WorldWideScience

Sample records for waste treatment processes

  1. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  2. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  3. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  4. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  5. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  6. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  7. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  8. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  9. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  10. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  11. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  12. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  13. Reliability analysis of common hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption

  14. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Robert D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  15. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  16. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  17. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  18. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  19. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  20. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  1. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  2. Membrane preparation and process development for radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kim, G. W.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil.

  3. Membrane preparation and process development for radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. W.; Kim, S. K.

    2012-01-01

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil

  4. Process development for treatment of fluoride containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahesh; Kanvinde, V Y [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many chemical and metallurgical industries generate liquid wastes containing high values of fluorides in association of nitrates and other metals. Due to harmful effects of fluorides these type of wastes can not be disposed off in the environment without proper treatment. Bench-scale laboratory experiments were conducted to develop a process scheme to fix the fluorides as non-leachable solid waste and fluoride free treated liquid waste for their disposal. To optimize the important parameters, simulated synthetic and actual wastes were used. For this study, three waste streams were collected from Nuclear Fuel Complex, Hyderabad. (author). 6 tabs., 1 fig.

  5. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  6. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  7. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  8. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  9. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  10. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  11. Innovative processes for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Pacary, V.; Barre, Y.; Plasari, E.

    2008-01-01

    Full text of publication follows: Because of the high salinity (0.5 to 2 M) of liquid wastes and the variability of their composition, the method which is the most appropriate and commonly used to remove the contaminants consists in the in situ formation of adsorbent particles in the waste stream. This technique is often called coprecipitation. To increase the efficiency of this treatment, a study is performed to point out the impact of the choice of the process and the influence of operating parameters (mean residence time, stirring speed, etc.) on the formation of crystals and ultimately on their ability to capture radionuclide. Barium sulphate was chosen as a reference because it is a well known precipitate and a material used in the decontamination facilities to remove radiostrontium. Two issues are encountered with the classic treatments which are consequences of the variability of effluents composition. On the one hand when high activity effluents have to be treated, the efficiency of the classic processes can not be sufficient and the liquid must be once again decontaminated. Thus the volume of disposal waste produced by the treatment is doubled. On the other hand when low activity effluents have to be treated, the classic processes produce a low activity waste. Consequently the volume of storage occupied by this waste is disproportionate with regard to its low activity. To return the more flexible process, various configurations were tested. They can be classified in two categories: improvements of the classic treatments and new types of reactors. Because of the good results which are obtained, these processes are patent pending. To support the experimental investigations, a modelling study at the reactor scale is initiated to distinguish the influence of each process parameter. These models assume that the surface of adsorbent particles is continuously renewed by crystal growth. The aim of this work is to determine the decisive parameters which allow the

  12. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  13. Process of liquid radioactive waste treatment in nuclear power plant and development trend

    International Nuclear Information System (INIS)

    Liu Jiean; Wang Xin; Liu Dan; Zhu Laiye; Chen Bin

    2014-01-01

    The popular liquid radioactive waste treatment methods in nuclear power plants (NPP) are Chemical precipitation, evaporation, ion exchange, membrane treatment, chemical coagulation and activated carbon absorption and so on. 'Filter + activated carbon absorption (Chemical coagulation) + ion exchange' has a good prospect for development, as its simple process, high decontamination factor, low energy consumption and smaller secondary wastes. Also the process is used in Sanmen and Haiyang Projects. The severe incident in NPP set an even higher demand on liquid radioactive waste treatment. The new type treatment materials, optimization of the existed treatment, combination of treatment and the mobile treatment facility is the development trend in liquid radioactive waste treatment in NPP. (authors)

  14. Discussion about the application of treatment process for dehydrated wet waste at nuclear power station

    International Nuclear Information System (INIS)

    Li Guanghua; Wu Qiang

    2009-01-01

    In nuclear power station, the most popular treatment about low level radioactive wet waste generated during the unit operating and maintenance is embedded by cement. For radioactive waste minimization, this article introduces a new treatment process to dehydrate and compress wet waste. According to the development and application of the treatment process for the wet waste, and comparing with the formerly treatment-the cement embedding, prove that the new treatment can meet the purpose for volume reduction of wet waste. (authors)

  15. Use of ferric- and ferrous-salts in liquid waste treatment processes

    International Nuclear Information System (INIS)

    Efremenkov, V.M.; Toropov, I.G.; Toropova, V.V.; Satsukevich, V.M.; Davidov, J.P.; Jabrodsky, V.N.; Prokshin, N.E.

    1995-01-01

    Treatment of spent decontamination solutions is the most complicated task in the whole problem of management of liquid radioactive waste, because quite often they have complex compositions, which makes it difficult to find for them effective and non-expensive treatment technology. New methods of treatment of such a waste is proposed based on use of specific sorption ability of ferro- and ferri-species in solution. These species are often present in solution as the by-products, and in combination with other components of decontamination solution they can be used as initial substances for synthesis of valuable sorbents directly in treating solution. Using specific compositions and conditions in solution, it is possible to make liquid waste treatment process more effective and less expensive. Particular examples of this process is presented in this work

  16. Improvement for waste water treatment process of a uranium deposite and its effect

    International Nuclear Information System (INIS)

    Huang Jimao

    2013-01-01

    Uranium was recovered from alkaline uranium ores by heap leaching and traditional agitation leaching methods at a uranium mine, and the waste water (including waste water produced in hydrometallurgy process and mine drainage) was treated by using chemical precipitation method and chemical precipitation loading method. It was found that the removal rate of uranium by the waste water treatment process was not satisfactory after one year's run. So, the waste water treatment process was improved. After the improvement, removal rate of CO 3 2- ,HCO 3 - , U and Ra was enhanced and the treated waste water reached the standard of discharge. (author)

  17. Integrated process analysis of treatment systems for mixed low level waste

    International Nuclear Information System (INIS)

    Cooley, C.R.; Schwinkendorf, W.E.; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE's mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements

  18. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  19. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  20. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  1. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  2. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  3. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  4. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  5. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  6. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  7. Design of Biochemical Oxidation Process Engineering Unit for Treatment of Organic Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty; Tarigan, Cerdas

    2010-01-01

    Organic radioactive liquid waste from nuclear industry consist of detergent waste from nuclear laundry, 30% TBP-kerosene solvent waste from purification or recovery of uranium from process failure of nuclear fuel fabrication, and solvent waste containing D 2 EHPA, TOPO, and kerosene from purification of phosphoric acid. The waste is dangerous and toxic matter having low pH, high COD and BOD, and also low radioactivity. Biochemical oxidation process is the effective method for detoxification of organic waste and decontamination of radionuclide by bio sorption. The result process are sludges and non radioactive supernatant. The existing treatment facilities radioactive waste in Serpong can not use for treatment of that’s organics waste. Dio chemical oxidation process engineering unit for continuous treatment of organic radioactive liquid waste on the capacity of 1.6 L/h has been designed and constructed the equipment of process unit consist of storage tank of 100 L capacity for nutrition solution, 2 storage tanks of 100 L capacity per each for liquid waste, reactor oxidation of 120 L, settling tank of 50 L capacity storage tank of 55 L capacity for sludge, storage tank of 50 capacity for supernatant. Solution on the reactor R-01 are added by bacteria, nutrition and aeration using two difference aerators until biochemical oxidation occurs. The sludge from reactor of R-01 are recirculated to the settling tank of R-02 and on the its reverse operation biological sludge will be settled, and supernatant will be overflow. (author)

  8. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  9. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Kuchynka, D.J.

    1994-01-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper

  10. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    International Nuclear Information System (INIS)

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-01-01

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility

  11. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  12. Treatment of tanneries waste water by ultrasound assisted electrolysis process

    International Nuclear Information System (INIS)

    Farooq, R.; Ahmed, Z.; Gilani, M. A.; Durrani, M.; Mahmood, Q.; Shaukat, S. F.; Choima, N.

    2013-01-01

    The leather industry is a major producer of wastewater and solid waste containing potential water and soil contaminants. Considering the large amount and variety of chemical agents used in skin processing, the wastewaters generated by tanneries are very complex. Therefore, the development of treatment methods for these effluents is extremely necessary. In this work the electrochemical treatment of a tannery wastewater by ultrasound assisted electrochemical process, using stainless steel and lead cathode and titanium anodes was studied. Effect of ultrasound irradiation at various ultrasonic intensities 0, 40, 60 and 80% on electrochemical removal of chromium was investigated. Experiments were conducted at two pH conditions of pH 3 and 9. Significant removal of chromium was found at pH 3 and it was also noticed that by increasing ultrasonic intensities, percentage removal of chromium and sulfate also increases. The optimum removal of chromium and sulfate ions was observed at 80% ultrasonic intensity. The technique of electrolysis assisted with ultrasonic waves can be further improved and can be the future waste water treatment process for industries. (author)

  13. Development of the fluidized bed thermal treatment process for treating mixed waste

    International Nuclear Information System (INIS)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-01-01

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures (∼ 525--600 degree C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB's) with 99.9999% (''six-nines'') destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na 2 CO 3 ) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste

  14. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Swanson, J.L.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these wastes (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  15. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Swanson, J.L.; Ross, W.A.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  16. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    Science.gov (United States)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  17. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  18. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  19. Treatment of solid wastes. Preventing waste production, recovery, waste collection, waste disposal, sanitation. Procedures, technical processes, legal foundations. 2. rev. ed. Behandlung fester Abfaelle. Vermeiden, Verwerten, Sammeln, Beseitigen, Sanieren. Verfahrensweise, technische Realisierung, rechtliche Grundlagen

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, K.; Emberger, J.

    1990-01-01

    The book 'Treatment of Solid Wastes' was compiled by the group 'Environmental Protection/Waste Disposal' and looks at disposal methods and processes. The initial chapters deal with technical methods of environmental protection, describe laws and legal regulations pertaining to waste disposal, explain the quantities and composition of the waste matter and give an overview of the treatments which are available. Methods and technical process of waste collection, transport, sorting, recapturing of valuable matter, biochemical and thermal conversion and depositing. Treatment of poisonous wastes and old sites are dealt with in the final chapters. (orig./EF).

  20. Application of analytic hierarchy process in a waste treatment technology assessment in Mexico.

    Science.gov (United States)

    Taboada-González, Paul; Aguilar-Virgen, Quetzalli; Ojeda-Benítez, Sara; Cruz-Sotelo, Samantha

    2014-09-01

    The high per capita generation of solid waste and the environmental problems in major rural communities of Ensenada, Baja California, have prompted authorities to seek alternatives for waste treatment. In the absence of a selection methodology, three technologies of waste treatment with energy recovery (an anaerobic digester, a downdraft gasifier, and a plasma gasifier) were evaluated, taking the broader social, political, economic, and environmental issues into considerations. Using the scientific literature as a baseline, interviews with experts, decision makers and the community, and waste stream studies were used to construct a hierarchy that was evaluated by the analytic hierarchy process. In terms of the criteria, judgments, and assumptions made in the model, the anaerobic digester was found to have the highest rating and should consequently be selected as the waste treatment technology for this area. The study results showed low sensitivity, so alternative scenarios were not considered. The methodology developed in this study may be useful for other governments who wish to assess technologies to select waste treatment.

  1. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  2. High performance biological process for waste water treatment proven in operation

    International Nuclear Information System (INIS)

    Timm, C.; Wienands, H.; Brauch, G.; Schlaeger, M.

    1993-01-01

    A BIOMEMBRAT plant has been in operation for over one year at the Thor Chemie GmbH facility at Speyer, Germany. The process is particularly suitable for waste water with a high organic content and with degradation-resistant components or high nitrogen contents. This article presents the operating results obtained so far with the waste water treatment plant and the operator's experience. (orig.) [de

  3. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  4. Conclusions on the two technical panels on HLW-disposal and waste treatment processes respectively

    International Nuclear Information System (INIS)

    Dinkespiller, J.A.; Dejonghe, P.; Feates, F.

    1986-01-01

    The paper reports the concluding panel session at the European Community Conference on radioactive waste management and disposal, Luxembourg 1985. The panel considered the conclusions of two preceeding technical panels on high level waste (HLW) disposal and waste treatment processes. Geological disposal of HLW, waste management, safety assessment of waste disposal, public opinion, public acceptance of the manageability of radioactive wastes, international cooperation, and waste management in the United States, are all discussed. (U.K.)

  5. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  6. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  7. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  8. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    International Nuclear Information System (INIS)

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ''waste contaminated with chemically hazardous and radioactive species.'' The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  9. Operation and control of ion-exchange processes for treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Emelity, L.A.

    1967-01-01

    A manual dealing with the application of ion-exchange materials to the treatment of radioactive wastes and reviewing the facilities currently using this method. This book is one of three commissioned by the IAEA on the principal methods of concentrating radioactive wastes. The content of this document is: (i) Historical review related to removal of radioactivity; (ii) Principles of ion exchange (iii) Ion-exchange materials; (iv) Limitations of ion exchangers; (v) Application of ion exchange to waste processing; (vi) Operational procedures and experiences; (vii) Cost-of-treatment by ion-exchange. The document also gives a list of producers of ion-exchange material and defines some relevant terms. 101 refs, 31 figs, 27 tabs

  10. Operation and control of ion-exchange processes for treatment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Emelity, L A [Los Alamos National Lab., NM (United States)

    1967-12-01

    A manual dealing with the application of ion-exchange materials to the treatment of radioactive wastes and reviewing the facilities currently using this method. This book is one of three commissioned by the IAEA on the principal methods of concentrating radioactive wastes. The content of this document is: (i) Historical review related to removal of radioactivity; (ii) Principles of ion exchange (iii) Ion-exchange materials; (iv) Limitations of ion exchangers; (v) Application of ion exchange to waste processing; (vi) Operational procedures and experiences; (vii) Cost-of-treatment by ion-exchange. The document also gives a list of producers of ion-exchange material and defines some relevant terms. 101 refs, 31 figs, 27 tabs.

  11. The treatment of municipal solid waste in Malaysia comparing the biothennal process and mass burning

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Iso-Tryykari, M.

    1997-12-31

    Mass burning is the previously much used technology in the combustion of municipal solid waste. In mass burning, unsorted waste is burned on a grate. The Biothermal Process is a new innovative municipal solid waste treatment concept. It consists of front end treatment, the biogasification of the biofraction and the fluidized bed combustion of the combustible fraction. The objective of this work is to compare the technical, environmental and economical features of the Biothermal Process and mass burning, when constructed in Malaysia. Firstly technical descriptions of concepts are presented. Secondly three cases namely Kuala Lumpur, Perai and Johor Bahru are studied. Finally conclusions are drawn. Economic comparisons revealed that the Biothermal Process is more economical than mass burning. The investment cost far the Biothermal Process is about 30 % lower than for mass burning plant. To achieve an 8 % Return on Investment, the treatment fee for the Biothermal Process is 47-95 MYR per tonne and for mass burning 181-215 MYR per tonne depending on the case. The sensibility analysis showed that independent of the variations in feeding values, the treatment fee remains much lower in the Biothermal Process. Technical comparisons show that the Biothermal Process has the better waste reduction and recycling rate in all cases. The Biothermal Process has much better electrical efficiency in the Kuala Lumpur and Johor Bahru cases, while mass burning has slightly better electrical efficiency in the Perai case. Both concepts have postal for phased construction, but phasing increases investment costs more in mass burning. The suitability of each concept to the differences in the quality of waste depends on local conditions, and both methods have merits. The Biothermal Process produces 45-70 % lower air emissions than mass burning, and generates less traffic in Kuala Lumpur and Perai, while traffic generation is equal in the Johor Bahru case. The comparisons show that according

  12. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  13. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    International Nuclear Information System (INIS)

    Roach, J.A.; Gombert, D.

    1996-01-01

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE's mixed waste problems

  14. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  15. New alternative processes for the treatment of the alkaline solvent wash waste

    International Nuclear Information System (INIS)

    Cecille, L.; Cumming, I.W.; Gasparini, G.; Dozol, J.F.

    1986-09-01

    The separate treatment of the solvent wash alkaline waste (ASWW) from the other low and medium level liquid wastes generated during reprocessing operations has been investigated through the development of three alternative processes dealing with solvent extraction, chemical precipitation combined with ultrafiltration and inorganic ion exchange. On the basis of lab-scale experiments performed on the same genuine ASWW sample, a comparison has been made between the respective performances of each of these processes in terms of selectivity, decontamination and volume reduction factors. From this assessment, it evolved that solvent extraction and chemical precipitation combined with utrafiltration processes are good competitors for implementing such kind of treatment although for the alpha DF, solvent extraction appears more flexible. To be really attractive, inorganic ion exchange should exhibit better VRF and DF possibly by pretreating the ASWW. 10 refs

  16. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Junkison, A.R.; Pottinger, J.S.

