (orig.) [de

  7. Use of microphytoalgae for purification of radioactive waste water

    International Nuclear Information System (INIS)

    Cecal, Al.; Palamaru, Ileana; Humelnicu, Doina; Popa, K.; Rudic, V.; Cepoi, Liliana; Gulea, A.

    1999-01-01

    This work deals with a study on the purification of some radioactive waters, simulating radioactive waste waters, by some microbial collectors. For a given ion the retaining degree varies as 134 Cs - > 60 Co 2- > 51 Cr 3- > 55-59 Fe 3- , but for same algae types, this parameter decreases as follows: Scenedesmus quadricauda > Cylindrospermum major > Nostoc microscopicum. Furthermore, using the radioactive 60 Co 2- ions, the biochemical mechanism of retaining for such cations by different separated components of living cells was established. More retention is observed in proteins, pigments and polysaccharides, but the glycides are not able to keep such cations. (authors)

  8. Recycle and reduction of waste water in ISL operation

    International Nuclear Information System (INIS)

    Du Zhiming; Liu Naizhong; Su Xuebin; Li Jianhua; Zou Maoqing; Xing Yongguo

    2014-01-01

    Sandstone type uranium resources will be promote the main force of natural uranium production in China. The wastewater produced in the process of in-situ leaching mining need to be studied specially, so as to meet the requirements of green mining and realize the recycling of wastewater and decrement. We have researched and adopted including nature groundwater environmental recycling, liquor of precipitation recycling, optimization of elution process, the transformation waste water reduction, water evaporation reduction and a series of technological measures. The field application results show that the wastewater recycling and reduction in the process of production achieved a good environmental protection effect. (authors)

  9. Remote Water Lance Technology for Cleaning Waste Tanks

    International Nuclear Information System (INIS)

    Lehr, R.M.; Owen, J.R.; Mangold, F.E.

    2006-01-01

    This paper describes the use of remote water lances for cleaning sludge or solidified heel materials from waste tanks. S.A.Robotics has developed a long arm retrieval system to deploy ultra-high pressure water lances and vacuum recovery systems for tank cleanup operations. This system uses remote-operated telescoping long arms with light weight, high strength materials, innovative high capacity joint designs, and multiple degrees of freedom to deploy tank cleaning heads to all areas within the tanks. Arm designs can be scaled and adjusted to suit even the largest tanks. (authors)

  10. Photocatalysis of Hg2+ y Cr6+ in waste waters

    International Nuclear Information System (INIS)

    Franco, Alexander; Ortiz, Natalia; Mejia, Gloria; Restrepo, Gloria; Penuela, Gustavo

    2001-01-01

    This work was carried out to propose a treatment for the elimination of Hg 2 + and Cr 6 + ions that are present in wastewaters of the CIA and ISA laboratories. These ions are present in waste waters because in these laboratories analysis of chemical oxygen demand (COD), are performed in which HgSO 4 and K 2 Cr 2 O 7 are used. COD is a parameter very important to evaluate. In this paper water pollution results of chemical reduction of Hg 2 + and Cr 6 + ions using photo catalysis are reported and the elimination of both ions by using an adsorbent

  11. Control of radioactive waste disposal into the marine environment

    International Nuclear Information System (INIS)

    1983-01-01

    The body of this publication is intended to provide adequate information on the broad aspects of radioactive waste disposal into the sea. The introduction of radionuclides into the sea from uncontrollable sources, such as weapons test explosions, is outside the scope of this publication, as are releases of radionuclides from nuclear-powered vessels. It should be stressed that agreements on practices for the marine disposal of wastes are being developed and the understanding of oceanographic processes is rapidly progressing; therefore, the conclusions presented here should always be considered in the context of changes in both knowledge and practice that occur subsequent to the completion of this text

  12. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  13. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  14. Management of ''short-lifetime'' radioactive wastes, an industrial reality to safeguard the environment

    International Nuclear Information System (INIS)

    Faussat, A.

    1992-01-01

    On the occasion of the inauguration of the Aube waste storage center by A.Billardon, Vice Minister for Energy, the author reviews the management situation in France for short life radioactive wastes. The wastes are first defined and their characteristics explained, and then are discussed the general principles underlying the management of these wastes, which involves finding ways to avoid the dispersal of radioactive products into the environment. The author explains why the French have chosen surface storage, and then goes into the integrated management system developed to optimize the long-term management of short-term wastes on the technical and economic levels. The two storage centers existing in France (the Manche and Aube centers) are then described. The article winds up with a presentation of the system as it has been adapted abroad, and another possible adaptation for use in storing toxic industrial wastes. 2 figs., 3 photos

  15. Water and waste water, when brine's just fine

    International Nuclear Information System (INIS)

    Lamb, Garth

    2007-01-01

    Desalination has always sounded a good solution to rainfall shortages, who wouldn't rather drink purified seawater than recycled sewage? But projects in Australia and around the world have often been dogged by question marks over cost and greenhouse effects and saline discharge issues. Solar powered pilot plant is being developed in South Australia which will not discharge a drop of briny reject water back to the sea

  16. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  17. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  18. Photometric determination of trace cadmium in waste water drained from uranium mining and water-metallurgy

    International Nuclear Information System (INIS)

    Zhu Zihui; Gu Gang; Xu Quanxiu

    1987-09-01

    Cadmium (Cd) ions react with dithizone to form a pink to red color that can be extracted with chloroform and measured photometrically. Dithizone method is one of standard method to determine trace Cd in the environmental waste water. This method, however, can not be suitable for measuring the trace Cd in the waste water drained from uranium mining and water-metallurgy factory, because this kind of waste water contains magnesium ions as high as 1500 mg/L. One more discomfort is that the method needs to use a large amount of potassium cyanide. The authors, therefore, used potassium fluorine as a precipitator that removed the excess magnesium ions in the experimental system, and try to reduce the amount of potassium cyanide to 1/20 of original usage. The experimental results indicated that the modified method as mentioned above was very satisfactory either to simulated samples or to actual samples of waste water drained from uranium mining and water-metallurgy plants. In Summary, this modified method has higher sensitivity with minimun detectable quantity of 0.02 ppm and it is accurate and reproducible with recovery rate of 100 ± 5%

  19. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  20. Volume reduction and encapsulation process for water containing low-level radioactive waste

    International Nuclear Information System (INIS)

    Fox, D.W.; Miller, G.P.; Weech, M.E.

    1984-01-01

    Solutions or slurries of waste material in water are dewatered and encapsulated within a polymer for disposal, comprising the operations of removing water therefrom with azeotropic mixture evaporation and encasing the dewatered waste residue in an organic polymer. The method and system disclosed are especially useful for the safe disposal of radioactive waste

  1. Method for reduction in volume and encapsulation of water-containing weakly radioactive waste

    International Nuclear Information System (INIS)

    Fox, D.W.; Miller, G.P.; Weech, M.E.

    1982-01-01

    Solutions and slurries of waste material in water are dehydrated and enclosed in a polymerizate for final storage. The water is removed as an azeotropic mixture and the dehydrated waste residue is then enclosed in an organic polymerizate. The method and system disclosed in this patent claim are particularly suitable for safe removal of radioactive waste. (orig.) [de

  2. Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters

    Directory of Open Access Journals (Sweden)

    D. Barrie Johnson

    2014-04-01

    Full Text Available Mining of metals and coals generates solid and liquid wastes that are potentially hazardous to the environment. Traditional methods to reduce the production of pollutants from mining and to treat impacted water courses are mostly physico-chemical in nature, though passive remediation of mine waters utilizes reactions that are catalysed by microorganisms. This paper reviews recent advances in biotechnologies that have been proposed both to secure reactive mine tailings and to remediate mine waters. Empirical management of tailings ponds to promote the growth of micro-algae that sustain populations of bacteria that essentially reverse the processes involved in the formation of acid mine drainage has been proposed. Elsewhere, targeted biomineralization has been demonstrated to produce solid products that allow metals present in mine waters to be recovered and recycled, rather than to be disposed of in landfill.

  3. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  4. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  5. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  6. Management of waste heat at nuclear power plants: Its potential impact on the environment and its possible economic use

    International Nuclear Information System (INIS)

    Tsai, Y.H.

