WorldWideScience

Sample records for waste treatment

  1. Lyophilization -Solid Waste Treatment

    Science.gov (United States)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  2. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  3. Solid Waste Treatment Technology

    Science.gov (United States)

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  4. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  5. Offshore waste treatment guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-12-15

    These guidelines were prepared to aid offshore oil and gas operators in the management of waste materials related to petroleum drilling and production operations in offshore areas regulated by the Canada-Newfoundland and Labrador Offshore Petroleum Board (CNLOPB) and the Canada-Nova Scotia Offshore Petroleum Board (CNSOPB). A description of the relevant sections of the regulatory regime applicable to Canada's offshore oil and gas operations was included. Offshore operators are expected to take all reasonable measures to minimize the volumes of waste materials generated by their operations. The guidelines included recommendations for identifying, monitoring, and reporting discharges; performance expectations for specific discharges; requirements for greenhouse gas (GHG) and other air emissions; methods of characterizing and monitoring produced water, drilling muds, and desalination brine. Operational discharges associated with the installation and maintenance of subsea systems were also reviewed, and qualifications of analytical laboratories were presented. 24 refs., 2 appendices.

  6. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Bilitewski, Bernd [Technische Univ. Dresden (Germany). Lehrstuhl fuer Abfallwirtschaft; Urban, Arndt I. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik; Faulstich, Martin (eds.) [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Technologie Biogener Rohstoffe

    2008-07-01

    Within the 13th meeting with the titel 'Thermal waste management' at 11th to 12th March, 2008, in Munich (Federal Republic of Germany), the following lectures were held: (a) Development of new boundary conditions for thermal waste management (Andreas Jaron); (b) Transnational acquisition-economical activity of municipalities and European Law (Walter Frenz); (c) Waste management and development of capacities in Europe (Holger Alwast, Baerbel Birnstengel); (d) Complete utilization in a waste incinerator - Inventory and climate balance (Horst Fehrenbach); (e) Utilization of refuse-derived fuels in industrial power plants - Experiences and new developments (Ralf Borghardt); (f) Thermal waste treatment at EnBW (Michael Pfoertner); (g) The future of the utilization of refuse-derived fuels in lignite-fired power plants from the view of Vattenfall Europe (Frank Mielke, Sven Kappa, Andreas Sparmann); (h) Developments in the use of secondary fuels in the cement industry (Martin Oerter); (i) Ecological practicability of the use of plastics as a reductant in blast furnaces (Thomas Buergler); (j) Experiences in mono plants (Bernd Neukirchen); (k) Energy efficiency in the waste incinerator Amsterdam - first operational experiences (Joeern Wandschneider); (l) Potential improvements of energy efficiency (Oliver Gohlke); (m) Generation of electricity and heat from waste - significance and potential (Rolf Kaufmann, Dirk Zachaeus); (n) Hybrid regulation in order to optimize the operation of waste incinerators (Dietrich-Georg Ellersiek); (o) Perspectives and obstacles to an energetic waste utilization in Greece (Avraam Karagianidis); (p) Melt processing - Experiences in Japan (Alfons Buekens); (q) Thermal treatment of sewage sludge - a significant way of disposal for the Peeple's Republic of China as a threshold country (Michael Nelles, Tao liu, Ke Wu, Gert Woscheck).

  7. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  8. Biological treatment of drilling waste

    Energy Technology Data Exchange (ETDEWEB)

    Perie, F.H.; Seris, J.L.; Martignon, A.P.

    1995-12-01

    Off shore operators are now faced with more stringent forthcoming regulations regarding waste discharge. Several aspects are to be taken into account when considering waste disposal in the sea; among them, the total amount of COD and the toxicity. While, in many regards, the problem caused by the processing fluids toxicity has been addressed, the elimination of residual COD from the waste is yet to be solved. Biodegradation of drilling waste is one of the major routes taken by third party contracters to address the reduction of COD in sea-discharged cuttings. This report describes a technique specifically developed to enhance drilling waste biodegradation under selected conditions. The suggested treatment involved biological catalysts used in conjunction with or prior to the biodegradation. We demonstrated that the considered environment-compatible substitute for oil-based mud could be more efficiently biodegraded if an enzymatic pretreatment was carried out prior to or during the actual biodegradation. The biodegradation rate, expressed as CO{sub 2} envolvement, was significantly higher in lipase-treated cultures. In addition, we demonstrated that this treatment was applicable to substrates in emulsion, suspension, or adsorbed on solid.

  9. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  10. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  11. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  12. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  13. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  14. DOE mixed waste treatment capacity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  15. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers).

  16. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  17. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies.......The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...

  18. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  19. Biodegradation of Leather Waste by Enzymatic Treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The treatment of shavings, trimmings and splits of leather waste from tanneries has a potential to generate value-added products. In this study enzymatic treatment of leather waste was performed. This method utilizes alkaline protease produced by Bacillus subtilis in our laboratory by submerged fermentation. Optimum conditions of pH, time duration,temperature and concentration of enzyme were determined for maximum degradation of leather waste. The amount of degradation was measured by the release of amino acid hydroxyproline. Amino acid composition in the hydrolysate obtained by the enzyme hydrolysis was determined. This relative simple biotreatment of leather waste may provide a practical and economical solution.

  20. Waste washing pre-treatment of municipal and special waste.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana; Pivnenko, Kostyantyn

    2012-03-15

    Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    waste and waste water treatment as in pyrolysis, solar incineration and gasification for solid wastes treatment .... unwanted product from industries and household. .... disinfection is a biological treatment method. ..... of EU prioritary substances.

  2. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public

  3. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....... will develop and implement a methodology to compare and prioritize these technologies and optimizations based on a holistic approach. This will be achieved through the use of life cycle assessment (LCA) along with cost/efficiency analysis with focus on the effects of nutrients, pathogens and micropollutants (i...

  4. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  5. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  6. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  7. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  8. Economic and environmental optimization of waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Münster, M. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ravn, H. [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Hedegaard, K.; Juul, N. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ljunggren Söderman, M. [IVL Swedish Environmental Research Institute, Box 53021, SE-40014 Gothenburg (Sweden); Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.

  9. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  10. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  11. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  12. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  13. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  14. Methods Used in Urban Waste Treatment

    Directory of Open Access Journals (Sweden)

    OROIAN I.

    2010-12-01

    Full Text Available The paper presents the main options aiming the treatment of urban waste consisting mainly of the household andthose resulting from industrial activities, acordin to the present EU legislation. The aspects of the two major types ofwaste treatment, mechanical biological treatment and incineration respectively are described. Distinction is madebetween mechanical and biological treatment of aerobic and anaerobic issues being addressed and biological dryingprocess. The result of these processes is reflected in obtaining products that can be used as soil improvers. With regardto incineration, the basic components of industrial installations for the purpose, and usability of products resulting fromtheir processing, most often, various types of solid fuel are presented. The paper also highlights the importance of thesetreatments in efficient waste management planning.

  15. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  16. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  17. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  18. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  19. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  20. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  1. Combustible radioactive waste treatment by incineration and chemical digestion

    Energy Technology Data Exchange (ETDEWEB)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  2. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  3. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...... simulating Danish household waste in composition and weight, 2) evaluating the performance of best enzyme candidates on original waste with and without additional additives, 3) measuring the biogas potential of liquefied waste and comparing the results with the biogas potential of untreated waste...

  4. The management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Jeong; An, Sum Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Sohn, Young Jun; Yim, Kil Sung; Kim, Tae Kuk; Jeong, Kyeong Hwan; Wi, Keum San; Park, Young Yoong; Park, Seung Chul; Lee, Chul Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The radioactive wastes generated at Korea Atomic Energy Research Institute (KAERI) in 1994 are about 56 m{sup 3} of liquid waste and 323 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid wastes were treated in 1994 are about 87 m{sup 3} of liquid waste and 81 drums of solid waste, respectively. 2 tabs., 26 figs., 12 refs. (Author) .new.

  5. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A. [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A. [Raveh Ecology Ltd., Haifa (Israel)

    1993-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  6. Membrane technologies for liquid radioactive waste treatment

    Science.gov (United States)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  7. From waste treatment to integrated resource management.

    Science.gov (United States)

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  8. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Terrence Kerwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  9. Treatment of Bone Waste Using Thermal Plasma Technology

    Institute of Scientific and Technical Information of China (English)

    KI Ho Beom; KIM Woo Hyung; KIM Bong Soo; K00 Hyung Joon; LI Mingwei; CHAE Jae Ou

    2007-01-01

    Daily meat consumption produces a lot of bone waste, and dumped bone waste without treatment would result in environmental hazards. Conventional treatment methods of waste bones have some disadvantages. Herein, an investigation of bone waste treated using thermal plasma technology is presented. A high-temperature plasma torch operated at 25.2 kW was used to treat bone waste for seven minutes. The bone waste was finally changed into vitric matter and lost 2/3 of its weight after the treatment. The process was highly efficient, economical, convenient, and fuel-free. This method could be used as an alternative for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  10. Treatment technology for organic radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. J.; Lee, Y. H.; Shon, J. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    In this report, various alternative technologies to the incineration for the treatment of radioactive organic wastes were described and reviewed, fallen into two groups of low temperature technologies and high temperature technologies. These technologies have the advantages of low volume gaseous emission, few or no dioxin generation, and operation at low enough temperature that radionuclides are not volatilized. Delphi chemical oxidation, mediated electrochemical oxidation, and photolytic ultraviolet oxidation appear to be the most promising low temperature oxidation process and steam reforming and supercritical water oxidation in the high temperature technologies. 52 refs., 39 figs., 2 tabs. (Author)

  11. Cerebral salt wasting: pathophysiology, diagnosis, and treatment.

    Science.gov (United States)

    Yee, Alan H; Burns, Joseph D; Wijdicks, Eelco F M

    2010-04-01

    Cerebral salt wasting (CSW) is a syndrome of hypovolemic hyponatremia caused by natriuresis and diuresis. The mechanisms underlying CSW have not been precisely delineated, although existing evidence strongly implicates abnormal elevations in circulating natriuretic peptides. The key in diagnosis of CSW lies in distinguishing it from the more common syndrome of inappropriate secretion of antidiuretic hormone. Volume status, but not serum and urine electrolytes and osmolality, is crucial for making this distinction. Volume and sodium repletion are the goals of treatment of patients with CSW, and this can be performed using some combination of isotonic saline, hypertonic saline, and mineralocorticoids.

  12. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  13. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...... content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...

  14. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  15. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  16. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  17. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  18. A Prototype of Industrial Waste Water Treatment Using Electrocoagulation

    OpenAIRE

    Boriboonsuksri Phonnipha; Jun-krob Natth

    2017-01-01

    This paper proposes a construct of electrocoagulation waste water treatment system. The system consists of reactor tank, skimmer, cyclone tank and sediment tank. Waste water is feed into reactor tank. The electrochemical reaction is made emulsification to waste water. The contaminants are removed from waste water and can be divided to two kinds: light weight suspensions be floating up and another be sediment. The flocculants are skim out and the sediments are pumped out to sludge container. A...

  19. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  20. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  1. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  2. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  3. Citric waste saccharification under different chemical treatments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2015-10-01

    Full Text Available Second generation ethanol from lignocellulose materials has been used in applications for food processing wastes. Since Brazil has a leading position in orange juice exports, the influence of acid and alkali pretreatments on liquor saccharification, solubilization of solid fraction and mass yield was evaluated. Time and Cacid or Calkaline at different concentrations of solids (low to moderate, 1 to 9% and high catalyst concentrations were analyzed. A hydrothermal pretreatment was conducted under the same conditions of acid and alkaline treatments to investigate the relative selectivity increase in using the catalysts. The chemical analyses of wastes indicated a 70% total carbohydrate level denoting a promising raw material for bioethanol production. Pretreatment caused acid saccharifications between 25 and 65% in total reducing sugars (TRS and mass yields (MY between 30 and 40%. In alkaline pretreatment, these rates ranged between 2 and 22.5% and between 30 and 80, respectively. In hydrothermal pretreatment, solubilized TRS varied between 3 and 37%, whereas MY remained between 45 and 60%, respectively. Cbiomass strongly influenced the three variables; in the same way, time affected MY.

  4. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  5. Challenges when performing economic optimization of waste treatment: A review

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, H.

    2013-01-01

    Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources......, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible.Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one...... example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi...

  6. Challenges when Performing Economic Optimization of Waste Treatment

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, Hans

    2011-01-01

    New investments in waste treatment facilities are needed due to a number of factors including continuously increasing waste amounts, political demands for efficient utilization of the waste resources in terms of recycling or energy production, and decommissioning of existing waste treatment...... facilities due to age and stricter environmental regulation. Optimization models can assist in ensuring that these investment strategies will be economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing...... in multi criteria analysis have been developed. A thorough updated review of the existing models is presented and the main challenges and the crucial parameters to take into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both...

  7. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... shows that it is feasible to combine LCA approaches with optimization and highlights the need for including the integrated waste and energy system into the model....

  8. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  9. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  10. ALKALINE TREATMENT AND IMMOBILIZATION OF SECONDARY WASTE FROM WASTE INCINERATION

    Directory of Open Access Journals (Sweden)

    Dariusz Mierzwiński

    2017-04-01

    Full Text Available This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, three sets of geopolymer mixtures were prepared containing 60, 50 and 30% of ash and slag from the combustion of waste and fly ash combustion of sewage skudge. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the PN-EN 206-1 norm, were subjected to 75°C for 24h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of concrete.

  11. Treatability study of absorbent polymer waste form for mixed waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  12. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  13. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  14. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten;

    2015-01-01

    waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system - illustrated......This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved....

  15. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2015-01-01

    with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved.......This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system - illustrated...

  16. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    Directory of Open Access Journals (Sweden)

    Suchowska-Kisielewicz Monika

    2014-12-01

    Full Text Available An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  17. Nuclear waste treatment program: Annual report for FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  18. Nuclear waste treatment program. Annual report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.A. (ed.)

    1986-04-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

  19. HEAVY METAL PARTITIONING IN A NUCLEAR WASTE TREATMENT PLANT

    Institute of Scientific and Technical Information of China (English)

    J. Wochele; Chr. Ludwig; H.-J. Lau; W. Heep

    2006-01-01

    The fate of different trace elements and radio nuclides in the new ZWILAG nuclear waste treatment plant(Switzerland) has been modelled, in order to predict and check the transport behaviour of the volatile species and their distribution in the plant. Calculations show that for active waste from medicine, industry, research (MIR waste) only Zn and Cs have stable gaseous species at 1200℃. The investigations confirm the efficiency of the examined flue gas cleaning system.

  20. Microbiological treatment of oil mill waste waters

    Directory of Open Access Journals (Sweden)

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpech

  1. Waste treatment of combustion municipal wastes. Tratamiento de residuos provenientes de combustion de Residuos Solidos Urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Brenot, M.

    The polluting substances that are initially in the smoke produced in the combustion of refuse, are newly met in the solid wastes coming from the treatment of this smoke. If it is necessary to avoid any risk of polluting transference, it is convenient to neutralize these wastes. There are three main systems that are nextly explained. (Author)

  2. Focus on CSIR research in pollution waste: Technologies for waste and wastewater treatment

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available The Pollution and Waste Group of the CSIR specialises in the development of practicable treatment solutions for waste and wastewater arising from numerous industrial sectors. The group’s objective is to resolve potential pollution problems at mines...

  3. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    . In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i......The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...

  4. Internal Mainland Nuclear Power Liquid Waste Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    YOU; Xin-feng; ZHANG; Zhen-tao; ZHENG; Wen-jun; WANG; Lei; YANG; Lin-yue; HUA; Xiao-hui; ZHENG; Yu; YANG; Yong-gang; WU; Yan

    2013-01-01

    Taohuajiang power station is the first internal mainland nuclear power station,and it adopts AP1000nuclear technology belongs to the Westinghouse Electric Corporation.To ensure the safety of the environment around the station and satisfy the radio liquid waste discharge standards,our team has researched the liquid waste treatment technology for the internal mainland nuclear power plant.According

  5. Toluene: biological waste-gas treatment, toxicity and microbial adaptation.

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the contamina

  6. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...

  7. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  8. Prospects of effective microorganisms technology in wastes treatment in Egypt

    Institute of Scientific and Technical Information of China (English)

    Emad A Shalaby

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  9. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    Directory of Open Access Journals (Sweden)

    Vedi V.E.

    2012-12-01

    Full Text Available The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  10. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    Science.gov (United States)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  11. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied ext

  12. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  13. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  14. A plasma-arc pyrolysis system for hazardous waste treatment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A laboratory system for the treatment of medical and hazardous wastes via AC plasma-arc pyrolysis was recently built up by a research team led by Prof. SHENG Hongzhi at the CAS Institute of Mechanics (IMECH) in Beijing.

  15. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  16. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  17. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  18. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  19. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  20. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    Energy Technology Data Exchange (ETDEWEB)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  1. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  2. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  3. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...... for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co...

  4. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  5. Treatment of waste water from textile Finishing mills (Part 7). Comparison and combination of treatment methods on actual waste water

    Energy Technology Data Exchange (ETDEWEB)

    Widayat; Winiati, W.; Indarto; Amirdin; Kusno, P.; Jufri, R.; Higashi, Kunishige; Hagiwara, Kazuyoshi; Saito, Toshihide; Honda, Shigeru

    1987-03-25

    Comparison of coagulative precipitation treatment, activated sludge treatment, and active carbon adsorption treatment was studied on the actual waste water from two dyeing factories (A and B) located in Bandung City, Indonesia. Quality of waste waters was evaluated by the measurement of pH, COD, BOD, and absorption spectrum. The waste water A had COD value of 180 mg/l, and the ratio of BOD to COD was 1.2. Biological oxidation, therefore, looks effective for this waste water. The COD removals became 67% and 83% by coagulative precipitation method and activated sludge respectively. The coagulative precipitation treatment followed by the activated sludge treatment made COD removal to 100%. The waste water B had COD value of 1005 mg/l, and the ratio of BOD to COD was 0.20. THe COD removal became 58% and 72% by coagulative method and the coagulation method followed by the activated sludge method respectively. For removing dyestuff in the waste water, both coagulative precipitation method and activated carbon absorption treatment were effective. (4 figs, 4 tabs, 3 refs)

  6. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  7. Chemical waste treatment and recovery laboratory: an alternative for industrial waste of southern Minas Gerais

    Directory of Open Access Journals (Sweden)

    Luciano Tavares da Costa

    2015-06-01

    Full Text Available This manuscript consisted to obtain data, such as costs, equipments and investments necessary for the implementation of a Waste Treatment and Recovery Laboratory at UNIFAL-MG, campus II in Alfenas. In order to give support for the implementation and operation of this laboratory, in a way to guarantee a sustainable investment from the economic point of view, the EVTE was applied. This work was performed following the steps: identification and quantification of the wastes, EVTE elaboration, draft of the physical laboratory architecture and the analysis of the potential financial resources. It was verified that the implementation and management of the Chemical Waste Treatment Laboratory get to support an initial waste volume of 372 L/month and 3.5 kg/month of inorganic salts, beyond other industrial wastes from the neighborhood region. The implementation and maintenance of this laboratory are economic viable depending on the treated, recovered and recycled waste volume as well as on the provided service for the industry client. It is necessary to highlight the environmental benefits, especially due to the chemical waste disposal reduction, the academic formation opportunity and the social awareness promoted by the action of the laboratory. It can be add on the principle related to the Sustainable Logistic Plan in the Federal Public Administration.JEL-Code | Q01; QR3; L65.

  8. ASSESSMENT OF WASTE TREATMENT AND ENERGY RECOVERY FROM DAIRY INDUSTRIAL WASTE BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Richa Kothari, Virendra Kumar, and Vineet Veer Tyagi

    2011-01-01

    Full Text Available Waste treatment with simultaneous energy generation was studied in anaerobic digester using dairy industry waste (sludge, influent as substrate. No pretreatment or solid liquid separation was applied. Batch fermentation experiments were performed with three different substrates at organic pollution load (OPL under mesophilic range of temperature (30_+C. Experimental data evidence the effectiveness of waste on both the removal efficiency in terms of substrate degradation and biogas yield, particularly at higher loading rates. Among the three substrates evaluated, alternative substrates showed comparatively effective performance in comparison to conventional one. However, COD removal efficiency was also found to be effective in operated environment. The described process provides the dual benefit of waste treatment with simultaneous green energy generation in the form of biogas utilizing it as substrate.