    1987-08-01

    This report describes the development of electrical techniques for the treatment of liquid waste streams. Part I is concerned with solid/liquid separation and the demonstration of the electrokinetic thickening of flocs at inorganic membranes suitable for intermediate-level wastes and electrochemical cleaning of stainless steel microfilters and graphite ultrafilters. Part II describes work on the development of electrochemical ion exchange, particularly the use of inorganic absorption media and polarity reversal to enhance system selectivity. Work on the adsorption and desorption of plutonium in acid nitrate solution at various electrode materials is also included. (author)

  17. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  18. Study of the Treatment of the Liquid Radioactive Waste Nong Son Uranium Ore Processing

    International Nuclear Information System (INIS)

    Nguyen Ba Tien; Trinh Giang Huong; Luu Cao Nguyen; Harvey, L.K.; Tran Van Quy

    2011-01-01

    Liquid waste from Nong Son uranium ore processing is treated with concentrated acid, agglomerated, leached, run through ion exchange and then treated with H 2 O 2 to precipitate yellowcake. The liquid radioactive waste has a pH of 1.86 and a high content of radioactive elements, such as: [U] 143.898 ppm and [Th] = 7.967 ppm. In addition, this waste contains many polluted chemical elements with high content, such as arsenic, mercury, aluminum, iron, zinc, magnesium, manganese and nickel. The application of the general method as one stage precipitation or precipitation in coordination with BaCl 2 is not effective. These methods generated a large amount of sludge with poor settling characteristics. The volume of final treated waste was large. This paper introduces the investigation of the treatment of this liquid radioactive waste by the method of two stage of precipitation in association with polyaluminicloride (PAC) and polymer. The impact of factors: pH, neutralizing agents, quantity of PAC and polymer to effect precipitation and improve the settling characteristics during processing was studied. The results showed that the processing of liquid radioactive waste treatment through two stages: first stage at pH = 3 and the second stage at pH = 8.0 with limited PAC and polymer (A 101) resulted in significant reduced volume of the treated waste. The discharged liquid satisfied the requirement of the National Technical Regulation on Industrial Waste Water (QCVN 24:2009). (author)

  19. Development of new treatment process for low level radioactive waste at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Horiguchi, Kenichi; Sugaya, Atsushi; Saito, Yasuo; Tanaka, Kenji; Akutsu, Shigeru; Hirata, Toshiaki

    2009-01-01

    The Low-level radioactive Waste Treatment Facility (LWTF) was constructed at the Tokai Reprocessing Plant (TRP) and cold testing has been carried out since 2006. The waste which will be treated in the LWTF is combustible/incombustible solid waste and liquid waste. In the LWTF, the combustible/incombustible solid waste will be incinerated. The liquid waste will be treated by a radio-nuclides removal process and subsequently solidified in cement. This report describes the essential technologies of the LWTF and results of R and D work for the nitrate-ion decomposition technology for the liquid waste. (author)

  20. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  1. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    International Nuclear Information System (INIS)

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed

  2. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  3. Electrical processes for the treatment of medium active liquid wastes

    International Nuclear Information System (INIS)

    Turner, A.D.; Bowen, W.R.; Bridger, N.J.; Junkinson, A.R.; Cox, D.R.

    1985-07-01

    Cross-flow electrokinetic dewatering has been developed on a lab-scale into an effective process for the treatment of such wastes as gravity-settled flocs, or sludges arising from fuel storage. The product may be concentrated to 25-42% solids while still remaining fluid, prior to immobilization - e.g. by addition of cement powder. Complete retention of activity in the concentrate was observed during the treatment of Harwell low-level waste sludges due to the high solids separation factor ( > 10 4 ). It is a low pressure, low temperature process - consuming only 0.03-0.13 kWh/L at permeation rates of 0.3-1.5 m/h (depending on the stream), corresponding to 1 /67 - 1 /15 that needed for evaporation. An advanced electrochemical ion-exchange system has been developed in which ionic material can be electrically adsorbed and eluted by polarity reversal > 1000 times, without any change in performance. Decontamination factors of about 2000 were achieved for Cs removal, up to 75% loading of the exchanger at flow rates of 8 bed volumes/h. Elution into water can give concentrates of >= 0.25 M - with consequent high volume reduction factors. Inorganic ion-exchangers have also demonstrated system selectivity for the removal of specific cations. Overall energy consumption is 3 ( 1 /400 evaporation). Significant cost savings over conventional ion-exchange may accrue from the improved performance under electrical control, and the reduced volumes of waste requiring disposal. (author)

  4. Electrical processes for the treatment of medium-active liquid wastes

    International Nuclear Information System (INIS)

    Turner, A.D.; Bowen, W.R.; Bridger, N.J.; Junkison, A.R.; Cox, D.R.

    1986-01-01

    Cross-flow electrokinetic dewatering has been developed on a lab-scale into an effective process for the treatment of such wastes as gravity-settled flocs, or sludges arising from fuel storage. The product may be concentrated to 25-42 % solids while still remaining fluid, prior to immobilization - e.g. by addition of cement powder. Complete retention of activity in the concentrate was observed during the treatment of Harwell low-level waste sludges due to the high solids separation factor (>10 4 ). It is a low pressure, low temperature process - consuming only 0.03-0.13 kWh/L at permeation rates of 0.3-1.5 m/h (depending on the stream), corresponding to 1/67 - 1/15 of that needed for evaporation. An advanced electrochemical ion-exchange system has been developed in which ionic material can be electrically absorbed and eluted by polarity reversal > 1000 times, without any change in performance. Decontamination factors of about 2000 were achieved for Cs removal, up to 75 % loading of the exchanger at flow rates of 8 bed volumes/h. Elution into water can give concentrates of > 0.25 M - with consequent high volume reduction factors. Inorganic ion-exchangers have also demonstrated system selectivity for the removal of specific cations. Overall energy consumption is 3 (1/400 evaporation). Significant cost savings over conventional ion-exchange may accrue from the improved performance under electrical control, and the reduced volumes of waste requiring disposal. 25 refs, 28 tabs, 114 figs

  5. Evaluation of alternative flow sheets for upgrade of the Process Waste Treatment Plant

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1991-04-01

    Improved chemical precipitation and/or ion-exchange (IX) methods are being developed at the Oak Ridge National Laboratory (ORNL) in an effort to reduce waste generation at the Process Waste Treatment Plant (PWTP). A wide variety of screening tests were performed on potential precipitation techniques and IX materials on a laboratory scale. Two of the more promising flow sheets have been tested on pilot and full scales. The data were modeled to determine the operating conditions and waste generation at plant-scale and used to develop potential flow sheets for use at the PWTP. Each flow sheet was evaluated using future-valve economic analysis and performance ratings (where numerical values were assigned to costs, process flexibility and simplicity, stage of development, waste reduction, environmental and occupational safety, post-processing requirements, and final waste form). The results of this study indicated that several potential flow sheets should be considered for further development, and more detailed cost estimates should be made before a final selection is made for upgrade of the PWTP. 19 refs., 52 figs., 22 tabs

  6. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  7. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  8. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  9. Commercial waste treatment R and D needs in the United States

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1982-05-01

    The mission of the commercial waste treatment program is to establish treatment technology for safe and efficient management of high-level and transuranic wastes from reprocessing and fuel fabrication and special wastes from other fuel cycle activities. The four functional objectives that must be achieved to fulfill the mission are: (1) define waste product and treatment process performance requirements; (2) specify adequately safe waste products and verify their performance; (3) specify adequately efficient treatment processes and equipment and verify their performance; (4) solve existing waste treatment problems using verified products and processes. Although commercial waste treatment technology is in many respects highly advanced, there remains a number of areas where significant research and development is needed. These are: (1) technically-based performance requirements for both waste products and treatment processes; (2) pilot-scale radioactive demonstration of liquid-fed ceramic melting process and equipment for borosilicate glass; (3) non-glass TRU waste product and treatment process development; (4) waste product performance testing and predictive modeling; (5) quality verification for treatment processes

  10. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  11. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T.

    2009-01-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H 2 O 2 / Fe +2 ) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H 2O 2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO 3 as a white precipitate resulting from the reaction between the Ba(OH) 2 and the CO 2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe +2 /H 2 O 2 30%) at 100 deg C after 2 hours. (author)

  12. Technologies 1995: environment and wastes treatment

    International Nuclear Information System (INIS)

    Anon.

    1995-03-01

    From new technical or scientific developments, new products launching, and markets evolutions, this catalog gives informations selection on research and development projects, new fabrication processes, activities and plants strategies, licences or technology transfers opportunities. The covered fields are: atmospheric pollution controls, water and liquid wastes treatment, polluted soils treatments, noise and odors treatments, municipal and industrial wastes treatments (metal, plastic, paper, glass), clean materials and technologies, radioactive wastes, and european cooperation programs. (A.B.)

  13. Thermal treatment of radioactive wastes by the PLASMARC process

    International Nuclear Information System (INIS)

    Hoffelner, W.; Haefeli, V.; Fuenfschilling, M.R.

    1996-01-01

    The plasma plant for the thermal treatment of radioactive wastes to be supplied to ZWILAG is briefly described and the results of experiments with simulated waste are provided. The experiments led to the conclusion that the plant is well suited for handling low- and intermediate level radioactive wastes. (author) 1 fig., 3 tabs

  14. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  15. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  16. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    International Nuclear Information System (INIS)

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation's allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered

  17. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  18. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  19. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  20. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  1. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    Science.gov (United States)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  2. Waste treatment at the La Hague and Marcoule sites

    International Nuclear Information System (INIS)

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema's plants

  3. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  4. Tank waste treatment science

    International Nuclear Information System (INIS)

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  5. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  6. Treatment of liquid radioactive waste: Precipitation

    International Nuclear Information System (INIS)

    Gompper, K.

    1982-01-01

    After introductory remarks about waste types to be treated, specific treatment methods are discussed and examples are given for treatment processes carried out with different types of liquid wastes from nuclear power plants, research centers and fuel reprocessing plants. (RW)

  7. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  8. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  9. Two-stage thermal/nonthermal waste treatment process

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1993-01-01

    An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report

  10. Treatment of mercury containing waste

    Science.gov (United States)

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  11. Development of advanced membrane process for treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Lee, Kune Woo; Choi, W. K.; Lee, J. W.; Jung, G. H.

    2002-01-01

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated

  12. Development of advanced membrane process for treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kune Woo; Choi, W. K.; Lee, J. W.; Jung, G. H

    2002-01-01

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated.

  13. Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite

    International Nuclear Information System (INIS)

    Eakin, D.E.

    1996-03-01

    Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment

  14. Treatment of ORNL liquid low-level waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Discontinuation of the hydrofracture disposal method at Oak Ridge National Laboratory (ORNL) has caused intensive efforts to reduce liquid waste generation. Improving the treatment of slightly radioactive liquid waste, called process waste, has reduced the volume of the resulting contaminated liquid radioactive waste effluent by 66%. Proposed processing improvements could eliminate the contaminated liquid effluent and reduce solid low-level waste by an additional one-third. The improved process meets stringent discharge limits for radionuclides. Discharge limits for radionuclides are expected to be enforced at the outfall of the treatment plant to a creek; currently, limits are enforced at the reservation boundary. Plant discharge is monitored according to the National Pollutant Discharge Elimination System (NPDES) permit for ORNL. 1 ref., 4 figs., 2 tabs

  15. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  16. Treatment of radioactive wastes containing plutonium

    International Nuclear Information System (INIS)

    Orlando, O.S.; Aparicio, G.; Greco, L.; Orosco, E.H.; Cassaniti, P.; Salguero, D.; Toubes, B.; Perez, A.E.; Menghini, J.E.; Esteban, A.; Adelfang, P.

    1987-01-01

    The radioactive wastes generated in the process of manufacture and control of experimental fuel rods of mixed oxides, (U,Pu)O 2 , require an specific treatment due to the plutonium content. The composition of liquid wastes, mostly arising from chemical checks, is variable. The salt content, the acidity, and the plutonium and uranium content are different, which makes necessary a chemical treatment before the inclusion in concrete. The solid waste, such as neoprene gloves, PVC sleeves, filter paper, disposable or broken laboratory material, etc. are also included in concrete. In this report the methods used to dispose of wastes at Alpha Facility are described. With regard to the liquid wastes, the glove box built to process them is detailed, as well as the applied chemical treatment, including neutralization, filtration and later solidification. As for the solid wastes, it is described the cementation method consisting in introducing them into an expanded metal matrix, of the basket type, that contains as a concentric drum of 200 liter capacity which is smaller than the matrix, and the filling with wet cement mortar. (Author)

  17. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  18. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  19. Evaluating the technical aspects of mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Bagaasen, L.M.; Scott, P.A.

    1992-10-01

    This report discusses treatment of mixed wastes which is thought to be more complicated than treatment of either hazardous or radioactive wastes. In fact, the treatment itself is no more complicated: however, the regulations that define acceptability of the final waste disposal system are significantly more entangled, and sometimes in apparent conflict. This session explores the factors that influence the choice of waste treatment technologies, and expands on some of the limitations to their application. The objective of the presentation is to describe the technical factors that influence potential treatment processes and the ramifications associated with particular selections (for example, the generation of secondary waste streams). These collectively provide a framework for making informed treatment process selections

  20. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  1. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Svolik, S.

    2004-01-01

    Final treatment of liquid radioactive wastes which are produced by 1 st and 2 nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  2. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS/ PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2006-01-01

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns

  3. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  4. Mixed waste treatment with a mediated electrochemical process

    International Nuclear Information System (INIS)

    Hickman, R.G.; Gray, L.W.; Chiba, Z.

    1991-01-01

    The process described in this paper is intended to convert mixed waste containing toxic organic compounds (not heavy metals) to ordinary radioactive waste, which is treatable. The process achieves its goal by oxidizing hydrocarbons to CO 2 and H 2 O. Other atoms that may be present in the toxic organic generally are converted to nonhazardous anions such as sulfate and phosphate. This electro chemical conversion is performed at conditions of temperature and pressure that are just moderately above ambient conditions. Gaseous hydroxides and oxyhydroxides that are formed by many radionuclides during incineration cannot form in this process. 1 ref., 3 figs

  5. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  6. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  7. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  8. Biochemistry Oxidation Process for Treatment the Simulation of Organic Liquid Radioactive Waste

    International Nuclear Information System (INIS)

    Gunandjar; Zainus Salimin; Sugeng Purnomo; Ratiko

    2010-01-01

    The nuclear industry activities generate the organic liquid wastes such as detergent waste from laundry, solvent waste of 30% TBP (tri-n-butyl phosphate) in kerosene from purification or recovery of uranium from rejection of nuclear fuel element fabrication, and solvent waste containing D 2 EHPA (di-2-ethyl hexyl phosphoric acid) and TOPO (trioctyl phospine oxide) in kerosene from phosphoric acid purification. The wastes are included in category of the hazard and poison materials which also radioactive, so that the wastes have to be treated to detoxification of the hazard and poison materials and decontamination of the radionuclides. The research of biochemistry oxidation process for treatment the simulation of organic liquid radioactive waste from laundry using mixture of aerobe bacteria of bacillus sp, pseudomonas sp, arthrobacter sp, and aeromonas sp have been carried out. The waste containing detergent 1,496 g/Litre, activity 10 -1 Ci/m 3 , with COD (Chemical Oxygen Demand) 128, BOD (Biological Oxygen Demand) 68 and TSS (Total Suspended Solid) 1000 ppm, it is treated by biochemistry oxidation with addition of bacteria which be fed nutrition of nitrogen and phosphor, and aeration. The result show that the bacteria can decompose the detergent to become carbon dioxyde and water so that can fulfill the quality standard of water group-B with content of BOD and COD are 6 and 10 ppm respectively, the time of decomposition is needed 106 hours to be fulfill the quality standard of water. The longer of process time will give bigger the total solid content in sludge, because the biomass generated from the colony of bacteria which life and dead to so much. (author)

  9. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  10. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    Bond, W.D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  11. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  12. Diagnose and Redesign of the handling and treatment processes of the solid waste in the Hospital Mexico

    International Nuclear Information System (INIS)

    Campos Arrieta, G.; Navarro Blanco, D

    1999-01-01

    In the Hospital Mexico a program for the handling of the solid waste was implemented. The program consists on placing recipients, in all the corridors, for each type of waste (recyclable, toxic, dangerous, kitchens). However, this measure doesn't eliminate the risk that the waste represents for the community and the environment. The handling of the solid waste includes the selection or classification, the gathering, the transportation, and the temporary storage. While the treatment consists on the application of procedures that reduce the polluting properties of the waste. The planning of the topic is: To diagnose and to redesign of the handling processes and internal treatment of the hospital solid waste (HSW) in the Hospital Mexico. The contribution of the Industrial Engineering is given in the thematic of redesign of processes; the complementary areas are engineering of the human factor, environmental impact and normalization. The current problem that undergoes the Hospital was defined as follows: The Hospital Mexico cannot assure that the handling and current treatment of the solid waste diminish the risk that they represent to the health of the hospital community and the deterioration of the environment. This problem contains the independent variables such as the handling and current treatment of the solid waste, and the dependent variables such as the risk to the health of the community and deterioration of the environment. Based on the problem, the following hypothesis is established: The current conditions of handling and the lack of internal treatment of the solid waste in the Hospital Mexico, causes that the waste is a risk for the health of the hospital community and the deterioration of the environment. The project was structured in three denominated stages: Diagnose, Design and Validation, which respond to different general and specific objectives. In the stage of diagnose, to determine that the waste generated in the centers of health contain

  13. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  14. Development of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. Management of mixed waste requires treatment which must meet the standards established by the US Environmental Protection Agency for the specific hazardous constituents while also providing adequate control of the radionuclides. Technology has not been developed, demonstrated, or tested to produce a low-risk final waste form specifically for mixed waste. Throughout the US Department of Energy (DOE) complex, mixed waste is a problem because definitive treatment standards have not been established and few disposal facilities are available. Treatment capability and capacity are also limited. Site-specific solutions to the management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development between various sites. Significant progress is being made in developing technology for mixed waste under the Mixed Waste Integrated Program. The status of the technical initiatives in chemical/physical treatment, destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  15. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Haywood, Fred F.; Goldsmith, William A.; Allen, Douglas F.; Mezga, Lance J.