    1987-01-01

    The efficacy of the disposal of waste heat from nuclear power plants by means of once-through and closed-cycle cooling systems is examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) are identified. Examples of thermal standards established for once-through cooling on open coastal waters are presented. The design and general layout of various types of cooling systems are reviewed. The advantages and disadvantages of each of the cooling systems are presented, with particular emphasis on the discussion of potential environmental impacts. Modeling techniques available for impact assessment are presented. Proper selection and application of the models depend on the availability of site characteristics and understanding of the modeling techniques. Guidelines for choosing an appropriate model are presented. Various methods have been developed for the beneficial use of waste heat largely dissipated to the environment. Examples and associated problems of waste-heat utilization are discussed for agricultural, industrial, aquacultural, and residential uses

  7. Water as a transport medium for waste out of towns

    DEFF Research Database (Denmark)

    Harremoës, P.

    1999-01-01

    The historical background for centralised water management in the cities of the developed world is outlined in order to give the rationale for the technical solutions we have inherited from the last century. The key element is maintaining the hygienic conditions in the cities. The success...... is illustrated by the absence of water-borne diseases in the modem developed city. A new paradigm is introduced based on added concern for the use of resources, pollution of the environment and the concern for the welfare of the coming generations. The water resource is not the unsustainable aspect of urban...... water use, because water is not lost, but polluted, which can be abated. Water can be re-routed and recycled. There are many attractive local solutions for better handling of urban water. (C) 1999 IAWQ Published by Elsevier Science Ltd.-All rights reserved....

  8. Proceedings of INC 02. International Nuclear Conference 2002: Global Trends and Perspectives, Seminar III: Environment, Waste and Safety

    International Nuclear Information System (INIS)

    2002-01-01

    The papers discuss the following areas: radioactive waste management and processing, radiation monitoring, research programs in radioactive waste management, analysis of radionuclides in via neutron activation analysis (NAA) in drinking water and food, uses of NAA in waste processing and radiation monitoring, legal aspects and programme in radioactive waste management

  9. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  10. Cocaine and metabolites in waste and surface water across Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Nuijs, Alexander L.N. van [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium)], E-mail: alexander.vannuijs@ua.ac.be; Pecceu, Bert [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne [Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege, (ULg), CHU Sart-Tilman, 4000 Liege (Belgium); Jorens, Philippe G. [Department of Clinical Pharmacology/Clinical Toxicology, University of Antwerp (Ukraine), University Hospital of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium); Bervoets, Lieven; Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Neels, Hugo [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory of Toxicology, ZNA Stuivenberg, Lange Beeldekensstraat 267, 2060 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-01-15

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water.

  11. Cocaine and metabolites in waste and surface water across Belgium

    International Nuclear Information System (INIS)

    Nuijs, Alexander L.N. van; Pecceu, Bert; Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne; Jorens, Philippe G.; Bervoets, Lieven; Blust, Ronny; Neels, Hugo; Covaci, Adrian

    2009-01-01

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water

  12. Proceedings of the technical meetings 'Water, radioactivity and environment'

    International Nuclear Information System (INIS)

    Perceval, Olivier; Foulquier, Luc; Canneva, Guillem; Jedor, Beatrice; Genthon, Benedicte; Vicaud, Alain; Skrzypczak, Julien; Gibeaux, Audrey; Phrommavanh, Vannapha; Descostes, Michael; Tognelli, Antoine; Calmet, Dominique; Leprieur, Fabrice; Pignol, David; Thybaud, Eric; Feray, Christine; Leclerc, Elisabeth; Maitre, Melanie; Calmon, Philippe; Marang, Laura; Beaugelin-Seiller, Karine; Garnier-Laplace, Jacqueline; Leprieur, Fabrice; Philippot, Benoit; Hemidy, Pierre-Yves; Devin, Patrick; Perrier, Gilles; CALVEZ, Marianne; Descamps, E.; Preveral, S.; Brutesco, C.; Ginet, N.; Escofier, C.; Garcia, D.; Pignol, D.; Ansaldi, M.; Rodrigue, A.; Bazin, I.; Cholat, P.; Bailly-Du-Bois, Pascal; Fievet, Bruno; Godinot, Claire; Eyrolle-Boyer, Frederique; Antonelli, Christelle; Tournieux, Damien; Augeray, Celine; Galliez, Kevin; Baconet, I.; Cavaliere, N.; Dias Varela, D.; Foulon, L.; Laconici, C.; Lorand, H.; Mouton, M.; Siscard, N.; Tarlette, L.; Loyen, Jeanne; Gleizes, Marc; Vidal, R.; Borgia, Cecile; Hemidy, Pierre-Yves; Fouchet, Loic; Gontier, G.; Grignard, G.; Drozdzak, Jegodz; Leermakers, Martine; Brun, Frederic; Ameon, Roselyne; Gleizes, Marc; Maulard, Alain; Moine, Jerome; Tchilian, Nathalie; Paillard, Herve; Gaid, Abdelkader; Wittmann, Erich; Boucherie, Christophe; Devin, Patrick

    2014-12-01

    These technical days were organized by the 'Environment section' of the French Society of Radiation Protection (SFRP). Their aim was to review the current state of water use, management and monitoring, in particular in the nuclear industry, both on the radiological and chemical aspects. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Environmental issues linked to water and aquatic ecosystems contamination by micropollutants (O. Perceval); 2 - 50 years of radioecology in aquatic environments (L. Foulquier); 3 - Regulation and organisation of the French administration for water and aquatic ecosystems management (G. Canneva); 4 -European and French regulations about the radiological quality of drinking water (B. Jedor); 5 - Water samplings and liquid effluents from nuclear facilities: regulation, authorisations, prescriptions (B. Genthon); 6 - Water needs of a NPP (A. Vicaud); 7 - Water management at old uranium mining sites (A. Gibeaux); 8 - Mobile system for liquid effluents treatment (J. Skrzypczak); 9 - Water: an essential vector for the transfer of radioactive and chemical compounds in the underground (A. Tognelli); 10 - Environmental guide values for aquatic ecosystems protection (E. Thybaud); 11 - Prioritisation work for radioactive and chemical compounds to be monitored in aquatic environments in the framework of the environment perennial lab (E. Leclerc); 12 - Liquid radioactive effluents in continental aquatic environments: why and how estimating the impact? (K. Beaugelin-Seiller); 13 - Sustainable water management: standards, a compulsory tool (D. Calmet); 14 - Water sampling: from theory to practice (F. Leprieur, B. Philippot); 15 - Prototype for the detection of toxic compounds in the environment (D. Pignol); 16 - Nuclear metrology and water: new available and developing techniques (C. Augeray, K. Galliez); 17 - Measurement of the uranium and radium bio

  13. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  14. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  15. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  16. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  17. Response of Peppermint (Mentha piperita L) Grown on Different Sources of Waste Water

    International Nuclear Information System (INIS)

    Kotb, E.A.; Moursy, A.A.A.; Noby, M.F.A.

    2012-01-01

    Due to the contamination risk for waste water and sewage effluent on environment and food chain and for avoiding this effect with safety use for these water sources, it can be used in the cultivation of oil and aromatic crops for production fixed and volatile oils that use in many industries like soaps, cosmetics and perfumes, bio fuels. This study was carried out at Agricultural Department for Soils and Water Research, Nuclear Research Centre, Atomic Energy Authority, Egypt. A field experiments was conducted in a sandy soil to investigate the influence of ceramic waste water (CWW), sewage effluent treatment (SE) and fresh water (FW) (control) on the growth and volatile oil of peppermint plant. The plants were irrigated with the different sources of water without mineral fertilizers addition. Heavy metals accumulation in plant organs and the nutritional status of plants were recorded. Results indicated that CWW followed by SE contain obvious amount of nutrients sufficiently for growing the tested crop and the plants had higher growth and herb yield than that irrigated with FW gradually. Irrigation of peppermint plant with different wastewater caused a significant increment in the volatile oil concentration. Uptake and accumulation of heavy metals in plant parts was varied. No detectable amount of the potential toxic elements was recorded in the essential oils of the peppermint tested as aromatic plant. From this standpoint, treated municipal waste water can be used for growing aromatic plants in the arid area without any fertilizers addition to produce volatile oils without causing any contamination for food chain or reduction in herb quantity.