  9. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  10. Efficiency Research on Meat Industry Waste Water Treatment Applying the Method of Dissolved Air Flotation

    OpenAIRE

    Valentinas Gerasimovas; Robertas Urbanavičius

    2012-01-01

    To protect environment from industrial pollution, strict requirements for waste water treatment are imposed. The purpose of research is to establish an optimal ratio of saturated liquid and meat industry waste water. Research included JCC “Traidenis” waste water treatment system installed in JSC “BHJ Baltic”. Investigations into treated waste water indicated that an optimal ratio of waste water and saturated liquid was 2/1 under duration time of 8 minutes. Efficient waste water treatment made...

  11. Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams.

    Science.gov (United States)

    Palmowski, L; Simons, L; Brooks, R

    2006-01-01

    The dairy-processing industry generates various types of organic wastes, which are utilised as stock feed, for anaerobic digestion, spread on land or alternatively land-filled at high costs. Owing to the generation of renewable energy, anaerobic digestion is an attractive option for many factories. To enhance the biological degradation process, a mechanical disintegration of various waste dairy streams was undertaken. While the successful application of ultrasonic treatment has been reported for various municipal waste streams, limited information was available for dairy industry applications. The results of this study showed that ultrasonic treatment can improve the digestibility of the more problematic dairy waste streams, such as sludges, by breaking down micro-organisms' cell walls and releasing soluble cell compounds. For more soluble streams, such as dairy factory effluent, an increased gas production was observed and attributed to the reduced particle size of the fat globules.

  12. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  13. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  14. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  15. Treatment organic wastes technologies and bio treatment for bio wastes; Tecnologias para el tratamiento de los residuos organicos y biotratamiento para bioresiduos

    Energy Technology Data Exchange (ETDEWEB)

    Mata Alvarez, J. [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Barcelona, Barcelona (Spain)

    1995-06-01

    From a chemical point of view, an organic waste it could be defined as that waste that contain a important amount of carbon, but from a practical point of view, an organic waste would be the waste that comes from living matter. The main characteristic of this waste is that can be easily degradable by biological treatments. This paper shows the different treatments existing in Europe. (Author)

  16. Waste water treatment in Triglav national park

    OpenAIRE

    PETERLIN, BLAŽ

    2012-01-01

    The thesis presents the pollution problems caused by municipal waste water in the protected area of the Triglav National Park. Although most people are not detecting the problem, the consequences of water pollution in the area are clearly visible in the mountain lakes and downstream springs. Water resources near the mountain huts and agricultural land show obvious signs of nurient overload. Non- native plant and animal species recklessly discharged into the natural environment also pose a thr...

  17. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas.......This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...

  18. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  19. Electrochemical and Photochemical Treatment of Aqueous Waste Streams

    Science.gov (United States)

    1996-01-01

    PAGES 6 Aerogel, Electrochemical treatment, Photochemical waste treatment, SERDP 16. PRICE CODE N/A 17. SECURITY CLASSIFICATION 18. SECURITY 19...Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 (510)423-6574 ABSTRACT from sea water and 0.1 M KNO3 . This electrolytic

  20. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  1. Treatment of Mixed Wastes via Fixed Bed Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-28

    This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

  2. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted.

  3. The artificial water cycle: emergy analysis of waste water treatment.

    Science.gov (United States)

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  4. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

    1994-03-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

  5. Public scandal about the nuclear waste treatment industry. Der Atommuellskandal

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The events leading to the public scandal are summarized into three main items: (1) Accusation for taking bribe in the form of money and in kind. (2) Suspicion of false labelling of radioactive waste. (3) Suspicion of offense against the Non-Proliferation Treaty. The survey in hand is intended to prepare a sober judgement of the situation by: stating the facts and their significance in terms of safety; explaining the various types of radioactive wastes, their treatment and the quantities involved; explaining the legal provisions for transport of radioactive materials; discussing the problem of nuclear waste management in terms of quantity. The lesson to be drawn is that controls and further means of quality assurance are required to make the pathways of radioactive wastes are pellucid and verifiable. (orig./HSCH).

  6. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Freer, J.; Freer, E.; Bond, A. [and others

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  7. Technical report on treatment of radioactive slurry liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyeong Hwan; Jo, Eun Sung; Park, Seung Kook; Jung, Ki Jung

    1999-06-01

    By literature survey, this report deals with the technology on typical pre-treatment and filtration of radioactive slurry liquid waste, produced during the operation of TRIGA Mark-II, III research reactor, and produced during the decommission/decontamination of TRIGA Mark-II, III research reactor. It is reviewed pre-treatment procedure, both physical and chemical that optimise the dewatering characteristics, and also surveyed types of dewatering devices based on centrifuges, vacuum and pressure filters with particular reference to various combined field approaches using two or more complementary driving forces to achieve better performance. Dewatering operations and devises on filtration of radioactive slurry liquid waste are also analysed. (author)

  8. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

  9. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  10. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    Science.gov (United States)

    2007-11-02

    mixed in-drum (as shown in Figure 8-13) by inserting a mixer blade into the drum or by physically tumbling the sealed drum. In-drum mixing is...evaporation (Figure 8-16) can also be used, but the waste must be dried before treatment. A steam-heated dryer is used which measures the correct amount of

  11. Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, Gordon H.

    2005-03-08

    In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

  12. Steel wastes as versatile materials for treatment of biorefractory wastewaters.

    Science.gov (United States)

    Dos Santos, Sara V; Amorim, Camila C; Andrade, Luiza N; Calixto, Natália C Z; Henriques, Andréia B; Ardisson, José D; Leão, Mônica M D

    2015-01-01

    Recent research on novel cost-effective adsorbent materials suggests potential use of industrial wastes for effluent treatment, with the added benefit of reuse of the wastes. Waste steel materials, including blast oxygen furnace sludge (BOFS), blast furnace sludge (BFS), and blast furnace dust (BFD), were investigated as low-cost adsorbents for removal of an oil emulsion and RR195 dye. The residues were characterized by X-ray diffraction, Brunauer-Emmett-Teller area, volume and distribution of pore diameters, Mössbauer spectroscopy, X-ray fluorescence, granulometry, scanning electron microscopy/energy dispersive spectroscopy, and pHpzc. Adsorption kinetics data were obtained by UV-vis spectrophotometry at the maximum absorption wavelength of the dye solution and crude oil emulsion. The use of waste as an adsorbent was more efficient for treatment of the oil emulsion than the dye solution. BOFS had higher total organic carbon (TOC) removal efficiency than the other waste materials. For the RR195 dye, good color removal was observed for all adsorbents, >90 % within 24 h. TOC removal was poor, <10 % for BFD and BFS and a maximum of 37 % for BOFS. For the oil emulsion, 97 % TOC removal was obtained by adsorption onto BOFS and 87 % onto BFS.

  13. Waste treatment at the Radiochemical Engineering Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Brunson, R.R.; Bond, W.D.; Chattin, F.R.; Collins, R.T.; Sullivan, G.R.; Wiles, R.H. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    At the Radiochemical Engineering Development Center (REDC) irradiated targets are processed for the recovery of valuable radioisotopes, principally transuranium nuclides. A system was recently installed for treating the various liquid alkaline waste streams for removal of excess radioactive contaminants at the REDC. Radionuclides that are removed will be stored as solids and thus the future discharge of radionuclides to liquid low level waste tank storage will be greatly reduced. The treatment system is of modular design and is installed in a hot cell (Cubicle 7) in Building 7920 at the REDC where preliminary testing is in progress. The module incorporates the following: (1) a resorcinol-formaldehyde resin column for Cs removal, (2) a cross flow filtration unit for removal of rare earths and actinides as hydroxide, and (3) a waste solidification unit. Process flowsheets for operation of the module, key features of the module design, and its computer-assisted control system are presented. Good operability of the cross flow filter system is mandatory to the successful treatment of REDC wastes. Results of tests to date on the operation of the filter in its slurry collection mode and its slurry washing mode are presented. These tests include the effects of entrained organic solvent in the waste stream feed to the filter.

  14. Review on Chemical treatment of Industrial Waste Water | Sahu ...

    African Journals Online (AJOL)

    Review on Chemical treatment of Industrial Waste Water. ... used and lot of wastewater generated from industries due their processes and washing purpose. A large number of chemicals are used for the production of potable water and ... powdered activated carbon (PAC) can remove taste and odour compounds and micro ...

  15. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  16. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  17. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  18. Waste treatment in physical input-output analysis

    NARCIS (Netherlands)

    Dietzenbacher, E

    2005-01-01

    When compared to monetary input-output tables (MIOTs), a distinctive feature of physical input-output tables (PIOTs) is that they include the generation of waste as part of a consistent accounting framework. As a consequence, however, physical input-output analysis thus requires that the treatment o

  19. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  20. Principles of biotechnological treatment of industrial wastes.

    Science.gov (United States)

    Roig, M G; Martín Rodriguez, M J; Cachaza, J M; Mendoza Sánchez, L; Kennedy, J F

    1993-01-01

    This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents.

  1. Waste Water Treatment of Dye Contamination

    Directory of Open Access Journals (Sweden)

    Pattana Boonyaprapa

    2009-01-01

    Full Text Available The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment systems. Eighty-five percent of tie-dye entrepreneurs agreed that there must be wastewater treatment before release into the environment. From group discussions, it was found that the entrepreneurs realized the wastewater problem and wanted to carry out environment friendly tie-dyeing. Our study demonstrated that the average value of the colour density, chemical oxygen demand (COD, total dissolved solids (TDS and pH of the wastewater characteristics were 170 SU (space units, 1584 mg/l, 2487 mg/l and 8, respectively. For the upflow anaerobic filter, 5 sets of experiments, with 24 hours retention time, were designed, with 0, 1, 2, 3 and 4 % of cow’s feces ferment, respectively (sets 1st-5th. The result showed decreasing colour densities from 170 SU to 160 SU (dark colour, 60 SU (very light colour, 12 SU (no colour, 10 SU (no colour and 10 SU (no colour, respectively. We conclude that the upflow anaerobic filter, containing 2% cow’s feces ferment is an efficient way to reduce colour density of the wastewater. Mixing cow’s feces ferment with tie-dye wastewater increased COD and TDS in wastewater. Mean COD was increased by residual organic matter from 1584 mg/l (before treatment to (after-treatment, sets 2nd- 5th 1600 mg/l, 1680 mg/l, 1710 mg/l and 1750 mg/l, respectively. COD aftertreatment was higher than the industrial effluence standard (400 mg/l. Further treatment COD might include wetland procedures. TDS was increased by some residual organic matter

  2. Waste Water Treatment of Dye Contamination

    OpenAIRE

    Pattana Boonyaprapa

    2009-01-01

    The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment s...

  3. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO2) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al2O3 and Ni-Co/Al2O3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al2O3 catalyst, producing 153.67mmolsyngasg(-1)waste. The addition of cobalt metal as a promoter to the Ni/Al2O3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Membrane bioreactor for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.

    1997-01-01

    Summary

    This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of

  5. Treatment of Molybdate Containing Waste Streams

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2008-01-01

    The invention is directed to a process for the treatment of an aqueous solution comprising sodium carbonate and/or sodium bicarbonate and sodium molybdate, said process comprising freeze crystallising the solution at the eutectic freezing point thereof and recovering substantially pure ice crystals,

  6. Principles of biotechnological treatment of industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M.G.; Martin Rodriguez, M.J.M.; Cachaza, J.M. (Univ. de Salamanca, Salamanca (Spain). Dept. de Quimica Fisica); Mendoza Sanchez, L. (C/Sol Oriente, Salamanca (Spain). Estudios y Proyectos); Kennedy, J.F. (Univ. of Birmingham, Birmingham (United Kingdom). Research Lab. for the Chemistry of Bioactive Carbohydrates and Proteins)

    1993-07-01

    This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents. It was foreseen in 1980 that biotechnology would foster the creation of new industries with low energy requirements. This is because the growth of microorganisms provides a renewable source of energy.

  7. Treatment of waste water from a colloid sulfur washing department

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, E.K.; Pivovarova, L.I.; Gumarova, M.M.; Kulik, G.I.; Khrapunova, G.G.

    1988-08-01

    Discusses a method for treatment of waste water from arsenic-sodium purification of coal gas in the Moscow gasworks. Waste water from sulfur washing is characterized: total content of various chemical compounds 90-120 g/l, pH value 8, arsenic content 300-500 mg/l, sulfur content 1.5-2.3 g/l. The flotation separation process used on a laboratory scale is evaluated: a 200 ml waste water sample was mixed intensively with 1 ml surfactants for 1.5-2.0 min. The mixture was then fed into a flotation column. Air supply rate of 20 m/h was used. Three flotation schemes are comparatively evaluated: without surfactants, with polyacrylamide and with polyvinyl alcohol with desulfurization efficiency of 86.7%, 87.5% and 96.6% respectively. Consumption rate of polyvinyl alcohol was 125 mg/l. 4 refs.

  8. Radiological Monitoring of Waste Treatment Plant

    Science.gov (United States)

    Amin, Y. M.; Nik, H. W.

    2011-03-01

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Raeq) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 μSv/h (Administrative building) to 0.35 μSv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  9. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  10. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  11. Thermal waste treatment in China; Die thermische Abfallbehandlung in China

    Energy Technology Data Exchange (ETDEWEB)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa [Zhejiang Univ. (China). Dept. of Energy Engineering; Vehlow, Juergen [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Chemie

    2011-08-15

    Increasing industrialisation and urbanisation as well as fast changing consumption habits in China entail a dramatic increase in waste generation. This development goes along with a severe lack in landfill sites, especially in densely populated areas. In combination with today's growing demand for aftercare free disposal the Chinese government decided to focus on thermal treatment, preferentially with energy recovery, of all types of waste as the only environmentally compatible pre-treatment option prior to final disposal. This principle is followed by the authorities despite entailing costs and recently in few places emerging public concern over this technology. The first incineration plant for municipal solid waste in China using imported technology was commissioned in 1988. Further such plants built during the following years had severe problems with the low calorific value of Chinese waste and failed often to achieve acceptable burnout. This fact and the high costs initiated at the end of the last century the development of a circulating fluidised bed incinerator at the University of Zhejiang which burns residential waste with an addition of 20 % of coal to increase its heating value. This strategy enables a well controlled combustion with burnout as well as emission figures, including those for dioxins, which easily comply with the actual Chinese air emission limits. These are to a great extent comparable with those of the EU Incineration Directive. This technology has successfully entered the market between 2000 and 2010 and will most likely, together with a similar type developed by the Tsinghua University, become the backbone of Chinese waste incineration in future due to its moderate costs and excellent performance. (orig.)

  12. Examination of Treatment Methods for Cyanide Wastes.

    Science.gov (United States)

    1979-05-15

    Treatment Ozonation and Electrolysis ", Metal Finishing, Metals and Plastics Publications, Inc., Hackensack, N.J., February 1958, pp. 71 - 74. 80. Serota, L...and Caldwell, M.R., "Destruction of Cyanide Copper Solutions by Hot Electrolysis ", Plating, American Electroplaters Society, Inc., East Orange, N.J...volume of 2,200 gallons. Salt was stored in a brine tank in liquid form and injected into the system. No caustic was necessary since the system is

  13. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  14. Treatment of waste printed wire boards in electronic waste for safe disposal.

    Science.gov (United States)

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  15. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities.

  16. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  17. Feed Composition for Sodium-Bearing Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  18. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    Science.gov (United States)

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  19. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  20. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  1. Proposal for the award of a contract for the collection and transport of waste and the treatment of standard waste

    CERN Document Server

    2006-01-01

    This document concerns the award of a contract for the collection of waste from the CERN site and its transport and treatment of the standard waste. The Finance Committee is invited to agree to the negotiation of a contract with SAUVIN SCHMIDT (CH), the lowest bidder, for the collection and transport of waste and the treatment of standard waste for a period of three years for a maximum estimated amount of 2 220 000 Swiss francs, not subject to revision until 30 June 2009. The contract will include options for two one-year extensions beyond the initial three-year period.

  2. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTTs has been done and the findings are summarised on this poster. The review is focused on the relative...... even more treatment trains/scenarios) have already been the subject of more or less detailed LCAs. All life cycle stages may be important and all impact categories (except stratospheric ozone depletion) typically included in LCAs may show significance depending on the actual scenario. Potential impacts...

  3. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  4. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  5. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    Science.gov (United States)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  6. Thermal plasma technology for the treatment of wastes: a critical review.

    Science.gov (United States)

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  7. Optimising waste treatment and energy systems - focusing on spatial and temporal issues

    DEFF Research Database (Denmark)

    Pizarro Alonso, Amalia Rosa; Münster, Marie; Ravn, H.

    The aim of the TOPWASTE project is to evaluate current and future optimal treatment of waste fractions in terms of economy and the environment, with a focus on recycling versus Waste-to-Energy technologies. After optimization of the waste management system, results must be analysed so...... as to identify drivers and barriers that efficient waste utilization in Denmark is facing and discuss the economic and/or environmental benefits that might arise from a change of the current waste management system....

  8. Treatment of phosphogypsum waste produced from phosphate ore processing

    Energy Technology Data Exchange (ETDEWEB)

    El-Didamony, H. [Chemistry Department, Faculty of Science, Zagazig University, El Sharqia (Egypt); Gado, H.S. [Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo (Egypt); Awwad, N.S. [Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt); Fawzy, M.M., E-mail: mfawzynma@yahoo.com [Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo (Egypt); Attallah, M.F. [Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2013-01-15

    Highlights: ► Purification of phosphogypsum waste by separating the contaminated radionuclides. ► Separation process depends on leaching of wastes using suitable organic extractants. ► Costs treatment of PG depending on the type and quality of the used reagents. -- Abstract: Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that contains radionuclides from {sup 238}U and {sup 232}Th decay series which are of most radio-toxicity. The reduction in concentration of radionuclides content from PG was based on leaching of {sup 226}Ra, {sup 210}Pb, {sup 238}U and {sup 40}K using tri-butyl phosphate (TBP) and tri-octyl phosphine oxide (TOPO) in kerosene. The factors which affect the leaching process such as contact time, concentration of the solvent and temperature were optimized. Based on the experimental results, about 92.1, 88.9, 83.4, 94.6% of {sup 226}Ra, {sup 210}Pb, {sup 238}U and {sup 40}K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (∑REE) equals to 80.1%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications.

  9. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    .g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations is to be done. Tools for this prioritisation include life cycle assessment (LCA) and cost/efficiency. The LCA is performed as a comparative LCA and the concept...... of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. Furthermore, as novel approaches, potential ecotoxicity impact from a high number of micropollutants and the potential impact from pathogens (and whole effluent toxicity) are to be included......The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...

  10. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...

  11. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  12. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  13. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  14. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  15. Assessment of incineration and melting treatment technologies for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Geimer, R.; Hertzler, T.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  16. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter, and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents.

  17. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  18. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  19. Quantifying capital goods for biological treatment of organic waste.

    Science.gov (United States)

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting.

  20. Waste Not, Want Not: Role of Waste Generation, Management, and Treatment in Food-Energy-Water Nexus Interactions

    Science.gov (United States)

    Gunda, T.; Tidwell, V. C.

    2016-12-01

    While the food-water-energy (FEW) nexus framework has focused on the interactions between primary production and resource requirements (for example, water used to produce electricity), the waste component of these interactions has been largely overlooked. We use the electric utility industry as a case study to explore the burden posed by waste generation, management, and treatment. Using EPA datasets such as the Toxics Release Inventory, we quantify the current waste budget for the electric utility industry. Some aspects of generated waste from the electric utility industry are well-known (e.g., greenhouse gas emissions and criteria air pollutants). Others, however, such as discharges to water and associated water and energy requirements used for treatment are less understood. Overall, the electric industry accounts for 25% of all US air releases, 21% of surface water discharges, and 28% of all land releases. We conclude with a proposed framework to incorporate waste more systematically into the FEW dialogue.