    1995-12-01

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  16. Development of radioactive waste treatment technique

    International Nuclear Information System (INIS)

    Kikuchi, Makoto; Amamiya, Shigeru; Yusa, Hideo.

    1984-01-01

    The techniques of radioactive waste treatment are generally reviewed, placing emphasis on volume reduction and solidification techniques. After a brief description on the general process of radioactive waste treatment, some special technologies being developed by Hitachi Ltd. are explained. From the viewpoints of the volume reduction, long term management and final disposal of wastes, the pelletization of dried waste and the solidification with inorganic substances are considered. One of the features of the pelletization system is to treat various kinds of wastes such as concentrated liquid wastes and used resins by the same system. The flow diagram of the system and its special features are shown. The volume reduction achieved by this system as compared to the conventional method is about 1/7. The first commercial plant for the treatment of concentrated liquid waste is scheduled to begin operation in June, 1984. As for the solidification technique for waste disposal, the use of cement glass is considered. The solidification system being developed is shortly described. (Aoki, K.)

  17. Implementation of a management applied program for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, Y. H.; Ann, S. J.; Jo, H. S.; Son, J. S.

    2003-01-01

    A data collection of a liquid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material valance and inventory study

  18. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. - Highlights: ► Appropriate management of toxic metals contained in WEEE is important during recycling and treatment of WEEE. ► CRT TVs contain large amount of toxic metals with high concentration and thus appropriate management is highly important. ► Mid-sized equipment is a future target for

  20. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  1. Plasma processing of compacted drums of simulated radioactive waste

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Larsen, M.M.

    1991-01-01

    The charter of the Department of Energy (DOE) Office of Technology Development (OTD) is to identify and develop technologies that have potential application in the treatment of DOE wastes. One particular waste of concern within the DOE is transuranic (TRU) waste, which is generated and stored at several DOE sites. High temperature DC arc generated plasma technology is an emerging treatment method for TRU waste, and its use has the potential to provide many benefits in the management of TRU. This paper begins by discussing the need for development of a treatment process for TRU waste, and the potential benefits that a plasma waste treatment system can provide in treating TRU waste. This is followed by a discussion of the results of a project conducted for the DOE to demonstrate the effectiveness of a plasma process for treating supercompacted TRU waste. 1 fig., 1 tab

  2. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  3. Technology for safe treatment of radioisotope organic wastes

    International Nuclear Information System (INIS)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C.

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na + substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH 2 PO 4 . From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  4. Low level radioactive liquid waste treatment at ORNL

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lasher, L.C.

    1977-01-01

    A new Process Waste Treatment Plant has been constructed at ORNL. The wastes are processed through a precipitation-clarification step and then through an ion exchange step to remove the low-level activity in the waste before discharge into White Oak Creek

  5. Conceptual design of the alcohol waste treatment equipment

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Nitta, Kazuhiko; Morita, Yasuhiro; Nakada, Eiju

    2001-01-01

    This report describes the result of Conceptual Design of the Alcohol Waste Treatment Equipment. The experimental fast Reactor, JOYO, saves the radioactive alcohol waste at storage tank. As this alcohol waste is not able to treat with existing equipment, it is stored about 5 m 3 . And the amount of this is increasing every year. So it is necessary to treat the alcohol waste by chemical resolution for example. On account of this, the investigative test about filtration and dialyzer, and conceptual design about catalyst oxidation process, which is composed from head end process to resolution, are done. The results of investigation show as follows. 1. Investigative Test about filtration and dialyzer. (1) The electric conduction is suitable for the judgement of alkyl sodium hydrolysis Alkyl sodium hydrolysis is completed below 39% alcohol concentration. (2) The microfiltration is likely to separate the solid in alcohol waste. (3) From laboratory test, the electrodialyzer is effective for sodium separation in alcohol waste. And sodium remove rate, 96-99%, is confirmed. 2. Conceptual Design. The candidate process is as follows. (1) The head end process is electrodialyzer, and chemical resolution process is catalyst oxidation. (2) The head end process is not installed, and chemical resolution process is catalyst oxidation. (3) The head end process is electrodialyzer, and alcohol extracted by pervaporation. In this Conceptual Design, as far these process, the components, treatment ability, properties of waste, chemical mass balance, safety for fire and explosion, and the plot plan are investigated. As a result, remodeling the existing facility into catalyst oxidation process is effective to treat the alcohol waste, and treatment ability is about 1.25 l/h. (author)

  6. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  7. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  8. Chemical treatment of mixed waste at the FEMP

    International Nuclear Information System (INIS)

    Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

    1996-01-01

    The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams

  9. Treatment of alpha bearing wastes

    International Nuclear Information System (INIS)

    1988-01-01

    This report deals with the current state of the art of alpha waste treatment, which is an integral part of the overall nuclear waste management system. The International Atomic Energy Agency (IAEA) defines alpha bearing waste as 'waste containing one or more alpha emitting radionuclides, usually actinides, in quantities above acceptable limits'. The limits are established by national regulatory bodies. The limits above which wastes are considered as alpha contaminated refer to the concentrations of alpha emitters that need special consideration for occupational exposures and/or potential safety, health, or environmental impact during one or more steps from generation through disposal. Owing to the widespread use of waste segregation by source - that is, based upon the 'suspect origin' of the material - significant volumes of waste are being handled as alpha contaminated which, in fact, do not require such consideration by reason of risk or environmental concern. The quantification of de minimis concepts by national regulatory bodies could largely contribute to the safe reduction of waste volumes and associated costs. Other factors which could significantly contribute to the reduction of alpha waste arisings are an increased application of assaying and sorting, instrumentation and the use of feedback mechanisms to control or modify the processes which generate these wastes. Alpha bearing wastes are generated during fabrication and reprocessing of nuclear fuels, decommissioning of alpha contaminated facilities, and other activities. Most alpha wastes are contact handled, but a small portion may require shielding or remote handling because of high levels of neutron (n), beta (β), or gamma (γ) emissions associated with the waste material. This report describes the sources and characteristics of alpha wastes and strategies for alpha waste management. General descriptions of treatment processes for solid and liquid alpha wastes are included. 71 refs, 14 figs, 9 tabs

  10. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. New treatment centers for radioactive waste from Russian designed VVER-reactors

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1997-01-01

    The nuclear power plants using Russian designed VVER-type reactors, were engineered and designed without any wastes treatment facilities. The liquid and solid waste were collected in storage tanks and shelters. After many years of operation, the storage capabilities are exhausted. The treatment of the stored and still generated waste represents a problem of reactor safety and requires a short term solution. NUKEM has been commissioned to design and construct several new treatment centers to remove and process the stored waste. This paper describes the process and lessons learned on the development of this system. The new radioactive waste treatment center (RWTC) includes comprehensive systems to treat both liquid and solid wastes. The process includes: 1) treatment of evaporator concentrates, 2) treatment of ion exchange resins, 3) treatment of solid burnable waste, 4) treatment of liquid burnable waste, 5) treatment of solid decontaminable waste, 6) treatment of solid compactible waste. To treat these waste streams, various separate systems and facilities are needed. Six major facilities are constructed including: 1. A sorting facility with systems for waste segregation. 2. A high-force compactor facility for volume reduction of non-burnable waste. 3. An incinerator facility for destruction of: 1) solid burnable waste, 2) liquid burnable waste, 3) low level radioactive ion exchange resins. 4. A facility for melting of incineration residue. 5. A cementation facility for stabilization of: 1) medium level radioactive ion exchange resins, 2) solid non compactible waste, 3) compacted solid waste. 6. Separation of radionuclides from evaporator concentrates. This presentation will address the facilities, systems, and lessons learned in the development of the new treatment centers. (author)

  12. Mixed waste treatment model: Basis and analysis

    International Nuclear Information System (INIS)

    Palmer, B.A.

    1995-09-01

    The Department of Energy's Programmatic Environmental Impact Statement (PEIS) required treatment system capacities for risk and cost calculation. Los Alamos was tasked with providing these capacities to the PEIS team. This involved understanding the Department of Energy (DOE) Complex waste, making the necessary changes to correct for problems, categorizing the waste for treatment, and determining the treatment system requirements. The treatment system requirements depended on the incoming waste, which varied for each PEIS case. The treatment system requirements also depended on the type of treatment that was desired. Because different groups contributing to the PEIS needed specific types of results, we provided the treatment system requirements in a variety of forms. In total, some 40 data files were created for the TRU cases, and for the MLLW case, there were 105 separate data files. Each data file represents one treatment case consisting of the selected waste from various sites, a selected treatment system, and the reporting requirements for such a case. The treatment system requirements in their most basic form are the treatment process rates for unit operations in the desired treatment system, based on a 10-year working life and 20-year accumulation of the waste. These results were reported in cubic meters and for the MLLW case, in kilograms as well. The treatment system model consisted of unit operations that are linked together. Each unit operation's function depended on the input waste streams, waste matrix, and contaminants. Each unit operation outputs one or more waste streams whose matrix, contaminants, and volume/mass may have changed as a result of the treatment. These output streams are then routed to the appropriate unit operation for additional treatment until the output waste stream meets the treatment requirements for disposal. The total waste for each unit operation was calculated as well as the waste for each matrix treated by the unit

  13. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  14. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  15. Performance estimates for waste treatment pyroprocesses in ATW

    International Nuclear Information System (INIS)

    Li, N.

    1997-01-01

    The author has identified several pyrometallurgical processes for the conceptual ATW waste treatment cycle. These processes include reductive extraction, electrowinning and electrorefining, which constitute some versatile treatment cycles for liquid-metal based and molten-salt based waste forms when they are properly integrated. This paper examines the implementation of these processes and the achievable separations for some typical species. The author also presents a simple analysis of the processing rates limited by mass diffusion through a thin hydrodynamic boundary layer. It is shown that these processes can be realized with compact and efficient devices to meet the ATW demand for the periodic feeding and cleaning of the waste

  16. Experiences with treatment of mixed waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-01-01

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits

  17. Experiences with treatment of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  18. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  19. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  20. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  1. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  2. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  3. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  4. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  5. Mixed-waste treatment -- What about the residuals?

    International Nuclear Information System (INIS)

    Carlson, T.; Carpenter, C.; Cummins, L.; Haas, P.; MacInnis, J.; Maxwell, C.

    1993-01-01

    Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ''derived-from'' residuals. Major findings include that final disposal options are more significantly impacted by the type of waste treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals

  6. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  7. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  8. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  9. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  10. Processes for CO2 capture. Context of thermal waste treatment units. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Lopez, A.; Roizard, D.; Favre, E.; Dufour, A.

    2013-01-01

    For most of industrial sectors, Greenhouse Gases (GHG) such as carbon dioxide (CO 2 ) are considered as serious pollutants and have to be controlled and treated. The thermal waste treatment units are part of industrial CO 2 emitters, even if they represent a small part of emissions (2,5 % of GHG emissions in France) compared to power plants (13 % of GHG emissions in France, one third of worldwide GHG emissions) or shaper industries (20 % of GHG emissions in France). Carbon Capture and Storage (CCS) can be a solution to reduce CO 2 emissions from industries (power plants, steel and cement industries...). The issues of CCS applied to thermal waste treatment units are quite similar to those related to power plants (CO 2 flow, flue gas temperature and pressure conditions). The problem is to know if the CO 2 produced by waste treatment plants can be captured thanks to the processes already available on the market or that should be available by 2020. It seems technically possible to adapt CCS post-combustion methods to the waste treatment sector. But on the whole, CCS is complex and costly for a waste treatment unit offering small economies of scale. However, regulations concerning impurities for CO 2 transport and storage are not clearly defined at the moment. Consequently, specific studies must be achieved in order to check the technical feasibility of CCS in waste treatment context and clearly define its cost. (authors)

  11. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    International Nuclear Information System (INIS)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-01-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment

  12. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Todd Travis; Barnes, Charles Marshall; Lauerhass, Lance; Taylor, Dean Dalton

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from "road tests" that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  13. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  14. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  15. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  16. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  17. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  18. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  19. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  20. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m 3 /MTU for no treatment to as low as 0.02 m 3 /MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs

  1. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

  2. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    International Nuclear Information System (INIS)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards

  3. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  4. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  5. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  6. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  7. The development of radioactive waste treatment technology(IV)

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Yim, Sung Paal; Lee, Kune Woo; Yoo, Jeong Woo; Kim, Young Min; Park, Seong Chul

    1992-03-01

    Following studies were performed in the project of development of radioactive waste treatment technology. 1) Treatment of radioactive borated liquid wastes by reverse osmosis : Separation characteristics of boric acid were estimated using cellulose acetate membrane and aromatic polyamide membrane. The performance of reverse osmosis process was evaluated in terms of boric acid recovery, radiochemical rejection, and membrane flux by operating variables such as applied pressure and feed concentration. 2) Oily waste treatment : The mathematical model to estimate oil removal efficiency is to be proposed at coalescence column. 3) Treatment of radioactive laundry waste 4) Comparison of evaporation and ion-exchange 5) State of the art of high integrity container. (Author)

  8. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  9. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  10. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  11. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Jan, F.; Hussain, M.; Ahmad, S.S.; Aslam, M.; Haq, E.U.

    2007-12-01

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  12. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  13. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  14. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  15. Waste treatment process by solidifying cementitious materials using hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kamakura, T.; Yamasaki, N.; Hashida, T.

    2001-01-01

    Solidification of low-level radioactive wastes containing Na 2 SO 4 with cement by hydrothermal hot-pressing (HHP) technique was examined. Relatively high mechanical strength, reduced leaching ratio of SO 3 , and higher resistance to the carbonation of the HHP product were attained in comparison with conventional concrete. The solidification by the HHP treatment may be proceeded by the rearrangement of particles and the bonding material formation among the particles by dissolution-deposition process. The possibility of developing the accelerated testing method for duration of cemented materials by hydrothermal method was discussed. (author)

  16. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  17. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  18. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  19. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  20. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  1. Pyrolysis/Steam Reforming Technology for Treatment of TRU Orphan Wastes

    International Nuclear Information System (INIS)

    Mason, J. B.; McKibbin, J.; Schmoker, D.; Bacala, P.