  18. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  19. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  20. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  1. Water and environment news. No. 13

    International Nuclear Information System (INIS)

    2001-01-01

    This issue of the newsletter presents Coordinated Research Projects on O rigins of salinity and impacts on fresh groundwater resources: Optimization of isotope techniques . Other topics include monitoring of isotopes in river water, field manual on geothermal investigations, lake studies, and a new vacuum distillation system

  2. Evaluating Water Quality in a Suburban Environment

    Science.gov (United States)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  3. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    Science.gov (United States)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  4. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  5. Water and environment news. No. 2

    International Nuclear Information System (INIS)

    1998-01-01

    This issue of the bulletin lists projects in the IAEA's sub-programme D evelopment and Management of Water Resources , presents plan of the IAEA Isotope Hydrology Section for the 1999-2000, reports on the activities of current co-ordinated research projects and technical co-operation projects. This publication also highlights some basic aspects of the measurement of chlorofluorocarbons; the use of oxygen and hydrogen isotopes for investigating past and current climate changes; exploration of geothermal resources in Asia

  6. Water and environment news. No. 12

    International Nuclear Information System (INIS)

    2000-10-01

    This issue of the newsletter focuses on an international workshop on T racing Isotopic Composition of Past and Present Precipitation: Opportunities for Climate and Water Studies , which was held from 4 to 6 September 2000 in Hamburg, Germany. The final meetings on ''Coordinated Research Project on the Use of Isotope Techniques in Problems Associated with Geothermal Exploitation' and ''Isotope Application in Urban Hydrology' are also reported

  7. Effect of Batik Waste Water on Kali Wangan Water Quality in Different Seasons

    Science.gov (United States)

    Lestari, S.; Sudarmadji; Tandjung, S. D.; Santoso, S. J.

    2018-02-01

    Sokaraja Batik Center is one of batik industrial centers in Banyumas Regency. The craftsmen in Sokaraja Batik Center dispose of their waste water directly to a river named Kali Wangan. This study aims at figuring out the quality of Kali Wangan in dry and rainy seasons. The research is conducted along the Wangan River in January - November 2015. The research method used is survey with Purposive Random Sampling. The Kali Wangan water is sampled in four observation stations. The obtained data are analyzed descriptively and compared against the environmental quality standards. The research results show that the quality of Kali River water is found contaminated by the batik waste water, all parameters are below the class III standards quality based on Government Regulation Number 82 Year 2001 during dry and rainy season

  8. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides

    International Nuclear Information System (INIS)

    Saleh, H.M.

    2012-01-01

    Highlights: ► Phytoremediation of radioactive wastes containing 137 Cs and 60 Co radionuclides. ► Using water hyacinth for radioactive waste treatment. ► Bioaccumulation of radionuclides from radioactive waste streams. ► Factors affecting bioaccumulation of 137 Cs and 60 Co using floating plants. - Abstract: Phytoremediation is based on the capability of plants to remove hazardous contaminants present in the environment. This study aimed to demonstrate some factors controlling the phytoremediation efficiency of live floating plant, water hyacinth (Eichhornia crassipes), towards the effluents contaminated with 137 Cs and/or 60 Co. Cesium has unknown vital biological role for plant while cobalt is one of the essential trace elements required for plant. The main idea of this work i.e. using undesirable species, water hyacinth, in purification of radiocontaminated aqueous solutions has been receiving much attention. The controlling factors such as radioactivity concentration, pH values, the amount of biomass and the light were studied. The uptake rate of radiocesium from the simulated waste solution is inversely proportional to the initial activity content and directly proportional to the increase in mass of plant and sunlight exposure. A spiked solution of pH ≈ 4.9 was found to be the suitable medium for the treatment process. The uptake efficiency of 137 Cs present with 60 Co in mixed solution was higher than if it was present separately. On the contrary, uptake of 60 Co is affected negatively by the presence of 137 Cs in their mixed solution. Sunlight is the most required factor for the plant vitality and radiation resistance. The results of the present study indicated that water hyacinth may be a potential candidate plant of high concentration ratios (CR) for phytoremediation of radionuclides such as 137 Cs and 60 Co.

  9. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Phytoremediation of radioactive wastes containing {sup 137}Cs and {sup 60}Co radionuclides. Black-Right-Pointing-Pointer Using water hyacinth for radioactive waste treatment. Black-Right-Pointing-Pointer Bioaccumulation of radionuclides from radioactive waste streams. Black-Right-Pointing-Pointer Factors affecting bioaccumulation of {sup 137}Cs and {sup 60}Co using floating plants. - Abstract: Phytoremediation is based on the capability of plants to remove hazardous contaminants present in the environment. This study aimed to demonstrate some factors controlling the phytoremediation efficiency of live floating plant, water hyacinth (Eichhornia crassipes), towards the effluents contaminated with {sup 137}Cs and/or {sup 60}Co. Cesium has unknown vital biological role for plant while cobalt is one of the essential trace elements required for plant. The main idea of this work i.e. using undesirable species, water hyacinth, in purification of radiocontaminated aqueous solutions has been receiving much attention. The controlling factors such as radioactivity concentration, pH values, the amount of biomass and the light were studied. The uptake rate of radiocesium from the simulated waste solution is inversely proportional to the initial activity content and directly proportional to the increase in mass of plant and sunlight exposure. A spiked solution of pH Almost-Equal-To 4.9 was found to be the suitable medium for the treatment process. The uptake efficiency of {sup 137}Cs present with {sup 60}Co in mixed solution was higher than if it was present separately. On the contrary, uptake of {sup 60}Co is affected negatively by the presence of {sup 137}Cs in their mixed solution. Sunlight is the most required factor for the plant vitality and radiation resistance. The results of the present study indicated that water hyacinth may be a potential candidate plant of high concentration ratios (CR) for phytoremediation of radionuclides

  10. Treating waste waters in the meat industry; Tratamiento de aguas residuales en industrias carnicas

    Energy Technology Data Exchange (ETDEWEB)

    Cancela Carral, M. A.; Taboas Araujo, R.

    2002-07-01

    This article reports on a study of the production process in a meat processing facility ( a pig abattoir). The production process chart was analysed, focussing on the stages that use water as a raw material and those in which waste waters are generated. The contaminating parameters of the waste waters generated were then analysed and the treatment of the waste waters a physico/chemical treatment in this case describe. Finally, an economic analysis was made of the waste water treatment plant's operating costs as a guide. (Author) 12 refs.

  11. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Ting Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2011-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw waste water was diluted using tap water to targeted concentration of COD 400 mg/l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The COD removal at lowest dose, 2 kGy is about 310 mg/l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/l. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This shows the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (Author)

  12. Waste Water Treatment by Some Prepared Polymers by Radiation

    International Nuclear Information System (INIS)

    El-Naggar, A.A.H.I.

    2010-01-01

    Synthesis of hydrophilic polymeric material having certain function groups with the ability to absorbs some heavy metals and some dyes from waste water is of a great importance from the point of view of environmental studies. The present work may be represented as the following : The two different methods have been used for the modification of PE-co- PP non woven fabric via two different techniques:- 1. Coating of (PE-co-PP) with mixture of CMC and AAc by using (E.B) irradiation. 2. The modification of (PE-co-PP) non-woven fabric by γ- irradiation induced grafting of (AAm) monomer . 3. The modification of hydrophilic substrate to hydrogel was carried out through the following: The preparation of clay/PVA hydrogel through freezing and thawing followed by E.B. irradiation. The different factors which affect the properties of the modified substrate were investigated. Moreover, the structure properties of the modified substrate were characterized by SEM, XRD, and IR. Thermal properties was also investigated by TGA and DSC. Hydrophilic property of the modified substrate was investigated by water uptake %. The results obtained show that the prepared substrates can be used in the removal of heavy metals and dyes from waste water.

  13. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  14. Antibiotics Susceptibility Profile of Listeria Species Isolated from Poultry Wastes and Fishpond Water from Private and Institutional Farms in Ibadan, Nigeria

    OpenAIRE

    Olutayo Israel Falodun; Moturayo Janet Amusan

    2017-01-01

    Introduction: Untreated waste being discharged into the environment due to proliferation of poultry and fish farms can constitute a public health threat to human. Listeria, an emerging pathogen is commonly associated with food. This study aimed at determining the antibiotic resistant pattern of Listeria species isolated from poultry droppings and fish pond water in Ibadan. Materials and Methods: Poultry waste and fishpond water samples were collected between April and July, 2016. Listeria...