  1. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    Science.gov (United States)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  2. Sodium-bearing Waste Treatment Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  3. Treatment and recycling of asbestos-cement containing waste

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, F. [Department of Technology, University Parthenope, Naples (Italy); Cioffi, R., E-mail: raffaele.cioffi@uniparthenope.it [Department of Technology, University Parthenope, Naples (Italy); Lavorgna, M.; Verdolotti, L. [Institute for Biomedical and Composite Materials - CNR, Naples (Italy); De Stefano, L. [Institute for Microelectronics and Microsystems - CNR, Naples (Italy)

    2011-11-15

    Highlights: {yields} Asbestos-cement wastes are hazardous. {yields} High energy milling treatment at room temperature allows mineralogical and morphological transformation of asbestos phases. {yields} The obtained milled powders are not-hazardous. {yields} The inert powders can be recycled as pozzolanic materials. {yields} The hydraulic mortars containing the milled inert powders are good building materials. - Abstract: The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4 h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm{sup -1}, of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive

  4. Application of advanced oxidative process in treatment radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T., E-mail: jtmarumo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H{sub 2}O{sub 2} / Fe{sup +2}) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H{sub 2O}2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO{sub 3} as a white precipitate resulting from the reaction between the Ba(OH){sub 2} and the CO{sub 2} from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe{sup +2} /H{sub 2}O{sub 2} 30%) at 100 deg C after 2 hours. (author)

  5. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...... allocation of some tasks. The paper also illustrates two features of this PPP program that arguably have strongly influenced its successful implementation: The mitigation of demand risk and the rigorous estimations of demand carried out by the regional government...

  6. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  7. Thermoradiation treatment of sewage sludge using reactor waste fission products

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M. C.; Hagengruber, R. L.; Zuppero, A. C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined.

  8. Analysis of data from radioactive wastes treatment process and implementation of a data management applied program

    Energy Technology Data Exchange (ETDEWEB)

    Jeo, H. S.; Son, J. S.; Kim, T. K.; Kang, I. S.; Lee, Y. H [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As for the generated radioactive waste, a nuclide and a form are various, and by small quantity occurs the irregular times in KAERI. Record management of a radioactive waste personal history is an important element in disposal. A data collection of a liquid / solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material valance and inventory study.

  9. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg

    2005-09-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

  10. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  11. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Science.gov (United States)

    2011-06-13

    ... Standards for Carbamate Wastes AGENCY: Environmental Protection Agency. ACTION: Proposed rule. SUMMARY: The...) treatment standards for hazardous wastes from the production of carbamates and carbamate commercial chemical... carbamate wastes must be treated to meet numeric concentration limits before they can be land disposed...

  12. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  13. Biological waste-water treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  14. Integrated Waste Treatment Unit GFSI Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  15. Biological treatment of organic wastes in Switzerland; Tratamiento biologico de residuos organicos en Suiza

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, C.; Lott-Fischer, J; Gandolla, M.

    1996-12-01

    Disposing of the waste produced by our society is an ever-growing problem. In a small and mountainous country like Switzerland, it has become more and more difficult to find new sites for landfills or other waste treatment plants, not only due to increasing opposition from the public, but also because appropriate sites are simply becoming rarer and rarer. The obligation, not only to treat the waste produced in an environmentally sustainable way, but also to reduce the amounts generated, has in fact been recognised for over a decade now and a general strategy for waste management has been defined. The treatment of the organic part of our wastes obviously plays an important role in this policy. The purpose of this study is to present an overall view the situation of compostable waste in Switzerland. This category of waste may be defined as solid organic waste that has been source-separated and collected separately. (Author)

  16. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  18. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  19. 76 FR 35861 - Safety Culture at the Waste Treatment and Immobilization Plant

    Science.gov (United States)

    2011-06-20

    ... the Waste Treatment and Immobilization Plant AGENCY: Defense Nuclear Facilities Safety Board. ACTION... Treatment and Immobilization Plant located at the Hanford site in the state of Washington. DATES: Comments... Safety Culture at the Waste Treatment and Immobilization Plant Pursuant to 42 U.S.C. Sec....

  20. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this the

  1. Separation technologies for the treatment of Idaho National Engineering Laboratory Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.; Herbst, S.

    1996-10-01

    The Idaho National Engineering Laboratory (INEL) is collaborating with several DOE and international organizations to develop and evaluate: technologies for the treatment of acidic high-level radioactive wastes. The focus on the treatment of high-level radioactive wastes is on the removal of cesium and strontium from wastes typically 1 to 3 M in acidity. Technologies to treat groundwater contaminated with radionuclides and/or toxic metals. Technologies to remove toxic metals from hazardous or mixed waste streams, for neutral pH to 3 M acidic waste streams.

  2. The 1996 meeting of the national technical workgroup on mixed waste thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues.

  3. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  4. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  5. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  6. Thermal treatment of harzardous waste for heavy metal recovery.

    Science.gov (United States)

    Hoffmann, Gaston; Schirmer, Matthias; Bilitewski, Bernd; Kaszás Savos, Melania

    2007-07-16

    In this study, a new method for recovering heavy metals from hazardous waste is introduced. The process is characterized by a separation of heavy metals and residues during the thermal treatment under a sub-stoichiometric atmosphere in a rotary kiln. After leaving the rotary kiln the separated heavy metals are precipitated in a hot gas ceramic filter. Using this technology, hazardous materials, both liquids and pasty hazardous waste containing heavy metals, can be treated and a product with a quasi-raw material condition can be formed. In contrast to current methods,the harmful substances should not be immobilized and disposed. In fact, a saleable product highly concentrated with heavy metals should be formed. During preliminary investigations with a solution containing sodium chromate tetrahydrate, the process was tested in a pilot plant. Here,the separation of chromium could be demonstrated with leaching tests and characterization of the filter dust. Analysis concerning the disposability of the residues had not been carried out because only the process and the characteristic of the filter dust were in the centre of attention.

  7. Solar enhanced wastewater treatment in waste stabilization ponds.

    Science.gov (United States)

    Agunwamba, J C; Utsev, J T; Okonkwo, W I

    2009-05-01

    One of the most popular off-site wastewater treatment plants used in the tropics is the waste stabilization pond (WSP). Although it has several advantages, its use in urban areas is limited because of its large land area requirement. Hence, this research is aimed at investigating if a solar-enhanced WSP (SEWSP) can increase treatment efficiency and consequently reduce the land area requirement. The SEWSPs of varying sizes, made of a metallic tank with inlet and outlet valves and a solar reflector, were constructed to increase the incident sunlight intensity. Wastewater samples collected from the inlet and outlet of the SEWSPs were examined for physio-chemical and biological characteristics for a period of 2 months. The parameters examined were total suspended solids, dissolved oxygen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), coliform, and Escherichia coli. The efficiencies of the SEWSPs, with respect to these parameters, fluctuated with temperature variation, with the shallowest SEWSP giving the highest treatment efficiency. The research revealed that the cost of treating wastewater using SEWSPs was approximately 2 times lower than the conventional WSP for the same treatment efficiencies.

  8. Biofilm treatment of soil for waste containment and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A. [Univ. of Wyoming, Laramie, WY (United States)

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  9. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  10. State-of-the-art report on low-level radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  11. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    Energy Technology Data Exchange (ETDEWEB)

    Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

    2012-07-01

    ;Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical

  12. Mixed waste groundwater treatment at Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Claggett, S.L.

    1994-12-31

    Test Area North (TAN) is located at the Department of Energy`s (DOE) Idaho National Engineering Laboratory (INEL). The INEL was listed on the National Priority List (NPL) in 1989 by the Environmental Protection Agency (EPA) for several environmental concerns. Subsequently, A Record of Decision for one area of concern was signed to begin interim remedial action of groundwater at TAN. ADTECHS was selected to design, procure, construct and operate a 50 gpm groundwater treatment facility to treat radioactive and hazardous contaminants (mixed waste). It is a {open_quotes}pump and treat{close_quotes} system that will undoubtably add to the controversy of their effectiveness in aquifer restoration. The facility will provide information for final remedial action of the Snake River aquifer at TAN.

  13. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0.6 ...... showed an almost even biofilm growth over the filter height, which was in accordance with a constant liquid concentration throughout the column. (C) 1997 IAWQ. Published by Elsevier Science Ltd....... and the surface removal rates estimated by parameter fitting corresponded to previously observed values. The effect of the gas flow on the mass transfer coefficient and the biological removal rate may be explained by different flow patterns of the gas and the liquid phases. A characterisation of the biofilm...

  14. Treatment of Radioactive Contaminated Soil and Concrete Wastes Using the Regulatory Clearance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Ryu, W. S.; Kim, T. K.; Shon, J. S.; Ahn, S. J.; Lee, Y. H.; Bae, S. M.; Hong, D. S.; Ji, Y. Y.; Lee, B. C

    2008-11-15

    In the radioactive waste storage facilities at the Korea Atomic Energy Research Institute (KAERI) in Daejoen, there are thousands drums of radioactive contaminated soil and concrete wastes. The soil and concrete wastes were generated in 1988 during the decommissioning process of the research reactor and the attached radioactive waste treatment facility which were located in Seoul. The wastes were transported to Daejeon and have been stored since then. At the generation time, the radioactive contamination of the wastes was very low, and the radionuclides in the wastes was Co-60 and Cs-137. As the wastes have been stored for more than 20 years, the radioactivity concentration of the wastes has been decayed to become very extremely low. The wastes are needed to be treated because they take up large spaces at the storage facility. Also by treating the wastes, final disposal cost can be saved. So, the regulatory clearance was considered as a treatment method for the soil and concrete wastes with extremely low radioactivity concentration.

  15. Treatment of Radioactive Contaminated Soil and Concrete Wastes Using the Regulatory Clearance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Ryu, W. S.; Kim, T. K.; Shon, J. S.; Ahn, S. J.; Lee, Y. H.; Bae, S. M.; Hong, D. S.; Ji, Y. Y.; Lee, B. C

    2008-11-15

    In the radioactive waste storage facilities at the Korea Atomic Energy Research Institute (KAERI) in Daejoen, there are thousands drums of radioactive contaminated soil and concrete wastes. The soil and concrete wastes were generated in 1988 during the decommissioning process of the research reactor and the attached radioactive waste treatment facility which were located in Seoul. The wastes were transported to Daejeon and have been stored since then. At the generation time, the radioactive contamination of the wastes was very low, and the radionuclides in the wastes was Co-60 and Cs-137. As the wastes have been stored for more than 20 years, the radioactivity concentration of the wastes has been decayed to become very extremely low. The wastes are needed to be treated because they take up large spaces at the storage facility. Also by treating the wastes, final disposal cost can be saved. So, the regulatory clearance was considered as a treatment method for the soil and concrete wastes with extremely low radioactivity concentration.

  16. Bulky waste quantities and treatment methods in Denmark

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Petersen, Claus; Christensen, Thomas Højlund

    2012-01-01

    , wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled...

  17. Does improved waste treatment have demonstrable biological benefits?

    Science.gov (United States)

    Seagle, Henry H.; Hendricks, Albert C.; Cairns, John

    1980-01-01

    Since 1972, 10 benthic surveys and 9 static fish bioassays have been conducted to assess the impact of AVTEX Fibers, Inc. effluent on the lower South Fork of the Shenandoah River. AVTEX (formerly FMC Corp.) is a rayon and polyester fibers plant located in Front Royal, Virginia. Benthic samples were taken at four stations, one above and three below the plant discharges. Single surveys in 1972 and 1973 indicated a severe impact on the benthic community along the right side of the river, below the plant, as a result of the channelized effluent. Diversity values (¯ d) were low (0 2.42) and numbers of taxa and organisms were reduced. A fish bioassay in 1973 indicated the effluent to be acutely toxic at the 34.5% level (mixture of effluent and river water). In early 1974, FMC Corp. constructed an activated sludge treatment system to reduce BOD and supplement the neutralization and chemical precipitation (zinc hydroxide and liquid-solid separation) facilities that had been used to treat waste waters since 1948. After the new equipment was placed in operation, the previously stressed area became more stable. In 1975 and 1976 the stressed area exhibited greater ¯ d values (1.19 3.39) and an increased number of taxa and organisms. Bioassays showed the effluent to be acutely toxic to fish only once since 1973. The major improvements in the effluent were a 70% reduction in BOD5 and a 60% reduction in the amount of zinc entering the river. Community conditions in 1977 indicated a partial remission of improvement, probably due to drought conditions. The rehabilitation of damaged ecosystems is a process important to all biologists. An important factor in encouraging industry to participate in this activity is evidence that improved waste treatment will often have demonstrable biological benefits rather soon. As data accumulate on the recovery process it may be possible to predict the degree of rehabilitation and time required more precisely.

  18. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  20. Ecologically acceptable waste treatment at Vienna. Thermal waste treatment and district heating; Oekologische Abfallbehandlung in Wien. Thermische Abfallbehandlung und Fernwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, H.

    2003-07-01

    Waste that cannot be prevented nor recycled must be disposed of in ultimate storage sites. This requires inertialisation, detoxification or any other treatment that ensures that no pollutants are emitted into the atmosphere or groundwater. This is the goal of Vienna's waste management policy. (orig.) [German] Es muss daher grundsaetzlich gefordert werden, dass die Abfaelle, die weder vermieden noch wiederverwertet werden koennen, so endgelagert werden, dass sie fuer die Nachwelt keine Belastung darstellen, das heisst, dass sie weder zu einer Altlast werden koennen noch auf lange Zeit ueberwacht werden muessen. Diese Forderung kann aber nur dadurch verwirklicht werden, dass diese Rueckstaende sowie inertisiert und entgiftet oder so nachbehandelt werden, dass sie keine Schadstoffe an die Luft abgeben und ihre Eluate schon nach kurzer Zeit, fuer die der Abfallerzeuger noch Vorsorge zu treffen hat, ohne Ueberwachung mit Sicherheit keine Gefahr mehr fuer das Grundwasser darstellen koennen, das heisst, dass ihre Eluate im Wesentlichen die Trinkwassergrenzwerte einhalten sollten. An diesen Anforderungen soll daher die Wiener Abfallpolitik gemessen werden. (orig.)

  1. Enhanced biomethanation of kitchen waste by different pre-treatments.

    Science.gov (United States)

    Ma, Jingxing; Duong, Thu Hang; Smits, Marianne; Verstraete, Willy; Carballa, Marta

    2011-01-01

    Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L(-1) d(-1)) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton(-1) KW.

  2. Microwave energy for post-calcination treatment of high-level nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  3. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status thermal...

  4. Estimation of marginal costs at existing waste treatment facilities

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus

    2016-01-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system...... (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain......, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power...

  5. The Cost-estimation of Mechanical Pre-treatment Lines of Municipal Solid Waste in Latvia

    Directory of Open Access Journals (Sweden)

    Āriņa Dace

    2014-12-01

    Full Text Available Production of refuse derived fuel from municipal solid waste in future shall play a strategic role in an integrated waste management system. The amount of landfilled biodegradable materials thus will be diminished according to provisions of the 1999 Waste Landfill Directive. The aim of this article is to evaluate cost effectiveness based on cost evaluation of the different complication of the waste pre-treatment equipment complectation and based on regenerable waste quantities in Latvia. The comparison of cost estimates is done in 3 scenarios considering potential waste quantities in Latvia: Scenario I - planned annual waste quantity is 20 kT; Scenario II - 40 kT and Scenario III - 160 kT. An increase in amount of waste and processing capacity means the decrease in costs of mechanical pre-treatment of 1 ton of waste. Thus, costs of mechanical sorting line under different scenarios with capacities of 10 t h-1, 20 t h-1 and 80 t h-1 are EUR 32 per t, EUR 24 per t and EUR 15 per t, respectively. Most feasible cost for a set of mechanical pre-treatment equipment for the capacity of 10 t h-1 is EUR 32 per t by using rotating drum screener with the following manual sorting. Mechanical pre-treatment equipment of unsorted municipal waste is economically nonbeneficial, when the use of fine (biologically degradable fraction is not possible. As the sorting of biodegradable kitchen waste is not developed under the current waste management system in Latvia, the lines for mechanical pre-treatment of household waste would be better to install in landfills.

  6. Characterization and electrical properties of chitosan for waste water treatment

    Science.gov (United States)

    Saengkaew, Phannee; Chantanachai, Kanittha; Cheewajaroen, Kulthawat; Nimsiri, Woraporn

    2016-05-01

    Chitosan extracted from shrimp shell waste was characterized in order to use for the industrial wastewater treatment. By XRF technique, the qualitative and semi-quantitative analyses of pure chitosan were performed with the relative compositions of Ca, Mg, Si, Fe, Al, and Na of 0.321%, 0.738%, 0.713%, 0.363%, 0.338%, and 3.858%, respectively. In the case of two types of the contaminated chitosan from the wastewater treatment before and after a process of a primary H2O2-treatment, the relative compositions of Ca, Mg, Si and Fe were obtained with an increasing of 0.356%, 1.321%, 1.536%, 0.451% and 0.406%, 1.105%, 1.178%, 0.591%, respectively. This shows that the suspended materials in the wastewater were absorbed by chitosan. By I-V Measurements, the across-through voltage of the pure chitosan disc was 0.245V±0.053 at the applied voltage of 17V, and resistance of 53.9MΩ ±10.3 at the applied voltage of 590V. After the utilization for the wastewater treatment, the across voltage of chitosan discs from two cases were 0.133V±0.047 and 0.223V±0.063, and the resistance of 122.8MΩ ±16.1 and 24.8MΩ ±5.1. The used chitosan has a lower conductivity because of a decreasing in the chitosan's electrical dipoles by combining with the suspended ions in the wastewater. Moreover, the adsorption efficiencies of chitosan for formaldehyde in the wastewater of two cases were 31.08% and 25.40%. In summary, chitosan is efficiently utilized in the wastewater treatment by absorption of the suspended materials and formaldehyde due to its molecular structure providing a good electrical property.

  7. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  8. Treatment of waste waters from special laundries of Czechoslovak nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, K. (Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia))

    1982-01-01

    Waste water treatment methods applied in the purification of waste waters discharged from the laundries are presented. The most usually applied method is vaporization, the most frequently designed procedure is reverse osmosis and ultrafiltration and coagulation. Currently the Nuclear Research Institute in Rez is developing a technology of waste water purification which is aimed at introducing such a method of processing in which a minimum amount of solid wastes will be generated at minimum costs. From the point of view of waste water treatment it is most suitable to wash with soap with an addition of detergent such as sodium alkylaryl sulphonate. A promising preparation is the ROMY suspension. Waste water treatment with the use of coagulation by lime salt, sorption of the residues of organic substances on activated coal and of radionuclide residues on a selective ion exchanger without regeneration should be a sufficiently low-cost and effective technology.

  9. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Treatment Variance for Hazardous Selenium-Bearing Waste Treatment Issued to Chemical Waste Management in... Direct Final rule pertains to the treatment of a hazardous waste generated by the Owens-Brockway Glass... AGENCY 40 CFR Part 268 Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous...

  10. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    OpenAIRE

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In this thesis the possibilities are presented for fixed-film post-treatment of anaerobically digested domestic sewage and water reconditioning in aquacultural water recirculation systems. Emphasis i...

  11. Organic wastes treatment technologies; Tecnologias para el tratamiento de los residuos organicos y su adecuacion tecnica

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Alvarez, J. [Universidad de Barcelona (Spain)

    2001-07-01

    In this paper the management of several types of organic wastes (organic fraction of municipal solid waste; agroindustrial residues: sewage sludges from domestic wastewater treatment plants; livestock farming wastes) with different technologies will be considered on the basis of its yields and possibilities of application. Combinations of technologies and co-treatment of wastes which offers a number of advantages will be also examined. After the examination of each technology and their possibilities, it is concluded that anaerobic digestion offers the more ecological approach and it is recommended its use, either alone or in combination with other concomitant technologies. (Author) 12 refs.