    2003-01-01

    Certain transuranic (TRU) waste streams within the Department of Energy (DOE) complex cannot be disposed of at the Waste Isolation Pilot Plant (WIPP) because they do not meet the shipping requirements of the TRUPACT-II or the disposal requirements of the Waste Analysis Plan (WAP) in the WIPP RCRA Part B Permit. These waste streams, referred to as orphan wastes, cannot be shipped or disposed of because they contain one or more prohibited items, such as liquids, volatile organic compounds (VOCs), hydrogen gas, corrosive acids or bases, reactive metals, or high concentrations of polychlorinated biphenyl (PCB), etc. The patented, non-incineration, pyrolysis and steam reforming processes marketed by THOR Treatment Technologies LLC removes all of these prohibited items from drums of TRU waste and produces a dry, inert, inorganic waste material that meets the existing TRUPACT-II requirements for shipping, as well as the existing WAP requirements for disposal of TRU waste at WIPP. THOR Treatment Technologies is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC (WGES) to further develop and deploy Studsvik's patented THORSM technology within the DOE and Department of Defense (DoD) markets. The THORSM treatment process is a commercially proven system that has treated over 100,000 cu. ft. of nuclear waste from commercial power plants since 1999. Some of this waste has had contact dose rates of up to 400 R/hr. A distinguishing characteristic of the THORSM process for TRU waste treatment is the ability to treat drums of waste without removing the waste contents from the drum. This feature greatly minimizes criticality and contamination issues for processing of plutonium-containing wastes. The novel features described herein are protected by issued and pending patents

  2. Strategies for the cost effective treatment of Oak Ridge legacy wastes

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Huxtable, W.P.; Wilson, D.F.

    1998-03-01

    Research and development treatment strategies for treatment or elimination of several Oak Ridge plant liquid, solid, and legacy wastes are detailed in this report. Treatment strategies for volumetrically contaminated nickel; enriched uranium-contaminated alkali metal fluorides; uranium-contaminated aluminum compressor blades; large, mercury-contaminated lithium isotope separations equipment; lithium process chlorine gas streams; high-concentration aluminum nitrate wastes, and high-volume, low-level nitrate wastes are discussed. Research needed to support engineering development of treatment processes is detailed

  3. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  4. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  5. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  6. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  7. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  8. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    International Nuclear Information System (INIS)

    Zainus Salimin

    2002-01-01

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10 -3 Ci/m 3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10 -3 Ci/m 3 , detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  9. Treatment of solid waste highly contaminated by alpha emitters. Recent developments of leaching process with continuous electrolyte regeneration

    International Nuclear Information System (INIS)

    Madic, C.

    1990-01-01

    In the recent years, efforts have been made in order to reduce the amount of alpha emitters essentially plutonium isotopes present in the solid wastes produced during research experiments on fuel reprocessing. Leaching processes using electrogenerated Ag (II(a very agressive agent for PuO 2 )) in nitric acid solutions, were developed and several facilities were designed and built to operate the processes: (1) ELISE and PROLIXE facilities, for the treatment of α and α, β, γ solid wastes (CEA, FONTENAY-AUX-ROSES) (2) PILOT ASHES FACILITY for delete, the treatment of plutonium contaminated ashes (COGEMA, MARCOULE). A brief description of the process and of the different facilities is presented; the main results obtained in ELISE and PROLIXE are also summarized

  10. Treatment of solid waste highly contaminated by alpha emitters: Recent developments of leaching process with continuous electrolyte regeneration

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.; Vigreux, B.

    1990-01-01

    Development of processes for leaching solid waste contaminated by alpha or alphaβgamma emitters has been pursued at the Nuclear Research Center in Fontenay-aux-Roses, France with the recent active commissioning of two pilot facilities: the Elise glove box system in February 1987 and the Prolixe shielded hot cell in March 1988. The Elise facility is designed to handle alpha waste and the Prolixe facility is designed to handle alphaβgamma waste. The common goal of the studies conducted in these facilities is to define the operating conditions for declassification of solid waste, i.e. to ensure that the alpha concentration of this waste will be less than 3.7 x 10 6 Bq/kg after treatment, packaging and decay prior to storage in surface repositories. The leaching process developed is mainly based on the continuous electrolytic regeneration of an aggressive agent, AgII, which can induce the dissolution of PuO 2 , the most difficult compound to remove from the solid waste. This paper summarizes recent achievements in the development of this process. 11 refs., 8 figs., 6 tabs

  11. Treatment of solid waste highly contaminated by alpha emitters: recent developments of leaching process with continuous electrolyte regeneration

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.

    1990-01-01

    Development of processes for leaching solid waste contaminated by alpha or alpha/beta/gamma emitters has been pursued at the Nuclear Research Center in Fontenay-aux-Roses, France with the recent active commissioning of two pilot facilities: the Elise glove box system in February 1987 and the Prolixe shielded hot cell in March 1988. The Elise facility is designed to handle alpha waste and the Prolixe facility is designed to handle alpha/beta/gamma waste. The common goal of the studies conducted in these facilities is to define the operating conditions for declassification of solid waste, i.e. to ensure that the alpha concentration of this waste will be less than 3.7 x 10 6 Bq/kg after treatment, packaging and decay prior to storage in surface repositories. The leaching process developed is mainly based on the continuous electrolytic regeneration of an aggressive agent, AgII, which can induce the dissolution of PuO 2 , the most difficult compound to remove from the solid waste. This paper summarizes recent achievements in the development of this process

  12. Waste Treatment Plant - 12508

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Olds, Erik [US DOE (United States)

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration

  13. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  14. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    Rahier, A.; Mesrobian, G.

    2006-01-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  15. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  16. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  17. Treatment of organic radioactive waste in decommissioning project

    International Nuclear Information System (INIS)

    Dimovic, S.; Plecas, I.

    2003-01-01

    This paper describes methods of treatment of organic radioactive waste in the aspect of its integral part of radioactive waste which will arise during decommissioning process of nuclear power reactor RA (author)

  18. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  19. Treatment of low alpha activity liquid wastes

    International Nuclear Information System (INIS)

    Nannicini, R.; Fenoglio, F.; Pozzi, L.

    1984-01-01

    The nuclear industry considers so big safety problems that the purifying treatment of liquid wastes must always provide for a complete recycle of the liquid strems from the production processes as regard this problem. ''Enea-Comb-Ifec'' people from saluggia, already previously engages with verifying and setting-up ''Sol-Gel'' process for the recover of uranium-plutonium solutions coming from irradiated fuel reprocessing, started an experimental work, with the assistance of ''Cnr-Irsa'' from Rome, on the applicability of the biological treatment to the purification of liquid wastes coming from the production process itself. The present technical report gives, besides a short description of the ''Sol-Gel'' process, the first results, only relating to the biological stage of the whole proposed purifyng treatment, included the final results of the experimental work, object of a contract between ''Enea-Ifec'' and ''Snam progetti'' from Fano

  20. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  1. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  2. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  3. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  4. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...

  5. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  6. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    International Nuclear Information System (INIS)

    Jardine, L J

    2003-01-01

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R and D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities

  7. Using bentonite for NPP liquid waste treatment

    International Nuclear Information System (INIS)

    Bui Dang Hanh

    2015-01-01

    During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs. (author)

  8. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  9. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  10. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  11. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  12. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  13. Nuclear waste treatment program: Annual report for FY 1987

    International Nuclear Information System (INIS)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs

  14. Mechanical-biological waste treatment with thermal processing of partial fractions; Mechanisch-biologische Restabfallbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Technologies for mechanical-biological treatment of waste in the Land of Hessen were compared including thermal processes like combustion and gasification. The new and more rigid limiting values specified in the Technical Guide for Municipal Waste Treatment (Technische Anleitung Siedlungsabfall - TASI) get a special mention. [Deutsch] Verschiedene Technologien der mechanisch-biologischen Restabfallbehandlung im Raum Hessen wurden unter Einbezug thermischer Verfahren (Verbrennung, Vergasung) miteinander verglichen. Dabei wurden besonders auf die verschaerften Grenzwerte der Technischen Anleitung Siedlungsabfall (TASI) eingegangen. (ABI)

  15. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.

    1998-01-01

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail

  16. The PERC trademark process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    International Nuclear Information System (INIS)

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-01-01

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC)trademark treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC trademark treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream's form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment

  17. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  18. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  19. Chemical Process for Treatment of Tellurium and Chromium Liquid Waste from I-131 Radioisotope Production

    International Nuclear Information System (INIS)

    Zainus-Salimin; Gunandjar; Dedy-Harsono; Hendro; Sugeng-Purnomo; Mohammad-Faruq; Zulfakhri

    2000-01-01

    The I-131 radioisotope is used in nuclear medicine for diagnosis and therapy. The I-131 radioisotope is produced by wet distillation at Bandung Nuclear Research Center and generated about 4,875 Itr of liquid waste containing 2,532.8 ppm of tellurium and 1,451.8 ppm chromium at pH 1. Considering its negative impact to the environment caused by toxic behaviour of tellurium and chromium, it is necessary to treat chemically that's liquid waste. The research of chemical treatment of tellurium and chromium liquid waste from I-131 radioisotope production has been done. The steps of process are involved of neutralisation with NaOH, coagulation-flocculation process for step I using Ca(OH) 2 coagulant for precipitation of sulphate, sulphite, oxalic, chrome Cr 3+ , and coagulation-flocculation process for step II using BaCI 2 coagulant for precipitation of chrome Cr 6+ and tellurium from the supernatant of coagulation in step I. The best result of experiment was achieved at 0.0161 ppm of chromium concentration on the supernatant from coagulation-flocculation of step I using 3.5 g Ca(OH) 2 for 100 ml of liquid waste, and 0.95 ppm of tellurium concentration on the final supernatant from coagulation-flocculation by of step II using 0.7 g BaCI 2 for supernatant from coagulation of step I. (author)

  20. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  1. The environmental impact of mine wastes - roles of microorganisms and their significance in treatment of mine wastes

    International Nuclear Information System (INIS)

    Ledin, M.; Pedersen, K.

    1996-01-01

    Mine wastes constitute a potential source of contamination to the environment, as heavy metals and acid are released in large amounts. A great variety of microorganisms has been found in mine wastes and microbiological processes are usually responsible for the environmental hazard created by mine wastes. However, microorganisms can also be used to retard the adverse impact of mine wastes on the environment. Conventionally, the mine drainage as well as the waste itself can be treated with alkali to increase pH and precipitate metals. The main drawback of this method is that it has to be continuously repeated to be fully effective. There may also be negative effects on beneficial microorganisms. Several other treatment methods have been developed to stop weathering processes thereby reducing the environmental impact of mine wastes. The other main approach is to treat the drainage water. Various methods aim at using microorganisms for this in natural or engineered systems. Recently, much interest has been focused on the use of natural or artificial wetlands for treatment. In general, the activity of microorganisms is neglected in the design of mine waste treatment systems, and the treatments are created merely from a technical point of view. This can result in situations where unexpected microbial processes take over, and, in the worst scenario, the overall effect is opposite to the desired

  2. Study of plastic solidification process on solid radioactive waste treatment

    International Nuclear Information System (INIS)

    Jing Weiguan; Zhang Yinsheng; Qian Wenju

    1994-01-01

    Comparisons between the plastic solidification conditions of incinerated ash and waste cation resin by using thermosetting plastic polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE), and identified physico-chemical properties and irradiation resistance of solidified products were presented. These solidified products have passed through different tests as compression strength, leachability, durability, stability, permeability and irradiation resistance (10 6 Gy) etc. The result showed that the solidified products possessed stable properties and met the storage requirement. The waste tube of radioimmunoassay, being used as solidification medium to contain incinerated ash, had good mechanical properties and satisfactory volume reduction. This process may develop a new way for disposal solid radioactive waste by means of re-using waste

  3. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  4. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  5. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs

  6. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137 Cs, 129 I, 99 Tc, Cl, F, and SO 4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form

  7. AERE contracts with DOE on the treatment and disposal of Intermediate Level Wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1985-07-01

    Individual summaries are provided for each contract report, under the titles: comparative evaluation of α and βγ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; α damage in non-reference matrix materials; leaching mechanisms and modelling; inorganic ion exchange treatment of medium active effluents; electrical processes for the treatment of medium active liquid waste; fast reactor fuel element cladding; dissolver residues; effects of radiation on the properties of cemented MTR waste forms; equilibrium leach testing of cemented MTR waste forms; radiolytic oxidation of radionuclides; immobilisation of liquid organic wastes; quality control, non-conformances and corrective action; application of gel processes in the treatment of actinide-containing liquid wastes; the role of colloids in the release of radionuclides from nuclear waste. (author)

  8. Advanced liquid waste processing technologies: Theoretical versus actual application

    International Nuclear Information System (INIS)

    Barker, Tracy A.

    1992-01-01

    This paper provides an overview of Chem-Nuclear Systems, Inc. (CNSI) experience with turn-key chromate removal at the Maine Yankee Nuclear Plant. Theoretical and actual experiences are addressed on topics such as processing duration, laboratory testing, equipment requirements, chromate removal, waste generation, and waste processing. Chromate salts are used in industrial recirculation cooling water systems as a corrosion inhibitor. However, chromates are toxic at concentrations necessary for surface inhibition. As a result, Chem-Nuclear was contracted to perform turn-key chromate removal and waste disposal by demineralization. This project was unique in that prior to on-site mobilization, a composite sample of chromated waste was shipped to CNSI laboratories for treatment through a laboratory scale system. Removal efficiency, process media requirements, and waste processing methodology were determined from this laboratory testing. Samples of the waste resulting from this testing were processed by dewatering and solidification, respectively. TCLP tests were performed on the actual processed waste, and based on the TCLP results, pre-approval for media waste disposal was obtained. (author)

  9. Accelerator Production of Tritium project process waste assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  10. Accelerator Production of Tritium project process waste assessment

    International Nuclear Information System (INIS)

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2)

  11. Guide Of Treatment On Noxious Waste Of Experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-05-15

    This book deals with environmental safe management and smooth driving of facilities, which indicates purpose of this guide, responsibility of environmental safe management, division of collect of starting point treatment, batch processing system, treatment of noxious waste of experiment, regulation of harmful waste such as medicine, corrosivity liquid, and treatment of cleaning solution of chrome-sulfuric acid, and regulation of Kyungpook National University Department Environmental Engineering Research Center, environmental protection law and the other related law.

  12. Guide Of Treatment On Noxious Waste Of Experiment

    International Nuclear Information System (INIS)

    1987-05-01

    This book deals with environmental safe management and smooth driving of facilities, which indicates purpose of this guide, responsibility of environmental safe management, division of collect of starting point treatment, batch processing system, treatment of noxious waste of experiment, regulation of harmful waste such as medicine, corrosivity liquid, and treatment of cleaning solution of chrome-sulfuric acid, and regulation of Kyungpook National University Department Environmental Engineering Research Center, environmental protection law and the other related law.

  13. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  14. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    1996-10-01

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  15. Recent development of anaerobic digestion processes for energy recovery from wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  16. Chemical treatment of mixed waste can be done.....Today exclamation point

    International Nuclear Information System (INIS)

    Honigford, L.; Dilday, D.; Cook, D.; Sattler, J.

    1996-01-01

    The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams

  17. Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

    1998-03-01

    In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE's needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities

  18. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  19. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  20. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  1. Developments in odour control and waste gas treatment biotechnology: a review.

    Science.gov (United States)

    Burgess, J E; Parsons, S A; Stuetz, R M

    2001-02-01

    Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.

  2. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  3. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  4. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    International Nuclear Information System (INIS)

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE's Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP's charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program

  5. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  6. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  7. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  8. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Gaudier, J.F.

    1969-01-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn 2+ in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [fr

  9. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Timo Pittmann

    2017-06-01

    Full Text Available This work describes the production of polyhydroxyalkanoates (PHA as a side stream process on a municipal waste water treatment plant (WWTP and a subsequent analysis of the production potential in Germany and the European Union (EU. Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT and withdrawal (WD in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR of 1913 mgVFA/(L×d and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016 could be produced on European waste water treatment plants.