  15. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  16. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  17. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    Science.gov (United States)

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  18. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  19. Epidemiologic monitoring of possible health reactions of waste water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Frerichs, R.R.

    1984-01-27

    The possible health effects of consuming ground water partially recharged with recycled waste water were monitored in a long-term study of residents of several communities in eastern Los Angeles County, California. In three phases of ecologic studies, health measures were compared among residents of two recycled water areas (high and low concentration) and two control areas. Included were measures of mortality, reportable illnesses, adverse birth outcomes, and incident cases of cancer. While significant differences were noted among the four study areas when comparing several health outcomes, none of the differences were in a direction to suggest a dose-response relationship between reclaimed water consumption and disease. To supplement findings of the ecologic studies, a household survey was conducted of approximately 2,500 women, half residing in the high recycled water area and half in the control area. The survey provided increased information on reproductive outcomes and on excess effects after controlling for important potential confounding factors such as cigarette use and alcohol consumption. The results of both the ecologic studies and the household survey provide no indication that recycled water has a noticeable harmful effect on the health of a population exposed for nearly two decades.

  20. Removal of Sulfate from Waste Water by Activated Carbon

    OpenAIRE

    Mohammed Sadeq Salman

    2009-01-01

    Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 9.) , agitation time (0 120)min and adsorbent dose (2 10) gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm ...

  1. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  2. Heavy metal removal from waste waters by ion flotation.

    Science.gov (United States)

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  3. Energy supply waste water treatment plant West Brabant

    Energy Technology Data Exchange (ETDEWEB)

    Poldervaart, A; Schouten, G J

    1983-09-01

    For the energy supply for the waste water treatment plant (rwzi-Bath) of the Hoogheemraadschap West-Brabant three energy sources are used: biogas of the digesters, natural gas and electricity delivered by the PZEM. For a good balance between heat/power demand and production a heat/power plant is installed. By using this system a high efficiency for the use of energy will be obtained. To save energy the oxygen concentration in the aerationtanks is automatically controlled by means of regulating the position of the air supply control valves and the capacity and number of the turbocompressors. For the oxygen controlsystem a Siemens PLC is used.

  4. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening

    Science.gov (United States)

    Albyn, Keith; Edwards, David; Alred, John

    2004-01-01

    Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  5. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  6. Waste-based materials; capability, application and impact on indoor environment – literature review

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Rode, Carsten; Kolarik, Jakub

    2014-01-01

    This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects......: sustainability, cradle to cradle perspective, application, their impact on indoor environment and human well-being. The attempt of the paper is to cover a wide spectrum of information so to provide better understanding of waste utilization in construction industry....

  7. Water and environment news. No. 7

    International Nuclear Information System (INIS)

    1999-04-01

    The current issue of the bulletin is focused on I sotopes and Water Resources in Arid and Semi-arid Areas , a major component of the Isotope Hydrology Section's activities for about three decades. The issue includes also some other activities related to this topic. One theme is the newly approved Thematic Plan - Isotope Hydrology in Dam Safety and Sustainability. Isotope hydrology offers techniques for assisting with site selection, site investigations, watershed studies, dam and reservoir design, dam construction, dam and reservoir leakage investigations, sediment control and improved reservoir longevity

  8. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  9. Carbon-14 behavior in a cement-dominated environment: Implications for spent CANDU resin waste disposal

    International Nuclear Information System (INIS)

    Dayal, R.; Reardon, E.J.

    1994-01-01

    Cement based waste forms and concrete engineered barriers are expected to play a key role in providing 14 C waste containment and control 14 C migration for time periods commensurate with its hazardous life of about 50,000 years. The main thrust of this study was, therefore, to evaluate the performance of cement based waste forms with regard to 14 C containment. Of particular importance are the geochemical processes controlling 14 C solubility and release under anticipated cement dominated low and intermediate level waste repository conditions. Immobilization of carbonate-form exchange resin in grout involves transfer of sorbed 14 CO 3 2- ions, through exchange for hydroxyl ions from the grout slurry, followed by localized precipitation of solid calcium carbonate at the cement/resin interface in the grout matrix. Carbon-14 release behavior can be attributed to the dissolution characteristics and solubility of calcite present in the cement based waste form. The groundwater flow regime can exert a pronounced effect both on the near-field chemistry and the leaching behavior of 14 C. For a cement dominated repository, at relatively low-flow or stagnant groundwater conditions, the alkaline near-field chemical environments inhibits the release of 14 C from the cemented waste form. Under high flow conditions, the near-field environment is characterized by relatively neutral pH conditions which promote calcite dissolution, thus resulting in 14 C release from the waste form

  10. Investigation of toxic influence of Ignalina NPP waste water on Spirodela polyrrhiza culture

    International Nuclear Information System (INIS)

    Lakachauskiene, R.; Marchiulioniene, D.

    1995-01-01

    The influence of Ignalina NPP waste waters and of water taken in different biotop of lake Drukshiai on Spirodela polyrrhiza culture (growth intensity, biomass and morphological changes) was investigated. It was revealed that most polluted waters formed by Ignalina NPP outcomes were from industrial - rain sewerage and economic - domestic waste waters. Toxicity of all investigated waters was higher in autumn (October) than it was in spring (March -April). Comparative analysis of the data obtained in 1992-1994 indicated the growing tendency of toxicity in Ignalina NPP waste waters as well as lake Drukshiai water. (author). 5 refs., 4 figs

  11. Radioactive and industrial waste water collection system study, Phase I

    International Nuclear Information System (INIS)

    1993-01-01

    Phase I of the Radioactive Liquid Waste (RLW) Collection System Study has been completed, and the deliverables for this portion of the study are enclosed. The deliverables include: The Work Break-down Structure (WBS) for Phase II; The Annotated Outline for the Collection Study Report; The Process Flow Diagrams (PFD) of the RLW collection system based on current literature and knowledge; The Configuration database; The Reference Index, listing all currently held documents of the RLW collection system; The Reference Drawing Index listing all currently held, potentially applicable, drawings reviewed during the PFD development; The Regulation Identification Document for RCRA and CWA; The Regulation Database for RCRA and CWA; The Regulation Review Log, including statements justifying the non-applicability of certain regulations; Regulation Library, including the photocopied regulations with highlighted text for RCRA and CWA; The summary of RTG's waste water treatment plant design experience and associated regulations on which RTG based the design of these treatment facilities; TA-50 Influent Database; Radioactive Liquid Waste Stream Characterization Database

  12. Behaviour of intermediate-level waste forms in an aqueous environment

    International Nuclear Information System (INIS)

    Amarantos, S.; DeBatist, R.; Brodersen, K.; Glasser, F.P.; Pottier, P.E.; Vejmelka, R.; Zamorani, E.

    1985-01-01

    Under Action 1 of the Second Community Programme (1980-1984), study continued of the behavoiur of low and medium activity waste matrices using 10 reference waste forms (RWFs) representative of the main waste packages produced in the Community. The aim of this paper is to outline the main results for three types of matrix: cement and derived forms, organic polymers and bitumens. The results include data on diffusion coefficients, leach rates and waste form volume changes and mass losses. They constitute a considerable advance in knowledge of confinement properties but bring to light the need for further study of radionuclide release mechanisms for the purpose of constructing long-term models of waste form behaviour in the presence of water

  13. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2017-01-01

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A

  14. Roadmap Waste Water Chain [up to 2030]. Vision; Routekaart Afvalwaterketen [tot 2030]. Visiebrochure

    Energy Technology Data Exchange (ETDEWEB)

    Roemgens, B.; Kruizinga, E. [DNV, Bilthoven (Netherlands)

    2012-06-15

    Included in this view brochure are directions how municipalities and water boards can contribute to a sustainable society by converting waste into clean raw materials, energy and clean water. In the Roadmap innovative ideas are elaborated for the built environment, the industrial area, the land-based industries and rural areas, where opportunities are for (re-)use of wastewater and raw materials [Dutch] In deze visiebrochure zijn richtingen opgenomen hoe gemeenten en waterschappen in 2030 een bijdrage willen leveren aan de verduurzaming van de samenleving door afval om te zetten in schone grondstoffen en energie en schoon water. In de Routekaart worden arrangementen uitgewerkt voor de bebouwde omgeving, het industrieel gebied, de grondgebonden industrie en het landelijk gebied waarin een mogelijke uitwerking wordt gegeven van de kansen die liggen in het (her-)gebruik van afvalwater en haar grondstoffen.