  12. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    Directory of Open Access Journals (Sweden)

    Micky A. Babalola

    2015-10-01

    Full Text Available Dealing with large-scale Food and Biodegradable Waste (FBW often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of conflicting objectives, since increasing one benefit may decrease the others. In this study a Multi-Criteria Decision Analysis (MCDA is presented to evaluate different waste management options and their applicability in Japan. The analytical process aims at selecting the most suitable waste treatment option, using pairwise comparisons conducted within a decision hierarchy that was developed through the Analytical Hierarchy Process (AHP. The results of this study show that anaerobic digestion should be chosen as the best FBW treatment option with regards to resource recovery. The study also presents some conditions and recommendations that can enhance the suitability of other options like incineration and composting.

  13. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  14. Treatment of urban residential organic waste through anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Fabiane Granzotto

    2016-10-01

    Full Text Available The amount of waste generated nowadays is a reflection of population growth and consumerism, many times, unnecessary by people. Organic waste is the most part of the solid waste generated. This waste need to be treated adequately to avoid environmental problems and health problems in people. The objective was to treat urban residential organic waste and to verify the efficiency of the transformation into biogas and bio fertilizers. A digester of the Indian type was used in Nova Palma, Rio Grande do Sul. The research was developed in the period of three years with a daily monitoring. The average biogas production was higher in the summer for three years and it was more stable in the third year in different seasons. There were no reagents to coliforms. The study found that anaerobic digestion has potential in treating organic waste.

  15. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines

  16. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  17. The status and developments of leather solid waste treatment: A mini-review.

    Science.gov (United States)

    Jiang, Huiyan; Liu, Junsheng; Han, Wei

    2016-05-01

    Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry.

  18. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    Science.gov (United States)

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  19. Environmental performance of an innovative waste refinery based on enzymatic treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2011-01-01

    ) from the waste. The waste refinery was compared to alternative treatments such as incineration, bioreactor landfill and mechanical-biological treatment followed by utilization of the RDF (refuse-derived fuel) for energy. The performance of the waste refinery turned out to be comparable...... for virgin material and saving fossil resources. In this paper a life-cycle assessment of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials...... with incineration for most environmental categories. Landfilling turned out to be the worst option with respect to most categories (especially energy-related such as GW). The refinery treatment has large margins of improvement with respect to the environmental performance. These are mainly associated...

  20. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bedient, P.B.

    1995-01-16

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  1. Treatment of Household Waste in Small Towns of China: Status, Basic Conditions and Appropriate Modes

    Directory of Open Access Journals (Sweden)

    HE Pin-jing

    2015-04-01

    Full Text Available Small town is the gateway of population migrating from rural areas to urban areas in the process of urbanization. The level of its household solid waste treatment is pivotal to the environmental and sanitary quality of surrounding rural areas. Furthermore, small town is the primary administrative center for rural districts, and will impose important influences on the solid waste management in villages. Therefore, it is necessary to investigate the effects of treatment modes on the household solid waste treatment in towns and surrounding villages. Based on the waste generation in small towns, this study analyzed the current status and existing problems for solid waste treatment, and discussed the related administrative management and financial supporting conditions in small towns. By summarizing the characteristics of the existing modes and comparing the costs for different treatment modes, the present study proposed that the most appropriate mode was“diversion in villages-diversion, transportation or treatment in towns-treatment and disposal in counties”, in which the town was the core node for the treatment of rural solid waste, so that the administrative and financial advantages of small towns could be highlighted and consequentially promoted the management of rural solid waste.

  2. The influence of preliminary aerobic treatment on the efficacy of waste stabilisation under leachate recirculation conditions

    Directory of Open Access Journals (Sweden)

    Monika Suchowska-Kisielewicz

    2014-12-01

    Full Text Available This article presents the changes in the chemical composition of leachate and the concentrations and quantity of methane production in each individual decomposition phases, determined for untreated and after aerobic treatment of waste stabilised in anaerobic reactors with and without leachate recirculation. The research results demonstrate that leachate recirculation intensifies the decomposition of both aerobically treated and untreated waste. The methane production in the reactor with untreated, stabilised waste with recirculation was 28% higher; and in the reactor with aerobically treated waste, the methane production was 24% higher than in the reactors without recirculation. An important finding of the study is that aerobic treatment of waste prior to landfilling effectively reduces the quantity of pollutant emissions in leachate and biogas from waste and increases the availability for methane micro-organisms of organic substrates from difficult-to-decompose organic substances.

  3. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  4. Argonne National Laboratory`s photooxidation organic mixed-waste treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, T.L.; Torres, T.; Conner, C. [Argonne National Lab., IL (United States)] [and others

    1997-12-01

    This paper describes the installation and startup testing of the Argonne National Laboratory-East (ANL-E) photo-oxidation organic mixed-waste treatment system. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the waste management facility at the ANL-E site in Argonne, Illinois.

  5. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Science.gov (United States)

    2010-07-01

    ....212 Making the hazardous waste determination at an on-site interim status or permitted treatment... hazardous waste permit or interim status as soon as it arrives in the on-site treatment, storage or disposal... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the...

  6. Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region.

    Science.gov (United States)

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2014-04-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

  7. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  8. Evaluation of an Organic Waste Composting Device to Household Treatment

    Directory of Open Access Journals (Sweden)

    C. Alejandro Falcó

    2015-09-01

    Full Text Available The performance of a plug-flow automated aerobic digester for the composting of the biodegradable organic waste (BOW from a typical family at its generation rhythm was evaluated. During 13 month assessment, 179.7 kg of BOW were treated and 106.7 kg of compost were obtained with a C:N ratio of 12 and an average concentration of N of about 2.72%. Additional tests enabled to assess the generation of stable and good quality compost according to the considered standards, suitable for using as organic fertilizer and other uses, such as biotreatments. The design, location and operational characteristics of the device have determined reduced leachate emissions, the absence of unpleasant odour generation and incidence of insects or other vectors, implying the viability of their use without affecting the user´s quality of life. It could be an efficient alternative treatment for household BOW, from a technical, economic, energy, cultural and environmental point of view, easy to implement for users lacking in special training. 

  9. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  10. Treatment of phosphogypsum waste produced from phosphate ore processing.

    Science.gov (United States)

    El-Didamony, H; Gado, H S; Awwad, N S; Fawzy, M M; Attallah, M F

    2013-01-15

    Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that contains radionuclides from (238)U and (232)Th decay series which are of most radio-toxicity. The reduction in concentration of radionuclides content from PG was based on leaching of (226)Ra, (210)Pb, (238)U and (40)K using tri-butyl phosphate (TBP) and tri-octyl phosphine oxide (TOPO) in kerosene. The factors which affect the leaching process such as contact time, concentration of the solvent and temperature were optimized. Based on the experimental results, about 92.1, 88.9, 83.4, 94.6% of (226)Ra, (210)Pb, (238)U and (40)K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (∑REE) equals to 80.1%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications.

  11. Treatment of phosphogypsum waste using suitable organic extractants.

    Science.gov (United States)

    El-Didamony, H; Ali, M M; Awwad, N S; Fawzy, M M; Attallah, M F

    Phosphogypsum (PG) is a residue of the phosphate fertilizer industry that has relatively high concentrations of harmful radioactive materials. The reduction in concentration of the radionuclides from PG was investigated. The removal process is based on leaching of radionuclides using suitable organic extractants. The studied radionuclides were (226)Ra, (210)Pb, (238)U and (40)K. The factors affect the leaching process such as type of leaching materials, contact time, concentration of the desired solvent, liquid to solid ratio, and temperature were studied. Based on the experimental results, about 71.1, 76.4, 62.4, and 75.7% of (226)Ra, (210)Pb, (238)U and (40)K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (∑REE) equals to 69.8%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications.

  12. Super-compactor and grouting. Efficient and safe treatment of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyou; Starke, Holger; Muetzel, Wolfgang; Winter, Marc [Babcock Noell GmbH, Wuerzburg (Germany)

    2014-08-15

    The conditioning and volume reduction of nuclear waste are increasingly important factors throughout the world. Efficient and safe treatment of nuclear waste therefore plays a decisive role. Babcock Noell designed, manufactured and supplied a complete waste treatment facility for conditioning of the solid radioactive waste of a nuclear power plant to China. This facility consists of a Sorting Station, a Super-Compactor, a Grouting Unit with Capping Device and other auxiliary equipment which is described in more detail in the following article. This article gives an overview of the efficient and safe treatment of nuclear waste. Babcock Noell is a subsidiary of the Bilfinger Power Systems and has 40 years of experience in the field of design, engineering, construction, static and dynamic calculations, manufacturing, installation, commissioning, as well as in the service and operation of a wide variety of nuclear components and facilities worldwide.

  13. Economies of density for on-site waste water treatment.

    Science.gov (United States)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  14. Application of transformational roasting to the treatment of metallurgical wastes

    Science.gov (United States)

    Holloway, Preston Carl

    Transformational roasting involves the heating of a material along with specific additives to induce mineralogical changes in the starting material. By controlling the chemical composition, roasting atmosphere, temperature and time of reaction, the mineral transformations induced during roasting can be engineered to control the distribution of valuable or harmful metals and to produce new mineral assemblages that are more amenable to conventional methods of metals recovery or to environmentally safe disposal. However, to date, transformational roasting processes have only been applied to the recovery of a limited number of metals from a limited number of materials. A generalized procedure for the application of transformational roasting techniques to the treatment of new materials was proposed that utilized a combination of thermodynamic analysis, scoping tests, Design of Experiments (DOE) testing, mineralogical studies, process optimization and analysis of the deportment of minor elements to identify promising roasting systems for further study. This procedure was developed, tested and refined through the application of these techniques to four different industrial metallurgical wastes, including oil sands fly ash from Suncor in northern Alberta, zinc ferrite residue from Doe Run Peru, electric are furnace (EAF) dust from Altasteel's operations in Edmonton, Alberta, and copper-nickel-arsenic sulphide residue from Inco's refinery in Thompson, Manitoba. A large number of potential reagents were identified and tested for the latter three materials and transformational roasting was effectively used to induce mineral transformations during the roasting of these wastes which increased the solubility of valuable elements, decreased the solubility of major impurities, produced a differential solubility between valuable and harmful elements or controlled the volatilization of harmful elements. Comprehensive studies of these mineralogical transformations and the solubility

  15. Alternatives for the treatment and disposal of healthcare wastes in developing countries.

    Science.gov (United States)

    Diaz, L F; Savage, G M; Eggerth, L L

    2005-01-01

    Waste production in healthcare facilities in developing countries has brought about a variety of concerns due to the use of inappropriate methods of managing the wastes. Inappropriate treatment and final disposal of the wastes can lead to adverse impacts to public health, to occupational health and safety, and to the environment. Unfortunately, most economically developing countries suffer a variety of constraints to adequately managing these wastes. Generally in developing countries, few individuals in the staff of the healthcare facility are familiar with the procedures required for a proper waste management program. Furthermore, the management of wastes usually is delegated to poorly educated laborers who perform most activities without proper guidance and insufficient protection. This paper presents some of the most common treatment and disposal methods utilized in the management of infectious healthcare wastes in developing countries. The methods discussed include: autoclave; microwave; chemical disinfection; combustion (low-, medium-, and high-technology); and disposal on the ground (dump site, controlled landfill, pits, and sanitary landfill). Each alternative for treatment and disposal is explained, including a description of the types of wastes that can and cannot be treated. Background information on the technologies also is included in order to provide information to those who may not be familiar with the details of each alternative. In addition, a brief presentation of some of the emissions from each of the treatment and disposal alternatives is presented.

  16. Solidification of radioactive liquid wastes. A comparison of treatment options for spent resins and concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Roth, A. [Hansa Projekt Anlagentechnik GmbH, Hamburg (Germany); Willmann, F. [Westinghouse Electric Germany GmbH, Mannheim (Germany); Ebata, M. [Toshiba Corporation Power Systems Company, Isogo-Ku, Yokohama (Japan); Wendt, S. [Hansa Projekt Anlagentechnik GmbH, Hamburg (Germany)

    2008-07-01

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence of a final repository site, the built-up of additional volume has to be considered as very critical. Moreover, corrosive effects on cemented drums during long-term interim storage at the surface have raised doubts about the long-term stability of such waste products. In order to avoid such disadvantages solidification methods have been improved in order to get a well-defined product with a better load factor of wastes in the matrix. In a complete different approach, other technologies solidify the liquid radioactive wastes without adding of any inactive material by means of drying

  17. Anaerobic treatment of lactic waste and goat manure

    Directory of Open Access Journals (Sweden)

    J. Luís Magaña-Ramírez

    2011-01-01

    Full Text Available Anaerobic digestion was carried out to obtain biogas from lactic waste in combination with goat manure. Waste from lactic products such as cream, cheese and whey was mixed with goat manure using three formulations; the quantity of waste from cream and cheese was maintained, and only the quantity of manure and whey was varied. Methanogenic bacteria obtained from predigestion of goat manure were used as inoculants. Temperature was 35ºC and pH 7.0.Biogas methane percentage was determined by gas chromatography. The results showed that the highest methane concentration obtained was 82% with formulation III.

  18. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  19. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  20. ASPEN computer simulations of the mixed waste treatment project baseline flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Dietsche, L.J.; Upadhye, R.S.; Camp, D.W.; Pendergrass, J.A.; Borduin, L.C.; Thompson, T.K.

    1994-07-05

    The treatment and disposal of mixed waste (i.e., waste containing both hazardous and radioactive components) is a challenging waste- management problem of particular concern to Department of Energy (DOE) sites throughout the United States. Traditional technologies used for destroying hazardous wastes must be re- evaluated for their ability to handle mixed wastes, and, in some cases, new technologies must be developed. The Mixed Waste Treatment Project (MWTP), a collaborative effort between Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, and Pacific Northwest Laboratory (PNL), was established by the DOE`s Waste Operations Program (EM-30) to develop and analyze alternative mixed waste treatment approaches. One of the MWTP`s initiatives, and the objective of this study, was to develop flowsheets for prototype, integrated, mixed-waste treatment facilities that can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modeling. The objectives of the flowsheet simulations are to compare process effectiveness and costs of alternative flowsheets and to determine if commercial process-simulation software could be used on the large, complex process of an integrated mixed waste processing facility. Flowsheet modeling is needed to evaluate many aspects of proposed flowsheet designs. A major advantage of modeling the complete flowsheet is the ability to define the internal recycle streams, thereby making it possible to evaluate the impact of one operation on the whole plant. Many effects that can be seen only in this way. Modeling also can be used to evaluate sensitivity and range of operating conditions, radioactive criticality, and relative costs of different flowsheet designs. Further, the modeled flowsheets must be easily modified so that one can examine how alternative technologies and varying feed streams affect the overall integrated process.

  1. Air flotation treatment of salmon processing waste water

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper discusses methods for the reduction of the pollution strength of salmon processing waste water. Past research has indicated the success of air pressure...

  2. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic...... plants and utilization of the liquid fraction for biogas production turned out to be the best options with respect to energy and Global Warming performance....

  3. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic...... plants and utilization of the liquid fraction for biogas production turned out to be the best options with respect to energy and Global Warming performance....

  4. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  5. Sewerage Treatment Plants - WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN: Treatment, Storage, and Disposal Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN is a point shapefile that contains treatment, storage, and disposal (TSD) site locations in Indiana, provided by personnel...

  6. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste

  9. Economic aspects of thermal treatment of solid waste in a sustainable WM system.

    Science.gov (United States)

    Massarutto, Antonio

    2015-03-01

    This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.

  10. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  11. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  12. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE.

    Science.gov (United States)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders; Bhander, Gurbakhash S; Møller, Jacob; Christensen, Thomas H

    2011-04-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating the environmental performance of alternative biological treatment technologies in relation to their mass flows, energy consumption, gaseous emissions, biogas recovery and compost/digestate utilization.

  13. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B.

    2002-07-23

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming.

  14. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W. [and others

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of {sup 90}Sr and {sup 137}Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment.

  15. A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors

    Energy Technology Data Exchange (ETDEWEB)

    P. C. Marushia; W. E. Schwinkendorf

    1999-07-01

    Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyers' guides, and databases. While this information is helpful at the time it is assembled, the principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Program's Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Program's Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market.

  16. A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, William Erich; Marushia, Patrick Charles

    1999-07-01

    Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyers’ guides, and databases. While this information is helpful at the time it is assembled, their principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Program’s Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Program’s Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market.

  17. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  18. Simultaneous treatment of low-level miscellaneous solid waste by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Amakawa, T.; Adachi, K.; Yasui, S. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2001-07-01

    Volume reduction is a cost saving method for the final disposal of radioactive waste. On one hand, arc plasma heating can provide sufficient heat independent of the chemical and physical properties of waste, therefore enabling stable heating at high treatment rates. CRIEPI (central research institute of electric power industry) focused on the advantages of arc plasma heating, and has clarified that arc plasma heating can be used in a simultaneous melting treatment process for low-level miscellaneous mixed solid waste, generated from nuclear power plants for volume reduction, and in the stabilization of radionuclides. (authors)

  19. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  20. Prospect of municipal solid wastes incinerating systems. Means to cope with diversifying solid waste treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiozuki, H.

    1981-01-01

    Advanced techniques developed recently by the company to cope with the escalatory anti-pollution restrictions, needs of energy conservation, automation and labor conservation, and resources conservation are summarized. The techniques and apparatus developed by the company and applied to practical applications are introduced. Those techniques and apparatus are an improved stocker, elimination of injurious gases by the dry method, improvement of waste heat recovery and utilization, direct heat recovery through a fluidized bed combustion furnace, mixed combustion of sewage water, night soil and sludges, automations (combustion, control of heat generation, solid waste feeding and ash delivery, optimum control of combustion) and resources recycling techniques.

  1. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    Science.gov (United States)

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  2. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    Denmark's political ambitions of a fossil fuel free energy system by 2050 calls for more renewable energy sources such as wind and solar. These green energy resources fluctuate and the transition to a green energy system requires a Smart Grid with flexible consumers that balance the fluctuating......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  3. Environmental impact by toxic compounds from waste treatment; Miljoepaaverkan fraan toxiska aemnen vid hantering av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Loefblad, Gun; Bisaillon, Mattias; Sundberg, Johan (Profu AB (Sweden))

    2010-07-01

    The study deals with emissions of toxic compounds from waste treatment to the environment with the aim of improving the state of knowledge and to find a way of describing the environmental impact from these substances. Toxicity is one of a number of environmental aspects necessary to address in the planning of waste treatment and in the daily waste treatment routines in order to fulfill the environmental objective A Non-Toxic Environment and other environmental requirements. The study includes waste to incineration, composting and anaerobic digestion. A comparison between methods were made for biological household waste. According to our study, the compounds of importance for waste treatment are metals and persistent organic compounds. These tend to bioaccumulate and enrich in food chains. The substances are important for the environmental objective A Non-Toxic Environment. In a first step the compounds chosen in this study may be suggested for describing toxicity from waste treatment: As, Cd, Cu, Hg, Pb, dioxin, PCB, the phthalate DEHP and the brominated flame retardant HBCDD. Other substances may be added to the list in a next step from up-dated and quality-assured characterisation factors or from other requirements or preferences. There is a limited knowledge on toxic compounds in waste flows and in different environmental compartments. More data are available for metals than for organic substances. There is also a limited knowledge on the fate of the compounds during the waste treatment processes. Most information is found for incineration. During composting and anaerobic digestion the metals will mainly be emitted to the environment by use of the compost and the anaerobic digestion residue. Organic substances will to some extent be degraded during the processes. However, there are gaps of knowledge to fill for the further work on estimating toxic emissions. There is mainly a need for more extensive data on toxic compounds in waste and their variations. A test

  4. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  5. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different...

  6. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  7. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    Science.gov (United States)

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  8. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  9. Wet oxidation as a waste treatment in closed systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  10. Wet Oxidation as a Waste Treatment Method in Closed Systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  11. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  13. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  14. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  15. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  16. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  17. Development of a Waste Treatment Process to Deactivate Reactive Uranium Metal and Produce a Stable Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Gates-Anderson, D D; Laue, C A; Fitch, T E

    2002-01-17

    This paper highlights the results of initial investigations conducted to support the development of an integrated treatment process to convert pyrophoric metallic uranium wastes to a non-pyrophoric waste that is acceptable for land disposal. Several dissolution systems were evaluated to determine their suitability to dissolve uranium metal and that yield a final waste form containing uranium specie(s) amenable to precipitation, stabilization, adsorption, or ion exchange. During initial studies, one gram aliquots of uranium metal or the uranium alloy U-2%Mo were treated with 5 to 60 mL of selected reagents. Treatment systems screened included acids, acid mixtures, and bases with and without addition of oxidants. Reagents used included hydrochloric, sulfuric, nitric, and phosphoric acids, sodium hypochlorite, sodium hydroxide and hydrogen peroxide. Complete dissolution of the uranium turnings was achieved with the H{sub 3}PO{sub 4}/HCI system at room temperature within minutes. The sodium hydroxide/hydrogen peroxide, and sodium hypochlorite systems achieved complete dissolution but required elevated temperatures and longer reaction times. A ranking system based on criteria, such as corrosiveness, temperature, dissolution time, off-gas type and amount, and liquid to solid ratio, was designed to determine the treatment systems that should be developed further for a full-scale process. The highest-ranking systems, nitric acid/sulfuric acid and hydrochloric acid/phosphoric acid, were given priority in our follow-on investigations.

  18. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  19. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  20. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  1. Technology for Waste Treatment at Remote Army Sites

    Science.gov (United States)

    1986-09-01

    Chollenge Dose (log 10 ) ILow IMedium High ORGANISM 0 1 2 3 4 5 6 7 8 9 10 11111111111KEYc 1. Ascaris lumbricoides t ____o 2. Ancylostoma duodenale...histolytica ង but usually - 10 cysts Helminths Ascaris lumbricoides Many rnontns eggs 171 APPENDIX J: INPUT WASTE CHARACTERIZATION Domestic composting

  2. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Science.gov (United States)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  3. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  4. Thermal treatment of wastes in an advanced cyclonic combustor

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, H.A.; Khinkis, M.J.; Kunc, W.

    1991-01-01

    IGT is developing an advanced waste combustion concept, based on cyclonic combustion principles, for application to a wide range of industrial wastes. In IGT's cyclonic combustor, a mixture of fuel and combustion air is fed tangentially at a relatively high velocity into a cylindrical chamber. The waste is injected either tangentially with the fuel or separately in a tangential, radial, or axial configuration. This approach provides high combustion intensity with internal recirculation of combustion products, which results in extremely stable and complete combustion, even at relatively low temperatures. IGT has performed three successful test programs involving cyclonic waste combustion for industrial clients. In one program, industrial wastewaters containing 40% to 50% organics and inorganics with heating values of 1600 to 3270 Btu/lb were combusted to 99.9% completion at only 2000{degrees}F. The low combustion temperature minimized the supplemental fuel required. In another program, simulated low-Btu industrial off-gases (55 to 65 BTu/SCF) were successfully combusted with stable combustion at 1900{degrees}F using air and waste preheat. Supplemental fuel was unnecessary because of the mixing that occurs in the cyclonic combustor. The conversion of fuel-bonded nitrogen to NO{sub x} was as low as 5%, and CO levels were in the range of 25 to 30 ppm. In the third program, CCl{sub 4} (as a test surrogate for PCBs) was efficiently destroyed by firing natural gas or hexane. With 100% CCl{sub 4} and natural gas firing, the DRE at 2200{degrees}F and a 0.25-second residence time ranged from 99.9999% to 99.9999%. These successful tests have led to the design and construction of a modular test facility at IGT's Energy Development Center. 13 figs., 17 tabs.

  5. Tank waste treatment R and D activities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.; Lee, D.D.; Beahm, E.C.; Collins, J.L.; Davidson, D.J.; Egan, B.Z.; Mattus, A.J.; Walker, J.F. Jr. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-08-01

    Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges.

  6. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  7. Application of analytic hierarchy process in a waste treatment technology assessment in Mexico.

    Science.gov (United States)

    Taboada-González, Paul; Aguilar-Virgen, Quetzalli; Ojeda-Benítez, Sara; Cruz-Sotelo, Samantha

    2014-09-01

    The high per capita generation of solid waste and the environmental problems in major rural communities of Ensenada, Baja California, have prompted authorities to seek alternatives for waste treatment. In the absence of a selection methodology, three technologies of waste treatment with energy recovery (an anaerobic digester, a downdraft gasifier, and a plasma gasifier) were evaluated, taking the broader social, political, economic, and environmental issues into considerations. Using the scientific literature as a baseline, interviews with experts, decision makers and the community, and waste stream studies were used to construct a hierarchy that was evaluated by the analytic hierarchy process. In terms of the criteria, judgments, and assumptions made in the model, the anaerobic digester was found to have the highest rating and should consequently be selected as the waste treatment technology for this area. The study results showed low sensitivity, so alternative scenarios were not considered. The methodology developed in this study may be useful for other governments who wish to assess technologies to select waste treatment.

  8. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  9. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C.; Convertti, A.; Rovatti, M. [Genoa Univ. (Italy); Boschi, R.; Cozzani, V.; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1995-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  10. Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste

    Science.gov (United States)

    2015-09-01

    concerns about particulates in water pipes. By providing convenient fill up sources, the use of reusable containers can be promoted. Disposable shopping... restaurants , schools, hospitals, and dining halls) and family housing areas where food waste is continually generated. ERDC/CERL TR-15-21 24...vegetable trimmings) to unsalable items (bruised fruit) to expired or spoiled items, to food scraps from a variety of venues (home, restaurant

  11. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility.

    Science.gov (United States)

    Dorado, Antonio D; Husni, Shafik; Pascual, Guillem; Puigdellivol, Carles; Gabriel, David

    2014-02-01

    Emissions of volatile organic compounds (VOCs) from the compost maturation building in a municipal solid waste treatment facility were inventoried by solid phase microextraction and gas chromatography-mass spectrometry. A large diversity of chemical classes and compounds were found. The highest concentrations were found for n-butanol, methyl ethyl ketone and limonene (ppmv level). Also, a range of compounds exceeded their odor threshold evidencing that treatment was needed. Performance of a chemical scrubber followed by two parallel biofilters packed with an advanced packing material and treating an average airflow of 99,300 m(3) h(-1) was assessed in the treatment of the VOCs inventoried. Performance of the odor abatement system was evaluated in terms of removal efficiency by comparing inlet and outlet abundances. Outlet concentrations of selected VOCs permitted to identify critical odorants emitted to the atmosphere. In particular, limonene was found as the most critical VOC in the present study. Only six compounds from the odorant group were removed with efficiencies higher than 90%. Low removal efficiencies were found for most of the compounds present in the emission showing a significant relation with their chemical properties (functionality and solubility) and operational parameters (temperature, pH and inlet concentration). Interestingly, benzaldehyde and benzyl alcohol were found to be produced in the treatment system.

  12. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    Science.gov (United States)

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  13. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  14. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    Science.gov (United States)

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  15. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart

    2012-09-01

    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  16. Selectivity of NF membrane for treatment of liquid waste containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Afonso, Julio C., E-mail: julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica

    2013-07-01

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF{sub 6} to UO{sub 2} in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L{sup -1}, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  17. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  18. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review

    Institute of Scientific and Technical Information of China (English)

    Guobin SHAN; Rao Y. SURAMPALLI; Rajeshwar D. TYAGI; Tian C. ZHANG

    2009-01-01

    Nanomaterials are applicable in the areas of reduction of environmental burden, reduction/treatment of industrial and agricultural wastes, and nonpoint source (NPS) pollution control. First, environmental burden reduction involves green process and engineering, emis-sions control, desulfurization/denitrification of nonrenew-able energy sources, and improvement of agriculture and food systems. Second, reduction/treatment of industrial and agricultural wastes involves converting wastes into products, groundwater remediation, adsorption, delaying photocatalysis, and nanomembranes. Third, NPS pollution control involves controlling water pollution. Nanomater-ials alter physical properties on a nanoscale due to their high specific surface area to volume ratio. They are used as catalysts, adsorbents, membranes, and additives to increase activity and capability due to their high specific surface areas and nano-sized effects. Thus, nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.

  19. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic...... waste have shown reductions of microorganisms allowing for unrestricted utilization in agriculture, meeting the product control:FS below 100/g and no Salmonella detected. The effect of storage of sludge at summer and winter temperatures respectively has been investigated. At temperatures (around 20°C...

  20. Low-energy treatment of colourant wastes using sponge biofilters for the personal care product industry.

    Science.gov (United States)

    Ahammad, S Z; Zealand, A; Dolfing, J; Mota, C; Armstrong, D V; Graham, D W

    2013-02-01

    Four trickling biofilter designs were assessed as low-energy alternatives to aerobic activated sludge (AS) for the treatment of personal care product industry wastes. The designs included partially submerged packed-media and sponge reactors with and without active aeration. Partial submergence was used to reduce active aeration needs. Simulated colourant wastes (up to COD=12,480 mg/L, TN=128 mg/L) were treated for 201 days, including wastes with elevated oxidant levels. COD and TN removal efficiencies were always >79% and >30% (even without aeration). However, aerated sponge reactors consistently had the highest removal efficiencies, especially for TN (∼60%), and were most tolerant of elevated oxidants. This study shows sponge biofilters have great potential for treating colourant wastes because they achieve high treatment efficiencies and reduce energy use by >40% relative to AS systems.

  1. Transitions in waste treatment as a driver for product life extension

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Michael Søgaard

    2015-01-01

    Increasing amounts of energy are used for provision of resources. Recycling, refurbishment and reuse practices are recurring elements in visions of the future low carbon and resource efficient society. Visions of improved waste management practices are, however, confronted with the inherent...... waste treatment process. Previously improved treatment of waste was perceived as closely linked to waste incineration technology and widely shielded from the contextualisation of demands for increased reuse, recycling and improved resource efficiency. This regime seems now gradually to become somewhat...... that emphasise prolonged product life and stresses the importance of avoiding down cycling of products and material streams. The destabilisation of the old incineration regime thus opens up for new opportunities with both new policies and potentially new social practices. This paper describes a number...

  2. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  3. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  4. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Poulsen, Tjalfe

    2009-01-01

    that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO2-eq. capita ĝ€"1 in 1970 to a net saving of 170 kg CO 2-eq. capitaĝ€"1 in 2005 for management of urban organic wastes.......Historical data on organic waste and wastewater treatment during the period of 1970ĝ€"2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper...... production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes...

  5. Consequences of the amended Biomass Waste Ordinance for biological waste treatment; Konsequenzen der novellierten Bioabfallverordnung fuer die biologische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kehres, Bertram [Bundesguetegemeinschaft Kompost e.V. (BGK), Koeln (Germany)

    2012-11-01

    The amended Biomass Waste Ordinance will bring about changes in biological waste treatment to which operators of composting and fermenting plants will have to adapt. The contribution outlines the most relevant changes; at the time of publication, it was not known how the Bundesrat would decide with regard to the Amendment, probably in late March 2012. (orig.) [German] Die Novelle der Bioabfallverordnung wird fuer die biologische Abfallbehandlung verschiedene Veraenderungen mit sich bringen, auf die sich Betreiber von Kompostierungs- und von Vergaerungsanlagen einzustellen haben. Auf die wesentlichen Aenderungen wird in diesem Beitrag eingegangen. Zum Zeitpunkt der Abfassung dieses Beitrages ist allerdings noch nicht vollstaendig bekannt, wie der Bundesrat - voraussichtlich Ende Maerz 2012 - ueber die Novelle abschliessend entscheiden wird. (orig.)

  6. Valorisation of Moringaoleifera waste: treatment and reuse of textile dye effluents

    OpenAIRE

    Vilaseca Vallvé, M. Mercedes; López Grimau, Víctor; Gutiérrez Bouzán, María Carmen

    2015-01-01

    This work is focused on the valorisation of an agricultural waste as natural coagulant to treat wastewater from the textile industry. In this paper, the waste of Moringaoleifera oil extraction is used as coagulant to remove five reactive dyes from synthetic textile effluents. Moringaoleifera shows better results for dye removal than conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high...

  7. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch.; Stucki, S.; Schuler, A.J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  8. The National Shipbuilding Research Program. Waste Water Treatment Technology Survey

    Science.gov (United States)

    1998-05-18

    clearwell . From this clearwell , the contaminated water is transferred to the induced air flotation process. The influent water is chemically pretreated to...stream is directed to a waste oil storage tank while the contaminated water flows into the equalization clearwell . From this clearwell , the...contaminated water flows into the equalization clearwell . From this clearwell , the contaminated water is transferred to the Induced Air Flotation

  9. Shredder and incinerator technology for treatment of commercial transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters.

  10. Use of ferric- and ferrous-salts in liquid waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Efremenkov, V.M.; Toropov, I.G.; Toropova, V.V.; Satsukevich, V.M.; Davidov, J.P.; Jabrodsky, V.N.; Prokshin, N.E.

    1995-12-31

    Treatment of spent decontamination solutions is the most complicated task in the whole problem of management of liquid radioactive waste, because quite often they have complex compositions, which makes it difficult to find for them effective and non-expensive treatment technology. New methods of treatment of such a waste is proposed based on use of specific sorption ability of ferro- and ferri-species in solution. These species are often present in solution as the by-products, and in combination with other components of decontamination solution they can be used as initial substances for synthesis of valuable sorbents directly in treating solution. Using specific compositions and conditions in solution, it is possible to make liquid waste treatment process more effective and less expensive. Particular examples of this process is presented in this work.

  11. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  12. Environmentally-friendly waste water treatment: Removal of ammonium nitrogen and hydrogen sulfide from oil refinery waste water

    Energy Technology Data Exchange (ETDEWEB)

    Stein, C.; Heine, I.; Sachse, J.; Peper, H. [Holborn Europa Raffinerie GmbH, Hamburg (Germany); Elster, J.

    1998-12-01

    The Holborn Europa Raffinerie (HER) in Hamburg, Germany, achieved a drastic reduction in water and air pollutants by implementation of a two step project. The first step was a modification of the H{sub 2}S-stripping of process water, which resulted ultimately in shutting down the H{sub 2}S-incinerator and conversion of the recovered H{sub 2}S to saleable elementary sulfur. Atmospheric pollution was reduced accordingly by 650 t/a SO{sub 2} and 2,200 t/a CO{sub 2}. In compliance with waste water legislation (requirements of Appendix 45, Waste Water Administrative Regulation), the ammonium nitrogen content of refinery waste water was reduced significantly in a second step. In contrast to the common biological treatment used in many refineries, it was decided to concentrate on physico-chemical treatment of the highly contaminated partstream only. To this end ammonia is effectively stripped out of the partstream under alkaline conditions, and concentrated to a 10% aqueous solution by distillation under reflux. This solution is then injected into the hot vent gas stream of the FCC-regenerator (CO-Boiler) as an NO{sub x} reduction agent, and thus disposed of in an environmentall-friendly manner. The introduction of this combination of field proven processes, namely water treatment by steam stripping and NO{sub x} reduction via SNCR, received government grant support and reduced water pollution by 250 t/a ammonium nitrogen and air pollution by 180 t/a NO{sub x}. In view of the relatively low investment and operating costs, enhanced flexibility of the existing biological water treatment plant, avoidance of additional material waste and drastic reduction of overall refinery emission, the adopted scheme is most certainly a prime example of both economical and ecological optimisation. The scheme also has future potential arising from the projected tightening up in motor fuels specifications (EU specifications for years 2000 and 2005) which will necessitate increased use of

  13. Treatment of M-area mixed wastes at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  14. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  15. An evaluation of alternative household solid waste treatment practices using life cycle inventory assessment mode.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro

    2012-06-01

    Waste disposal is an important part of the life cycle of a product and is associated with environmental burdens like any other life-cycle stages. In this study, an integrated assessment for solid waste treatment practices, especially household solid waste, was undertaken to evaluate the impact contribution of household solid waste treatment alternatives towards the sustainable development by using Life Cycle Inventory Assessment method. A case study has been investigated under various possible scenarios, such as (1) landfill without landfill gas recovery, (2) landfill with landfill gas recovery and flaring, (3) landfill with landfill gas recovery and electric generation, (4) composting, and (5) incineration. The evaluation utilized the Life Cycle Inventory Assessment method for multiple assessments based on various aspects, such as greenhouse gas emission/reduction, energy generation/consumption, economic benefit, investment and operating cost, and land use burden. The results showed that incineration was the most efficient alternative for greenhouse gas emission reduction, economic benefit, energy recovery, and land use reduction, although it was identified as the most expensive for investment and operating cost, while composting scenario was also an efficient alternative with quite economic benefit, low investment and operating cost, and high reduction of land use, although it was identified as existing greenhouse gas emission and no energy generation. Furthermore, the aim of this study was also to establish localized assessment methods that waste management agencies, environmental engineers, and environmental policy decision makers can use to quantify and compare the contribution to the impacts from different waste treatment options.

  16. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  17. Application of thermal plasma technology for the treatment of solid wastes in China: An overview.

    Science.gov (United States)

    Li, Jun; Liu, Kou; Yan, Shengjun; Li, Yaojian; Han, Dan

    2016-12-01

    With its enormous social and economical development, China is now experiencing a rapid increase in solid wastes generation and growing pressure for solid wastes management. Today solid wastes in China are mainly managed by a combination of landfill, incineration, and composting. Within different possible treatment routes, thermal plasma technology (TPT) offers the advantages of efficiently gasifying the organic contents of solid wastes into syngas that can be used for heat and power generation, and vitrifying the inorganics simultaneously into glassy slag with very low leachabilities. This process makes it feasible for near-zero emission into the environment while making use of all the useful components. Encouraged by the industrial operations of solid wastes treatment plants using TPT in some countries, several plasma demonstration projects have already been undertaken in China. This paper provides a preliminary overview of the current laboratory researches and industrial developments status of TPT for the treatment of solid wastes in China and analyzes the existing challenges. Furthermore, the future prospects for TPT in China are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    Science.gov (United States)

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  20. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    Science.gov (United States)

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1993-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  2. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations of H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.

  3. STUDY ON APPLICATION OF AERATION BIOLOGICAL FLUID TANK TECHNOLGY IN NH4+—N WASTE WATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    CHENYi; LUJian-guo

    2003-01-01

    This paper introduces an application of "Aeration biological fluid tank"technology (ABFT) for the treatment of waste water containing NH4+-N and high concentrated chemicals.Highlights were focused on the effects of dissolved oxygen,pH,temperature and retention time on waste water bilogical treatment in order to find out a new approach in treatment of waste time on containing high concentrated NH4+-N.

  4. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  5. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes.

    Science.gov (United States)

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P

    2012-01-01

    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  6. Implementation of the Urban Waste Water Treatment Directive in Norway - An Evaluation of the Norwegian Approach regarding Wastewater Treatment

    OpenAIRE

    Källqvist, T.; Molvær, J.; Oug, E.; Berge, D.; Tjomsland, T; Stene-Johansen, S.

    2002-01-01

    This report discusses the effects and benefits of full implementation of the Urban Waste Water Treatment Directive in Norway. The Norwegian policy for wastewater treatment has targeted phosphorus removal as the primary measure to reduce adverse effects of discharge of wastewater to freshwater and marine recipients. Chemical precipitation is therefore used at more than 70% of the wastewater treatment plants. This technique is very efficient in reducing the phosphorus concentration and in addit...

  7. Comparison of steam sterilization conditions efficiency in the treatment of Infectious Health Care Waste.

    Science.gov (United States)

    Maamari, Olivia; Mouaffak, Lara; Kamel, Ramza; Brandam, Cedric; Lteif, Roger; Salameh, Dominique

    2016-03-01

    Many studies show that the treatment of Infectious Health Care Waste (IHCW) in steam sterilization devices at usual operating standards does not allow for proper treatment of Infectious Health Care Waste (IHCW). Including a grinding component before sterilization allows better waste sterilization, but any hard metal object in the waste can damage the shredder. The first objective of the study is to verify that efficient IHCW treatment can occur at standard operating parameters defined by the contact time-temperature couple in steam treatment systems without a pre-mixing/fragmenting or pre-shredding step. The second objective is to establish scientifically whether the standard operation conditions for a steam treatment system including a step of pre-mixing/fragmenting were sufficient to destroy the bacterial spores in IHCW known to be the most difficult to treat. Results show that for efficient sterilization of dialysis cartridges in a pilot 60L steam treatment system, the process would require more than 20 min at 144°C without a pre-mixing/fragmenting step. In a 720L steam treatment system including pre-mixing/fragmenting paddles, only 10 min at 144°C are required to sterilize IHCW proved to be sterilization challenges such as dialysis cartridges and diapers in normal conditions of rolling.

  8. Chemical hazards associated with treatment of waste electrical and electronic equipment.

    Science.gov (United States)

    Tsydenova, Oyuna; Bengtsson, Magnus

    2011-01-01

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  10. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  11. Treatment and recycling of asbestos-cement containing waste.

    Science.gov (United States)

    Colangelo, F; Cioffi, R; Lavorgna, M; Verdolotti, L; De Stefano, L

    2011-11-15

    The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm(-1), of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive strength in the range of 2.17 and 2.29 MPa, are measured.

  12. Biological treatment of habitation waste streams using full scale MABRs

    Science.gov (United States)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  13. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  14. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  16. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Science.gov (United States)

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    Science.gov (United States)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  18. Recycling of waste printed circuit boards: a review of current technologies and treatment status in China.

    Science.gov (United States)

    Huang, Kui; Guo, Jie; Xu, Zhenming

    2009-05-30

    From the use of renewable resources and environmental protection viewpoints, recycling of waste printed circuit boards (PCBs) receives wide concerns as the amounts of scrap PCBs increases dramatically. However, treatment for waste PCBs is a challenge due to the fact that PCBs are diverse and complex in terms of materials and components makeup as well as the original equipment's manufacturing processes. Recycle technology for waste PCBs in China is still immature. Previous studies focused on metals recovery, but resource utilization for nonmetals and further separation of the mixed metals are relatively fewer. Therefore, it is urgent to develop a proper recycle technology for waste PCBs. In this paper, current status of waste PCBs treatment in China was introduced, and several recycle technologies were analyzed. Some advices against the existing problems during recycling process were presented. Based on circular economy concept in China and complete recycling and resource utilization for all materials, a new environmental-friendly integrated recycling process with no pollution and high efficiency for waste PCBs was provided and discussed in detail.

  19. Patterns of waste generation, treatment and disposal in the chemical and allied industries in Ghana

    Directory of Open Access Journals (Sweden)

    Osei-Wusu Achaw

    2012-09-01

    Full Text Available Environmental pollution and degradation in urban Ghana has been on the increase as a result of the nations drive towards industrialization, a generally weak regulatory regime, and a lack of capacity to manage the environment. This situation is affecting the well-being and livelihood of affected communities. As part of an effort to address the issue, a thirteen (13 item questionnaire was designed and distributed to seventy (70 companies in the chemical and allied industry to solicit and analyze data and information on the their waste management situation. Forty-seven, representing 67.1%, of the distributed questionnaires were completed and returned. The responses were analyzed using tables, percentages and bar charts. The results revealed that while 80.9% of the respondents generate waste as a result of the operation of the plants, 23.3% directly dump their waste into the environment without any prior treatment. Only one company was found that incinerate its waste, and only four (8.5% had comprehensive waste water treatment plants. The low numbers of companies treating the waste they generate prior to disposal means that the chemical and allied industry is contributing to the environmental pollution and degradation in the country.

  20. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.

    Science.gov (United States)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-09-01

    In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams considered, mainly due to the avoided burdens associated with the production of electricity from the plant. The plasma convertor, key characteristic of the thermal process investigated, although utilising electricity shows a relatively small contribution to the overall environmental impact of the plant. The results do not significantly vary in the scenario analysis. Accounting for biogenic carbon

  1. X-Ray Diffraction Analysis of Bottom Ash Waste after Plasma Treatment

    Science.gov (United States)

    Volokitin, G.; Abzaev, Yu; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.

    2017-04-01

    The paper deals with the plasma-chemical synthesis of melts produced from the bottom ash waste for the production of new construction materials with enhanced performance characteristics. Phase composition of the plasma-treated bottom ash waste is detected by the X-ray diffraction analysis. The bottom ash waste is a mixture of SiO2 minerals. The structure and phase composition of this mixture are investigated after the plasma treatment. The obtained results are compared with the original state of the mixture. The identification and the qualitative content of ash waste as a multi-phase system are complicated by the overlapped reflections and a possible existence of the intermediate amorphous phase.

  2. Thermal treatment of solid waste in view of recycling: Chromate and molybdate formation and leaching behaviour.

    Science.gov (United States)

    Verbinnen, Bram; Billen, Pieter; Vandecasteele, Carlo

    2014-06-01

    Elevated Cr and Mo concentrations are often found in leachates of thermally treated solid waste, but there is no general explanation for this so far. Therefore, we studied the leaching behaviour after thermal treatment as a function of heating temperature and residence time for two types of solid waste: contaminated sludge and bottom ash from municipal solid waste incineration. The leaching behaviour of both waste streams was compared with experiments on synthetic samples, allowing deduction of a general mechanism for Cr and Mo leaching. Cr and Mo showed a similar leaching behaviour: after an initial increase, the leaching decreased again at higher temperatures. Oxidation of these elements from their lower oxidation states to chromate and molybdate at temperatures up to 600 °C was responsible for the increased leaching. At higher temperatures, both Mo and Cr leaching decreased again owing to the formation of an amorphous phase, incorporating the newly formed chromate and molybdate salts, which prevents them from leaching.

  3. Application of landfill treatment approaches for stabilization of municipal solid waste.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1.

  4. Bacterial Treatment and Metal Characterization of Biomedical Waste Ash

    Directory of Open Access Journals (Sweden)

    Shelly Heera

    2014-01-01

    Full Text Available Biomedical waste ash generated due to the incineration of biomedical waste contains large amounts of heavy metals and polycyclic aromatic hydrocarbons (PAHs, which is disposed of in regular landfills, and results in unfavorable amounts of hazardous materials seeping into the ground and may pollute surface water and groundwater. Therefore, it is essential to remove the toxicity of ash before disposal into landfills or reutilization. Environmental characteristic analysis of BMW ash showed increased hardness (1320 mg/L and chloride (8500 mg/L content in leachate compared to World Health Organization (WHO and Environment Protection Agency (EPA guidelines for drinking water (hardness, 300 mg/L; chloride, 250 mg/L. The alkalinity and pH of the ash leachate were 400 mg/L and 8.35, respectively. In this paper, study was carried out to investigate the metal tolerance level of bacterial isolates isolated from soil. The isolate Bacillus sp. KGMDI can tolerate up to 75 mg/L of metal concentration (Mn, Mo, Cr, Fe, Cu, and Zn in enriched growth medium. This shows that the isolated culture is capable of growing in presence of high concentration of heavy metals and acts as potential biological tool to reduce the negative impact of BMW ash on the environment during landfilling.

  5. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  6. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  7. Separation technologies for the treatment of Idaho National Engineering Laboratory wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-10-01

    Currently about 6.8 million L of acidic, radioactive liquid waste that is not amenable to calcination, and about 3800 m{sup 3} of calcine exist at the ICPP. Legal drivers (court orders) and agreements between the state of Idaho, the U.S. Navy, and DOE exist that obligate INEL to develop, demonstrate, and implement technologies for treatment and interim storage of the radioactive liquid and calcine wastes. Per these agreements, all tank waste must be removed from the underground liquid storage tanks by the year 2012, and high-level radioactive waste must be treated and removed from INEL by 2035. Separation of the radionuclides from the wastes, followed by immobilization of the high-activity and low-activity fractions in glass and grout, respectively, is the approach preferred by INEL. Technologies to remove actinides (U, Np, Pu, and Am), Cs, Sr, and possibly Tc from highly acidic solutions are required to process INEL wastes. Decontamination of the wastes to NRC Class A low-level waste (LLW) is planned. Separation and isolation of Resource Conservation and Recovery Act (RCRA) metals (Hg, Pb, Cd, and Cr) from the highly radioactive waste streams may also be required. Remediation efforts will begin in FY 1997 to remove volatile organic compounds (VOCs) and radionuclides (Cs and Sr) from groundwater located at the Test Area North facility at INEL. A plume of VOCs and radionuclides has spread from the former TSF-05 injection well, and a Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) remediation action is under way. A Record of Decision was signed in August 1995 that commits INEL to remediate the plume from TSF-05. Removal of Sr and Cs from the groundwater using commercially available ion-exchange resins has been unsuccessful at meeting maximum contaminant levels, which are 119 pCi/L and 8 pCi/L for Cs and Sr, respectively. Cesium and Sr are the major contaminants that must be removed from the groundwater.

  8. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment.

    Science.gov (United States)

    Angenent, Largus T; Mau, Margit; George, Usha; Zahn, James A; Raskin, Lutgarde

    2008-05-01

    An anaerobic sequencing batch reactor (ASBR), seeded with a biomass inoculum that previously had not been exposed to the macrolide antimicrobial tylosin (mixture of Tylosin A, B, C, and D), was operated for 3 months with swine waste without Tylosin A and for 9 months with swine waste containing Tylosin A at an average concentration of 1.6 mg/L. When swine waste with tylosin was fed to the ASBR, methane production and volatile solids removal did not appear to be inhibited and a methane yield of 0.47 L methane per gram volatile solids fed to the ASBR was observed. Throughout the operating period, Tylosin A levels in ASBR biomass and effluent were below the detection limit of 0.01 mg/L. However, during the first 3 months of operation, the levels of macrolide-lincosamide-streptogramin B (MLSB)-resistant bacteria in the ASBR biomass increased substantially as determined by hybridizations with oligonucleotide probes designed to target MLSB-resistant bacteria. Since no Tylosin A was present in the swine waste during the initial 3 months, the presence of MLSB-resistant bacteria in the swine waste was likely the reason for the increase in resistance. Subsequently, the levels of MLSB-resistant bacteria in ASBR biomass stabilized with an average of 44.9% for the 9 months of operation with swine waste containing Tylosin A. The level of MLSB-resistant bacteria in the swine waste fed to the ASBR during this period averaged 18.0%. The results indicate that anaerobic treatment of a waste stream containing tylosin was effective (based on reactor performance) and that the level of resistant bacteria in the ASBR was substantially higher than in the waste stream fed to this system.

  9. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  10. Developments in odour control and waste gas treatment biotechnology: a review.

    Science.gov (United States)

    Burgess, J E; Parsons, S A; Stuetz, R M

    2001-02-01

    Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.

  11. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  12. Projection of hospital and clinic health care risk waste generation quantities and treatment capacities for the national waste management strategy implementation project

    CSIR Research Space (South Africa)

    Rogers, DEC

    2006-09-01

    Full Text Available This paper addresses the need for quantitative data for planning health care risk waste (HCRW) management from hospitals and clinics in South Africa. Quantitative estimates of HCRW generation and treatment capacity are determined for hospitals...

  13. Techniques of material-flow-specific residual waste treatment; Techniken der stoffstromspezifischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Maak, D.; Collins, H.J. [Technische Univ. Braunschweig, Leichtweiss - Inst. fuer Wasserbau (Germany)

    1998-09-01

    The success achieved with large-scale plants for mechanical-biological residual waste treatment has led to a change of course in waste pretreatment. In view of the low emissions via the water and gas routes from landfilled wastes and the low costs of waste treatment some authorising authorities have meanwhile issued special licences pursuant to clause no. 2.4 of the Technical Code on Household Waste, thus enabling mechanical-biological residual waste treatment plants to continue operations beyond the year 2005. Beside offering a means of treatment and disposal, cost-effective mechanical-biological pretreatment also provides an opportunity for going over to material-flow-specific residual waste treatment. These process stages permit recirculating valuable materials and using other materials for energy production. They can be retrofitted on a modular basis in existing plants. If these advantages of the present innovative pretreatment methods are not used, then mechanical-biological pretreatment can still serve as a preparatory stage for thermal treatment. To date there has been no practical experience with this innovative method of residual waste treatment. However, industrial-scale trials have shown that each individual treatment stage is capable of being carried out successfully. [Deutsch] Die guten Erfolge im grosstechnischen Betrieb von Anlagen zur mechanisch-biologischen Restabfallbehandlung haben zu einer Kursaenderung bei der Vorbehandlung von Abfaellen gefuehrt. Geringe Emissionen der deponierten Abfaelle auf dem Gas- und Wasserpfad sowie geringe Kosten fuer die Behandlung der Abfaelle haben dazu gefuehrt, dass inzwischen bereits einige Genehmigungsbehoerden eine Ausnahmegenehmigung nach Nr. 2.4 der TA Siedlungsabfall erteilt haben und damit der Betrieb von mechanisch-biologischen Restabfallbehandlungsanlagen auch nach 2005 ermoeglicht wird. Neben der alleinigen Behandlung und Deponierung bietet die kostenguenstige Vorbehandlung mit mechanisch

  14. Waste treatment in NUCEF facility with silver mediated electrochemical oxidation technique

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, M.; Sugikawa, S. [Tokai Establishment, Japan Atomic Energy Research Institute, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    Silver mediated electrochemical oxidation technique has been considered one of promising candidates for alpha-bearing waste treatment. Destruction tests of organic compounds, such as insoluble tannin, TBP and dodecane, were carried out by this technique and the experimental data such as destruction rates, current efficiencies and intermediates were obtained. These compounds could be completely mineralized without the formation of reactive organic nitrate associated to safety hazards. On the basis of these results, the applicability of silver mediated electrochemical oxidation technique to waste treatment in NUCEF was evaluated. (authors)

  15. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  16. MICROBE-METAL-INTERACTIONS FOR THE BIOTECHNOLOGICAL TREATMENT OF METAL-CONTAINING SOLID WASTE

    Institute of Scientific and Technical Information of China (English)

    Helmut Brandl; Mohammad A. Faramarzi

    2006-01-01

    In nature, microbes are involved in weathering of rocks, in mobilization of metals from minerals, and in metal precipitation and deposition. These microbiological principles and processes can be adapted to treat particulate solid wastes. Especially the microbiological solubilization of metals from solid minerals (termed bioleaching) to obtain metal values is a well-known technique in the mining industry. We focus here on non-mining mineral wastes to demonstrate the applicability of mining-based technologies for the treatment of metal-containing solid wastes. In the case study presented, microbial metal mobilization from particulate fly ash (originating from municipal solid waste incineration) by Acidithiobacilli resulted in cadmium, copper, and zinc mobilization of >80%, whereas lead, chromium, and nickel were mobilized by 2, 11 and 32%, respectively. In addition, the potential of HCN-forming bacteria (Chromobacterium violaceum,Pseudomonas fluorescens) was investigated to mobilize metals when grown in the presence of solid materials (e.g.,copper-containing ores, electronic scrap, spent automobile catalytic converters). C. violaceum was found capable of mobilizing nickel as tetracyanonickelate from fine-grained nickel powder. Gold was microbially solubilized as dicyanoaurate from electronic waste. Additionally, cyanide-complexed copper was detected during biological treatment of shredded printed circuit-board scraps. Water-soluble copper and platinum cyanide were also detected during the treatment of spent automobile catalytic converters.

  17. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    Science.gov (United States)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  18. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    Science.gov (United States)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  19. Co-digestion of organic solid waste and sludge from sewage treatment.

    Science.gov (United States)

    Edelmann, W; Engeli, H; Gradenecker, M

    2000-01-01

    Solid organic wastes were codigested together with sludge of a sewage treatment plant (STP). In the practical part of the study, a plant to pretreat the organic solid wastes provided by local super markets was constructed at the STP of Frutigen, Switzerland. Up to more than 1 cubic metre of wastes was added to the fermenter of the STP every day. Data collected during 14 months of practical works, showed that for raw fruit and vegetable wastes a two step pretreatment is necessary: First the wastes were chopped and afterwards reduced to a size of 1-2 millimetres, in order to get a homogeneous suspension together with the primary sludge. The vegetable wastes showed excellent digestibility: They seemed to accelerate the digestion process as well as to increase the degree of the anaerobic degradation of the sludge. The energy demand for both, pretreatment and digestion, was 85 kWh/ton of fresh wastes. 20% of the energy was used for the hygienization, a step which does not seem to be necessary for this kind of waste in most of the cases, however. After using the gas for energy conversion, a net yield of 65 kWh/ton of electricity and 166 kWh/ton of heat was measured. Treating cooked kitchen wastes, the net energy production will be higher, because in this case a one step pretreatment will be sufficient. The pretreatment and treatment costs for codigestion on STP's were calculated to be in the range of 55 US$/ton treating half a ton per day and 39 US$/ton treating one ton, respectively. A theoretical feasibility study showed that in Switzerland there is a short term potential on STP's for the codigestion of about 120,000 tons of biogenic wastes per year without big investments. Economic studies about codigestion on agricultural biogas plants showed that the codigestion is a must at the current energy prices, which are far too low for agricultural AD without an additional income by treating solid wastes for third parties.

  20. Organic waste treatment for power production and energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Omer, A.M. [Energy Research Inst., Nottingham (United Kingdom)

    2010-07-01

    Sudan has ample biomass resources that can be efficiently exploited in a profitable and sustainable manner. The basic form of biomass comes mainly from firewood, charcoal and crop residues. Biogas, biofuels and woody biomass are other forms of energy sources that can be derived from organic waste materials. These renewable energy sources have the potential to address climate change concerns. This paper provided an overview of some salient points and perspectives of biomass technology in Sudan. It presented a literature review regarding the ecological, social, cultural and economic impacts of biomass technology. Biomass energy activities in Sudan were described and future plans concerning the optimum technical and economical utilization of biomass energy in Sudan were highlighted. 12 refs., 8 tabs., 4 figs.

  1. Pyrolysis process for the treatment of food waste.

    Science.gov (United States)

    Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian

    2016-10-01

    Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery.

  2. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  3. Comparative study of municipal solid waste treatment technologies using life cycle assessment method

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, A.U. [KTH (Sweden). Environmental Engineering and Sustainable Infrastructure

    2010-04-01

    The aim of the study is to analyze three different waste treatment technologies by life cycle assessment tool. Sanitary landfill, incineration and gasification-pyrolysis of the waste treatment technologies are studied in SimaPro software based on input-output materials flow. SimaPro software has been applied for analyzing environmental burden by different impact categories. All technologies are favorable to abiotic and ozone layer depletion due to energy recovery from the waste treatment facilities. Sanitary landfill has the significantly lower environmental impact among other thermal treatment while gases are used for fuel with control emission environment. However, sanitary landfill has significant impact on photochemical oxidation, global warming and acidification. Among thermal technology, pyrolysis-gasification is comparatively more favorable to environment than incineration in global warming, acidification, eutrophication and eco-toxicity categories. Landfill with energy recovery facilities is environmentally favorable. However, due to large land requirement, difficult emission control system and long time span, restriction on land filling is applying more in the developed countries. Pyrolysis-gasification is more environmental friendly technology than incineration due to higher energy recovery efficiency. Life cycle assessment is an effective tool to analyze waste treatment technology based on environmental performances.

  4. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  5. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    Science.gov (United States)

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  6. Toxicity reduction in the treatment of refinery waste water

    Energy Technology Data Exchange (ETDEWEB)

    Eckenfelder, W.W. Jr.

    1995-12-31

    Aquatic Toxicity in refinery and petrochemical wastewaters may result from chemicals present in the feedstock, chemicals added or generated in the process, or chemicals generated during the wastewater treatment process, usually referred to as soluble microbial products (SMP). In most cases, the chemicals originally present or generated are biodegradable and can be removed in the biological treatment process. In some cases, a physical-chemical source treatment may be required. SMP generated through the wastewater treatment process are non-biodegradable and are best handled by the application of powdered activated carbon (PAC) integrated into the activated sludge process. This paper describes toxicity reduction in refinery effluents.

  7. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  8. Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Ting, Y.P.; Chen, J.P.; Xing, C.H. [National Univ., Singapore (Singapore). Dept. of Chemical and Environmental Engineering; Shi, S.Q. [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering

    2000-07-01

    An advanced primary treatment process for a municipal waste water was systematically studied, using a bio-flocculation-adsorption, sedimentation and stabilization process (BSS). It was shown that the organic removal efficiency was higher than that of the traditional primary treatment processes but lower than that of the traditional secondary treatment processes. Both adsorption and bio-flocculation played an important role in the removal of pollutants. The activated sludge within the bio-flocculation-adsorption tank could be considered a bio-flocculent which improved the quality of the effluent from the primary treatment process. As the effluent of the BSS process did not meet the requirements for a typical secondary effluent, the process may be regarded as an advanced (or enhanced) primary treatment process, suitable for waste water containing a high concentration of suspended solids and colloidal particles. (orig.)

  9. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    of the principles of the anaerobic digestion process and to an optimization of its large-scale implementation. In order to get an overview of the current situation concerning the treatment of the organic fraction of municipal solid waste (OFMSW) in Denmark, interviews were carried out with operators of the biogas...... plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...... and treatment. The quality of the OFMSW treated is the key to smooth operation of the biogas process including a high biogas yield and production of an effluent that is feasible for use as fertilizer on agricultural land. Comparison of the different concepts leads to the conclusion that source-sorting of OFMSW...

  10. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates.

  11. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  12. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  13. Treatment of high-level wastes from the IFR fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-08-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  14. Treatment of high-level wastes from the IFR fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-01-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  15. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  16. WASTE WATER TREATMENT IN VISCOUS CRUDE PROCESSING IN SHENGLI OILFIELDS

    Institute of Scientific and Technical Information of China (English)

    Yang Huaijie; Xu Hui

    1997-01-01

    @@ Apart from sewage pretreatment and stepped control, the Viscous Crude Processing Plant of Shengli Petrochemical General Works has established a new process of sewage treatment featuring with flexible and advanced technology and strong impact strength, with the crude sewage treatment yield reaching more than 95%.

  17. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  18. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  19. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer.

    Science.gov (United States)

    Dalton, James T; Taylor, Ryan P; Mohler, Michael L; Steiner, Mitchell S

    2013-12-01

    This review highlights selective androgen receptor modulators (SARMs) as emerging agents in late-stage clinical development for the prevention and treatment of muscle wasting associated with cancer. Muscle wasting, including a loss of skeletal muscle, is a cancer-related symptom that begins early in the progression of cancer and affects a patient's quality of life, ability to tolerate chemotherapy, and survival. SARMs increase muscle mass and improve physical function in healthy and diseased individuals, and potentially may provide a new therapy for muscle wasting and cancer cachexia. SARMs modulate the same anabolic pathways targeted with classical steroidal androgens, but within the dose range in which expected effects on muscle mass and function are seen androgenic side-effects on prostate, skin, and hair have not been observed. Unlike testosterone, SARMs are orally active, nonaromatizable, nonvirilizing, and tissue-selective anabolic agents. Recent clinical efficacy data for LGD-4033, MK-0773, MK-3984, and enobosarm (GTx-024, ostarine, and S-22) are reviewed. Enobosarm, a nonsteroidal SARM, is the most well characterized clinically, and has consistently demonstrated increases in lean body mass and better physical function across several populations along with a lower hazard ratio for survival in cancer patients. Completed in May 2013, results for the Phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer1 (POWER1) and POWER2 evaluating enobosarm for the prevention and treatment of muscle wasting in patients with nonsmall cell lung cancer will be available soon, and will potentially establish a SARM, enobosarm, as the first drug for the prevention and treatment of muscle wasting in cancer patients.

  20. Formulation and preparation on Hanford Waste Treatment Plan direct feed low activity waste effluent management facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  1. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  2. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  3. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  4. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  5. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  6. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  7. [Muscle-wasting in end stage renal disease in dialysis treatment: a review].

    Science.gov (United States)

    Battaglia, Yuri; Galeano, Dario; Cojocaru, Elena; Fiorini, Fulvio; Forcellini, Silvia; Zanoli, Luca; Storari, Alda; Granata, Antonio

    2016-01-01

    Progressive and generalized loss of muscle mass (muscle wasting) is a frequent complication in dialysis patients. Common uremic signs and symptoms such as insulin-resistance, increase in glucocorticoid activity, metabolic acidosis, malnutrition, inflammation and dialysis per se contribute to muscle wasting by modulating proteolytic intracellular mechanisms (ubiquitin-proteasome system, activation of caspase-3 and IGF-1/PI3K/Akt pathway). Since muscle wasting is associated with an increase in mortality, bone fractures and worsening in life quality, a prompt and personalised diagnostic and therapeutic approach seems to be essential in dialysis patients. At present, nuclear magnetic resonance (NMR), computed tomography (CT), dual-energy x-ray absorptiometry (DXA), impedance analysis, bioelectric impedance analysis (BIA) and anthropometric measurements are the main tools used to assess skeletal muscle mass. Aerobic and anaerobic training programmes and treatment of uremic complications reduce muscle wasting and increase muscle strength in uremic patients. The present review analyses the most recent data about the physiopathology, diagnosis, therapy and future perspectives of treatment of muscle wasting in dialysis patients.

  8. Combining mechanical-biological residual waste treatment plants with grate firing; Kombination MBA mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, E. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1998-09-01

    The promulgation of the Technical Code on Household Waste obliges the local authorities responsible for waste disposal to review existing and prepare new waste management plans. Given the present state of the art the Code`s limit value for loss due to burning of 5% makes thermal treatment of the residual waste practically compulsory. In preparation of these developments and in order to lower costs in general and be able respond flexibly to customer demands ABB is currently undertaking great efforts to provide thermal residual waste treatment plants with a modular design. [Deutsch] Mit Veroeffentlichung der TASi wurden die entsorgungspflichtigen Gebietskoerperschaften gezwungen, bereits vorhandene Abfall-Wirtschaftsplaene zu ueberarbeiten bzw. neue zu erstellen. Technisch laeuft nach derzeitigem Wissensstand der in der TASi vorgegebene maximale Gluehverlust von 5% darauf hinaus, dass eine thermische Behandlung des Restabfalls zwingend vorgegeben ist. Um hierfuer geruestet zu sein, aber auch um generell Kosten zu senken unf flexibel auf Kundenwuensche eingehen zu koennen, unternimmt ABB grosse Abstrengungen, den Aufbau von Anlagen zur thermischen Restabfallbehandlung modular zu gestalten. (orig./SR)

  9. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    Energy Technology Data Exchange (ETDEWEB)

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.

  10. Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production

    NARCIS (Netherlands)

    Marathe, Nachiket P.; Shetty, Sudarshan A.; Shouche, Yogesh S.; Larsson, D.G.J.

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted

  11. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... FOR EXIST-ING AND NEW SOURCES OF POLLUTION § 403.19 Provisions of specific applicability to the... Industrial Users” includes the following Industrial Users in the City of Owatonna, Minnesota: Crown Cork and... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  12. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  13. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  14. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  15. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Science.gov (United States)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  16. ETV POLLUTION PREVENTION, RECYCLING AND WASTE TREATMENT SYSTEMS CENTER (P2/R/WT) BRIEFING

    Science.gov (United States)

    USEPA's ETV program has completed it's 5-year pilot-phase activities and is now in the implementation phase. The 12 environmental media-focused pilots have evolved into 6 center one of which is the new Pollution prevention, Recycling, and Waste Treatment Systems Center. The P2/R/...

  17. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment

    NARCIS (Netherlands)

    Hermann, B.G.|info:eu-repo/dai/nl/304837415; DeBeer, L.; De Wilde, B.; Blok, K.|info:eu-repo/dai/nl/07170275X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2011-01-01

    Many life cycle assessments of bio-based and biodegradable materials neglect the post-consumer waste treatment phase because of a lack of consistent data, even though this stage of the life cycle may strongly influence the conclusions. The aim of this paper is to approximate carbon and energy footpr

  18. Annual Treatment Operation Report of Radioactive Liquid Waste in Temporary Storage

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; LIU; Fu-guo; WANG; Jian-xin; DU; Guang-fei; LI; Wei

    2013-01-01

    This project got the official reply formally in 2011.2013 was the second running year that to treat the radioactive liquid waste in the temporary storage.The main task was cement solidification and evaporation treatment of the radioactive wastewater.The task of each running node had completed

  19. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  20. Water-immiscible solvents for the biological treatment of waste gases

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport fr

  1. Water-immiscible solvents for the biological treatment of waste gases.

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the ga

  2. A contribution for a correct vision of health impact from municipal solid waste treatments.

    Science.gov (United States)

    Cocarta, D M; Rada, E C; Ragazzi, M; Badea, A; Apostol, T

    2009-08-01

    In agreement with the European Union Directives concerning health risks targets, in the present paper data regarding the health risk from different strategies of waste treatment, in particular concerning dioxin emissions, are presented. Three options are considered for municipal solid waste treatment: incineration (with best available technologies (BATs)), an anaerobic/aerobic treatment and an aerobic treatment before landfilling. The process of biostabilization varies case by case but differences between simplified approaches and BAT solutions have been pointed out. In the paper it is also pointed out how important the local context for the health risk from PCDD/F release is: the height of gas release into the atmosphere, the emitted gas velocity and the temperature of release become the most important parameters (apart from the overall amount released) in areas where the population may be close to the plant or where there is agricultural activity in the proximity. However, all the three solutions give an acceptable risk.

  3. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste

    Science.gov (United States)

    Dhamole, Pradip B.; D'Souza, S. F.; Lele, S. S.

    2015-04-01

    Huge amount of wastewater containing nitrogen is produced by various chemical and biological industries. Nitrogen is present in the form of ammonia, nitrate and nitrite. This review deals with treatment of nitrate based effluent using biological denitrification. Because of its adverse effect on aquatic life and human health, treatment of nitrate bearing effluents has become mandatory before discharge. Treatment of such wastes is a liability for the industries and incurs cost. However, the economics of the process can be controlled by selection of proper method and reduction in the operating cost. This paper reviews the advantages and disadvantages of different methods of nitrate removal with emphasis on biological denitrification. The cost of biological denitrification is controlled by the carbon source. Hence, use of alternative carbon sources such as agricultural wastes, industrial effluent or by products is reviewed in this paper. Policies for reducing the cost of nitrate treatment and enhancing the efficiency have been recommended.

  4. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  5. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  6. Monitoring the anaerobic treatment of waste waters; Control en la depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Leon de Mora, C.; Molina Cantero, F.J.; Romero Galey, F.J.; Gomez Banderas, J.M. [Dpto. Tecnologia Electronica. Esc. Univ. Politec. Sevilla, Sevilla, (Spain)

    1997-04-01

    This article describes the results obtained in developing a system for monitoring sewage treatment. The system, supported by a PC, includes a fuzzy logic control algorithm for monitoring the anaerobic treatment of waste waters on the basis of data from sensors attached to an industrial robot (PLC). Its most outstanding features is that it is also capable of evaluating new monitoring strategies using parameters not originally included. (Author) 6 refs.

  7. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  8. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full scale, room temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  9. The thermal waste treatment: A technology for the environment; Termodistruzione dei rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, P. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-09-01

    The present report is divided into three parts: the first describes the combustion technology and energy recovery process, analyses the most efficient devices to reduce exhaust emissions, examines the environmental effects of emissions and reports economical considerations on the technology. The second part describes the commercial, pre commercial and experimental devices and their appliance sectors. The third part analyses the Italian situation taking into account separately industrial and municipal solid wastes. The aim of the distinction is to define for each stream the problems connected to the diffusion of the thermal waste treatment and the obstacles encountered to obtain information about the existent plant.

  10. Drying Pre-treatment on Empty Fruit Whole Bunches of Oil Palm Wastes

    Science.gov (United States)

    Khalib, N. Che; Abdullah, N.; Sulaiman, F.

    2010-07-01

    This study is focused on the drying pre-treatment on whole empty fruit bunches [EFB] oil palm wastes. The drying process of whole EFB wastes by conventional method is investigated using the conventional oven in order to obtain less than 10 mf wt % moisture content. Normally, the biomass is dried to less than 10 mf wt % in most laboratory experiments and commercial processes for thermal conversion technologies such as pyrolysis. The result shows that the moisture content of EFB of less than 10 mf wt % is achieved after 29 hours of drying process.

  11. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...... and treatment. The quality of the OFMSW treated is the key to smooth operation of the biogas process including a high biogas yield and production of an effluent that is feasible for use as fertilizer on agricultural land. Comparison of the different concepts leads to the conclusion that source-sorting of OFMSW...

  12. Waste and resources management. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities (Landfill Ordinance - AbfAblV) - one year on; Abfall- und Ressourcenwirtschaft. 1 Jahr Abfallablagerungsverordnung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R.; Bidlingmaier, W. (eds.)

    2006-07-01

    As early as the beginning of 2005 there were signs of trouble ahead resulting from the new Landfill Ordinance - it was only the extent of the trouble that was somewhat underestimated. Suddenly and unexpected to everyone, the industrial wastes that were supposed to have been avoided or reutilised were there again. These ''returned wastes'', in most cases arisings that were not taken into account during plant design, are currently causing serious capacity problems both in waste incineration and in mechanical biological waste treatment plants. In not a few cases the originally planned supply rates are being exceeded by up to 35%, with dramatic consequences. Another source of problems is the lack of utilisation capacities for high-caloric waste fractions, especially for those from mechanical biological waste treatment. The underlying causes are manifold, ranging from market misjudgment, insufficient fuel processing capacities to supposed or factual quality problems with the generated secondary fuel. The only remedial option available at present - at least from the legal viewpoint - is interim storage. The changed framework conditions for biowaste and green waste utilisation brought about by the Renewable Energy Law offers new interesting perspectives. Numerous unresolved questions and quite as many solution proposals provide reason enough for making residual waste treatment and biowaste utilisation one of the focal topics of the congress. Many EU countries, but also developing and threshold countries, are on the verge of making decisions on waste utilisation and treatment. The experiences, positive and negative, that have been gained to date in Germany with the full-area implementation of residual waste treatment can serve these countries as a valuable guide. Another focal topic of the congress is climate and resource protection.

  13. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2016-09-07

    This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 minutes) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 minutes. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 minutes is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  14. A study on the treatment of radioactive slurry liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gyeong Hwan; Jung, K. J.; Baik, S. T.; Chung, U. S.; Lee, K. W.; Park, S. K.; Lee, D. G.; Kim, H. R

    2001-01-01

    The aim of this study is to offer the advanced technology of the RSLW treatment during the Decontamination and Decommission(D and D) work of the TRIGA research reactors. Basis concept of the RSLW treatment and relating the equipment were investigated in this year of the project. The experimental equipments such as the rotary vacuum filtration equipment and the centrifuge equipment are designed and developed in order to treat the RSLW considering the minimization of the effective dose for operator and the protection of the diffusion by of the radioactive material.

  15. Research for waste water treatment technology with low production of excessive active sludge

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available The article reflects the possibility to create a technological scheme of waste water treatment of domestic and similar type of sewage within minimal amount of excessive active sludge by means of bioreactors with immobilized feed. There are various aspects to be considered: technical, economic, social and ecological. According to the above it is strongly needed to provide a combination of proper waste water treatment, minimal sludge formation and the possibility for a further use of the sludge. One of the ways to achieve the goal above is to use an immobilized feed in the aeration tank. The necessary experiments were carried out in the department of waste water treatment and water ecology. The article includes the scheme of the facility and other parameters of the experiments, which has been carried. The combination of aerobic and anaerobic processes helps to provide proper quality of integrated biological treatment. Chambers of the aeration reactor were also equipped with the polymer feed of various structures. The sludge treatment that was also strongly needed was made by means of aerobic stabilization with the use of ejecting aeration. The results of experiment showed a good effect in both components – sewage and sludge treatment. Afterwards there was also an industrial model launched which confirmed the results of the previous stage.

  16. Assessment of the efficacy of Aspergillus sp. EL-2 in textile waste water treatment.

    Science.gov (United States)

    Gomaa, Ola M; Kareem, Hussein Abd El; Fatahy, Reham

    2012-04-01

    Fungal biomass has the ability to decolorize a wide variety of dyes successfully through a number of mechanisms. A brown rot isolate, previously identified as Aspergillus sp. EL-2, was used in the aerobic treatment of textile waste water efficiently. In the current work, the treated waste water was tested chemically using more than one combined treatment. Microbial toxicity, phytotoxicity, genotoxicity and cytotoxicity were also studied to assess the toxicity level for each treatment. The obtained data suggest that the contribution of more than one mode of treatment is essential to ensure complete destruction of the by-products. The use of gamma irradiation (25 kGy) after the bioremediation step led to the decrease of the by-products of biodegradation as observed by visible spectrum and Fourier transfer infra red spectroscopy (FT-IR). The toxicity assessment presented variable results indicating the need for more than one toxicity test to confirm the presence or absence of hazardous compounds. Brown rot fungus could be used efficiently in the treatment of textile waste water without the risk of obtaining high carcinogenic or genotoxic compounds, especially if combined treatment is employed.

  17. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  18. Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations.

    Science.gov (United States)

    Topp, E; Scott, A; Lapen, D R; Lyautey, E; Duriez, P

    2009-11-01

    Intensive livestock production systems produce significant quantities of excreted material that must be managed to protect water, air, and crop quality. Many jurisdictions mandate how livestock wastes are managed to protect adjacent water quality from microbial and chemical contaminants that pose an environmental and human health challenge. Here, we consider innovative livestock waste treatment systems in the context of multi-barrier strategies for protecting water quality from agricultural contamination. Specifically, we consider some aspects of how enteric bacterial populations can evolve during manure storage, how their fate following land application of manure can vary according to manure composition, and finally the challenge of distinguishing enteric pathogens of agricultural provenance from those of other sources of fecal pollution at a policy-relevant watershed scale. The beneficial impacts of livestock waste treatment on risk to humans via exposure to manured land are illustrated using quantitative microbial risk assessment (QMRA) scenarios. Overall, innovative livestock treatment systems offer a crucially important strategy for making livestock wastes more benign before they are released into the broader environment.

  19. Waste Sludge Characteristics of a Wastewater Treatment Plant Compared with Environmental Standards

    Directory of Open Access Journals (Sweden)

    AR Mesdaghinia

    2004-06-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. On the other hand, this sludge has benefits for plants and soils. Thereupon, land application of sludge has received much attention over the traditional incineration and dump in sea. The comprehensive regulations of U.S.EPA title 40 CFR parts 503 include criteria and standards for land application of sludge. One of the most important wastewater treatment plants in Tehran, Iran is Shoosh Plant, which applies its waste sludge in agricultural lands after dewatering in drying beds. In this research, waste sludge from drying beds was examined according to 40 CFR parts 503. Results indicate that the dehydrated sludge has not the characteristics required for final discharge. If the dewatering process in the existing beds of the plant would be modified according to title 40 CFR part 503, the standard of Pathogen Reduction class B would be achieved. Waste sludge of drying bed must be applied in agricultural land with respect to the conditions of application method that is presented in vector attraction reduction. Concentration of this waste sludge is less than ceiling concentration limits identified by title 40 CFR parts 503.

  20. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1993-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  1. Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China

    Institute of Scientific and Technical Information of China (English)

    Jingbo GUO; Fang MA; Yuanyuan QU; Ang LI; Liang WANG

    2012-01-01

    China now faces double challenges of water resources shortage and severe water pollution. To resolve Chinese water pollution problems and reduce its impacts on human health, economic growth and social develop- ment, the situation of wastewater treatment was investi- gated. Excess sludge and greenhouse gases (GHGs) emitted during wastewater treatment were also surveyed. It is concluded that Chinese water pollution problems should be systematically resolved with inclusion of wastewater and the solid waste and GHGs generated during wastewater treatment. Strategies proposed for the wastewater treatment in China herein were also adequate for other countries, especially for the developing countries with similar economic conditions to China.

  2. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  3. Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.

    Science.gov (United States)

    Anderson, Stephen P.

    Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.…

  4. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    Science.gov (United States)

    Aleluia, João; Ferrão, Paulo

    2017-09-06

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD2015/ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD2015/ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  5. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  6. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  7. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Timo Pittmann

    2017-06-01

    Full Text Available This work describes the production of polyhydroxyalkanoates (PHA as a side stream process on a municipal waste water treatment plant (WWTP and a subsequent analysis of the production potential in Germany and the European Union (EU. Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT and withdrawal (WD in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR of 1913 mgVFA/(L×d and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016 could be produced on European waste water treatment plants.

  8. Investigation on the characteristics of liquid wastes depending on their generation sources and study on optimum treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Guk; Kim, Dong Chan; Shin, Dae Hyun; Son, Seung Geun; Roh, Nam Sun; Woo, Je Kyung [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The major research contents conducted this year are as follows: (1) environmental regulation with respect to the treatment of the liquid waste in the U.S.A., (2) the present status of the generation and treatment of liquid wastes for large producers(>1,000 ton/year), (3) analysis for heating value element, heavy metal content, halogenated species on collected samples, (4) investigation on estimation method of energy recovery rate from liquid waste, (5) design of a lab. scale reactor which could be capable of conducting thermal decomposition test with small quantity of sample. In this study, present status of liquid waste generation and treatment is investigated, and thermal decomposition characteristics are studied using a lab. scale thermal reactor. The purpose of this research is to divide liquid waste into groups and to present best treatment method for their each group. (author). 24 refs., 21 figs., 23 tabs.

  9. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  10. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  11. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  12. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    Science.gov (United States)

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  13. Current perspectives on biomedical waste management: Rules, conventions and treatment technologies

    Directory of Open Access Journals (Sweden)

    Malini R Capoor

    2017-01-01

    Full Text Available Unregulated biomedical waste management (BMWM is a public health problem. This has posed a grave threat to not only human health and safety but also to the environment for the current and future generations. Safe and reliable methods for handling of biomedical waste (BMW are of paramount importance. Effective BMWM is not only a legal necessity but also a social responsibility. This article reviews the current perspectives on BMWM and rules, conventions and the treatment technologies used worldwide. BMWM should ideally be the subject of a national strategy with dedicated infrastructure, cradle-to-grave legislation, competent regulatory authority and trained personnel. Improving the management of biomedical waste begins with waste minimisation. These standards, norms and rules on BMWM in a country regulate the disposal of various categories of BMW to ensure the safety of the health-care workers, patients, public and environment. Furthermore, developing models for the monitoring of hospital health-care waste practices and research into non-burn eco-friendly sustainable technologies, recycling and polyvinyl chloride-free devices will go in long way for safe carbon environment. Globally, greater research in BMWM is warranted to understand its growing field of public health importance.

  14. Life Cycle Assessment of Waste Water Treatment Plants in Ireland

    Directory of Open Access Journals (Sweden)

    Greg Mcnamara

    2016-09-01

      The Urban Wastewater Treatment Directive 91/271/EEC introduced a series of measures for the purpose of protecting the environment from the adverse effects of effluent discharge from wastewater treatment plants.  There are environmental costs associated with attaining the required level of water quality set out in the directive such as greenhouse gas emissions due to energy production, and ecotoxicity from sludge application to land.  The goal of this study is to assess the environmental costs in an Irish context, focusing specifically on the effects of variation in scale and discharge limitation. Life cycle assessment is the analytical tool used to evaluate the environmental impact.  The life cycle impact assessment methodology developed by the Centre of Environmental Science, Leiden University (2010 has been adopted and implemented using GaBi 6.0 life cycle assessment software.  Two plants of varying size and location were chosen for the study. The study found that energy consumption and sludge application to land are the largest contributors to the overall environmental impact associated with the treatment process at both plants.  Economies of scale were observed in energy usage during secondary aeration.   

  15. [Odor Emission Characteristics from Biochemical Treatment Facilities of Kichen Waste in China].

    Science.gov (United States)

    Zhang, Yan; Wang, Yuan-gang; Lu, Zhi-qiang; Han, Meng; Shang, Xi-bin; Cao, Yan; Zhang, Jun

    2015-10-01

    Xining, Ningbo and Beijing were closen as the representative cities about biochemical treatment of kichen waste. The treatment facilities of these cities were investigated and set as the sampling points. The main compositions and the material contents were analyzed by GC/MS, the odor concertration was obtained by the Triangle odor bag method. The results showed that oxygenated hydrocarbons including alcohol, aldehyde, ketone, ester were higher than others in the odor gases, however, the largest contribution to odor pollution were sulfocompounds and the 2nd materials were terpenes; According to the research of the three enterprises, ethyl alcohol, limonene, sulfuretted hydrogen, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, acetaldehyde and ethyl acetate were likely to be considered as the typical odorants from the biochemical treatment facilities of kichen waste.

  16. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  17. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  18. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  19. Comparison of different treatment methods for protein solubilisation from waste activated sludge.

    Science.gov (United States)

    Xiao, Keke; Chen, Yun; Jiang, Xie; Seow, Wan Yi; He, Chao; Yin, Yao; Zhou, Yan

    2017-10-01

    Biomaterials recovery from wasted activated sludge has become an increasing interesting research topic. The purpose of this study was to systemically evaluate different sludge disintegration methods (ultrasonic, alkaline, and thermal treatments) for protein solubilisation from waste activated sludge (WAS). Compared to control without treatment, the soluble protein concentration increased by 11, 23 and 12 times under the optimal treatment conditions (ultrasonic treatment of 1 W mL(-1), alkaline treatment of pH 12 and thermal treatment at 80 °C). The increased soluble protein were significantly correlated with the release of total organic carbon (TOC), total dissolved nitrogen (TDN) and total organic nitrogen (TON) in soluble EPS, and the degradation of above parameters in tightly bound EPS. For all sludge samples treated by various methods, tyrosine-like protein with molecular weight less than 20 kDa predominated, and alkaline treatment at pH 12 showed the highest protein dominance. Further surface analysis of sludge by X-ray photoelectron spectroscopy indicated this might be related with the significant protein-N conversion occurred at pH 12. The economic analysis indicated alkaline treatment at pH 12 was economically feasible with a net saving of 25.57 USD per ton wet sludge compared to conventional sludge treatment and disposal method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2014-01-01

    Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.

  1. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    . Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.

  2. Industrial Waste Treatment in Ammonia Plant%合成氨生产的三废治理

    Institute of Scientific and Technical Information of China (English)

    汝志山

    2013-01-01

      Describe the sources and characteristics of the industrial waste , including waste water , waste gas and industrial residue . Take the appropriate treatment , and some economic benefits are achieved .%  介绍合成氨生产三废(废水、废气、废渣)的来源及特性,采取相应的治理措施后,取得了一定的效益。

  3. Argonne National Laboratory`s photo-oxidation organic mixed waste treatment system - installation and startup testing

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-09-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig.

  4. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  5. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  6. Treatment Of Municipal Waste Water In Salem City

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available The treatment processes and quality of the final effluent produced by tertiary filtration for phosphorus removal typically meet state criteria for wastewater reclamation. Reuse of this high quality effluent can be an attractive alternative to direct discharge into surface waters in situations where restrictive NPDES permit limitations apply. In this report, EPA region 10 presents observations of advanced wastewater treatment installed in Salem city. These facilities employ chemical addition and a range of filtration technologies which have proven to be very effective at producing an effluent containing low levels of phosphorus. Tamil Nadu Government Made A Policy Announcement Of Providing Under Ground Sewerage Scheme In All Urban Local Bodies In A Phased Manner At District Head Quarter Towns. The Municipal Sewerage Collection Network Systems Are Implemented and the Household Sewage Are Collected and Moved to the Collection Chamber of STP. The STP consists of various unit operations and processes to treat the raw sewage into the final treated effluent quality as per the stipulated standards. The project will have construction phase and operation phase impacts which have been assessed and the Environment Impact Assessment has been prepared.

  7. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  10. Effects of deodorants on treatment of boat holding-tank waste

    Science.gov (United States)

    Walker, William R.; Haley, Carol J.; Bridgeman, Phyllis; Goldstein, Stephen H.

    1991-05-01

    A literature search and survey of Virginia, USA, campgrounds with RV pump-out stations were used to determine whether boat holding-tank deodorant chemicals would have deleterious effects on marina septic systems or package treatment plants. Laboratory studies reported in the literature indicate that these chemical additives could affect septic system function in three ways: (1) active ingredients in the additives can impair sewage degradation in septic tanks, causing sludge buildup and overflow of solids into the drainfield, (2) additive chemicals might enter the drainfield and, in high enough concentrations, reduce the drainfield's ability to degrade waste, or (3) toxic additive chemicals might migrate from the drainfield to ground or surface water. Laboratory studies also show that some ingredients added to holding tanks interfere with functioning of activated sludge treatment process. Experience in the field and in other laboratory studies suggests that factors such as dilution of treated waste with untreated waste and the characteristics of the sewage to be treated can reduce the possibility of damage to septic and activated sludge systems. The campground owners surveyed indicated that they have few problems with their septic systems in spite of the presence of chemical additives in the RV waste. However, most of them practice good septic system maintenance and have devised other means of ensuring that their systems function efficiently. In addition, the survey indicates that most Virginia campgrounds get only seasonal use (as would marinas in Virginia), allowing their systems to recover between peak seasons.

  11. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    Science.gov (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT.

  12. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    Science.gov (United States)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment.

  13. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    Science.gov (United States)

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO2, sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  14. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  15. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass.

  16. Biotechnology and hazardous waste treatment; Part 3: Potential application for biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H.F

    1990-06-01

    The application of biotechnology to hazardous waste treatment is reviewed. Discussion is included of reasons for the current lack of success of biotechnological applications and the most promising potential applications are pointed out. It is suggested that land treatment applications offer little potential for use of advanced biotechology due to the highly varied and biologically competitive environment of soils. Aqueous wastes, particularly groundwater and wastewater, are the matrices that should receive the most attention. The approach chosen should use technologies, such as biofilm or immobilization, that retain and provide competitive advantages for introduced organisms or enzymes. The optimal organisms for treatment may be ones which are not commonly used in conventional treatment of laboratory research. The compounds targeted for treatment should be widespread contaminants which are resistant to conventional biological treatment and for which competing technologies are either very expensive or ineffective. Chlorinated pesticides, polychlorinated biphenyls, and chlorinated solvents are promising candidates for such treatment. Some possibilities are seen for treatment of polyaromatic hydrocarbons with four or more rings.

  17. Quantification of greenhouse gas emissions from a biological waste treatment facility

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Mønster, Jacob

    2017-01-01

    influence on the overall environmental impact of the treatment facility, assessed by consequential life cycle assessment. Including the higher whole-site fugitive emissions led to an increase in global warming potential, from a saving of 97kgCO2-eq.tonne-1 of treated waste (wet weight) to a loading of 71kg......Whole-site emissions of methane and nitrous oxide, from a combined dry anaerobic digestion and composting facility treating biowaste, were quantified using a tracer dispersion technique that combines a controlled tracer gas release from the treatment facility with time-resolved concentration...... CO2-eq. tonne-1, ultimately flipping the environmental profile of the treatment facility....

  18. Feed Composition for Sodium-Bearing Waste Treatment Process, Rev. 3

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Marshall

    2003-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  19. Feed Composition for Sodium-Bearing Waste Treatment Process, Rev. 3

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Marshall

    2003-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  20. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    Science.gov (United States)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  1. Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case.

    Science.gov (United States)

    Vandecasteele, C; Wauters, G; Arickx, S; Jaspers, M; Van Gerven, T

    2007-01-01

    An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

  2. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  3. Summary of Remediated and Unremediated Nitrate Salt Surrogate Testing in Support of the Waste Treatment Permit Application to the New Mexico Environment Department (NMED)

    Energy Technology Data Exchange (ETDEWEB)

    Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report briefly summarizes the surrogate testing that was done in support of our understanding of this waste form.

  4. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  5. Synthesis of Cationic PEM Emulsion and Application in Waste Water Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; LI Min; FANG Yi; SONG Hong; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    Cationic polymer as a kind of flocculant is widely applied in purification treatment of waste water. Because it has positive charge group, it is able to connect strongly the suspended matters, short cellulose and other microparticles. The research on synthesis of cationic polymer and application in treatment of waste water is very universal abroad. But domestic research on those is not general. The technology of synthesis of PEM is simple, and the production cost is low. It is easy to apply in treatment of waste water.Synthesis of PEM Emulsion FlocculantSome distilled water, PVA(poly(vinyl alcohol)), EA(ethyl acrylate), and K2S2O8(potassium persulfate) were put into reaction vessel. Kept stirring up under nitrogen. When heated the solution to 40℃, dropped the water solution of MTA[(2-methacryloxylethyl)trimethyl ammonium].Maintained the temperature at 70℃, reacted about 7-8 hours. Then got the PEM emulsion. Changed the ratio of EA and MTA. Obtained a series of PEM emulsions.Stability and Convertibility of PEM EmulsionThe test results showed that when the EA/MTA was 85/15, the PEM emulsion was most stable.When the total monomer quantity was 35%, the convertibility of PEM emulsion was the highest,i.e.98.6%.The MTA Copolymerization Ratio and Morphology of PEM EmulsionWhen the monomers EA/MTA=85/15 and total monomer quantity was 35%, the MTA copolymerization ratio of PEM emulsion was 95.15%(the highest), and the PEM emulsion was some microspheres with 100-180nm of diameter.The Test Results of PEM Emulsion in Treatment of Waste Water The PEM emulsion flocculant was applied in treatment of waste water of paper mill, and measured the precipitation time(t) and transmittancy(T). The test results were showed in table 1. The optimum value of PEM which was able to make the waste water of paper mill into clear water was 0.008%.

  6. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States); Miller, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods. Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory

  7. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Dorge, S., E-mail: sophie.dorge@uha.fr [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Trouve, G. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Venditti, D.; Durecu, S. [TREDI Departement de Recherche, Technopole de Nancy-Brabois, 9 avenue de la Foret de Haye, BP 184, 54505 Vandoeuvre-les-Nancy (France)

    2009-07-30

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was {approx}64%, while a {approx}36% fraction remained in the residual bottom ashes. But interestingly, while at 850 {sup o}C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 {sup o}C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  8. Nuclear Waste Treatment Program annual report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1989-11-01

    Much emphasis continues to be on the transfer of remote design technology for components integral to the West Valley Demonstration Project's (WVDP) vitrification process. In addition to preparing equipment specifications and drawings, Pacific Northwest Laboratory (PNL) staff also participated in numerous design coordination meetings and reviews of drawings prepared by other WVDP contractors. Nearly 200 jumper drawings for the vitrification cell were prepared by this program in FY 1988. The remote jumpers connect vessels in the cell to each other for the transfer of solutions and provide for the flow of materials, instrumentation signals, and power from outside the cell. Analysis required in preparing the jumper designs involved balance, thermal stress, seismic, set-down stress, and displacement calculations. Design efforts were begun on the canister decontamination and swipe station and on the remote maintenance station. Equipment selection and layouts of the vitrification off-gas treatment system, including a reamer to remotely clean the melter off-gas line, were finalized. Also finalized were the designs for the high-efficiency particulate air (HEPA) filter assemblies for heating, cooling and air conditioning of the vitrification cell.

  9. Composition of simulants used in the evaluation of electrochemical processes for the treatment of high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1994-06-27

    Four simulants are being used in the evaluation of electrochemical processes for the treatment of high-level wastes (HLW). These simulants represent waste presently stored at the Hanford, Idaho Falls, Oak Ridge, and Savannah River sites. Three of the simulants are highly alkaline salt solutions (Hanford, Oak Ridge, and Savannah River), and one is highly acidic (Idaho Falls).

  10. Treatment of leachates of sanitary landfills of urban solid wastes. Tratamiento de lixiviados de vertederos controlados de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Iza Lopez, J. (Departamento de Ingenieria Quimica y de Medio Ambiente, ETSII, Bilbao (Spain))

    1994-01-01

    The method more used for Urban Solid Wastes is the sanitary landfill. Its management is similar to the industrial process plant. The minimization techniques of wastes are applicated to reduce the environmental impact and to increase the degradation process in order to improve the biogas as alternative energy. This article analyzes the anaerobic digestion, the leachates characterization and treatment of leachates. (Author)

  11. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  12. The function of thermal treatment of waste in the Vienna waste management concept; Die Funktion der thermischen Abfallbehandlung im Abfallwirtschaftskonzept von Wien

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, M. [Technische Univ. Berlin (Germany). Fachgebiet Abfallwirtschaft

    2004-07-01

    Thermal waste treatment has a key role in the waste management system of Vienna. As landfills will be prohibited and waste volumes will increase, further capacities will have to be provided. Another incinerator will be constructed in order to reduce the waste volume, to relieve landfills, to reduce the cost of land regeneration after pollution, and to provide additional energy for district heating. (orig.) [German] Die thermischen Abfallbehandlungsanlagen nehmen im Wiener Abfallwirtschaftssystem eine Schluesselrolle ein. Sie sind nach derzeitigem Stand der Technik das nachhaltigste Entsorgungsverfahren fuer nicht schadlos verwertbare Abfaelle. Aufgrund des Deponierungsverbots der Deponieverordnung fuer unzureichend behandelte Abfaelle sowie der prognostizierten Zunahme von Restmuellaufkommens muessen in Wien kuenftig weitere Behandlungskapazitaeten geschaffen werden. Mit dem Bau einer weiteren Muellverbrennungsanlage werden die abzulagernden Abfallmengen und die entstehenden Umweltbelastungen durch ihre Deponierung reduziert, Altlastenbeitraege gespart sowie zusaetzliche Energie fuer die Fernwaermeversorgung bereitgestellt. (orig.)

  13. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  14. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR

    2008-01-23

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process.

  15. Tertiary Treatment of Effluent from Holston AAP (Army Ammunition Plant) Industrial Liquid Waste Treatment Facility. 4. Ultraviolet Radiation and Hydrogen Peroxide Studies: TNT, RDX, HMX, TAX, and SEX

    Science.gov (United States)

    1984-03-01

    AAP Technical Report INDUSTRIAL LIQUID WASTE TREATMENT FACILITY Feb 1983 - Aug 1983 IV. ULTRAVIOLET RADIATION AND HYDROGEN PEROXIDE 1. PERPnRUINe ORO ...ultraviolet light. The production of nitrate-nitrogen and loss of total organic carbon was reportedly indicative of the mineralization of TNT. 5...Treatment of Effluent from Holston AAP Industrial Liquid Waste Treatment Facility. II. Corona Oxidation Studies: TNT, RDX, HMX, TAX, and SEX. Technical

  16. [Treatment of asbestos-containing waste products to prevent harm to the lungs ].

    Science.gov (United States)

    Morimoto, Yasuo; Higashi, Toshiaki; Chiba, Osamu; Ishiwata, Hiroyuki; Takanami, Tetsuo

    2009-05-01

    The amount of industrial wastes with asbestos such as dismantled construction materials has increased. We have reviewed the effect of asbestos-containing products subjected to harmless treatment on the lungs. Usually, the harmless treatment of asbestos is confirmed by the disappearance of fibrous materials and crystal structures by electron microscopy and X-ray diffraction. However, it is very important to perform animal studies and in vitro studies in order to examine the effect of the treated asbestos-containing products on the lungs. From previous treatments of asbestos using acids or high temperature, almost treated materials tended to show decreased toxicity in vitro and in vivo studies. There are some reports of the adverse effects of the treatment. If new harmless treatments of asbestos are developed, it is necessary to perform animal studies and in vitro studies of asbestos-containing products using new harmless treatments.

  17. Research on treatment and disposal of RI and Research Institute Waste. Progress in Department of Fuel Cycle Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Department of Fuel Cycle Safety Research, JAERI, has been carrying out research on safe and rational disposal systems of radioactive wastes arising from medical activities and research institutes (RI and Research Institute Waste). The research area includes a study on molten solidified waste form, a geological survey on Japan, a proposal on integrated disposal systems, data acquisition for safety evaluation, and a safety analysis of disposal systems. This report introduces progress and future works for the treatment and disposal of RI and Research Institute Waste. (author)

  18. Comparison of alternative treatment systems for DOE mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

  19. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  20. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.