  10. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  11. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  12. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  13. Waste Treatment of Chrome Residue of Chromium Recovery Process Using Calcium Carbonate

    International Nuclear Information System (INIS)

    Endro Kismolo; Prayitno; Nurimaniwathy

    2002-01-01

    The aim of the research was to apply the precipitation technology for the treatment of aqueous wastes of leather tanning industries. The chrome liquid wastes taken was the effluent from the residue of the chromium recovery process using magnesium oxide. The precipitant used was calcium carbonate. The experiments was performed by adjusting the concentration of calcium carbonate from 50 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, 300 ppm, 350 ppm to 400 ppm. The stirring speed was varied from 50 rpm, 75 rpm, 100 rpm, 125 rpm, 150 rpm, 175 rpm to 200 rpm. The time of mixing was varied from 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 175 minutes and 200 minutes. The result from the experiments lead to the best condition obtained were the concentration of precipitant was 300 ppm, flow rates of mixing was 125 rpm and time of mixing was 60 minutes. At this condition the separations efficiency of chrome obtained was 99.985%. (author)

  14. Evaluation of the process of descarnes deliming waste of a process of tanning

    Directory of Open Access Journals (Sweden)

    Sebastian Peñates F

    2017-12-01

    Full Text Available The productive transformation process in furs leather developed in the tanning industry generates different types of waste that should have a proper handling. This research consisted of find a separation of waste lime treatment of suede desencalado of the tanning process stage the process of tanning to be used in different applications. Descarnes whitewashed were selected for the implementation of 6 treatments with three replications of deliming through baths with water at room temperature by controlling the factors time in 3 levels (2, 3 and 4 hours and sulfuric acid as an agent decalcifier at two levels 1 and 2(N. The best results in this process were obtained with the treatment with a concentration of sulfuric acid 2N and an agitation time of 3 hours.

  15. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  16. Treatment and minimization of heavy metal-containing wastes 1995

    International Nuclear Information System (INIS)

    Hager, J.P.; Mishra, B.; Litz, J.L.

    1995-01-01

    This symposium was held in conjunction with the 1995 Annual Meeting of the Minerals, Metals and Materials Society in Las Vegas, Nevada, February 12--16, 1995. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information on treating and minimizing heavy metal-containing wastes. Papers were categorized under the following broad headings: aqueous processing; waste water treatment; thermal processing and stabilization; processing of fly ash, flue dusts, and slags; and processing of lead, mercury, and battery wastes. Individual papers have been processed separately for inclusion in the appropriate data bases

  17. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  18. Separation of Metals From Spent Catalysts Waste by Bioleaching Process

    OpenAIRE

    Sirin Fairus, Tria Liliandini, M.Febrian, Ronny Kurniawan

    2010-01-01

    A kind of waste that hard to be treated is a metal containing solid waste. Leaching method is one thealternative waste treatment. But there still left an obstacle on this method, it is the difficulty to find theselective solvent for the type of certain metal that will separated. Bioleaching is one of the carry ablealternative waste treatments to overcome that obstacle. Bioleaching is a metal dissolving process orextraction from a sediment become dissolve form using microorganisms. On this met...

  19. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  20. The ChemChar process for hazardous-waste treatment

    International Nuclear Information System (INIS)

    McGowin, A.E.

    1991-01-01

    The ChemChar Reverse-Burn Gasification Process has been studied for application to the thermal destruction of radioactive waste organic ion exchange resins. The resulting char was mixed with cement to form a dry, leach-resistant final disposal product. Successful regeneration of spent granular activated carbons was achieved with reverse-burn gasification. Regeneration parameters such as moisture content and supplemental fuel addition were investigated. The performance of regenerated carbon was evaluated by batch equilibrium and breakthrough assay and was comparable to that of the original. Surface areas were determined by the BET method. The fate of mercury during reverse-burn gasification was investigated. TRB Char adsorbent was used to remove mercury vapor emission from the process. The use of petroleum coke as a substrate for gasification of wastes was studied. Petroleum coke was activated by reverse-burn gasification to produce a highly porous, low surface area solid. Destruction efficiency for hexachlorobenzene on activated coke was considerably lower than on coal char, however, the addition of iron appeared to catalyze hexachlorobenzene gasification

  1. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  2. Incorporating regulatory considerations into waste treatment technology development

    International Nuclear Information System (INIS)

    Siegel, M.R.; Powell, J.A.; Williams, T.A.; Kuusinen, T.L.; Lesperance, A.M.

    1991-02-01

    It is generally recognized that the development of new and innovative waste treatment technologies can significantly benefit the US Department of Energy's (DOE) environmental restoration and waste management program. DOE has established a research, development, demonstration, testing, and evaluation (RDDT ampersand E) program, managed by its Office of Technology Development, to encourage and direct the development of new waste treatment and management technologies. The treatment, storage, and disposal of hazardous and radioactive waste is heavily regulated both at the federal and state levels. In order to achieve the goals of applying the best new technologies in the fastest and most cost-effective manner possible, it is essential that regulatory factors be considered early and often during the development process. This paper presents a number of regulatory issues that are relevant to any program intended to encourage the development of new waste treatment and management technologies. It will also address how the use of these basic regulatory considerations can help ensure that technologies that are developed are acceptable to regulators and can therefore be deployed in the field. 2 refs

  3. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1994-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  4. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  5. Treatment of NPP wastes using vitrification

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Lifanov, F.A.; Stefanovsky, S.V.; Kobelev, A.P.; Savkin, A.E.; Kornev, V.I.

    1998-01-01

    Glass-based materials to immobilize various liquid and solid radioactive wastes generated at nuclear power plants (NPP) were designed. Glassy waste forms can be produced using electric melting including a cold crucible melting. Leach rate of cesium was found to be 10 -5 -10 -6 g/(cm 2 day) (IAEA technique). Volume reduction factor after vitrification reached 4-5. Various technologies for NPP waste vitrification were developed. Direct vitrification means feeding of source waste into the melter with formation of glassy waste form to be disposed. Joule heated ceramic melter, and cold crucible were tested. Process variables at treatment of Kursk, Chernobyl (RBMK), Kalinin, Novovoronezh (VVER) NPP wastes were determined. The most promising melter was found to be the cold crucible. Pilot plant based on the cold crucibles has been designed and constructed. Solid burnable NPP wastes are incinerated and slags are incorporated in glass. (author)

  6. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    International Nuclear Information System (INIS)

    Hamel, W. F.; Gerdes, K.; Holton, L. K.; Pegg, I.L.; Bowan, B.W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  7. Design of the Waste Receiving and Processing (WRAP) 2A Facility

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Weingardt, K.M.

    1994-07-01

    Radioactive and Hazardous Mixed Waste have accumulated at the US Department of Energy (DOE) Hanford Site in south-central Washington State. Future generated waste streams from planned facilities at the Hanford Site and off site will also generate solid wastes that contain both radiological and hazardous chemical components. Most of the low-level waste (LLW) in this category is generated in batches sized to be stored in smaller containers (mostly 55-gallon drums and boxes). To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions, most of this waste will need to be treated to meet disposal requirements. In general this treatment must include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, Building 2337-W, is scoped to provide this required treatment for containerized contact-handle at sign d (CH), mixed low-level waste (MLLW) at the Hanford Site. The core processes in WRAP Module 2A include cement stabilization of particulate waste, polyethylene encapsulation (via extrusion) of particulate waste, and cement encapsulation (via vibratory infilling) of hard and soft debris. A conceptual design was prepared and issued in July 1992. Since that time, process development test activities and further design iterations have evolved into the optimized process and facility design presented in this paper. This paper will discuss the revised processing scheme, equipment configuration, and facility layout. The WRAP Module 2A will begin construction in 1996 after a detailed design effort and pilot testing activities

  8. Research on monitoring and management information integration technique in waste treatment and management

    International Nuclear Information System (INIS)

    Kong Jinsong; Yu Ren; Mao Wei

    2013-01-01

    The integration of the waste treatment process and the device status monitoring information and management information is a key problem required to be solved in the information integration of the waste treatment and management. The main content of the monitoring and management information integration is discussed in the paper. The data exchange techniques, which are based on the OPC, FTP and data push technology, are applied to the different monitoring system respectively, according to their development platform, to realize the integration of the waste treatment process and device status monitoring information and management information in a waste treatment center. (authors)

  9. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  10. Selection of an interim upgrade strategy for the Process Waste Treatment Plant at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kent, T.E.; Villiers-Fisher, J.F.; Harrington, F.E.

    1991-01-01

    The principal aim of current changes in the liquid waste handling systems at the Oak Ridge National Laboratory (ORNL) is to reduce liquid low-level waste (LLLW) volumes and to meet increasingly stringent discharge regulations. Proposed improvements at the facility's Process Waste Treatment Plant (PWTP) will have a significant impact on the amount of LLLW generated at ORNL. These improvements will also be important for ensuring that the plant operates under the reduced discharge limits for radionuclides imposed by Department of Energy (DOE) Order 5400.5. Construction of a new PWTP that will completely decouple the process waste and LLLW systems is being proposed. Because of the time required to fund and construct a new PWTP, the existing plant must be improved to reduce waste generation, to expand capacity, and to comply with the lower discharge limits. The economic evaluation performed in this study guided the decision to upgrade the PWTP by improving the existing softening/ion-exchange system for 90 Sr removal and adding a zeolite system for 137 Cs removal. This strategy will reduce LLLW produced at the PWTP by as much as 70% and increase the amount of solid waste produced by about 30%. Disposal costs are expected to decrease by over 50%. 17 refs., 10 figs., 2 tabs

  11. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  12. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C.; Convertti, A.; Rovatti, M. [Genoa Univ. (Italy); Boschi, R.; Cozzani, V.; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1995-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  13. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C; Convertti, A; Rovatti, M [Genoa Univ. (Italy); Boschi, R; Cozzani, V; Tognotti, L [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1996-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  14. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  15. Overview of DOE LLWMP waste treatment, packaging, and handling activities

    International Nuclear Information System (INIS)

    Pechin, W.H.

    1982-01-01

    The program objective is to develop the best available technology for waste treatment, packaging, and handling to meet the needs of shallow land burial disposal and for greater confinement than shallow land burial. The program has reviewed many of the hardware options for appropriate usage with low-level waste, but promising options remain to be evaluated. The testing of treatment technologies with actual radioactive process wastes has been initiated. The analysis of the interaction of treatment, solidification and disposal needs to be completed

  16. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R.W.; Fairhall, G.A.

    1997-01-01

    The treatment of wastes arising from BNFL''s nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arisings. Plants utilising these technologies are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL''s holistic concept. (author)

  17. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R. W.; Fairhall, G. A.

    1997-01-01

    The treatment of wastes arising from BNFL's nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arising and plants are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL holistic concept. (author) 6 refs., 1 fig

  18. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  19. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    International Nuclear Information System (INIS)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report

  20. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  1. Centralized management for LA and MA waste selection and optimization of processes

    International Nuclear Information System (INIS)

    Medal, G.

    1985-01-01

    The procedure currently used for removal of process waste produced by EDF Nuclear Power Plants consists in the local embedding of the waste on each EDF site, the embedded waste is then shipped to a National Final Storage Center. The method used is a financial limitation of opportunities for amendment of containement and volume reduction techniques. The work made by the Commissariat a l'Energie Atomique and its subsidiary TECHNICATOME on behalf of the French Electricite Board (EDF) aim at the removal of waste ''in bulk'' with minimum possible pretreatment in compliance with transport regulation, treatment and conditioning taking place in a centralized waste treatment station so as to allow final storage. This method enables: optimization of the management of waste, selection of safe treatment-processes, storage volume reduction, lower investment and operating costs [fr

  2. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  3. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  4. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  5. Processing method for miscellaneous radioactive solid waste

    International Nuclear Information System (INIS)

    Matsuda, Masami; Komori, Itaru; Nishi, Takashi.

    1995-01-01

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  6. Selection of a reference process for treatment of the West Valley alkaline waste

    International Nuclear Information System (INIS)

    Holton, L.K.; Wise, B.M.; Bray, L.A.; Pope, J.M.; Carl, D.E.

    1984-08-01

    As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95), an organic ion exchange resin (Duolite CS-100), and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungstic acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper will summarize the technical basis for the selection of the zeolite ion-exchange process. 4 figures, 2 tables

  7. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  8. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  9. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    International Nuclear Information System (INIS)

    Finucane, K.G.; Campbell, B.E.

    2006-01-01

    AMEC's GeoMelt R In-Container Vitrification (ICV) TM has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  10. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  11. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  12. Development of technical design for waste processing and storage facilities for Novi Han repository

    International Nuclear Information System (INIS)

    Canizares, J.; Benitez, J.C.; Asuar, O.; Yordanova, O.; Demireva, E.; Stefanova, I.

    2005-01-01

    Empresarion Agrupados Internacional S.A. (Spain) and ENPRO Consult Ltd. (Bulgaria) were awarded a contract by the Central Finance and Contracts Unit to develop the technical design of the waste processing and storage facilities at the Novi Han repository. At present conceptual design phase is finished. This conceptual design covers the definition of the basic design requirements to be applied to the installations defined above, following both European and Bulgarian legislation. In this paper the following items are considered: 1) Basic criteria for the layout and sizing of buildings; 2) Processing of radioactive waste, including: treatment and conditioning of disused sealed sources; treatment of liquid radioactive wastes; treatment of solid radioactive waste; conditioning of liquid and solid radioactive waste; 3) Control of waste packages and 4) Storage of radioactive waste, including storage facility and waste packages. An analysis of inventories of stored and estimated future wastes and its subsequent processes is also presented and the waste streams are illustrated

  13. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  14. Treatment of liquid wastes from uranium hydrometallurgy

    International Nuclear Information System (INIS)

    Moraga G, J.C.

    1988-01-01

    Different treatments for low activity liquid wastes, generated by the hidromettalurgy of uranium ore are studied. A process of treatment was chosen which includes a neutralization with lime and limestone and a selective removal of Ra-226, through ion-exchange resins. A plant, with a capacity of treatment of 1 m 3 /h of liquid effluents was scoped. (author)

  15. DOE evaluates nine alternative thermal technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In June 1993, the U.S. Department of Energy's (DOE's) Office of Technology Development commissioned a study to evaluate 19 thermal technologies for treating DOE's mixed waste. The study was divided into two phases: Phase I evaluated ten conventional incineration techniques (primarily rotary kiln), and Phase II looked at nine innovative, alternative thermal treatment technologies. The treatment processes were evaluated as part of an integrated waste treatment system, which would include all of the facilities, equipment, and methods required to treat and dispose DOE mixed waste. The relative merits and life-cycle costs were then developed for each of the 19 waste treatment systems evaluated. The study also identified the additional research and development, demonstration, and testing/evaluation steps that would be necessary for the waste treatment systems to successfully treat DOE mixed waste. 3 tabs., 2 refs

  16. Treatment of plutonium contamined solid wastes by electrogenerated Ag(II)

    International Nuclear Information System (INIS)

    Saulze, J.L.

    1990-01-01

    A process for the treatment of plutonium contaminated solid wastes is designed. Two types of wastes have been studied; incineration ashes (COGEMA UP1) and sludges produced in the cryotreatment facility in Cadarache Center (France). The principle of the process is based on the rapid dissolution of PuO 2 (contained in the wastes) under the action of aggressive Ag(II) species, regenerated electrochemically. In the case of the treatment of incinerator ashes an electrochemical pretreatment is necessary if the chloride ion content of the ashes is high. The feasibility of the decontamination process has been proved for the two types of plutonium contaminated solid wastes at a pilot level; for example 1 Kg of ashes (or 0.75 Kg of sludges) has been treated in one experiment, and 97% (or 95%) of the total plutonium was dissolved at the end of the experiment. Industrial applications of this new process are underway [fr

  17. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  18. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  19. Hanford's self-assessment of the solid waste forecast process

    International Nuclear Information System (INIS)

    Hauth, J.; Skumanich, M.; Morgan, J.