  15. NEAMS Nuclear Waste Management IPSC: evaluation and selection of tools for the quality environment

    International Nuclear Information System (INIS)

    Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M and S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M and S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V and V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V and V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M and S capabilities, and establishing a defensible level of confidence in these M and S capabilities. The foundation for assessing the

  16. Modelling and prediction of radionuclide migration from shallow, subgrade nuclear waste facilities in arid environments

    International Nuclear Information System (INIS)

    Smith, A.; Ward, A.; Geldenhuis, S.

    1986-01-01

    Over the past fifteen years, prodigious efforts and significant advances have been made in methods of prediction of the migration rate of dissolved species in aqueous systems. Despite such work, there remain formidable obstacles in prediction of solute transport in the unsaturated zone over the long time periods necessarily related to the radionuclide bearing wastes. The objective of this paper is to consider the methods, issues and problems with the use of predictive solute transport models for radionuclide migration from nuclear waste disposal in arid environments, if and when engineering containment of the waste fails. Having considered the ability for long term solute prediction for a number of geological environments, the advantages of a disposal environment in which the solute transport process is diffusion controlled will be described

  17. Calcium carbonate in the removal of iron and lead from dilute waste water

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E; Randall, J; Goodban, A; Waiss, A Jr

    1977-01-01

    The utility of powdered CaCO/sub 3/ in the removal of lead and iron from dilute aqueous waste waters has been demonstrated and the results successfully applied to treat industrial waste water from a lead battery plant. The reclaimed water is suitable for recycling to the plant and is now being utilized with consequent economic advantages.

  18. Disinfection and physical and chemical changes in waste waters, sludge and agricultural wastes

    International Nuclear Information System (INIS)

    Groneman, A.F.; Oosterheert, W.F.

    1980-01-01

    It is of interest for agriculture to consider recycling scenarios that use undigested sludges as they contain higher concentrations of nitrogen, phosphorus and organic matter than digested sludges. Also from the point of view of waste water management, this approach is of interest because it reduces the time and number of treatments of sludges, thus resulting in technological and economic advantages. However, the utilization of this type of sludge in agriculture is restricted by the presence of human pathogens. Therefore studies concerning the disinfection efficiency of gamma irradiation in undigested sludge at pilot plant level were performed and results compared with the disinfection efficiency of this radiation treatment in digested sludge. (Auth.)

  19. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  20. Water absorption of superabsorbent polymers in a cementitious environment

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2011-01-01

    This paper focuses on the water absorption of superabsorbent polymers in a cementitious environment. The paper discusses different techniques to measure the water absorption capacity, and in particular it describes a technique which enables a simple and quick estimation of the water absorption...... capacity in a cementitious environment. The challenges met in defining the concept of water absorption capacity are treated, and the appropriateness of different types of superabsorbent polymers is also briefly dealt with. The concept “water absorption capacity” and its measurement seem straightforwardly...... simple, but a closer examination of the topic discloses many, significant difficulties. However, given proper cautiousness it is possible both to quickly estimate the water absorption capacity through a simple measurement as well as to examine how it will be influenced by different factors....

  1. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  2. Pavement-Watering for Cooling the Built Environment: A Review

    OpenAIRE

    Hendel , Martin

    2016-01-01

    Pavement-watering is being considered by decision-makers in many cities as a means of cooling the built environment and of adapting to rising extreme heat events due to climate change. In this article we review the existing literature on the topic of pavement-watering. We first focus on the methodological choices made in the literature, including study approach and scale, watering methods used as well as how results are analyzed. We then discuss the cooling effects reported, separating micro-...

  3. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    Science.gov (United States)

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  4. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    Science.gov (United States)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-12-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  5. Treatment of tanneries waste water by ultrasound assisted electrolysis process

    International Nuclear Information System (INIS)

    Farooq, R.; Ahmed, Z.; Gilani, M. A.; Durrani, M.; Mahmood, Q.; Shaukat, S. F.; Choima, N.

    2013-01-01

    The leather industry is a major producer of wastewater and solid waste containing potential water and soil contaminants. Considering the large amount and variety of chemical agents used in skin processing, the wastewaters generated by tanneries are very complex. Therefore, the development of treatment methods for these effluents is extremely necessary. In this work the electrochemical treatment of a tannery wastewater by ultrasound assisted electrochemical process, using stainless steel and lead cathode and titanium anodes was studied. Effect of ultrasound irradiation at various ultrasonic intensities 0, 40, 60 and 80% on electrochemical removal of chromium was investigated. Experiments were conducted at two pH conditions of pH 3 and 9. Significant removal of chromium was found at pH 3 and it was also noticed that by increasing ultrasonic intensities, percentage removal of chromium and sulfate also increases. The optimum removal of chromium and sulfate ions was observed at 80% ultrasonic intensity. The technique of electrolysis assisted with ultrasonic waves can be further improved and can be the future waste water treatment process for industries. (author)

  6. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  7. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  8. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    International Nuclear Information System (INIS)

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-01-01

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date

  9. Water and environment news. No. 3

    International Nuclear Information System (INIS)

    1999-04-01

    This issue of the bulletin highlights the Agency's activities in the field of development and distribution of reference materials including natural and chemically pure compounds for stable isotope ratio analysis of hydrogen, carbon, nitrogen, oxygen and sulphur, as well as for the radiocarbon activity measurement at natural levels. The publication includes information on the final research co-ordination meeting (CRM) held at the IAEA in Vienna from 2-5 December 1997 which concluded the co-ordinated research project (CRP) on the Application of Isotope Techniques to Investigate Groundwater Pollution; achievements of the CRP are presented. The publication highlights also a CRM of the CRP on Isotope Based Assessment of Groundwater Renewal and Related Anthropogenic Effects in Water Scarce Regions held on 8-12 December 1997 at the IAEA in Vienna. The publication reports on an interlaboratory comparison exercise on measurement of environmental levels of Cs-137 and/or Pb-210/Ra-226 in soil and sediment samples prepared by the Chemistry Unit of the Agency's Laboratories in Seibersdorf, Austria

  10. The ministry of environment: advanced measures to handle wastes and combat pollution

    International Nuclear Information System (INIS)

    Chartouni, Talal

    1997-01-01

    Lebanon is facing environmental problems that stem from wartime chaos, negligence and lack of governmental control. Since the end of the war, environmental protection and getting rid of pollution factors and hazardous waste introduced to Lebanon during the war have become a main concern to the government and the people. The author as an adviser to the environment minister, presents the environment ministry's plan to fight pollution and remove hazardous waste and reveals the steps already executed and the ones to be taken in the future

  11. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  12. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    International Nuclear Information System (INIS)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O'Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-01-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement

  13. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  14. 40 CFR 148.5 - Waste analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste analysis. 148.5 Section 148.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.5 Waste analysis. Generators of hazardous wastes that are...

  15. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  16. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  17. Plastic waste in the marine environment: A review of sources, occurrence and effects.

    Science.gov (United States)

    Li, W C; Tse, H F; Fok, L

    2016-10-01

    This review article summarises the sources, occurrence, fate and effects of plastic waste in the marine environment. Due to its resistance to degradation, most plastic debris will persist in the environment for centuries and may be transported far from its source, including great distances out to sea. Land- and ocean-based sources are the major sources of plastic entering the environment, with domestic, industrial and fishing activities being the most important contributors. Ocean gyres are particular hotspots of plastic waste accumulation. Both macroplastics and microplastics pose a risk to organisms in the natural environment, for example, through ingestion or entanglement in the plastic. Many studies have investigated the potential uptake of hydrophobic contaminants, which can then bioaccumulate in the food chain, from plastic waste by organisms. To address the issue of plastic pollution in the marine environment, governments should first play an active role in addressing the issue of plastic waste by introducing legislation to control the sources of plastic debris and the use of plastic additives. In addition, plastics industries should take responsibility for the end-of-life of their products by introducing plastic recycling or upgrading programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  19. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  20. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  1. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  2. The surface water model for assessing Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1993-01-01

    Canada's Nuclear Fuel Waste Management Program (NFWMP) is investigating the concept of disposal of nuclear fuel waste in a vault excavated deep in crystalline rock on the Canadian Shield. Probabilistic vault, geosphere, and biosphere models are implemented using Monte Carlo simulation techniques to trace nuclides transported in groundwater to the surface environment and humans far into the future. This paper describes the surface water submodel and its parameter values, sensitivity analysis, and validation. The surface water model is a simple, time-dependent, mass balance model of a lake that calculates radioactive and stable isotope contaminant concentrations in lake water and sediment. These concentrations are input to the other submodels and used to predict the radiological dose to humans and other biota. Parameter values in the model are based on the literature and the author's own data, and are generic to Canadian Shield lakes. Most parameters are represented by log normally distributed probability density functions. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing with catchment area being the most important parameter. When catchment area is held constant lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. For volatile nuclides, gaseous evasion also has a marked influence on concentrations in both water and sediment, whereas sedimentation rate strongly influences sediment nuclide concentrations. Validation tests demonstrate that the models predictions for 60 Co, 134 Cs, 3 H, P, Cd and Ca are consistent with empirical data when uncertainties are taken into account

  3. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    Science.gov (United States)

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  4. Benefits for agriculture and the environment from urban waste.