    1996-01-01

    In fiscal year (FY) 1995 the forecast process used at Hanford to project future solid waste volumes was evaluated. Data on current and future solid waste generation are used by Hanford site planners to determine near-term and long-term planning needs. Generators who plan to ship their waste to Hanford's Solid Waste Program for treatment, storage, and disposal provide volume information on the types of waste that could be potentially generated, waste characteristics, and container types. Generators also provide limited radionuclide data and supporting assumptions. A self-assessment of the forecast process identified many effective working elements, including a well-established and systematic process for data collection, analysis and reporting; sufficient resources to obtain the necessary information; and dedicated support and analytic staff. Several areas for improvement were identified, including the need to improve confidence in the forecast data, integrate forecast data with other site-level and national data calls, enhance the electronic data collection system, and streamline the forecast process

  20. Secondary Low-Level Waste Treatment Strategy Analysis

    International Nuclear Information System (INIS)

    D.M. LaRue

    1999-01-01

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements

  1. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  2. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  3. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  4. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  5. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  6. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  7. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  8. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  9. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  10. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    Directory of Open Access Journals (Sweden)

    Micky A. Babalola

    2015-10-01

    Full Text Available Dealing with large-scale Food and Biodegradable Waste (FBW often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of conflicting objectives, since increasing one benefit may decrease the others. In this study a Multi-Criteria Decision Analysis (MCDA is presented to evaluate different waste management options and their applicability in Japan. The analytical process aims at selecting the most suitable waste treatment option, using pairwise comparisons conducted within a decision hierarchy that was developed through the Analytical Hierarchy Process (AHP. The results of this study show that anaerobic digestion should be chosen as the best FBW treatment option with regards to resource recovery. The study also presents some conditions and recommendations that can enhance the suitability of other options like incineration and composting.

  11. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  12. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  13. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  14. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  15. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  16. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Geimer, R.M.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  17. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  18. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  19. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  20. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  1. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  2. AERE contracts with DoE on the treatment and disposal of intermediate level wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-11-01

    Reports are presented on work on the following topics concerned with the treatment and disposal of intermediate-level radioactive wastes: comparative evaluation of α and β γ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; α damage in non-reference waste form matrix materials; leaching mechanisms and modelling; inorganic ion exchange treatment of medium active effluents; electrical processes for the treatment of medium active liquid waste; fast reactor fuel element cladding; dissolver residues; effects of radiation on the properties of cemented MTR waste forms; equilibrium leach testing of cemented MTR waste forms; radiolytic oxidation of radionuclides; immobilisation of liquid organic waste; quality control, non-conformances and corrective action. (U.K.)

  3. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  4. Environmental and economic vision of plasma treatment of waste in Makkah

    Science.gov (United States)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  5. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories.

    Science.gov (United States)

    Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.

  6. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories

    International Nuclear Information System (INIS)

    Li Mengnan; Zheng Guanghong; Wang Lei; Xiao Wei; Fu Xiaohua; Le Yiquan; Ren Daming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or 'gene pollution'. Heating at 100 deg. C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 deg. C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 deg. C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion

  7. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  8. Selection of a reference process for treatment of the West Valley alkaline waste

    International Nuclear Information System (INIS)

    Bray, L.A.; Holton, L.K.; Wise, B.M.; Carl, D.E.; Pope, J.M.

    1984-01-01

    As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95, Ionsiv is a trademark of Union Carbide Company), an organic ion exchange resin (Duolite CS-100, Duolite is a registered trademark of Diamond Shamrock Co) and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungsthC acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper summarizes the technical basis for the selection of the zeolite ion-exchange process

  9. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  10. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowles, D.E.; Bonner, W.F.

    1983-01-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the U.S. as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations are met in a cost-effective manner

  11. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  12. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  13. Thermal treatment of high-caloric waste in fluidized bed incineration plants in Austria

    International Nuclear Information System (INIS)

    Ragossnig, A.M.

    2001-05-01

    The importance of thermal treatment of waste and residues in Austria is expected to rise due to the current changes of the legal situation in waste management. Assessing the rank order of different thermal treatment processes for waste management it has been shown that - especially caused by the rising importance of the mechanical treatment step in the mechanical-biological residual waste treatment and the subsequent necessity of the thermal treatment of a high-caloric preprocessed waste stream - the importance of the fluidized bed technology will increase. The main advantages are the high existing capacities as well as the flexibility of this technology in regard of fuel properties and further on the fact of the lacking influence of the ash towards the quality of a product. This is true although the thermal treatment in fluidized bed incinerators requires some processing of the waste. This doctoral thesis also contains a thorough physical and chemical characterization of various waste fuels - especially those which have been used during full scale incineration experiments. This characterization includes a comparison with fossil fuel. The practical part contains the documentation and balancing of full scale incineration experiments. A comparison of a reference experiment with experiments when waste fuel has been thermally utilized showed that a significant increase of emissions to the atmosphere has not been observed. Based on the incineration experiments conclusions in regard of waste fuels as well as different categories of thermal treatment plants are being stated. Finally, a recommendation of the assignation of various waste streams to different categories of thermal treatment plants is being made. (author)

  14. Modeling a novel glass immobilization waste treatment process using flow

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Nehls, J.W. Jr.; Welch, T.D.; Giardina, J.L.

    1996-01-01

    One option for control and disposal of surplus fissile materials is the Glass Material Oxidation and Dissolution System (GMODS), a process developed at ORNL for directly converting Pu-bearing material into a durable high-quality glass waste form. This paper presents a preliminary assessment of the GMODS process flowsheet using FLOW, a chemical process simulator. The simulation showed that the glass chemistry postulated ion the models has acceptable levels of risks

  15. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  16. Treatment of high organic strength waste waters; Tratamiento de aguas residuales de alta carga

    Energy Technology Data Exchange (ETDEWEB)

    Marti Duran, J.; Leyda Escoruela, L. [COMSA, S.A., Madrid (Spain)

    1995-11-01

    A biological treatment process is likely to be the preferred and main stage for the treatment of high strength waste waters. In some instance the wastes will contain a fraction of toxic or non-biodegradable organic constituents which affects the implementation of the central biological process. Two different technologies using tower-shape reactors are described, together with a Low Pressure Chemical Oxidation process technology used in the pretreatment of poorly biodegradable wastes.

  17. Radioactive alpha wastes processing at the nuclear center of Mol

    International Nuclear Information System (INIS)

    Voorde, N. van de

    1978-01-01

    This process is based on calcination at very high temperature (1500 0 C) of wastes, mainly burnable, with selected non-burnable wastes, such as glass, metal, sludge, ion echanger, etc. Incineration wastes melt at this temperature and an insoluble granitic mass is obtained. This operation is performed in a special oven equipped with a gas purification device installed in a place like alpha bearing wastes treatment working spot where the staff can work in an air-supplied suit. Two incineration units are planned, the first one with a capacity of 150 kg/hr in view to treat a large amount of wastes with a low plutonium content (max. 10 mg/l), the second smaller with a capacity of 10 kg/hr, specially designed to process wastes with a high Pu content. This project for the first unit, at least is now tested with beta gamma wastes processing. Alpha bearing wastes pocessing will start at the end of 1978, we are now building the second unit [fr

  18. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  19. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  20. Study of field assessment methods and worker risks for processing alternatives to support principles for FUSRAP waste materials. Part 1: Treatment methods and comparative risks of thorium removal from waste residues

    Energy Technology Data Exchange (ETDEWEB)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). Its purpose was to provide information to the Environmental Management Advisory Board`s FUSRAP Committee for use in its deliberation of guiding principles for FUSRAP sites, in particular the degree to which treatment should be considered in the FUSRAP Committee`s recommendations. Treatment of FUSRAP wastes to remove thorium could be beneficial to management of lands that contain thorium if such treatment were effective and cost efficient. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation. Both types of information should be useful for decisions on whether and how to apply thorium removal methods to FUSRAP waste materials.

  1. Study of field assessment methods and worker risks for processing alternatives to support principles for FURSRAP waste materials. Part 1: Treatment methods and comparative risks of thorium removal from waste residues

    International Nuclear Information System (INIS)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). Its purpose was to provide information to the Environmental Management Advisory Board's FUSRAP Committee for use in its deliberation of guiding principles for FUSRAP sites, in particular the degree to which treatment should be considered in the FUSRAP Committee's recommendations. Treatment of FUSRAP wastes to remove thorium could be beneficial to management of lands that contain thorium if such treatment were effective and cost efficient. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation. Both types of information should be useful for decisions on whether and how to apply thorium removal methods to FUSRAP waste materials

  2. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  3. Zero-Release Mixed Waste Process Facility Design and Testing

    International Nuclear Information System (INIS)

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-01-01

    A zero-release off-gas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotary kiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release off-gas cleaning system is to recycle the bulk of the off-gas stream to the thermal treatment process. A slip stream is taken off the off-gas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the off-gas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing off-gas emissions. Consideration of the proposed closed-system off-gas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis

  4. Role of disposal in developing Federal Facility Compliance Act mixed waste treatment plans

    International Nuclear Information System (INIS)

    Case, J.T.; Rhoderick, J.

    1994-01-01

    The Federal Facilities Compliance Act (FFCA) was enacted on October 6, 1992. This act amends the Solid Waste Disposal Act, which was previously amended by the Resource Conservation and Recovery Act (RCRA). The FFCA set in place a process for managing the Department of Energy's (DOE) mixed low-level radioactive wastes (MLLW), wastes that contain both hazardous and low-level radioactive constituents, with full participation of the affected states. The FFCA provides the framework for the development of treatment capacity for DOE's mixed waste. Disposal of the treatment residues is not addressed by the FFCA. DOE has initiated efforts in concert with the states in the development of a disposal strategy for the treated mixed wastes. This paper outlines DOE efforts in development of a mixed waste disposal strategy which is integrated with the FFCA Site Treatment Planning process

  5. Seminar on waste treatment and disposal

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-01-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place

  6. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  7. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  8. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  9. Waste treatment at the Radiochemical Engineering Development Center

    International Nuclear Information System (INIS)

    Brunson, R.R.; Bond, W.D.; Chattin, F.R.; Collins, R.T.; Sullivan, G.R.; Wiles, R.H.

    1997-01-01

    At the Radiochemical Engineering Development Center (REDC) irradiated targets are processed for the recovery of valuable radioisotopes, principally transuranium nuclides. A system was recently installed for treating the various liquid alkaline waste streams for removal of excess radioactive contaminants at the REDC. Radionuclides that are removed will be stored as solids and thus the future discharge of radionuclides to liquid low level waste tank storage will be greatly reduced. The treatment system is of modular design and is installed in a hot cell (Cubicle 7) in Building 7920 at the REDC where preliminary testing is in progress. The module incorporates the following: (1) a resorcinol-formaldehyde resin column for Cs removal, (2) a cross flow filtration unit for removal of rare earths and actinides as hydroxide, and (3) a waste solidification unit. Process flowsheets for operation of the module, key features of the module design, and its computer-assisted control system are presented. Good operability of the cross flow filter system is mandatory to the successful treatment of REDC wastes. Results of tests to date on the operation of the filter in its slurry collection mode and its slurry washing mode are presented. These tests include the effects of entrained organic solvent in the waste stream feed to the filter

  10. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    OpenAIRE

    Zazouli, Mohammad Ali; Yousefi, Zabihollah; Eslami, Akbar; Ardebilian, Maryam Bagheri

    2012-01-01

    Abstract Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different v...

  11. AERE contracts with DoE on the treatment and disposal of intermediate level wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-06-01

    This document reports work carried out in 1983/84 under 10 contracts between DoE and AERE on the treatment and disposal of intermediate level wastes. Individual summaries are provided for each contract report within the document, under the headings: comparative evaluation of α and βγ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; ceramic waste forms; radionuclide release during leaching; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; fast reactor fuel element cladding; dissolver residues; flowsheeting/systems study. (U.K.)

  12. A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors

    International Nuclear Information System (INIS)

    P. C. Marushia; W. E. Schwinkendorf

    1999-01-01

    Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyers' guides, and databases. While this information is helpful at the time it is assembled, the principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Program's Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Program's Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market

  13. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, P; Nath, Sudesh; Gandhi, P M; Mishra, S D [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author). 3 figs., 3 tabs.

  14. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Shekhar, P.; Sudesh Nath; Gandhi, P.M.; Mishra, S.D.

    1994-01-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author)

  15. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  16. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  17. Evaluation of treatment alternatives for wastes from both spent fuel rod consolidation and miscellaneous commercial activities

    International Nuclear Information System (INIS)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-07-01

    Alternative treatments were considered for both existing commercial transuranic wastes and future wastes from spent fuel rod consolidation. Waste treatment was assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage [MRS] facility was used as a reference). Disposal of the waste in a geologic repository was also assumed. The waste form charcteristics, process characteristics, and costs were evaluated for each waste treatment alternative. The evaluation indicated that selection of a high volume reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS waste treatment processes. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration

  18. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  19. Membrane methods for the treatment of low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.; Chmielewski, A.G.; Harasimowicz, M.; Tyminski, B.

    2001-01-01

    Membrane processes have been investigated at Institute of Nuclear Chemistry and Technology, Warsaw (INCT) since eighties. Different polymeric membranes were tested with radioactive solutions in long time operations. Such membrane processes as ultrafiltration, 'seeded' ultrafiltration and reverse osmosis were studied in a laboratory scale and in pilot plant experiments. The experiments show the advantage of membrane methods over some other processes used for radioactive wastes treatment. The RO method is being implemented at Institute of Atomic Energy in Swierk (Warsaw), where liquid radioactive wastes from all of Poland are collected and processed. Another method for liquid radioactive wastes treatment employing hydrophobic polymer membrane was developed at INCT. The process called membrane distillation was investigated for some years and the pilot plant for the processing 50 dm 3 /h of radioactive effluents was constructed. The pilot plant experiments show membrane distillation allows complete purification of liquid radioactive waste in one stage and does not need additional processes to ensure sufficient purity of water discharged to the environment. Comparison between two processes: membrane distillation and reverse osmosis showed that in some cases MD could be more beneficial. (author)

  20. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  1. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  2. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  3. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowlton, D.E.; Bonner, W.F.

    1983-06-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the US as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations atre met in a cost-effective manner. 7 references, 2 figures, 3 tables

  4. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  5. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  6. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  7. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  8. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  9. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC)

  10. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  11. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  12. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  13. Potential of development of the mechanical-biological waste treatment; Entwicklungspotenzial der Mechanisch-Biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V., Ennigerloh (Germany); Abfallwirtschaftsgesellschaft des Kreises Warendorf mbH, Ennigerloh (Germany)

    2013-03-01

    The Consortium Material-Specific Waste Treatment eV (Ennigerloh, Federal Republic of Germany) is an association of plant operators having the opinion that an economic and ecologic waste treatment only can be guaranteed by material-specific processes permanently. Due to the specific treatment processes in plants with mechanical-biological waste treatment (MBA) material flows are resulting being available for the recycling or exploitation. Under this aspect, the authors of the contribution under consideration report on the development potential of the mechanical-biological waste treatment. The state of the art of the technology of mechanical-biological waste treatment in Germany as well as the contribution of this technology to the resource protection and climate protection are described. Further aspects of this contribution are the increase of the energy efficiency and reduction of emissions; further development of the efficient sorting technology; development of integrated total conceptions - MBA-sites as centres for the production of renewable energies.

  14. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    International Nuclear Information System (INIS)

    Wasan, Darsh T.; Nikolov, Alex D.; Lamber, D.P.; Calloway, T. Bond; Stone, M.E.

    2005-01-01

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays

  15. Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173

    International Nuclear Information System (INIS)

    Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

    2010-01-01

    The U.S. Department of Energy-Office of River Protections Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanfords 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

  16. Treatment of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Hoehlein, G.

    1978-05-01

    The methods described of low and intermediate level waste treatment are based exclusively on operating experience gathered with the KfK facilities for waste management, the Karlsruhe Reprocessing Plant (WAK), the ALKEM fuel element fabrication plant, the MZFR, KNK and FR 2 reactors as well as at the Karlsruhe Nuclear Research Center and at the state collecting depot of Baden-Wuerttemberg. The processing capacities and technical status are similar to that in 1976. With an annual throughput of 10000 m 3 of solid and liquid raw wastes, an aggregate activity of 85000 Ci, 500 kg of U and 2 kg of Pu, final waste in the amount of 500 m 3 was produced which was stored in the ASSE II salt mine. (orig.) [de

  17. Study on treatment of radioactive liquid waste from uranium ore processing by the use of nano oxide ferromagnetic

    International Nuclear Information System (INIS)

    Vuong Huu Anh; Nguyen Van Chinh; Nguyen Ba Tien; Doan Thi Thu Hien; Luu Cao Nguyen

    2015-01-01

    Nano oxide ferromagnetic Fe_3O_4 KT which was produced by the Military Institute of Science and Technology were used to adsorbed heavy metal elements in liquid waste. In this report, the nano oxide ferromagnetic Fe_3O_4 KT with the particle size of 80-100 nm and the specific surface area of 50-70 m"2/g was applied to study the adsorption of radioactive elements in the liquid waste of uranium ores processing. The effective parameters on adsorption process included temperature, stirring rate, stirring time, the pH value of the solution, the initial concentration of uranium in solution were investigated. The results showed that the maximum adsorption capacity for uranium of the nano Fe_3O_4 KT was 53.5 mgU/g with conditions such as: room temperature, stirring speed 120 rounds/minute, the pH value of solution was 8, stirring time about 2 hours . From the results obtained, nano Fe_3O_4 KT was tested to treatment real liquid waste of uranium ore processing after removing almost heavy metals and a part of radioactive elements by preliminary precipitation at pH 8. The results were analyzed on the ICP-MS and α, β total activity equipment, the solution concentration after treatment suitable for Vietnamese Technical Regulation on industrial wastewater QCVN 40: 2011 (concentrations of heavy metals; total activity of α and β). (author)

  18. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  19. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  20. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  1. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  2. TRUEX process: a new dimension in management of liquid TRU wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1986-01-01

    The TRUEX process is one of the, if not the, most exciting and potentially useful nuclear separations processes to be developed since the PUREX process was developed and applied in the 1950s. Attesting to its potential widespread use, Rockwell Hanford and ANL investigators, in a joint effort, are developing and testing TRUEX process flow sheets for removal of TRU elements from several Hanford Site wastes including the Plutonium Finishing Plant and complexed concentrate wastes. The TRUEX process also appears to be well suited to removal of plutonium and Am from aqueous chloride wastes generated during plutonium processing operations at the Los Alamos National Lab. (LANL); collaborative efforts between LANL and ANL scientists to develop and demonstrate TRUEX process flow sheets for treatment of LANL site chloride wastes are currently under way

  3. Demonstration of the TRUEX process for the treatment of actual high activity tank waste at the INEEL using centrifugal contactors

    International Nuclear Information System (INIS)

    Law, J.D.; Brewer, K.N.; Todd, T.A.; Olson, L.G.

    1997-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), formerly reprocessed spent nuclear fuel to recover fissionable uranium. The radioactive raffinates from the solvent extraction uranium recovery processes were converted to granular solids (calcine) in a high temperature fluidized bed. A secondary liquid waste stream was generated during the course of reprocessing, primarily from equipment decontamination between campaigns and solvent wash activities. This acidic tank waste cannot be directly calcined due to the high sodium content and has historically been blended with reprocessing raffinates or non-radioactive aluminum nitrate prior to calcination. Fuel reprocessing activities are no longer being performed at the ICPP, thereby eliminating the option of waste blending to deplete the waste inventory. Currently, approximately 5.7 million liters of high-activity waste are temporarily stored at the ICPP in large underground stainless-steel tanks. The United States Environmental Protection Agency and the Idaho Department of Health and Welfare filed a Notice of Noncompliance in 1992 contending some of the underground waste storage tanks do not meet secondary containment. As part of a 1995 agreement between the State of Idaho, the Department of Energy, and the Department of Navy, the waste must be removed from the tanks by 2012. Treatment of the tank waste inventories by partitioning the radionuclides and immobilizing the resulting high-activity and low-activity waste streams is currently under evaluation. A recent peer review identified the most promising radionuclide separation technologies for evaluation. The Transuranic Extraction-(TRUEX) process was identified as a primary candidate for separation of the actinides from ICPP tank waste

  4. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  5. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  6. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  7. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Naba, Katsumi; Oohashi, Takeshi; Kawakatsu, Ryu; Kuribayashi, Kotaro.

    1980-01-01

    Purpose: To process radioactive liquid wastes with safety by distillating radioactive liquid wastes while passing gases, properly treating the distillation fractions, adding combustible and liquid synthetic resin material to the distillation residues, polymerizing to solidify and then burning them. Method: Radioactive substance - containing liquid wastes are distillated while passing gases and the distillation fractions containing no substantial radioactive substances are treated in an adequate method. Synthetic resin material, which may be a mixture of polymer and monomer, is added together with a catalyst to the distillation residues containing almost of the radioactive substances to polymerize and solidify. Water or solvent in such an extent as not hindering the solidification may be allowed if remained. The solidification products are burnt for facilitating the treatment of the radioactive substances. The resin material can be selected suitably, methacrylate syrup (mainly solution of polymethylmethacrylate and methylmethacrylate) being preferred. (Seki, T.)

  8. Treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Machida, Chuji

    1976-01-01

    Japan Atomic Energy Research Institute (JAERI) is equipped with such atomic energy facilities as a power test reactor, four research reactors, a hot laboratory, and radioisotope-producing factory. All the radioactive wastes but gas generated from these facilities are treated by the waste treatment facilities established in JAERI. The wastes carried into JAERI through Japan Radioisotope Association are also treated there. Low level water solution is treated with an evaporating apparatus, an ion-exchange apparatus, and a cohesive precipitating apparatus, while medium level solution is treated with an evaporating apparatus, and low level combustible solid is treated with an incinerating apparatus. These treated wastes and sludges are mixed with Portland cement in drum cans to solidify, and stored in a concrete pit. The correct classification and its indication as well as the proper packing for the wastes are earnestly demanded by the treatment facilities. (Kobatake, H.)

  9. Thermal treatments available for destruction of industrial wastes. Application to the incineration of radioactive wastes

    International Nuclear Information System (INIS)

    Chevalier, Gerard.

    1981-08-01

    Both the collecting and processing circuits and the physicochemical laws of combustion and thermal degradation of industrial wastes are recalled. The various incineration processes are reviewed considering especially conversion of refuse to energy and recovery of raw materials either before or after treatment. Wastes are devided into three classes according to their physical state: solid, liquid or sludge, gas. Some processes based on pyrolysis in the absence of air or at sub-stoichiometric levels are presented. A similar study is carried out on radioactive wastes, taking into account the particular aspects raised by incineration. Operational devices are described and some lines of research about the application of new techniques are summarized. The results derived from laboratory or pilot plant experiments are presented [fr

  10. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    Wen, S.-J.; Hwang, S.-L.; Tsai, C.-M.

    1980-01-01

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10 -5 -10 -3 μCi/cm 3 . The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  11. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    Science.gov (United States)

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  12. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  13. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  14. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  15. Treatment alternatives of liquid radioactive waste containing uranium in phosphoric acid

    International Nuclear Information System (INIS)

    Bustamante Escobedo, Mauricio

    2003-01-01

    The UGDR, receives annually 100 [l] of liquid radioactive waste containing, highly acid (pH=0) uranium in phosphoric acid from the Laboratory of Chemical Analysis. This waste must be chemically and radiologically decontaminated before it can be discharged in accordance with local environmental standards. Chemical precipitation and evaporation test were carried out to define the operating conditions for the radiological decontamination of this radioactive waste and to obtain a solid waste that can be conditioned in a cement matrix. The evaporation process generates excellent rates of volume reduction, over 80%, but generates a pulp that is hard handle when submitted to a drying process. Chemical precipitation generates good results for decontaminating these solutions and reducing volume (above 50%) to obtain a uranium free effluent. The treatment with calcium carbonate generated an effluent with a low concentration of polluting agents. A preliminary test was carried out condition these solids in a cement matrix, using ratios of 0.45 waste/cement and 2 of water/cement. The mix prepared with waste from the sodium hydroxide treatment had low mechanical resistance resulting from the saline incrustations. The waste from the calcium carbonate treatment was very porous due to the water evaporation from the highly exothermic reaction between the waste and the cement. The mix of the calcium carbonate generated waste and the cement matrix needs to be optimized, since it generates favorable conditions for adhering with the cement matrix (au)

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  17. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other, miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume 1 provides a narrative of the project background, objective and justification. A description of the WRAP 2A mission, operations and project scope is also included. Significant project requirements such as security, health, safety, decontamination and decomissioning, maintenance, data processing, and quality are outlined. Environmental compliance issues and regulatory permits are identified, and a preliminary safety evaluation is provided

  18. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at the Hanford Reservation. The mission of the facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume III is a compilation of the outline specifications that will form the basis for development of the Title design construction specifications. This volume contains abbreviated CSI outline specifications for equipment as well as non-equipment related construction and material items. For process and mechanical equipment, data sheets are provided with the specifications which indicate the equipment overall design parameters. This volume also includes a major equipment list

  19. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  1. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  2. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  3. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    International Nuclear Information System (INIS)

    Hallen, R.T.; Bryan, S.A.; Hoopes, F.V.

    2000-01-01

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a)

  4. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  5. Thermal treatment of municipal waste: An overview

    International Nuclear Information System (INIS)

    Sivaprasad, K.S.

    2010-01-01

    Waste generation, like a shadow accompanies all kinds of human activities. For a long time waste was ignored as of no consequence. Nevertheless in recent times the presence of Waste was felt by the adverse impact it began to have on human life. Attention was given to waste disposal. Various methods of disposal were developed. Actually a process of evolution was set in this area. Starting with Dumpsite it developed in to sanitary land fill. Adverse impact was beginning to be seen in leachate contaminating ground water, and long term emission of methane contributing to climate change. This set the thinking to seek other solutions. Waste was begun to be seen as a resource instead of a nuisance to be disposed off. Bio-methanation of waste for recovery of methane rich biogas was developed. The concept of thermal treatment of waste for disposal came in to being in order to reduce volume of disposal as only the ash will be disposed instead of the whole volume of waste when waste is subjected to thermal treatment. However, it was beset with certain pollution problems which needed to be addressed. Suitable pollution abatement systems were developed. In the meantime, with the increase in global population and lifestyle changes across the globe, demand for natural resources went up rapidly resulting in pressure on the finite resources of the earth. Emphasis shifted to recovery of value from waste while disposing. Recovery of Recyclables, and energy came in to focus. RDF technology was developed facilitating this making it possible to recover recyclables like plastics, metals etc besides generating the prepared fuel RDF for energy recovery. (Author)

  6. Electrical processes for the treatment of medium active liquid wastes: a laboratory-scale evaluation

    International Nuclear Information System (INIS)

    Turner, A.D.; Bowen, W.R.; Bridger, N.J.; Harrison, K.T.

    1983-10-01

    A wide range of electrochemical separation processes has been evaluated through literature and experimental studies for potential application to the treatment of medium-active liquid wastes. Of the ten processes considered, electro-osmosis and electrochemical ion-exchange show the most promise for immediate further development to a larger scale, while the faradaic deposition of PuO 2 , Tc, RuO 2 require further laboratory study before judgement can be passed on these. Electro-osmosis has an exceptionally high solids retention (99.99%) and is capable of dewatering suspensions to 35% - suitable for direct incorporation in concrete. Electrochemical ion-exchange has the attractions of a conventional ion-exchange process but with the added features of enhanced kinetics and pH operating range, as well as elution into demineralized water merely by polarity reversal. All electrical processes have the advantage of the added process variable of externally applied potential, which can enable remote, automatic control. (author)

  7. Electrical processes for the treatment of medium-active liquid wastes: a laboratory-scale evaluation

    International Nuclear Information System (INIS)

    Turner, A.D.; Bowen, W.R.; Bridger, N.J.; Harrison, K.T.

    1984-01-01

    A wide range of electrochemical separation processes have been evaluated through the literature and experimental studies for potential application to the treatment of medium-active liquid wastes. Of the 10 processes considered, electro-osmosis and electrochemical ion-exchange show the most promise for immediate further development to a larger scale, while the faradic deposition of PuO 2 , Tc, RuO 2 require further laboratory study before judgment can be passed on these. Electro-osmosis has an exceptionally high solids retention (99.99%) and is capable of dewatering suspensions to 35% - suitable for direct incorporation in concrete. Electrochemical ion-exchange has the attractions of a conventional ion-exchange process but with the added features of enhanced kinetics and pH operating range, as well as elution into demineralized water merely by polarity reversal. All electrical processes have the advantage of the added process variable of externally applied potential, which can enable remote, automatic control

  8. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  9. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  10. Treatment and processing of the effluents and wastes (other than fuel) produced by a 900 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Giraud

    1983-01-01

    Effluents produced by a 900 MWe power plant, are of three sorts: gaseous, liquid and solid. According to their nature, effluents are either released or stored for decaying before being released to the atmosphere. The non-contaminated reactor coolant effluents are purified (filtration, gas stripping) and treated by evaporation for reuse. Depending upon their radioactive level, liquid waste is either treated by evaporation or discharged after filtration. Solid waste issuing from previous treatments (concentrates, resins, filters) is processed in concrete drums using an encapsulation process. The concrete drum provides biological self-protection consistent with the national and international regulations pertaining to the transport of radioactive substance. Finally, the various low-level radioactive solid waste collected throughout the plant, is compacted into metal drums. Annual estimates of the quantity of effluents (gaseous, liquid) released in the environment and the number of drums (concrete, metal) produced by the plant figure in the conclusion

  11. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    International Nuclear Information System (INIS)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate (1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and (2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost

  12. Development of the SREX process for the treatment of ICPP liquid wastes

    International Nuclear Information System (INIS)

    Wood, D.J.; Law, J.D.; Garn, T.G.; Tillotson, R.D.; Tullock, P.A.; Todd, T.A.

    1997-10-01

    The removal of 90 Sr from actual and simulated wastes at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering and Environmental Laboratory (INEEL) has been demonstrated with the SREX process. This solvent extraction process employs the extractant 4',4'(5') di-(t-butylcyclohexano)-18-crown-6 in 1-octanol or a mixture of tributyl phosphate and a hydrocarbon diluent called Isopar L reg-sign. Process flowsheets have been designed for testing in countercurrent experiments with centrifugal contractors. The flowsheets have been designed using batch contract solvent extraction methods. The extraction of Sr as well as other interfering ions has been studied. The effect of various parameters including nitric acid dependence, extractant concentration dependence, hydronium ion concentration, and interferent concentrations upon the extraction efficiency of the process has been evaluated. The radiolysis of the SREX solvent has also been investigated as a function of absorbed gamma radiation. The extraction efficiency of the solvent has been shown to be only slightly dependent upon absorbed dose in the range 0--1,000 kGy. The decontamination of actual sodium-bearing waste and dissolved calcine solutions has been accomplished in batch contact flowsheets. Decontamination factors as high as 10E3 have been obtained with sequential batch contacts. Flowsheets have been developed to accomplish decontamination of the liquid wastes with respect to 90 Sr as well as the removal of Pb and Hg. Pb may be partitioned from the Sr fraction in a separate stripping procedure using ammonium citrate. This work has led to the formulation of countercurrent flowsheets which have been tested in centrifugal contractors with actual waste and reported in the document INEEL/EXT-97-00832

  13. Treatment, processing, and disposal of radioactive materials and wastes emanating from nuclear accidents

    International Nuclear Information System (INIS)

    Hemke, J.

    1999-01-01

    The objectives of the research project are: Elaboration of concepts for the disposal or treatment of radioactive agricultural produce and wastes resulting from a nuclear emergency. The major goal is minimization of the radiation dose to the population, using available technology, equipment and infrastructure. The waste management concepts will be tested for suitability and effectiveness within the framework of planning games. (orig./CB) [de

  14. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  15. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    International Nuclear Information System (INIS)

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ''ideas''. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ''cradle-to-grave'' systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ''downselection'' of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW

  16. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  17. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  18. Development of a freeze-drying process of waste-solution, 2

    International Nuclear Information System (INIS)

    Kondo, Isao; Kawasaki, Takeshi

    1988-01-01

    The waste solution treatment process in Plutonium Conversion Development Facility (PCDF) consists of Evaporation-Condensation and Neutrazation-Agglometation-Precipitation process, which produces the distillate as recovered acid at first step and separates Pu-U element from condenced solution at second step. This process needs many stages to get high decontamination efficiency and then the Evaporator is in very corrosive state because the nitric acid solution is heated over 100 degrees C to be evaporated. So, in PCDF, it was started the development of Freeze-Drying process to waste solution treatment. This process is suitable for a little quantity of the solution including nitric acid as produced in the Microwave Heating method. Moreover the process has high decontamination efficiency and has good performance of equipment. The result of the cold test of Freeze-Drying process with nitric acid is discribed in this paper. (author)

  19. Process Technical Basis Documentation Diagram for a solid-waste processing facility

    International Nuclear Information System (INIS)

    Benar, C.J.; Petersen, C.A.