    Science.gov (United States)

    Sortino, Orazio; Montoneri, Enzo; Patanè, Cristina; Rosato, Roberta; Tabasso, Silvia; Ginepro, Marco

    2014-07-15

    Soluble bio-based substances (SBO) that have been isolated from urban biowaste have recently been reported to enhance plant leaf chlorophyll content and growth. The same SBO have also been shown to enhance the photochemical degradation of organic pollutants in industrial effluent. These findings suggest that SBO may promote either C fixation or mineralization, according to operating conditions. The present work aims to investigate SBO performance, as a function of source material. Thus, three materials have been sampled from a municipal waste treatment plant: (i) the digestate of the anaerobic fermentation of a humid organic fraction, (ii) a whole vegetable compost made from gardening residues and (iii) compost made from a mixture of digestate, gardening residues and sewage sludge. These materials were hydrolyzed at pH13 and 60°C to yield SBO that display different chemical compositions. These products were applied to soil at 30, 145 and 500 kg ha(-1) doses for tomato cultivation. Soil and plant leaf chemical composition, plant growth, leaf chlorophyll content and CO2 exchange rate as well as fruit quality and production rate were measured. Although it did not affect the soil's chemical composition, SBO were found to significantly increase plant photosynthetic activity, growth and productivity up to the maximum value achieved at 145 kg ha(-1). The effects were analyzed as a function of SBO chemical composition and applied dose. The results of this work, compared with those of previous works, indicate that urban biowaste, if properly exploited, may furnish conjugate economic and environmental benefits, within a friendly sustainable ecosystem. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Solid waste from health services and the environment: perception of the nursing team

    Directory of Open Access Journals (Sweden)

    Ilisdayne Thallita Soares da Silva

    2012-09-01

    Full Text Available This study aimed to analyze the perception about the environmental impact of the production process of solid waste from health services of the nursing staff at a hospital in Santa Cruz. Qualitative research conducted in the period March-April 2010. Data were collected through interviews with 17 nurses and analyzed using thematic analysis. The data analysis demonstrated the production of solid wastes, along with the nursing procedures in your workspace. There was also a need for training on the solid waste from health services security-oriented environment, which indicates that knowledge by the nursing staff about this subject is still new, contributing to negative impacts on the environment are generated. Therefore, it is essential to invest in training that involves a process of continuing education, contributing to the consolidation of environmentally responsible values, to promote quality of life associated with sustainability and preservation.

  6. Application of the Monte Carlo method to estimate doses in a radioactive waste drum environment

    International Nuclear Information System (INIS)

    Rodenas, J.; Garcia, T.; Burgos, M.C.; Felipe, A.; Sanchez-Mayoral, M.L.

    2002-01-01

    During refuelling operation in a Nuclear Power Plant, filtration is used to remove non-soluble radionuclides contained in the water from reactor pool. Filter cartridges accumulate a high radioactivity, so that they are usually placed into a drum. When the operation ends up, the drum is filled with concrete and stored along with other drums containing radioactive wastes. Operators working in the refuelling plant near these radwaste drums can receive high dose rates. Therefore, it is convenient to estimate those doses to prevent risks in order to apply ALARA criterion for dose reduction to workers. The Monte Carlo method has been applied, using MCNP 4B code, to simulate the drum containing contaminated filters and estimate doses produced in the drum environment. In the paper, an analysis of the results obtained with the MCNP code has been performed. Thus, the influence on the evaluated doses of distance from drum and interposed shielding barriers has been studied. The source term has also been analysed to check the importance of the isotope composition. Two different geometric models have been considered in order to simplify calculations. Results have been compared with dose measurements in plant in order to validate the calculation procedure. This work has been developed at the Nuclear Engineering Department of the Polytechnic University of Valencia in collaboration with IBERINCO in the frame of an RD project sponsored by IBERINCO

  7. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  8. Preparing Attitude Scale to Define Students' Attitudes about Environment, Recycling, Plastic and Plastic Waste

    Science.gov (United States)

    Avan, Cagri; Aydinli, Bahattin; Bakar, Fatma; Alboga, Yunus

    2011-01-01

    The aim of this study is to introduce an attitude scale in order to define students? attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of…

  9. Discussion of the enabling environments for decentralised water systems.

    Science.gov (United States)

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).

  10. Food waste in South Africa: Understanding the magnitude, water footprint and cost

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-11-01

    Full Text Available by type to water loss as a result of food waste Table 2: Contribution of food commodities to water loss as a result of food waste THE VISION ZERO WASTE HANDBOOK 67 8 FOOD WASTE IN SOUTH AFRICA that cereals (32%), meat (26%) and fruit and vegetables (24... impact of fruit and vegetables are the highest (42%) followed by meat (32%)( Nahman and de Lange, 2013), cereals are contributing the most to water loss (32%) followed by meat (26%) (Figure 3). It is therefore evident that actions to reduce cost vs...

  11. Effects of industrial waste disposal on the water quality of the river Kolak

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Sabnis, M.M.; Mandalia, A.V.; Desai, B.N.

    About 6 mld of industrial waste water is discharged without proper treatment in the fresh water zone of the river Kolak. Parameters like suspended solids, pH, chloride, DO, BOD, phosphate, nitrate, boron, sulphate and trace metals were periodically...

  12. Method and equipment for treating waste water resulting from the technological testing processes of NPP equipment

    International Nuclear Information System (INIS)

    Radulescu, M. C.; Valeca, S.; Iorga, C.

    2016-01-01

    Modern methods and technologies coupled together with advanced equipment for treating residual substances resulted from technological processes are mandatory measures for all industrial facilities. The correct management of the used working agents and of the all wastes resulted from the different technological process (preparation, use, collection, neutralization, discharge) is intended to reduce up to removal of their potential negative impact on the environment. The high pressure and temperature testing stands from INR intended for functional testing of nuclear components (fuel bundles, fuelling machines, etc.) were included in these measures since the use of oils, demineralized water chemically treated, greases, etc. This paper is focused on the method and equipment used at INR Pitesti in the chemical treatment of demineralized waters, as well as the equipment for collecting, neutralizing and discharging them after use. (authors)

  13. Waste water reuse as an alternative to the traditional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Di Pinto, A.P.; Ramadori, R.; Santilli, N. [Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. di Ricerca sulle Acque; Lopez, A. [Consiglio Nazionale delle Ricerche, Bari (Italy). Ist. di Ricerca sulle Acque

    1999-10-01

    After e brief presentation of the most significant international projects carried out in order to quantify the risk of infection in waste water reuse for irrigation, this paper examines, in a critical way, the disinfection technologies which are available today. [Italian] Il presente lavoro, dopo una breve rassegna sulle piu' significative esperienze internazionali condotte al fine di stabilire i rischi ambientali del riutilizzo delle acque in agricoltura, esamina in modo critico le principali tecniche di disinfestazione oggi disponibili.

  14. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  15. Spectrographic analysis of waste waters; Analisis espectrografico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Alduan, F; Capdevila, C

    1979-07-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs.

  16. Method and apparatus for waste destruction using supercritical water oxidation

    Science.gov (United States)

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  17. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  18. Amendment of the administrative skeleton provision for minimum requirements to be met by waste water discharged into bodies of water. Administrative skeleton provision on waste water of 25 November, 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This provision applies to waste water to be discharged into bodies of water and whose pollution load stems mainly from the sectors indicated in appendices. Without prejudice to stricter requirements governing the execution of the Water Resources Act, the requirements to be met by the discharge of waste water, as indicated in appendices, are defined in accordance with section 7a, subsection 1, number 3 of the Water Resources Act. - The maximum concentrations indicated in appendices, for instance for waste water from brown coal briquetting plant, black coal treatment plant, petroleum refineries and flue gas scrubbers at combustion plant, relate to waste water in the discharge pipe of the waste water treatment plant. Contrary to technical rules that may apply in each instance, these concentrations must not be attained by dilution or mixing. (orig.) [de

  19. Biodegradation of poly(ε-caprolactone in natural water environments

    Directory of Open Access Journals (Sweden)

    Heimowska Aleksandra

    2017-03-01

    Full Text Available The environmental degradation of poly(ε-caprolactone[PCL] in natural fresh water (pond and in The Baltic Sea is presented in this paper. The characteristic parameters of both environments were measured during experiment and their influence on the biodegradation of the samples was discussed. The loss of weight and changes of surface morphology of polymer samples were tested during the period of incubation. The poly(ε-caprolactone was more biodegradable in natural sea water than in pond. PCL samples were completely assimilated over the period of six weeks incubation in The Baltic Sea water, but after forty two weeks incubation in natural fresh water the polymer weight loss was about 39%. The results have confirmed that the investigated polymers are susceptible to an enzymatic attack of microorganisms, but their activity depends on environments.

  20. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  1. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  2. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  3. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  4. Volume reduction and encapsulation process for water containing low level radioactive waste

    International Nuclear Information System (INIS)

    Miller, G.P.; Fox, D.W.; Weech, M.E.

    1982-01-01

    In encapsulating solutions or slurries of radio-active waste within polymeric material for disposal, the water is removed therefrom by adding a water insoluble liquid forming a low boiling azeotrope and evaporating the azeotrope, and then a polymerisable composition is dispersed throughout the dewatered waste and allowed to set. (author)

  5. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  6. Influence of mine waste water purification on radium concentration in desalinisation products

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2005-01-01

    The effects of mine waste water treatment in the desalination process on radium concentration in final products have been shown on the example of installations working in 'Ziemowit' and 'Piast' Polish coal mines. The environmental impact and health hazard resulting deposition of waste water treatment plant by-products have been also discussed

  7. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  8. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antiquarian books as source of environment historical water data.

    Science.gov (United States)

    Schram, Jürgen; Schneider, Mario; Horst, Rasmus; Thieme, Hagen

    2009-05-01

    Historical environment considerations are inevitable also for modern environmental analysis. They alone allow evaluation of anthropogenic impact into the environment. To receive information about the historical environment situation in inhabited regions, we approached this task by examining historical well dated and locatable products of the Homo faber. The work introduced here uses books as a source of environment historical data specially for the environmental compartment of water. The paper of historical books, dated by their printing and allocated by their watermark(1) (Wasserzeichensammlung Piccard, Piccard online, Hauptstaatsarchiv Stuttgart, ) is a trap for traces of heavy metals contaminating their production water in historical times. Great amounts of water were brought into contact with the paper pulp in the historical paper mill process. The cellulose of the pulp acts as an ion exchange material for heavy metals, forming a dynamic equilibrium. A well defined pulp production process, starting with used clothes, allows estimation of the concentration of historical heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) in the production water (river water). Ancient papers from well dated books are eluted without destruction of their paper and the resulting solution is analysed by ETAAS and inverse stripping voltammetry to determine the historical impact of metals. Afterwards in a flow system the eluted paper spot is equilibrated with different concentrations of heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) to plot the adsorption isotherm of that very spot. Both data together allows a calculation of the heavy metal content of the historical river. For different waters of Germany and the Netherlands of the 16th-18th Century the heavy metal load could be estimated. The resulting concentrations were mostly similar to the level of modern surface waters, but in the case of the Dutch waters of the 17th Century, they were e.g. for Pb(2+) significantly higher than modern

  10. Modelling in waters geochemistry. Concepts and applications in environment

    International Nuclear Information System (INIS)

    Windt, L. de; Lee, J.V.D.; Schmitt, J.M.

    2005-01-01

    The aim of this work is to give the main point of the physico-chemical concepts and of the mathematical laws on which are based the geochemical modelling of waters, while presenting concrete and typical applications examples to the problems of environment and of water resources management. In a table (Doc. AF 6530) are gathered the distribution sources of softwares and of thermodynamic data banks. (O.M.)

  11. Environmental Analysis of The Impacts of Batik Waste Water Polution on The Quality of Dug Well Water in The Batik Industrial Center of Jenggot Pekalongan City

    Science.gov (United States)

    Budiyanto, Slamet; Anies; Purnaweni, Hartuti; Sunoko, Henna Rya

    2018-02-01

    The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five) batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three) parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results of physical well

  12. Environment sensitive cracking in light water reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Haenninen, H.; Aho-Mantila, I.

    1985-01-01

    The purpose of the paper is to review the available methods and the most promising future possibilities of preventive maintenance to counteract the various forms of environment sensitive cracking of pressure boundary materials in light water reactors. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strenght Ni-base alloys, as well as on corrosion fatigue of low alloy and stainless steels. Finally, some general ideas how to predict, reduce or eliminate environment sensitive cracking in service are presented

  13. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  14. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr 90 , Cs 137 , and Pu 239 . Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150 0 C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  15. Radioactive and hazardous chemical wastes. Impact on man and his environment

    International Nuclear Information System (INIS)

    Parker, F.L.; Suess, M.J.

    1984-01-01

    The main objective of the various safety measures in all fields of human activities is to prevent deleterious effects of various agents on human health. Preventive health and safety measures therefore play an important role in achieving the main goal of the World Health Organization (WHO): 'Health for all by the year 2000'. The present WHO programme on environmental health emphasizes the prevention of chemical hazards as one of the most important environmental factors affecting human health. At the same time, protection from physical factors, including radiological protection, is part of this programme. Therefore, WHO compares health detriments from both physical and chemical agents. The paper describes the hazardous waste problems of great concern in industrialized countries. For instance, the Commission of the European Communities countries produce about 2x10 9 tonnes of waste per year, a rate which grows by 2 to 3% annually. This poses serious problems of pollution, particularly where the toxic ingredients do not decay. Special attention will also be given to the safe handling of high-level radioactive waste from the peaceful use of nuclear technology. These wastes have to be stored in safe storage facilities, or be disposed of without causing damage to man and his environment. The international measures to contain and control these wastes are described, including the activities of WHO within the Global Environmental Monitoring System and Regional Sea programmes of the United Nations Environment Programme. Guidelines and methodologies for the management of hazardous chemical and radioactive wastes are being developed through WHO to assist national authorities in this task. The paper pays special attention to a comparative assessment of environmental and public health impacts of toxic chemical and radioactive wastes. (author)

  16. Hygienic evaluation of repurification schemes for waste waters containing complexes for organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R G

    1983-01-01

    Sanitary-chemical and sanitary-toxicological methods were used to study two repurification schemes for biologically purified waste waters from a petrochemical industrial complex. These repurification schemes were, (1) filtration through quartz sand, adsorption to activated charcoal, chlorination; (2) coagulation, filtration through quartz sand, adsorption to activated charcoal, chlorination. Both repurification schemes considerably improved the composition and properties of the waste waters in terms of organoleptic and sanitary-chemical indices. Scheme 1 also considerably lowered the toxic properties of the waste waters and Scheme 2 abolished them completely. Provided that the corresponding sanitary norms are observed, the use of repurification Scheme 1 would be economically reasonable where repurified waste water is recirculated in the industrial plant. Repurification Scheme 2 is recommended where purified waste water is disposed into low-capacity reservoirs.

  17. Viewpoint held by the -Robin des bois- environment protection association regarding radioactive waste

    International Nuclear Information System (INIS)

    Bonnemains, J.

    2011-01-01

    For twenty years, the 'Robin des Bois' association has held the belief that every country must manage the hazardous waste, including radioactive waste, that it produces. The vehemence of German anti-nuclear activists in rejecting the return of waste produced by recycling irradiated fuel from German nuclear power plants runs counter to the principles of responsibility and proximity to which ecologists claim to adhere. There are more reasonable means available than refusing to manage end-of-cycle nuclear waste, such as blockading power plants or the uranium enrichment plant in Gronau which supplies the nuclear power industry worldwide. In Lower Saxony, the La Hague plant located on this West European headland is therefore thought of as the ideal hideaway for this waste. It is true that the list of radioactive scrap, hospital waste, asbestos from the steamer, the Norway, and WEEE exported by Germany is long. Robin des Bois is against recycling irradiated fuel as it facilitates the proliferation and dispersion of plutonium and other radionuclides into the environment. The association has revealed many scandals and lies related to recycling in areas other than the nuclear industry, which have been concealed behind the false good ecological and systematically positive image of recycling. (author)

  18. The use of gamma radiation for the destruction of some organic ingredients present in waste waters

    International Nuclear Information System (INIS)

    Abdel-Gawad, A.S.; Abdel-Fattah, A.A.; Ali, Z.I.

    1997-01-01

    In the textile industry in Egypt a large number of dye materials are used. These dye stuffs are considered as toxic compounds and their release to the environment should be controlled. In this work, gamma rays from 60 Co source is used for the destruction of the respective dyes and their elimination from industrial waste-water streams. The work carried out here is a part of a co-ordinated research program (CRP) sponsored by IAEA. Three reactive dyes [namely Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR) and Levafix Brilliant Yellow EGA (LBY)] have been used. The decoloration of the respective dye as a result of γ-irradiation was measured using visible spectrophotometry at 612, 514 and 414 nm wavelengths, respectively. The present decoloration as a function of both the absorbed dose and the concentration of the dye has been measured. Also, the kinetics of the degradation process has been established. It was shown that the degradation process can be described by a first order kinetic equation. The G(x) values of the dye as a result of γ-irradiation has been measured and its dependence on both the radiation absorbed dose and the dye concentration has been established. The effect of pH of waste-water on the degradation process of one of the used dyes and the accompanying transformations in the aqueous media were studied. The kinetic constant of the decoloration of a mixture of the dyes was found to be lower than that of individual dyes with different factors. It is planned that future work will deal with a number of different organic dyes used in the textile industry in Egypt. The degradation processes will be studied using both pure solutions and natural waste-waters released from some textile factories. (author)

  19. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment.

    Science.gov (United States)

    Agunbiade, Mayowa Oladele; Van Heerden, Esta; Pohl, Carolina H; Ashafa, Anofi Tom

    2017-06-12

    The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.

  20. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    Kernen, M.

    2006-01-01

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  1. Analysis and model testing of a Super Tiger Type B waste transport system in accident environments

    International Nuclear Information System (INIS)

    May, R.A.; Yoshimura, H.R.; Romesberg, L.E.; Joseph, B.J.

    1980-01-01

    Sandia National Laboratories is investigating the response of a Type B packaging containing drums of contact-handled transuranic waste (CH-TRU) as a part of a program to evaluate the adequacy of experimental and analytical methods for assessing the safety of waste transport systems in accident environments. A US NRC certified Type B package known as the Super Tiger was selected for the study. This overpack consists of inner and outer steel shells separated by rigid polyurethane foam and can be used for either highway or rail transportation. Tests using scale models of the vehicular system are being conducted in conjunction with computer analyses

  2. Waste heat discharges in the aquatic environment -- impact and monitoring 2

    International Nuclear Information System (INIS)

    Kamath, P.R.

    1980-01-01

    Studies on ecological impacts, on fishes in particular, of waste heat discharges in the aquatic environment are briefly reviewed. These studies cover the susceptibility of fishes to disease and predation, population biology, parasite proliferation and its impact on fishes, synergistic effects due to heat and other stresses such as chemicals, pollutant, lowering of saturation limit of dissolved oxygen at elevated temperature and radioactivity. Experiences of monitoring waste heat discharges at the Rajasthan Atomic Power Station (RAPS) and the Tarapur Atomic Power Station (TAPS) are presented. Entrainment losses and impingement losses are also reviewed. Requirements for thermal monitoring are mentioned. (M.G.B.)

  3. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  4. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  5. The model relationship of wastes for parameter design with green lean production of fresh water

    Directory of Open Access Journals (Sweden)

    Mastiadi Tamjidillah

    2017-12-01

    Full Text Available Lean manufacturing is about eliminating waste including the seven traditional, this writing suggested an observation on no value added of seven wastes influencing the process of fresh water production. The relationship value among waste was statistically verified to create an approach for continuous improvement action. Thus, the main goal of this research is to develop a methodology of relationship among wastes and eliminate them. In relationship among wastes, it could be known that the high value indicating how often it happened in the production process gave direct cause in the system of fresh water treatment. A recommendation to reduce the highest value of waste is by doing improvement on parameter setting to obtain an optimum mixing model between water supply, alum and stroke pump with Taguchi method. The interaction of relationship among these seven types of waste can be portrayed using fishbone diagram and a relationship model among wastes using PLS smart (partial least squares. The final relationship model with the highest value of waste was analyzed using off-line quality control to upgrade the quality of fresh water used as the basis to eliminate waste and find out the optimal parameter of mixing process in accordance with the health standard.

  6. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  7. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...

  8. Direct methods for radionuclides measurement in water environment

    International Nuclear Information System (INIS)

    Chernyaev, A.; Gaponov, I.; Kazennov, A.

    2004-01-01

    The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90 Sr detection are considered

  9. Vessel for solidifying water-impermeable radioactive waste

    International Nuclear Information System (INIS)

    Kiuchi, Yoshimasa; Tamada, Shin; Suzuki, Yasushi.

    1993-01-01

    A blend prepared by admixing silica sand, alumina powder or glass fiber, as aggregates, to epoxy resin elastic adhesives is coated on an inner surface of a steel drum can or an inner surface of a concrete vessel at a thickness of greater than 1mm followed by hardening. The addition amount of the silica sand, alumina powder or glass fiber is determined as 20 to 40% by weight, 30 to 60% by weight or 5 to 15% by weight respectively. A lid having a hole for injecting fillers is previously bonded to a container for use in solidifying radioactive materials. The strength of the coating layer is increased and a coating performance and an adhesion force are improved by admixing the aggregates, to provide a satisfactory water-impermeability. The container for use in solidifying radioactive wastes having a coating layer with an advantage of the elastic resin adhesives, strong strength and adhesion and being excellent in the water-impermeability can be obtained relatively economically. (N.H.)

  10. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    Shaaban, D.A.E.F.

    2010-01-01

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (K G ) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  11. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2010-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewater was diluted to using tap water to targeted concentration of COD 400 mg/ l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. The COD removal at lowest dose, 2 kGy is about 310 mg/ l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/ l. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This showed the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (author)

  12. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  13. Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-09-01

    Full Text Available Municipal waste water, or sewage, is a combination of domestic and industrial effluent. The increasing volume of sewage due to urbanisation and economic growth places pressure on the treatment performance of existing waste treatment systems...

  14. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  15. Interstitial water studies on Irish Sea sediments and their relevance to the fate of transuranic nuclides in the marine environment

    International Nuclear Information System (INIS)

    Harvey, B.R.

    1981-01-01

    This paper describes the physico-chemical conditions existing in the interstitial waters of sediments in contaminated areas of the Irish Sea, which provide valuable information on the sedimentary environment into which radioactive waste products become incorporated. It is recommended that these measurements be made in areas where transuranic behaviour can be determined, which then would allow useful predictions to be made concerning the possible behaviour of transuranics in other, uncontaminated, environments, if these environments can be physico-chemically correlated in the same way. (author)

  16. Clinical solid waste management practices and its impact on human health and environment - A review

    International Nuclear Information System (INIS)

    Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.; Omar, A.K. Mohd

    2011-01-01

    -specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.

  17. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Science.gov (United States)

    2010-07-01

    ... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...

  18. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  20. Liquid waste disposal and reuse of waste water; Smaltimento e riuso delle acque reflue

    Energy Technology Data Exchange (ETDEWEB)

    Indelicato, S. [Catania Univ. (Italy). Cattedra di Idraulica Agraria; De Dominicis, G. [S.M.T. Societa Mineraria Trasimeno s.p.a.- Gruppo ACEA, Rome (Italy)

    1996-03-01

    The disposal of liquid wastes determine an environmental impact. Waste processing plants reduce this impact but, in case of malfunction or scheduled maintenance are emitted aerosols, odors and noise. Mitigation of this effects is possible with coverage or plants screen.