    1994-02-01

    The Process Technical Basis Documentation Diagram is for a solid-waste processing facility that could be designed to treat, package, and certify contact-handled mixed low-level waste for permanent disposal. The treatment processes include stabilization using cementitious materials and immobilization using a polymer material. The Diagram identifies several engineering/demonstration activities that would confirm the process selection and process design. An independent peer review was conducted at the request of Westinghouse Hanford Company to determine the technical adequacy of the technical approach for waste form development. The peer review panel provided comments and identified documents that it felt were needed in the Diagram as precedence for Title I design. The Diagram is a visual tool to identify traceable documentation of key activities, including those documents suggested by the peer review, and to show how they relate to each other. The Diagram is divided into three sections: (1) the Facility section, which contains documents pertaining to the facility design, (2) the Process Demonstration section, which contains documents pertaining to the process engineering/demonstration work, and 3) the Regulatory section, which contains documents describing the compliance strategy for each acceptance requirement for each feed type, and how this strategy will be implemented

  20. Treatment of solid waste highly contaminated by alpha emitters

    International Nuclear Information System (INIS)

    Madic, C.; Breschet, C.; Vigreaux, B.

    1990-01-01

    In the recent years, efforts have been made in order to reduce the amount of alpha emitters essentially plutonium isotopes present in the solid wastes produced either during research experiments on fuel reprocessing, done in the Radiochemistry building in the centre d'etudes nuclearires de FONTENAY-AUX-ROSES (CEA, FRANCE), or in the MARCOULE reprocessing plant (COGEMA, FRANCE). The goals defined for the treatments of these different wastes were: to reduce their α and β, γ, contamination levels. and to recover the plutonium, an highly valuable material, and to minimize its quantity to be discharged with the wastes. To achieve these goals leaching processes using electrogenerated Ag (II (a very aggressive agent for PuO 2 )) in nitric acid solutions, were developed and several facilities were designed and built to operate the processes: ELISE and PROLIXE facilities: PILOT ASHES FACILITY for delete, the treatment of plutonium contaminated ashes (COGEMA, MARCOULE). A brief description of the process and of the different facilities will be presented in this paper; the main results obtained in ELISE and PROLIXE are also summarized

  1. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    Science.gov (United States)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  2. State-of-the-art report on low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out

  3. State-of-the-art report on low-level radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  4. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    International Nuclear Information System (INIS)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-01-01

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  5. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  6. Waste washing pre-treatment of municipal and special waste.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana; Pivnenko, Kostyantyn

    2012-03-15

    Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  8. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    International Nuclear Information System (INIS)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  9. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  10. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  11. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A [Raveh Ecology Ltd., Haifa (Israel)

    1994-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  12. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A. [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A. [Raveh Ecology Ltd., Haifa (Israel)

    1993-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  13. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  14. Plasma arc melting treatment of low level radioactive waste with centrifugal hearth

    International Nuclear Information System (INIS)

    Tsuji, Yukito

    1997-01-01

    Plasma Arc Melting technology may possible be able to treat various kinds of waste streams through volume reduction and stabilization into a disposal waste form. The ability of other melting technologies to convert inorganic material in a single step, however, varies according to the characteristics of the materials. Plasma technology also can treat organic waste by selecting the oxidation atmosphere. The Japan Atomic Power Company (JAPC) has decided to construct a low level radioactive waste treatment facility using the Plasma Arc Centrifugal Treatment (PACT) process with an 8 ft rotating hearth and 1.2 MW transferred torch developed by Retech (Ukiah, CA. USA) in the Tsuruga power station. In Japan, the plasma technology has been developed for incineration ash treatment, but the JAPC plant will be the first treatment system using plasma technology for solid waste with various characteristics and shapes. (author)

  15. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  16. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes

    International Nuclear Information System (INIS)

    1994-01-01

    In recent years the authorized maximum limits for radioactive discharges into the environment have been reduced considerably, and this, together with the requirement to minimize the volume of waste for storage or disposal and to declassify some wastes from intermediate to low level or to non-radioactive wastes, has initiated studies of ways in which improvements can be made to existing decontamination processes and also to the development of new processes. This work has led to the use of more specific precipitants and to the establishment of ion exchange treatment and evaporation techniques. Additionally, the use of combinations of some existing processes or of an existing process with a new technique such as membrane filtration is becoming current practice. New biotechnological, solvent extraction and electrochemical methods are being examined and have been proven at laboratory scale to be useful for radioactive liquid waste treatment. In this report an attempt has been made to review the current research and development of mature and advanced technologies for the treatment of low and intermediate level radioactive liquid wastes, both aqueous and non-aqueous. Non-aqueous radioactive liquid wastes or organic liquid wastes typically consist of oils, reprocessing solvents, scintillation liquids and organic cleaning products. A brief state of the art of existing processes and their application is followed by the review of advances in technologies, covering chemical, physical and biological processes. 213 refs, 33 figs, 3 tabs

  17. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  18. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  19. Definition and manufacture of vitreous matrices using innovative processes for the confinement of nuclear wastes or industrial toxic wastes

    International Nuclear Information System (INIS)

    Boen, R.; Ladirat, C.; Lacombe, J.

    1997-01-01

    Vitrification appears as a solution to toxic mineral waste confinement; this solution has been demonstrated at an industrial level for radioactive wastes. The utilization of cold crucible direct induction melting furnaces, associated to various waste pre-treatments and well-adapted gas processing, leads to the confinement of numerous toxic mineral wastes in a borosilicate vitreous matrix which quality and long term behaviour may be precisely defined

  20. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  1. Pyro-processes and the wastes

    International Nuclear Information System (INIS)

    Kurata, Masaki; Tokiwai, Moriyasu; Inoue, Tadashi; Nishimura, Tomohiro

    2000-01-01

    Reprocessing using pyrometallurgical processes is generally considered to have economical benefits comparing with conventional aqueous processes because of the combination of simpler process and equipments, less criticality, and more compact facilities. On the other hand, the pyrometallurgical processes must generate peculiar wastes and R and D on those wastes is slightly inferior, as compared with the main processes. In this paper, process flows of major pyrometallurgical processes are firstly summarized and, then, the present R and D condition on the wastes are shown. (author)

  2. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    International Nuclear Information System (INIS)

    1999-01-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  3. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  4. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  5. Processing and Pre-Treatment of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P. [Service de Controle des Radiations et de Genie Radioactif, Commissariat a L' Energie Atomique, Saclay (France)

    1960-07-01

    As solid radioactive waste varies in form, dimensions and volume, the Atomic Energy Commission first of all reduces the volume by breaking up and compressing the waste. Since the temporary storage of such waste is always attended by the risk of contamination, an efficient packing system has been devised and adopted. This consists of embedding the waste in the heart of a specially-designed block of concrete possessing the following characteristics: Great strength Maximum insolubility Resistance to corrosion Maximum imperviousness Protection against radiation. It is thus quite safe to store these blocks with a view to final dumping. (author)

  6. Study of Use Ozone Oxydan at Liquid Waste Processing of Prawn Industry

    International Nuclear Information System (INIS)

    Isyuniarto; Agus-Purwadi

    2006-01-01

    Study of use ozone oxidant at liquid waste processing prawn industry was done. This research target is to study the influence of utilization of ozone oxidant to degrade the BOD, COD and TSS in liquid waste processing of prawn industrial. Waste volume for every treatment is 500 ml, ozonization time 10 minute, with the variation of pH: 7; 8; 9; 10 and 11 by gift calcify. With pH optimal then used for the treatment variation of time of ozone gift: 0; 5; 10; 15; 20; and 25 minute. From the experiment it was obtained that the optimal condition is reached at pH = 9 and time of ozonization 20 minute. At this condition is obtained the three following parameters: BOD = 41 mg/l, COD = 54 mg/l, and TSS = 25 mg/l. The parameter have pursuant to permanent standard quality of industrial liquid waste processing of prawn according to Decree of The State's Minister of Environment No. Piece. 51/MENLH/10/1995 and Decision of Gubernur DIY No. 281/KPTS/1998, as conditions of waste of faction III. (author)

  7. Performance Improvement Of Cross-Flow Filtration For High Level Waste Treatment

    International Nuclear Information System (INIS)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  8. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  9. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  10. Receipt and processing of RBOF/RRF liquid waste in H-Tank Farm

    International Nuclear Information System (INIS)

    Marra, J.E.

    1994-01-01

    The Receiving Basin for Off-Site Fuels/Resin Regeneration Facility (RBOF/RRF) currently generates approximately 50,000 gallons of wastewater per month. This waste is sent to the 211-H General Purpose (GP) evaporator and/or the 241-H Tank Farm (HTF). The primary criteria for selecting the destination of the waste are solids content and radioactively.The waste is typically sent to the GP evaporator if it has low solids content and low activity. Currently, approximately 70% of the waste water produced at RBOF/RRF meets the criteria for acceptance by the GP evaporator. In June 1993, High Level Waste Engineering opened a Technical Issue (TI) related to processing of RBOF/RRF directly through the 1H Cesium Removal Column (CRC) to the F/H Effluent Treatment Facility (ETF). In March 1994, additional emphasis was placed on this effort after it was determined that the 1H evaporator had a failed tube bundle. As a result, The TI was expanded to include evaluations of methods to increase the acceptance rate of wastewater at the GP (i.e., to ensure that the 70% of RBOF/RRF wastewater that currently meets the GP acceptance criteria is actually processed at the GP). Since March 1994, waste receipts from RBOF/RRF have averaged less than the 30,000 gallons/month allotted in the HLW System Plan. In addition, the RBOF/RRF waste sent to HTF has successfully been processed through the 2H evaporator. Based on this progress, no additional effort should be expended to reduce the amount of RBOF/RRF sent to HTF, either by increasing the criteria for acceptance of RBOF/RRF waste at the GP evaporator or by evaluating alternate treatment options (such as processing through the 1H CRC or installing treatment equipment in the RBOF/RRF)

  11. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  12. Seiler Pollution Control Systems vitrification process for the treatment of hazardous waste streams

    International Nuclear Information System (INIS)

    Nuesch, P.C.; Sarko, A.B.

    1995-01-01

    Seiler Pollution Control Systems, Inc. (Seiler) applies an economical, transportable, compact high temperature vitrification process to recycle and/or stabilize mixed organic/inorganic waste streams. Organic components are gasified by the system and are used as an auxiliary energy source. The inorganic components are melted and bound up molecularly in a glass/ceramic matrix. These glass/ceramics are extremely stable and durable and will pass typical regulatory leachate tests. Waste types that can be processed through the Seiler vitrification system include incinerator flyash, paint sludges, plating wastes, metal hydroxide sludges, low level and mixed radioactive wastes, contaminated soils and sludges, asbestos, and various mixed organic/inorganic residues. For nonradioactive waste streams, a variety of commercially saleable glass/ceramic products can be produced. These materials are marketed either as architectural materials, abrasives, or insulating refractories. The glass/ceramics generated from radioactive waste streams can be formed in a shape that is easily handled, stored, and retrieved. The system, itself is modular and can either be used as a stand alone system or hooked-up in line to existing manufacturing and production facilities. It consists of four sections: feed preparation; preheater; vitrifier/converter, and air pollution control. The vitrification system can use oxygen enriched natural gas or fuel oil for both cost efficiency and to reduce air pollution emissions

  13. Treatment of Radioactive Contaminated Soil and Concrete Wastes Using the Regulatory Clearance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Ryu, W. S.; Kim, T. K.; Shon, J. S.; Ahn, S. J.; Lee, Y. H.; Bae, S. M.; Hong, D. S.; Ji, Y. Y.; Lee, B. C

    2008-11-15

    In the radioactive waste storage facilities at the Korea Atomic Energy Research Institute (KAERI) in Daejoen, there are thousands drums of radioactive contaminated soil and concrete wastes. The soil and concrete wastes were generated in 1988 during the decommissioning process of the research reactor and the attached radioactive waste treatment facility which were located in Seoul. The wastes were transported to Daejeon and have been stored since then. At the generation time, the radioactive contamination of the wastes was very low, and the radionuclides in the wastes was Co-60 and Cs-137. As the wastes have been stored for more than 20 years, the radioactivity concentration of the wastes has been decayed to become very extremely low. The wastes are needed to be treated because they take up large spaces at the storage facility. Also by treating the wastes, final disposal cost can be saved. So, the regulatory clearance was considered as a treatment method for the soil and concrete wastes with extremely low radioactivity concentration.

  14. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  15. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  16. Rad-waste treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The spent fuel coming from Slovak NPPs have partially been transported to the former Soviet Union, and a part of it is stored in an interim spent fuel wet storage. In compliance with the worldwide practices, further medium-term possibilities of storing in dry storages are under preparation. Disposal of a spent fuel and other high-level active wastes in a deep geological formation repository is the final solution. At present, there are geological investigations of possible sites in progress in Slovakia. Mochovce repository is a factory for a final disposal of compacted low and intermediate level radioactive wastes coming from the Slovak NPPs. This is a near-surface facility of a construction similar to the one used for disposal of radioactive wastes in France, Spain, Japan, Czech Republic, U.S.A, etc. Quality of the design, construction and functioning of the Mochovce's repository was assessed by an international team of experts within a special IAEA programme (WATRP). Having familiarized with the final report of the IAEA mission, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) issued its position early in 1995, in which NRA SR required additional adjustment of the repository itself. Based on the NRA SR's position, Mochovce NPP invited experts from a number of institutions in September 1995 to discuss the NRA SR's requirements. Following was recommended by the experts: (1) to perform a complementary engineering-geological investigation on the site, (2) to use geophysical methods to verify existence of geological faults. In the next part a radioactive wastes that were treated at radioactive waste treatment lines in 1995 are listed. In 1995, the Chief Inspector of NRA SR issued an instruction that radioactive waste department should start inspections of radioactive waste treatment right in hospitals, research institutes and industries. Therefore, a total of 14 such workplaces were incorporated into a plan of inspections in 1995

  17. Development of a pyro-partitioning process for long-lived radioactive nuclides. Process test for pretreatment of simulated high-level waste containing uranium

    International Nuclear Information System (INIS)

    Kurata, Masateru; Hijikata, Takatoshi; Kinoshita, Kensuke; Inoue, Tadashi

    2000-01-01

    A pyro-partitioning process developed at CRIEPI requires a pre-treatment process to convert high-level liquid waste to chloride. A combination process of denitration and chlorination has been developed for this purpose. Continuous process tests using simulated high-level waste were performed to certify the applicability of the process. Test results indicated a successful material balance sufficient for satisfying pyro-partitioning process criteria. In the present study, process tests using simulated high-level waste containing uranium were also carried out to prove that the pre-treatment process is feasible for uranium. The results indicated that uranium can be converted to chloride appropriate for the pyro-partitioning process. The material balance obtained from the tests is to be used to revise the process flow diagram. (author)

  18. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  19. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  20. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  1. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    Science.gov (United States)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  2. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  3. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    International Nuclear Information System (INIS)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  4. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  7. Treatment of waste

    International Nuclear Information System (INIS)

    1981-01-01

    A method of treating radioactive waste to substantially reduce the volume and which is especially useful in the treatment of material which includes radioactive halogens such as 131 I, is described. A fluidised bed incinerator and calciner are used to reduce all the liquid and combustible solid waste to anhydrous granular solids, all of which is carried by fluidizing gases into an off-gas system designed for their collection. (U.K.)

  8. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  9. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    Science.gov (United States)

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  10. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Glover, T.

    1999-01-01

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task

  11. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  12. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  13. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  14. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  15. Treatment and disposal of radioactive wastes and countermeasures

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    1990-01-01

    The treatment and disposal of radioactive wastes are one of important subjects, together with the development of dismantling techniques accompanying the decommissioning measures for nuclear power plants and the development of reprocessing techniques for nuclear fuel cycle. About 25 years have elapsed since the beginning of commercial nuclear power generation in 1966, and the time that the solution of the problems of waste treatment and disposal must be tackled on full scale has come. The features and the amount of generation of radioactive wastes, the way of thinking on the treatment and disposal, and the present status of the treatment and disposal are outlined. For securing the stable supply of energy and solving the environmental problem of the earth such as acid rain and warming, nuclear power generation accomplishes important roles. The objective of waste treatment is based on the way of thinking of 'as low as reasonably achievable (ALARA)'. The radioactive wastes are classified into alpha waste and beta-gamma waste. The present status of RI wastes, the techniques of treating radioactive wastes, the nuclide separation, extinction treatment and the disposal in strata of high level radioactive wastes and the disposal of low level wastes are reported. (K.I.)

  16. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  17. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  18. Thermoelectric energy harvesting for a solid waste processing toilet

    Science.gov (United States)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  19. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  20. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans