WorldWideScience

Sample records for waste treatment part

  1. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  2. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  3. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  4. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  5. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  6. Waste treatment

    International Nuclear Information System (INIS)

    Davies, D.; Hooper, E.W.

    1981-01-01

    In the treatment of wastes, such as liquid radioactive effluents, it is known to remove radionuclides by successive in situ precipitation of cobalt sulphide, an hydroxide, barium sulphate and a transition element ferrocyanide, followed by separation of the thereby decontaminated effluent. In this invention, use is made of precipitates such as obtained above in the treatment of further fresh liquid radioactive effluent, when it is found that the precipitates have additional capacity for extracting radionuclides. The resulting supernatant liquor may then be subjected to a further precipitation treatment such as above. Decontamination factors for radionuclides of Ce, Ru, Sr and Cs have been considerably enhanced. (author)

  7. Tank waste treatment science

    International Nuclear Information System (INIS)

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  8. Biotechnology and hazardous waste treatment; Part 1. The state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1990-04-01

    There is considerable speculation regarding the use of biotechnology for improving the treatment of hazardous waste. Biotechnology may be able to improve waste treatment capabilities by overcoming the limits of biological treatment (bioremediation). The contaminant is usually one of the sources of food and energy for the organisms thriving in the contaminated environment. The viability of these organisms is controlled by several environmental factors, notably, nutrient, water, oxygen, temperature and pH levels; the presence of toxic organic compounds, metals, or high salt content can inhibit their activities. Carbon:nitrogen:phosphorous ratios must be monitored to assure that only the contaminant is the limiting nutrient. Several innovative bioremediation practices which can be considered biotechnological are being tested: anaerobic dehalogenation of PCBs and DDT; cometabolic degradation; denitrification; and gene amplification.

  9. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  10. Rad-waste treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The spent fuel coming from Slovak NPPs have partially been transported to the former Soviet Union, and a part of it is stored in an interim spent fuel wet storage. In compliance with the worldwide practices, further medium-term possibilities of storing in dry storages are under preparation. Disposal of a spent fuel and other high-level active wastes in a deep geological formation repository is the final solution. At present, there are geological investigations of possible sites in progress in Slovakia. Mochovce repository is a factory for a final disposal of compacted low and intermediate level radioactive wastes coming from the Slovak NPPs. This is a near-surface facility of a construction similar to the one used for disposal of radioactive wastes in France, Spain, Japan, Czech Republic, U.S.A, etc. Quality of the design, construction and functioning of the Mochovce's repository was assessed by an international team of experts within a special IAEA programme (WATRP). Having familiarized with the final report of the IAEA mission, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) issued its position early in 1995, in which NRA SR required additional adjustment of the repository itself. Based on the NRA SR's position, Mochovce NPP invited experts from a number of institutions in September 1995 to discuss the NRA SR's requirements. Following was recommended by the experts: (1) to perform a complementary engineering-geological investigation on the site, (2) to use geophysical methods to verify existence of geological faults. In the next part a radioactive wastes that were treated at radioactive waste treatment lines in 1995 are listed. In 1995, the Chief Inspector of NRA SR issued an instruction that radioactive waste department should start inspections of radioactive waste treatment right in hospitals, research institutes and industries. Therefore, a total of 14 such workplaces were incorporated into a plan of inspections in 1995

  11. Mochovce waste treatment centre

    International Nuclear Information System (INIS)

    Sedliak, D.; Endrody, J.

    2000-01-01

    The first unit of the Mochovce NPP (WWER 440 MW) was put in a test operation in October 1998. The second unit with the same power output was put in the test operation in March 2000. The Nuclear Regulatory Authority of the Slovak Republic in its Decision No. 318/98 of 28 October 1998, by which an agreement with the operation of the Unit 1 of the Mochovce. Nuclear Power Plant was issued, requires to start the construction of the Liquid Radioactive Waste Treatment Centre until January 2004. The subject of this presentation is a system description of the Liquid Radioactive Waste (LRW) management in the Mochovce NPP. The initial part is dedicated to a short description of the radioactive waste management legislation requirements. Then the presentation continues with an information about the LRW production in the Mochovce NPP, LRW sources, chemical and radiochemical attributes, description of storage. The presentation also provides real values of its production in a comparison with the design data. The LRW production minimization principles are also mentioned there. Another part deals with the basic requirements for the technology proposal of the liquid RW treatment, especially concerning the acceptance criteria at the Republic RW Repository Mochovce. The final part is devoted to a short description of the investment procedure principles - design preparation levels and a proposed construction schedule of the centre. (authors)

  12. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  13. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  14. Waste Treatment Plant - 12508

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Olds, Erik [US DOE (United States)

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration

  15. Treatment of alpha bearing wastes

    International Nuclear Information System (INIS)

    1988-01-01

    This report deals with the current state of the art of alpha waste treatment, which is an integral part of the overall nuclear waste management system. The International Atomic Energy Agency (IAEA) defines alpha bearing waste as 'waste containing one or more alpha emitting radionuclides, usually actinides, in quantities above acceptable limits'. The limits are established by national regulatory bodies. The limits above which wastes are considered as alpha contaminated refer to the concentrations of alpha emitters that need special consideration for occupational exposures and/or potential safety, health, or environmental impact during one or more steps from generation through disposal. Owing to the widespread use of waste segregation by source - that is, based upon the 'suspect origin' of the material - significant volumes of waste are being handled as alpha contaminated which, in fact, do not require such consideration by reason of risk or environmental concern. The quantification of de minimis concepts by national regulatory bodies could largely contribute to the safe reduction of waste volumes and associated costs. Other factors which could significantly contribute to the reduction of alpha waste arisings are an increased application of assaying and sorting, instrumentation and the use of feedback mechanisms to control or modify the processes which generate these wastes. Alpha bearing wastes are generated during fabrication and reprocessing of nuclear fuels, decommissioning of alpha contaminated facilities, and other activities. Most alpha wastes are contact handled, but a small portion may require shielding or remote handling because of high levels of neutron (n), beta (β), or gamma (γ) emissions associated with the waste material. This report describes the sources and characteristics of alpha wastes and strategies for alpha waste management. General descriptions of treatment processes for solid and liquid alpha wastes are included. 71 refs, 14 figs, 9 tabs

  16. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  17. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  18. Treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Machida, Chuji

    1976-01-01

    Japan Atomic Energy Research Institute (JAERI) is equipped with such atomic energy facilities as a power test reactor, four research reactors, a hot laboratory, and radioisotope-producing factory. All the radioactive wastes but gas generated from these facilities are treated by the waste treatment facilities established in JAERI. The wastes carried into JAERI through Japan Radioisotope Association are also treated there. Low level water solution is treated with an evaporating apparatus, an ion-exchange apparatus, and a cohesive precipitating apparatus, while medium level solution is treated with an evaporating apparatus, and low level combustible solid is treated with an incinerating apparatus. These treated wastes and sludges are mixed with Portland cement in drum cans to solidify, and stored in a concrete pit. The correct classification and its indication as well as the proper packing for the wastes are earnestly demanded by the treatment facilities. (Kobatake, H.)

  19. Ash behavior during hydrothermal treatment for solid fuel applications. Part 2: Effects of treatment conditions on industrial waste biomass

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Effect of treatment conditions on composition and solubility of ash. • Ash dissolution and yield governed by liquid pH and calcium carbonate solubility. • Dissolution of calcium carbonate decreases ash fusion temperature during combustion. • Decreasing the ash content of sludge can weaken ash properties for combustion. - Abstract: This second half of our work on ash behavior concentrates on the effects of hydrothermal treatment conditions on paper sludge. Ash composition and solubility were determined based on treatment temperature, reactor solid load and liquid pH using experimental design and univariate regression methods. In addition, ash properties for combustion were evaluated based on recent developments on ash classification. Based on the results, all experimental variables had a statistically significant effect on ash yields. Only reactor solid load was statistically insignificant for char ash content, which increased based on increasing treatment temperature due to the decomposition of organic components. Ash dissolution and ash yield were governed by liquid pH and the generation of acids mainly due to the solubility of calcium carbonate identified as the main mineral species of paper sludge. Dissolution of calcium carbonate however decreased ash fusion temperatures more likely causing problems during char incineration. This indicated that decreasing the ash content of sludge during hydrothermal treatment can actually weaken ash properties for solid fuel applications.

  20. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  1. Treatment of waste

    International Nuclear Information System (INIS)

    1981-01-01

    A method of treating radioactive waste to substantially reduce the volume and which is especially useful in the treatment of material which includes radioactive halogens such as 131 I, is described. A fluidised bed incinerator and calciner are used to reduce all the liquid and combustible solid waste to anhydrous granular solids, all of which is carried by fluidizing gases into an off-gas system designed for their collection. (U.K.)

  2. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Swanson, J.L.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these wastes (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  3. Zeolites applications in pollution control; radioactive-, municipal-, industrial- and agricultural-waste water treatments: part-I

    International Nuclear Information System (INIS)

    Akbar, S.

    1991-01-01

    Zeolite cations exchangers provide a unique combination of selectivity, capacity and stability not available in other ion-exchangers. In this era of environmental concern, the attractive physical and chemical properties of zeolites have been utilized worldwide in the solution to this problem. The desirable characteristics of high ion-exchange selectivity and resistance to radiolytic degradation have made certain zeolites quite useful for the separation and purification of radioisotopes from radioactive wastewater. Zeolites have also been effectively used in nuclear industry for treatment of radioactive wastes and selectively removing ammonium ions from wastewater. (author)

  4. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Swanson, J.L.; Ross, W.A.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  5. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  6. MOCVD waste gas treatment

    International Nuclear Information System (INIS)

    Geelen, A. van; Bink, P.H.M.; Giling, L.J.

    1993-01-01

    A large scale production of GaAs based solar cells with MOCVD will give rise to a considerable use of arsine. Therefore a gas treatment system is needed to convert the waste gases into less toxic compounds. In this study seven different gas treatment systems for MOCVD are compared by quantifying the environmental aspects. The systems are divided in wet systems, adsorption systems and thermal systems. The smallest amount of waste is produced by adsorption and thermal systems. Adsorption systems use the smallest amount of energy. The amount of primary materials used for the equipment varies per system. All systems are safe, but adsorption systems are simplest. At the moment, adsorption systems are probably the best choice from an environmental point of view. Nevertheless thermal systems have some potential advantages which make them interesting for the future

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  8. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  9. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  10. Low-level radioactive waste from commercial nuclear reactors. Volume 3. Bibliographic abstracts of significant source references. Part 2. Bibliography for treatment, storage, disposal and transportation regulatory constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Rodgers, B.R.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 3 of this series is a collection of abstracts of most of the reference documents used for this study. Because of the large volume of literature, the abstracts have been printed in two separate parts. Federal, state, and local regulations affect the decision process for selecting technology applications. Regulations may favor a particular technology and may prevent application of others. Volume 3, part 2 presents abstracts of the regulatory constraint documents that relate to all phases of LLRW management (e.g., treatment, packaging, storage, transportation, and disposal).

  11. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  12. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  13. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    International Nuclear Information System (INIS)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  14. Studies on microbiological treatment and utilization of cane molasses distillery wastes. Part 1. Screening of useful yeast strains

    Energy Technology Data Exchange (ETDEWEB)

    Akaki, M.; Takahashi, T.; Ishiguro, K.

    1981-01-01

    Cane molasses distillation slops were used as substrate for the cultivation of 203 strains of yeast. Most yeast strains, especially Hansenula, Debaryomyces, and Rhodotorula, assimilated the molasses distillation wastes. Yeast cell dry weight reached 0.9 grams/100 mL, and yeasts removed greater than 30% of the COD of the waste material.

  15. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  16. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  17. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  18. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  19. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  20. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  1. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  2. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  3. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  4. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    International Nuclear Information System (INIS)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  5. Treatment of organic radioactive waste in decommissioning project

    International Nuclear Information System (INIS)

    Dimovic, S.; Plecas, I.

    2003-01-01

    This paper describes methods of treatment of organic radioactive waste in the aspect of its integral part of radioactive waste which will arise during decommissioning process of nuclear power reactor RA (author)

  6. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  7. Characterizing ammonia emissions from swine farms in eastern North Carolina: part 2--potential environmentally superior technologies for waste treatment.

    Science.gov (United States)

    Aneja, Viney P; Arya, S Pal; Rumsey, Ian C; Kim, D-S; Bajwa, K; Arkinson, H L; Semunegus, H; Dickey, D A; Stefanski, L A; Todd, L; Mottus, K; Robarge, W P; Williams, C M

    2008-09-01

    The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore

  8. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  9. Water Pollution, and Treatments Part III: Biodegradation of Oil in Refineries Waste Water and Oils Adsorbed in Agricultural Wastes by Selected Strains of Cyanobacteria

    International Nuclear Information System (INIS)

    El-Emary, M.M.; Ali, N.A.; Naguib, M.M.

    2011-01-01

    The main objective of this study is to determine the biological degradation of oil hydrocarbons and sulfur compounds of Marine Balayim crude oil and its refined products by selected indigenous Cyanobacteria strains. The oils used were Marine Balayim crude oil, skimmed oil and some refined products such as gasoline, kerosene, gas oil, fuel oil and petroleum coke. The selected organisms in the current study are the Blue-Green Algae Cyanobacteria, Oscillatoria limentica. This organism was collected from the hyper saline environment of the solar lake in Taba, Sinai, Egypt. The results obtained revealed that the utilization of such strains can be used for the bioremediation of oily waste water.

  10. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  11. Radiation protection at the RA Reactor in 1989, Part -2, Decontamination, collection of treatment of fluid and solid radioactive waste, Annex 3

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Plecas, I.; Knezevic, Lj.; Lazic, S.; Bacic, S.

    1989-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  12. Treatment of mercury containing waste

    Science.gov (United States)

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  13. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  14. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  15. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  16. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Junkison, A.R.; Pottinger, J.S.

    1987-08-01

    This report describes the development of electrical techniques for the treatment of liquid waste streams. Part I is concerned with solid/liquid separation and the demonstration of the electrokinetic thickening of flocs at inorganic membranes suitable for intermediate-level wastes and electrochemical cleaning of stainless steel microfilters and graphite ultrafilters. Part II describes work on the development of electrochemical ion exchange, particularly the use of inorganic absorption media and polarity reversal to enhance system selectivity. Work on the adsorption and desorption of plutonium in acid nitrate solution at various electrode materials is also included. (author)

  17. Economic and environmental optimization of waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Münster, M. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ravn, H. [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Hedegaard, K.; Juul, N. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ljunggren Söderman, M. [IVL Swedish Environmental Research Institute, Box 53021, SE-40014 Gothenburg (Sweden); Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.

  18. [Strongyloidosis. Part IX. Treatment].

    Science.gov (United States)

    Soroczan, Wiesław

    2002-01-01

    The treatment of chronic and massive (uncomplicated) and severe (complicated) disseminated strongyloidosis, was presented from the historical point of view. The sequence of achievements in regard of treatment of the gentian violet, dithiazine iodide, benzimidazoles (thiabendazole, mebendazole, albendazole, cambendazole), ivermectin and cyclosporin A, was described. The recommendations for treatment of strongyloidosis are also given.

  19. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  20. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  1. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  2. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  3. Assessing mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m 3 of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers

  4. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  5. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    International Nuclear Information System (INIS)

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation's allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered

  6. Cyanide wastes treatment by bioremediation

    International Nuclear Information System (INIS)

    Deloya Martinez, Alma

    2012-01-01

    The results of the development of an autochthonous consortium of degrader microorganisms of the cyanide for the application in the biological treatment of the dangerous wastes of cyanide, were presented. The autochthonous microorganisms obtained were lyophilized in different protective environments, such as gelatin and lactose broth at different temperatures (-35, -45, -55 and -65). A pretreatment method in slurry was applied for the preliminary treatment of the cyanide wastes: for the preliminary leaching of the waste, with periods between 3 and 5 days and a posterior treatment, by aerated lagoons, applying the consortium of lyophilized microorganisms. Eight different lyophilized were obtained in different temperature conditions and with two lyophilization protective media that have presented excellent recovery at six months of lyophilization. The consortium of lyophilized microorganisms has presented 70 to 80 percent of viability, with cyanide removal percentages higher than 95% and it can be conserved active for a prolonged time (for years). The lyophilized microorganisms can be applied in the biodegradation of the cyanide wastes from the gold mines or any other cyanide waste such as metal electroplanting baths, as well as from jewelry manufacturing. (author) [es

  7. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  8. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  9. Treatment of radioactive waste - Routine or challenge? Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The seminar had the following topics: Proposal for new legislation covering radioactive waste management in the EU, new requirements preparations for the later repository, efficient and cost effective treatment of radioactive waste water, intermediate level waste cementation, incineration of spent ion exchange resins in a triphasic mixture, application of THOR-technology on resins, new development for transportation and storage of reactor vessel parts, and conditioning of nuclear fuel containing wastes. (uke)

  10. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  11. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  12. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  13. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  14. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    Science.gov (United States)

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  15. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  16. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  17. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  18. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  19. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  20. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  1. Treatment of liquid radioactive waste: Precipitation

    International Nuclear Information System (INIS)

    Gompper, K.

    1982-01-01

    After introductory remarks about waste types to be treated, specific treatment methods are discussed and examples are given for treatment processes carried out with different types of liquid wastes from nuclear power plants, research centers and fuel reprocessing plants. (RW)

  2. Study of field assessment methods and worker risks for processing alternatives to support principles for FUSRAP waste materials. Part 1: Treatment methods and comparative risks of thorium removal from waste residues

    Energy Technology Data Exchange (ETDEWEB)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). Its purpose was to provide information to the Environmental Management Advisory Board`s FUSRAP Committee for use in its deliberation of guiding principles for FUSRAP sites, in particular the degree to which treatment should be considered in the FUSRAP Committee`s recommendations. Treatment of FUSRAP wastes to remove thorium could be beneficial to management of lands that contain thorium if such treatment were effective and cost efficient. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation. Both types of information should be useful for decisions on whether and how to apply thorium removal methods to FUSRAP waste materials.

  3. Study of field assessment methods and worker risks for processing alternatives to support principles for FURSRAP waste materials. Part 1: Treatment methods and comparative risks of thorium removal from waste residues

    International Nuclear Information System (INIS)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). Its purpose was to provide information to the Environmental Management Advisory Board's FUSRAP Committee for use in its deliberation of guiding principles for FUSRAP sites, in particular the degree to which treatment should be considered in the FUSRAP Committee's recommendations. Treatment of FUSRAP wastes to remove thorium could be beneficial to management of lands that contain thorium if such treatment were effective and cost efficient. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation. Both types of information should be useful for decisions on whether and how to apply thorium removal methods to FUSRAP waste materials

  4. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  5. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  6. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  7. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N [Eurotec West A/S (DK); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H [Risoe National Laboratory, DTU (DK); Rasmussen, Soeren [SamRas (DK)

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  8. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  9. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  10. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  11. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  12. Overview of treatment and conditioning of low-level wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.

    1986-01-01

    The consideration of alternative technologies in low-level waste management is assumed to be partly a response to current demands for lower risk in waste disposal. One of the determinants of risk in waste disposal is the set of characteristics of the materials placed into disposal cells, i.e., the products of treatment and conditioning operations. The treatment and conditioning operations that have been applied to waste streams are briefly examined. Three operations are the most important determinants of the stability that will contribute to reducing risk at the disposal cell: compaction, high-integrity containers, and solidification. The status of these three operations is reviewed

  13. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  14. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  15. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  16. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  17. Technologies 1995: environment and wastes treatment

    International Nuclear Information System (INIS)

    Anon.

    1995-03-01

    From new technical or scientific developments, new products launching, and markets evolutions, this catalog gives informations selection on research and development projects, new fabrication processes, activities and plants strategies, licences or technology transfers opportunities. The covered fields are: atmospheric pollution controls, water and liquid wastes treatment, polluted soils treatments, noise and odors treatments, municipal and industrial wastes treatments (metal, plastic, paper, glass), clean materials and technologies, radioactive wastes, and european cooperation programs. (A.B.)

  18. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  19. Nuclear waste treatment program: Annual report for FY 1987

    International Nuclear Information System (INIS)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs

  20. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  1. Mixed waste treatment model: Basis and analysis

    International Nuclear Information System (INIS)

    Palmer, B.A.

    1995-09-01

    The Department of Energy's Programmatic Environmental Impact Statement (PEIS) required treatment system capacities for risk and cost calculation. Los Alamos was tasked with providing these capacities to the PEIS team. This involved understanding the Department of Energy (DOE) Complex waste, making the necessary changes to correct for problems, categorizing the waste for treatment, and determining the treatment system requirements. The treatment system requirements depended on the incoming waste, which varied for each PEIS case. The treatment system requirements also depended on the type of treatment that was desired. Because different groups contributing to the PEIS needed specific types of results, we provided the treatment system requirements in a variety of forms. In total, some 40 data files were created for the TRU cases, and for the MLLW case, there were 105 separate data files. Each data file represents one treatment case consisting of the selected waste from various sites, a selected treatment system, and the reporting requirements for such a case. The treatment system requirements in their most basic form are the treatment process rates for unit operations in the desired treatment system, based on a 10-year working life and 20-year accumulation of the waste. These results were reported in cubic meters and for the MLLW case, in kilograms as well. The treatment system model consisted of unit operations that are linked together. Each unit operation's function depended on the input waste streams, waste matrix, and contaminants. Each unit operation outputs one or more waste streams whose matrix, contaminants, and volume/mass may have changed as a result of the treatment. These output streams are then routed to the appropriate unit operation for additional treatment until the output waste stream meets the treatment requirements for disposal. The total waste for each unit operation was calculated as well as the waste for each matrix treated by the unit

  2. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Svolik, S.

    2004-01-01

    Final treatment of liquid radioactive wastes which are produced by 1 st and 2 nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  3. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  4. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  5. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  7. Irradiation in industrial waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Perkowski, J. (Politechnika Lodzka (Poland). Katedra Chemii Radiacyjnej); Kos, L.; Rouba, J. (Research and Development Centre of the Knitting Industry, Lodz (Poland))

    1984-09-01

    In this paper, the treatment by irradiation of some surface active agents (SAA) contained in aqueous solutions and industrial wastes, has been shown. Studies were carried out on selected SAA, namely Rokafenol N-6 and Pretepon G-extra, representatives of nonionic and anionic SAA, respectively. The aqueous solutions of these compounds were irradiated in radiation chamber, at the Institute of Applied Radiation Chemistry, in Lodz Polytechnic. Co/sup 60/ was used as a source of radiation. The kinetics and degree of destruction of these compounds at the doses ranging from 2 kGy to 110 kGy were investigated. The study was extended to attempts to remove SAA from textile effluents. Reduction of other parameters of contamination, including measurements of toxicity, were also evaluated.

  8. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  9. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  10. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  11. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  12. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    The role of biotechnology on the treatment of wastes. ... treatment, gas treatment and disposal of solid wastes in environmental engineering. Also ... units and biogas reactors are used extensively among the waste treatment technologies.

  13. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  14. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  15. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  16. Treatment and disposal techniques of dangerous municipal solid wastes

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes the qualitative and quantitative features of the different types of dangerous municipal solid wastes, according to Italian law. In the second part the impact on environment and man health is presented. This impact should be minimized by suitable controlled disposal techniques, which differ from other municipal waste treatments. Finally, the paper deals with the most appropriate systems for treatment and disposal of such kind of waste. Particularly, some research activities in the field of metal recovery from used batteries, sponsored by ENEA, and carrying out by private companies, are described. (author)

  17. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  18. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  19. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  20. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  1. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  2. Treatment methods for radioactive mixed wastes in commercial low-level wastes - technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid solvent extraction, and specific chemical destruction techniques have been considered for organic liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. Fore each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  3. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  4. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  5. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... constant between 50 - 60 % wet weight and therefore holds a potential for bioenergy production. The degradable fraction has positive effects for anaerobic digestion when evaluated to desired parameters of anaerobic digestion plants. Wanted parameters are: 1) high organic content (high volatile solid...

  6. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  7. Water Pollution and Treatments Part I: Evaluation of Organic, Inorganic and Marine Products as Adsorbents For Petroleum Pollutants Present In Aqueous Wastes

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Tamany, E.H.; El-Emary, M.M.

    2011-01-01

    The main objective of the present work is to perform a comparative laboratory study using an adsorption technique for oil removal from the waste water drained to sea from refineries, offshore and/or onshore petroleum installations. Different crushed adsorbent materials, namely, cotton fibers, charcoal, petroleum coke, agriculture wastes (such as, rice straws, wheat stems, milled dry leaves and lignin), inorganic adsorbents (such as sand, and bricks) and a marine Product (such as sponge) are included in this study. They were tested for oil recovery from laboratory prepared oily salt water samples. Two different Egyptian crude oils varying in their properties and several refined products (gasoline, kerosene, gas oil, diesel oil, fuel oil, lubricating oil) and skimmed oil were employed. Their adsorptive efficiencies were tested. Good results were obtained with sponge and cotton fibers. The used agricultural wastes show better adsorption compared with coke and inorganic adsorbents.

  8. Experiences with treatment of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  9. Treatment of NPP wastes using vitrification

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Lifanov, F.A.; Stefanovsky, S.V.; Kobelev, A.P.; Savkin, A.E.; Kornev, V.I.

    1998-01-01

    Glass-based materials to immobilize various liquid and solid radioactive wastes generated at nuclear power plants (NPP) were designed. Glassy waste forms can be produced using electric melting including a cold crucible melting. Leach rate of cesium was found to be 10 -5 -10 -6 g/(cm 2 day) (IAEA technique). Volume reduction factor after vitrification reached 4-5. Various technologies for NPP waste vitrification were developed. Direct vitrification means feeding of source waste into the melter with formation of glassy waste form to be disposed. Joule heated ceramic melter, and cold crucible were tested. Process variables at treatment of Kursk, Chernobyl (RBMK), Kalinin, Novovoronezh (VVER) NPP wastes were determined. The most promising melter was found to be the cold crucible. Pilot plant based on the cold crucibles has been designed and constructed. Solid burnable NPP wastes are incinerated and slags are incorporated in glass. (author)

  10. Experiences with treatment of mixed waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-01-01

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits

  11. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  12. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  13. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    International Nuclear Information System (INIS)

    Chae, Jae Ou; Knak, S P; Knak, A N; Koo, H J; Ravi, V

    2006-01-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases

  14. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    Science.gov (United States)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  15. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  16. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  17. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  18. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC)

  19. Using bentonite for NPP liquid waste treatment

    International Nuclear Information System (INIS)

    Bui Dang Hanh

    2015-01-01

    During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs. (author)

  20. Multibarrier waste forms. Part III: Process considerations

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1979-10-01

    The multibarrier concept for the solidification and storage of radioactive waste utilizes up to three barriers to isolate radionuclides from the environment: a solidified waste inner core, an impervious coating, and a metal matrix. The coating and metal matrix give the composite waste form enhanced inertness with improvements in thermal stability, mechanical strength, and leach resistance. Preliminary process flow rates and material costs were evaluated for four multibarrier waste forms with the process complexity increasing thusly: glass marbles, uncoated supercalcine, glass-coated supercalcine, and PyC/Al 2 O 3 -coated supercalcine. This report discusses the process variables and their effect on optimization of product quality, processing simplicity, and material cost. 11 figures, 2 tables

  1. Conditioning of tritiated wastes. Part II

    International Nuclear Information System (INIS)

    Hawthorne, S.H.

    1984-01-01

    Work is continuing on the development of conditioning systems for low and intermediate level tritiated liquid and solid wastes which will prevent loss of tritium for at least 150 years. This portion of the program has concentrated on solidification and encapsulation of tritiated aqueous wastes, development of techniques, for the measurement of tritium loss in air and water, and identification and evaluation of encapsulation materials. Solidification of tritiated aqueous wastes by water extendible polyester or cements resulted in average tritium releases of approximately 1-4x10 -1 α/day with that from water extendible polyester being the lowest. The daily release rate is independent of initial tritium concentration in the waste form and can be reduced by a factor of 1000 by encapsultation of the waste within a 10 mm layer of water extendible polyester. Water extendible polyester is the preferred material for solidification and encapsulation of aqueous tritiated wastes and encapsulation of tritiated solids permitting release of only 3x10 -3 % of the original activity over 150 years. It is expected that this program which was originally scheduled for three years can now be completed in two years with complete definition of the conditioning system including the outer package

  2. Waste washing pre-treatment of municipal and special waste.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana; Pivnenko, Kostyantyn

    2012-03-15

    Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%). Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  4. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    Bond, W.D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  5. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  6. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2015-01-01

    This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system - illustrated...... with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved....

  7. Treatment of radioactive organics liquid wastes

    International Nuclear Information System (INIS)

    Morales Galarce, Tania

    1999-01-01

    Because of the danger that radioactive wastes can pose to society and to the environment a viable treatment alternative must be developed to prepare these wastes for final disposal. The waste studied in this work is a liquid organic waste contaminated with the radioisotope tritium. This must be treated and then changed into solid form in a 200 liter container. This study defined an optimum formulation that immobilizes the liquid waste. The organic waste is first submitted to an absorption treatment, with Celite absorbent, which had the best physical characteristics from the point of view of radioactive waste management. Then this was solidified by forming a cement mortar, using a highly resistant local cement, Polpaico 400. Various mixes were tested, with different water/cement, waste/absorbent and absorbed waste/cement ratios, until a mixture that met the quality control requirements was achieved. The optimum mixture obtained has a water/cement ratio of 0.35 (p/p) that is the amount of water needed to make the mixture workable, and minimum water for hydrating the cement; a waste/absorbent ration of 0.5 (v/v), where the organic liquid is totally absorbed, and is incorporated in the solid's crystalline network; and an absorbed waste/cement ratio of 0.8 (p/p), which represents the minimum amount of cement needed to obtain a solid product with the required mechanical resistance. The mixture's components join together with no problem, to produce a good workable mixture. It takes about 10 hours for the mixture to harden. After 14 days, the resulting solid product has a resistance to compression of 52 Kgf/cm2. The formulation contains 22.9% immobilized organic waste, 46.5% cement, 14.3% Celite and 16.3% water. Organic liquid waste can be treated and a solid product obtained, that meets the qualitative and quantitative parameters required for its disposal. (CW)

  8. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  9. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  10. Treatment and final conditioning of solid radioactive wastes

    International Nuclear Information System (INIS)

    Cerre, J.

    1960-01-01

    The storage of solid radioactive wastes on a site is so cumbersome and dangerous that we have developed a method of treatment and conditioning by means of which the volume of waste is considerably reduced and very long-lasting shielding can be provided. This paper describes the techniques adopted at Saclay, where the wastes are sheared, compressed and enveloped in concrete of variable thickness. The main part of the report is devoted to a description of the corresponding remote handling installation. (author) [fr

  11. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  12. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  13. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Development of radioactive waste treatment technique

    International Nuclear Information System (INIS)

    Kikuchi, Makoto; Amamiya, Shigeru; Yusa, Hideo.

    1984-01-01

    The techniques of radioactive waste treatment are generally reviewed, placing emphasis on volume reduction and solidification techniques. After a brief description on the general process of radioactive waste treatment, some special technologies being developed by Hitachi Ltd. are explained. From the viewpoints of the volume reduction, long term management and final disposal of wastes, the pelletization of dried waste and the solidification with inorganic substances are considered. One of the features of the pelletization system is to treat various kinds of wastes such as concentrated liquid wastes and used resins by the same system. The flow diagram of the system and its special features are shown. The volume reduction achieved by this system as compared to the conventional method is about 1/7. The first commercial plant for the treatment of concentrated liquid waste is scheduled to begin operation in June, 1984. As for the solidification technique for waste disposal, the use of cement glass is considered. The solidification system being developed is shortly described. (Aoki, K.)

  15. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  16. Treatment of liquid wastes from uranium hydrometallurgy

    International Nuclear Information System (INIS)

    Moraga G, J.C.

    1988-01-01

    Different treatments for low activity liquid wastes, generated by the hidromettalurgy of uranium ore are studied. A process of treatment was chosen which includes a neutralization with lime and limestone and a selective removal of Ra-226, through ion-exchange resins. A plant, with a capacity of treatment of 1 m 3 /h of liquid effluents was scoped. (author)

  17. Radiation treatment of waste papers

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1982-01-01

    The effect of irradiation on enzymatic hydrolysis of waste papers was studied. The sugar yield increased with increasing irradiation dose. In irradiation of deligninized paper, no acceleration of enzymatic hydrolysis was observed. Degradation of cellulose molecules in paper by irradiation was examined by measurements of degree of polymerization and of potential reducing sugar. It was found in enzymatic hydrolysis that oligosaccharides such as celobiose were produced by irradiation. In irradiation of waste papers in catbon dioxide atmosphere, the glucose yield during enzymatic hydrolysis increased with increasing carbon dioxide gas pressure. (author)

  18. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  19. Bituminization of liquid radioactive wastes. Part 1

    International Nuclear Information System (INIS)

    Gradev, G.D.; Ivanov, V.I.; Stefanova, I.G.; Milusheva, A.G.; Guteva, E.S.; Zhelyazkov, V.T.; Stefanov, G.I.; G'oshev, G.S.

    1991-01-01

    Salt-bitumen products are produced by the method of 'hot mixing' of some Bulgarian bitumens (road bitumen PB 66/99 and the hydroinsulating bitumen HB 80/25) and salts (chlorides, sulphates, borates, salt mixtures modelling the liquid waste from nuclear power plants) in different ratios to determine the optimum conditions for bituminization of liquid radioactive waste. The penetration, ductility and softening temperature were determined. The sedimentation properties and the thermal resistance of the various bitumen-salt mixtures were studied. The most suitable bitumen for technological research at the Kozloduy NPP was found to be the road bitumen PB 66/90 with softening temperature at 48 o C. The optimum amount of salts incorporated in the bitumen - about 45% - was found. No exothermal effects were observed in the bituminization process in the temperature range of up to 200 o C. The results obtained may be useful in the elaboration of a technology for bituminization of liquid radioactive wastes in the Kozloduy NPP. 4 tabs., 5 figs., 4 refs

  20. Multibarrier waste forms. Part I. Development

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; Lukacs, J.M.; Sump, K.R.; Browning, M.F.; McCarthy, G.J.

    1978-09-01

    The multibarrier concept produces a composite waste form with enhanced inertness through improvements in thermal stability, mechanical strength, and leachability by the use of coatings and metal matrices. This report describes research and development activities resulting in the demonstration of the multibarrier concept for nonradioactive simulated waste compositions. The multibarrier concept is to utilize up to three barriers to isolate radionuclides from the environment: a solid waste inner core, an impervious coating, and a metal matrix. Two inner core materials, sintered supercalcine and glass marbles, have been demonstrated. The coating barrier provides enhanced leach, impact, and oxidation resistance as well as thermal protection during encapsulation in the metal matrix. Py/Al 2 O 3 coatings deposited by chemical vapor deposition (CVD) and glass coatings have been applied to supercalcine cores to improve inertness. The purpose of the metal matrix is to improve impact resistance, protect the inner core rom any adverse environments, provide radiation shielding, and increase thermal conductivity, yielding lower internal temperatures. The development of gravity sintering and vacuum casting techniques for matrix encapsulation are discussed. Four multibarrier products were demonstrated: (1) Glass marbles encapsulated in vacuum-cast Pb-10Sn; (2) uncoated, sintered supercalcine pellets encapsulated in vacuum-cast Al-12Si; (3) glass-coated, sintered supercalcine pellets encapsulated in vacuum-cast Al-12Si; and (4) PyC/Al 2 O 3 -coated supercalcine encapsulated in gravity-sintered Cu. 23 figs., 20 tables

  1. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  2. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  3. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  4. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  5. Thermal treatment of municipal waste: An overview

    International Nuclear Information System (INIS)

    Sivaprasad, K.S.

    2010-01-01

    Waste generation, like a shadow accompanies all kinds of human activities. For a long time waste was ignored as of no consequence. Nevertheless in recent times the presence of Waste was felt by the adverse impact it began to have on human life. Attention was given to waste disposal. Various methods of disposal were developed. Actually a process of evolution was set in this area. Starting with Dumpsite it developed in to sanitary land fill. Adverse impact was beginning to be seen in leachate contaminating ground water, and long term emission of methane contributing to climate change. This set the thinking to seek other solutions. Waste was begun to be seen as a resource instead of a nuisance to be disposed off. Bio-methanation of waste for recovery of methane rich biogas was developed. The concept of thermal treatment of waste for disposal came in to being in order to reduce volume of disposal as only the ash will be disposed instead of the whole volume of waste when waste is subjected to thermal treatment. However, it was beset with certain pollution problems which needed to be addressed. Suitable pollution abatement systems were developed. In the meantime, with the increase in global population and lifestyle changes across the globe, demand for natural resources went up rapidly resulting in pressure on the finite resources of the earth. Emphasis shifted to recovery of value from waste while disposing. Recovery of Recyclables, and energy came in to focus. RDF technology was developed facilitating this making it possible to recover recyclables like plastics, metals etc besides generating the prepared fuel RDF for energy recovery. (Author)

  6. Seminar on waste treatment and disposal

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-01-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place

  7. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  8. Microbiological treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1992-01-01

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment

  9. Bituminization of liquid radioactive waste. Part 3

    International Nuclear Information System (INIS)

    G'oshev, G.S.; Gradev, G.D.; Stefanova, I.G.; Milusheva, A.G.; Guteva, E.S.; Stefanov, G.I.

    1991-01-01

    The elaborated technology for bituminization of liquid radioactive wastes (salt concentrates) is characterized by the fact that the bituminization process takes place in two stages: concentration of the liquid residue and evaporation of the water with simultaneous homogeneous incorporation of the salts in the melted bitumen. An experimental installation for bituminization of salt concentrates was designed on the basis of this technology. The experience accumulated during the design and construction of the installation for bituminization of salt concentrates could be used for designing and constructing an industrial installation for bituminization of the liquid residue of the nuclear power plants. 2 tabs., 3 figs., 3 refs

  10. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Habayeb, M.A.

    1982-02-01

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  11. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  12. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  13. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  14. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  15. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  16. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  17. Mixed waste treatment capabilities at Envirocare

    International Nuclear Information System (INIS)

    Rafati, A.

    1994-01-01

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented

  18. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  19. Treatment of radioactive wastes containing plutonium

    International Nuclear Information System (INIS)

    Orlando, O.S.; Aparicio, G.; Greco, L.; Orosco, E.H.; Cassaniti, P.; Salguero, D.; Toubes, B.; Perez, A.E.; Menghini, J.E.; Esteban, A.; Adelfang, P.

    1987-01-01

    The radioactive wastes generated in the process of manufacture and control of experimental fuel rods of mixed oxides, (U,Pu)O 2 , require an specific treatment due to the plutonium content. The composition of liquid wastes, mostly arising from chemical checks, is variable. The salt content, the acidity, and the plutonium and uranium content are different, which makes necessary a chemical treatment before the inclusion in concrete. The solid waste, such as neoprene gloves, PVC sleeves, filter paper, disposable or broken laboratory material, etc. are also included in concrete. In this report the methods used to dispose of wastes at Alpha Facility are described. With regard to the liquid wastes, the glove box built to process them is detailed, as well as the applied chemical treatment, including neutralization, filtration and later solidification. As for the solid wastes, it is described the cementation method consisting in introducing them into an expanded metal matrix, of the basket type, that contains as a concentric drum of 200 liter capacity which is smaller than the matrix, and the filling with wet cement mortar. (Author)

  20. China's Scientific Investigation for Liquid Waste Treatment Solutions

    International Nuclear Information System (INIS)

    Liangjin, B.; Meiqiong, L.; Kelley, D.

    2006-01-01

    Post World War II created the nuclear age with several countries developing nuclear technology for power, defense, space and medical applications. China began its nuclear research and development programs in 1950 with the establishment of the China Institute of Atomic Energy (CIAE) located near Beijing. CIAE has been China's leader in nuclear science and technical development with its efforts to create advanced reactor technology and upgrade reprocessing technology. In addition, with China's new emphasis on environmental safety, CIAE is focusing on waste treatment options and new technologies that may provide solutions to legacy waste and newly generated waste from the full nuclear cycle. Radioactive liquid waste can pose significant challenges for clean up with various treatment options including encapsulation (cement), vitrification, solidification and incineration. Most, if not all, nuclear nations have found the treatment of liquids to be difficult, due in large part to the high economic costs associated with treatment and disposal and the failure of some methods to safely contain or eliminate the liquid. With new environmental regulations in place, Chinese nuclear institutes and waste generators are beginning to seek new technologies that can be used to treat the more complex liquid waste streams in a form that is safe for transport and for long-term storage or final disposal. [1] In 2004, CIAE and Pacific Nuclear Solutions, a division of Pacific World Trade, USA, began discussions about absorbent technology and applications for its use. Preliminary tests were conducted at CIAE's Department of Radiochemistry using generic solutions, such as lubricating oil, with absorbent polymers for solidification. Based on further discussions between both parties, it was decided to proceed with a more formal test program in April, 2005, and additional tests in October, 2005. The overall objective of the test program was to apply absorbent polymers to various waste streams

  1. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  2. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... for biogas production for either CHP generation or as fuel in vehicles. The case study illustrates, that what is the optimal solution depends on the objective and assumptions regarding the background system – here illustrated with different assumptions regarding displaced electricity production. The article...

  3. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  4. Nordic study on reactor waste. Technical part 1 and 2

    International Nuclear Information System (INIS)

    1981-08-01

    An important part of the Nordic studies on system- and safety analysis of the management of low and medium level radioactive waste from nuclear power plants, is the safety analysis of a Reference System. This reference system was established within the study and is described in this Technical Part 1. The reference system covers waste management Schemes that are potential possibilities in either one of the four participating Nordic countries. The reference system is based on: a power reactor system consisting of 6 BWR's of 500 MWe each, operated simultaneously over the same 30 year period, and deep bed granular ion exchange resin wastes from the Reactor Water Clean-Up System (RWCS and powdered ion exchange resin from the Spent Fuel Pool Cleanup System (SFPCS)). Both waste types are supposed to be solidified by mixing with cement and bitumen. Two basic types of containers are considered. Standard 200 liter steel drums and specially made cubicreinforced concrete moulds with a net volume of 1 m 3 . The Nordic study assumes temporary storage of the solidified waste for a maximum of 50 years before the waste is transferred to the disposal site. Transportation of the waste from the storage facilitiy to the disposal site will be by road or sea. Three different disposal facilities are considered: Shallow land burial, near surface concrete bunker, and rock cavern with about 30 m granite cover. (EG)

  5. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  6. Treatment of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Hoehlein, G.

    1978-05-01

    The methods described of low and intermediate level waste treatment are based exclusively on operating experience gathered with the KfK facilities for waste management, the Karlsruhe Reprocessing Plant (WAK), the ALKEM fuel element fabrication plant, the MZFR, KNK and FR 2 reactors as well as at the Karlsruhe Nuclear Research Center and at the state collecting depot of Baden-Wuerttemberg. The processing capacities and technical status are similar to that in 1976. With an annual throughput of 10000 m 3 of solid and liquid raw wastes, an aggregate activity of 85000 Ci, 500 kg of U and 2 kg of Pu, final waste in the amount of 500 m 3 was produced which was stored in the ASSE II salt mine. (orig.) [de

  7. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  8. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  9. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  10. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  11. Treatment of Mixed Wastes via Fixed Bed Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-28

    This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

  12. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  13. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.

    1998-01-01

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail

  14. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  15. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  16. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  17. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  18. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    International Nuclear Information System (INIS)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  19. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  20. Development of a laundry waste treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Sugimoto, Y; Yusa, H; Ebara, K [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Takeshima, M [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1977-12-01

    Fundamental and pilot plant experiments developed a laundry waste treatment system for nuclear power plants, consisting of a reverse osmosis unit for removal of radioactive materials and pre-concentration, and an evaporator for the final concentration. A sponge ball cleaning method was employed for the reverse osmosis unit and a heat-resistant antifoam reagent for the evaporator. The pilot plant test, using simulated wastes, showed a decontamination factor of above 10/sup 3/ and a volume reduction ratio of 10/sup -3/.

  1. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  2. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  3. Treatment of low alpha activity liquid wastes

    International Nuclear Information System (INIS)

    Nannicini, R.; Fenoglio, F.; Pozzi, L.

    1984-01-01

    The nuclear industry considers so big safety problems that the purifying treatment of liquid wastes must always provide for a complete recycle of the liquid strems from the production processes as regard this problem. ''Enea-Comb-Ifec'' people from saluggia, already previously engages with verifying and setting-up ''Sol-Gel'' process for the recover of uranium-plutonium solutions coming from irradiated fuel reprocessing, started an experimental work, with the assistance of ''Cnr-Irsa'' from Rome, on the applicability of the biological treatment to the purification of liquid wastes coming from the production process itself. The present technical report gives, besides a short description of the ''Sol-Gel'' process, the first results, only relating to the biological stage of the whole proposed purifyng treatment, included the final results of the experimental work, object of a contract between ''Enea-Ifec'' and ''Snam progetti'' from Fano

  4. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  5. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  6. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  7. Radiation treatment of wastes: A review

    International Nuclear Information System (INIS)

    Feates, F.S.; George, D.

    1975-01-01

    Since 1945 over 70 papers have been published on various applications of radiation to waste treatment. Work carried out up to 1970 showed consistently that radiation is effective in degrading organic matter in wastes, destroying pathogenic organisms, and enhancing the sedimentation and filterability of sludges, but at a cost about ten times that of conventional treatment methods. Increased cost of energy, scarcity of potable water, environmental awareness and consequent legislation, and technical developments may be changing the picture. For example, ozone, already being widely used as an alternative to chlorine for sterilization, is claimed to be produced by gamma-irradiation of air or oxygen at half the cost of electrical methods. Radiation may solve specific problems associated with industrial wastes and evidence is reported of synergistic effects with oxygen and chlorine. In-situ reactivation of carbon used as an absorbent for textile dye wastes has been observed, and is being further studied. Prototype plant for complete sterilization of sewage sludge for use as fertilizer is in operation. Safety precautions necessary if large radiation sources are used by non-technical operatives will also be considered. (author)

  8. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  9. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  10. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  11. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  12. Mixed waste treatment at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Larsen, M.M.; Hunt, L.F.; Sanow, D.J.

    1988-01-01

    The Idaho Operations Office of the Department of Energy (DOE) made the decision in 1984 to prohibit the disposal of mixed waste (MW) (combustible waste-toxic metal waste) in the Idaho National Engineering Laboratory (INEL) low-level radioactive waste (LLW) disposal facility. As a result of this decision and due to there being no EPA-permitted MW treatment/storage/disposal (T/S/D) facilities, the development of waste treatment methods for MW was initiated and a storage facility was established to store these wastes while awaiting development of treatment systems. This report discusses the treatment systems developed and their status. 3 refs., 2 figs., 1 tab

  13. DOE evaluates nine alternative thermal technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In June 1993, the U.S. Department of Energy's (DOE's) Office of Technology Development commissioned a study to evaluate 19 thermal technologies for treating DOE's mixed waste. The study was divided into two phases: Phase I evaluated ten conventional incineration techniques (primarily rotary kiln), and Phase II looked at nine innovative, alternative thermal treatment technologies. The treatment processes were evaluated as part of an integrated waste treatment system, which would include all of the facilities, equipment, and methods required to treat and dispose DOE mixed waste. The relative merits and life-cycle costs were then developed for each of the 19 waste treatment systems evaluated. The study also identified the additional research and development, demonstration, and testing/evaluation steps that would be necessary for the waste treatment systems to successfully treat DOE mixed waste. 3 tabs., 2 refs

  14. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... treatment of a hazardous waste generated by the Owens-Brockway Glass Container Company in Vernon, California... action. List of Subjects in 40 CFR Part 268 Environmental protection, Hazardous waste, and Variances...

  15. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  16. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  17. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  18. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  19. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  20. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  1. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  2. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  3. Combustible radioactive waste treatment by incineration and chemical digestion

    International Nuclear Information System (INIS)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-01-01

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste

  4. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  5. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  6. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  7. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  8. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  9. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  10. A systems study of the future waste management system in Boraas. Part of the project: 'Thermal and biological waste treatment in a systems perspective'; Systemstudie Avfall - Boraas: En systemstudie foer den framtida avfallsbehandlingen i Boraas. Ett delprojekt inom projektet 'Termisk och biologisk avfallsbehandling i ett systemperspektiv'

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Haraldsson, Maarten; Sundberg, Johan; Norrman Eriksson, Ola

    2010-07-01

    The purpose of this project (A systems study of the future waste management system in Boraas) is to evaluate, from a systems perspective, new and improved waste treatment technologies. The study is focused on the waste management system and the district heating system of Boraas. In order to make the analysis complete, the project has also included analyses of surrounding systems that interact with Boraas waste management and district heating systems. The study evaluates the situation in 2015, i.e. a situation only a few years from today. Therefore we have chosen to perform the analysis with one external scenario and 12 development paths (divided into Analyses 1-5). The external scenario describes the development of the surrounding systems through factors that are important for the waste management and district heating systems in Boraas (e.g. electricity price, waste generation, and price of tradable emissions permits for CO{sub 2}). A development path (or local scenario) means changes of the current waste management and/or district heating systems in Boraas and consists of a set of technologies (e.g. anaerobic digestion, central separation and gasification) that are used to fulfil the demand for waste treatment and district heating. The development in the surrounding systems (described by the external scenario) cannot be influenced by the decision-makers in Boraas. The development paths describe possible changes of the waste management and district heating systems that decision-makers in Boraas can choose to implement

  11. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  12. Evaluation of waste treatment technologies by LLWDDD [Low-Level Waste Disposal Development and Demonstration] Programs

    International Nuclear Information System (INIS)

    Kennerly, J.M.; Williams, L.C.; Dole, L.R.; Genung, R.K.

    1987-01-01

    Waste treatments are divided into four categories: (1) volume reduction; (2) conditioning to improve waste form performance; (3) segregation to achieve waste reduction; and (4) separation to remove radioactive (or hazardous) constituents. Two waste treatment demonstrations are described. In the first, volume reduction by mechanical means was achieved during the supercompaction of 300 55-gal drums of solid waste at ORNL. In the second demonstration, conditioning of waste through immobilization and packaging to improve the performance of the waste form is being evaluated. The final section of this paper describes potential scenarios for the management of uranium-contaminated wastes at the Y-12 Plant in Oak Ridge and emphasizes where demonstrations of treatment technology will be needed to implement the scenarios. Separation and thermal treatment are identified as the principal means for treating these wastes. 15 figs

  13. Waste treatment by selective mineral ion exchanger

    International Nuclear Information System (INIS)

    Polito, Aurelie

    2007-01-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  14. An investigation of storage and treatment options for radioactive wastes prepared for sea disposal

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Woodfine, B.C.

    1986-07-01

    A sea disposal of 3500 t of packaged waste using a specially converted ship was planned for 1983, but did not take place. The major part of this waste is currently stored at two UKAEA sites. The waste packages were made with the intention that they would be disposed of within about 18 months of packaging. It was not intended that they would be stored for long periods. All wastes are packaged in mild steel drums and the wastes are temporarily stored within buildings. The conditions under which the packages are stored and their present condition are described and possible storage and treatment options are investigated having regard to available disposal routes. (author)

  15. Experiences in the treatment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe (Germany, F.R.)

    1977-04-01

    Low and medium level wastes have been routinely treated for many years at the technical scale with good success and processed to products safe for final storage so that inadmissible contamination of the environment whatsoever has not occurred. In the majority of cases the maximum permissible values were not reached by far. The treatment of highly active and ..cap alpha..-wastes has not yet been demonstrated at the technical scale because these accumulate to a larger extent only in a further developed nuclear technology. The methods developed for this have proved their feasibility and reached such a degree of maturity that it can be assumed that they will be available to the extent and at the time given by the general development of nuclear technology.

  16. Experiences in the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Krause, H.

    1977-01-01

    Low and medium level wastes have been routinely treated for many years at the technical scale with good success and processed to products safe for final storage so that inadmissible contamination of the environment whatsoever has not occurred. In the majority of cases the maximum permissible values were not reached by far. The treatment of highly active and α-wastes has not yet been demonstrated at the technical scale because these accumulate to a larger extent only in a further developed nuclear technology. The methods developed for this have proved their feasibility and reached such a degree of maturity that it can be assumed that they will be available to the extent and at the time given by the general development of nuclear technology. (orig.) [de

  17. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  18. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  19. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  20. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  1. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 2, Waste Management

    International Nuclear Information System (INIS)

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE) was held on Waste Mangement. Topics discussed were waste stabilization technologies regulations and standards, innovative treatment technology, waste stabilization projects. Individual projects are processed separately for the data bases

  2. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  3. Nuclear waste treatment using Iranian natural zeolites

    International Nuclear Information System (INIS)

    Kazemian, H.; Ghannadi Maraghe, M.

    2001-01-01

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137 Cs and 90 Sr) is very important in using

  4. Operation of the radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Kim, Kil Jeong; Ahn, Seom Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Lim, Kil Sung; Sohn, Young Joon; Kim, Tae Kook; Jeong, Kyung Hwan; Wi, Geum San; Park, Seung Chul; Park, Young Woong; Yoon, Bong Keun.

    1996-12-01

    The radioactive wasted generated at Korea Atomic Energy Research Institute (KAERI) in 1996 are about 118m 3 of liquid waste and 204 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. In 1996, 100.5m 3 of liquid waste was treated. (author). 84 tabs., 103 figs

  5. Quality assurance program description: Hanford Waste Vitrification Plant, Part 1

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the Department of Energy's Richland Field Office (DOE-RL) quality assurance (QA) program for the processing of high-level waste as well as the Vitrification Project Quality Assurance Program for the design and construction of the Hanford Waste Vitrification Plant (HWVP). It also identifies and describes the planned activities that constitute the required quality assurance program for the HWVP. This program applies to the broad scope of quality-affecting activities associated with the overall HWVP Facility. Quality-affecting activities include designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, inspecting, testing, maintaining, repairing, and modifying. Also included are the development, qualification, and production of waste forms which may be safely used to dispose of high-level radioactive waste resulting from national defense activities. The HWVP QA program is made up of many constituent programs that are being implemented by the participating organizations. This Quality Assurance program description is intended to outline and define the scope and application of the major programs that make up the HWVP QA program. It provides a means by which the overall program can be managed and directed to achieve its objectives. Subsequent parts of this description will identify the program's objectives, its scope, application, and structure

  6. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  7. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  8. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    Science.gov (United States)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  9. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  10. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  11. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  12. Treatment technology for organic radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. J.; Lee, Y. H.; Shon, J. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    In this report, various alternative technologies to the incineration for the treatment of radioactive organic wastes were described and reviewed, fallen into two groups of low temperature technologies and high temperature technologies. These technologies have the advantages of low volume gaseous emission, few or no dioxin generation, and operation at low enough temperature that radionuclides are not volatilized. Delphi chemical oxidation, mediated electrochemical oxidation, and photolytic ultraviolet oxidation appear to be the most promising low temperature oxidation process and steam reforming and supercritical water oxidation in the high temperature technologies. 52 refs., 39 figs., 2 tabs. (Author)

  13. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  14. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  15. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  17. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  18. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A. [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A. [Raveh Ecology Ltd., Haifa (Israel)

    1993-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  19. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A [Raveh Ecology Ltd., Haifa (Israel)

    1994-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  20. Mixed wastes treatment in Atucha I

    International Nuclear Information System (INIS)

    Varani, J.L.; Comandu, J.F.

    1998-01-01

    Full text: During decontamination works of the fueling machine of Atucha I nuclear power plant (AINPP), a liquid waste with special characteristics was generated, which needed the development of a treatment method. The waste consisted of an emulsion designed for the cleaning of mechanical components and was formed by an organic solvent dispersed in water with aid of an emulsifier additive. After several cleaning operations, the emulsion contained an important quantity of lubricants and radioactive dirt. The treatment had the objective of recycling a toxic waste such as the organic solvent and reducing the volume of the residual mass. Laboratory tests were made tending to the emulsion separation in their components. Ionic force and ionic mobility were modified for join the emulsion micelles and produce their coalescence. Different salts and working temperatures were tried and it was stated that the combination of 1% of Na 2 SO 4 added and 40 degree C temperature were the optimum taking into account the available equipment in AINPP and cost considerations. The process was carried out in batch mode and 3 residual streams were obtained, an aqueous one which was sent to Residual Water System of AINPP, an organic liquid consisting of decontaminated hydrocarbons, useful for other cleaning tasks and finally a solid one, sited in the in-between interface of the other two liquids, consisting of insoluble soaps used as lubricant thickness, containing the principal proportion of radioactivity. As a result of this process we have achieved a volume reduction higher than 90%, the recycling of the organic solvent and concentration of radioactivity in a solid greasy mass with low water solubility. (author) [es

  1. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  2. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Haywood, Fred F.; Goldsmith, William A.; Allen, Douglas F.; Mezga, Lance J.

    1995-12-01

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  3. Waste treatment at the La Hague and Marcoule sites

    International Nuclear Information System (INIS)

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema's plants

  4. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  5. Treatment and disposal of radioactive wastes and countermeasures

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    1990-01-01

    The treatment and disposal of radioactive wastes are one of important subjects, together with the development of dismantling techniques accompanying the decommissioning measures for nuclear power plants and the development of reprocessing techniques for nuclear fuel cycle. About 25 years have elapsed since the beginning of commercial nuclear power generation in 1966, and the time that the solution of the problems of waste treatment and disposal must be tackled on full scale has come. The features and the amount of generation of radioactive wastes, the way of thinking on the treatment and disposal, and the present status of the treatment and disposal are outlined. For securing the stable supply of energy and solving the environmental problem of the earth such as acid rain and warming, nuclear power generation accomplishes important roles. The objective of waste treatment is based on the way of thinking of 'as low as reasonably achievable (ALARA)'. The radioactive wastes are classified into alpha waste and beta-gamma waste. The present status of RI wastes, the techniques of treating radioactive wastes, the nuclide separation, extinction treatment and the disposal in strata of high level radioactive wastes and the disposal of low level wastes are reported. (K.I.)

  6. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  9. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  10. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  11. Technical solutions for waste treatment in the Belene project

    International Nuclear Information System (INIS)

    Büttner, K.; Eichhorn, H.

    2011-01-01

    Outline: In June 2010 NUKEM Technologies GmbH was awarded a contract from ATOMSTROYEXPORT JSC to perform the complete work package related to designing and completion of the equipment for treatment of radioactive waste on the turn-key basis for Belene NPP. Technical Solutions: Waste Streams and Technologies at UKC and UKS; Concentration Plant; Thermal Treatment of Resins Sorting Facility; Biological Waste Water Treatment; Conditioning – Cementation • Sorting of Radwaste; Plasma Facility; Grouting; Filter Press; Monitoring and Tracking

  12. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  13. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  14. Thermal treatment of radioactive wastes by the PLASMARC process

    International Nuclear Information System (INIS)

    Hoffelner, W.; Haefeli, V.; Fuenfschilling, M.R.

    1996-01-01

    The plasma plant for the thermal treatment of radioactive wastes to be supplied to ZWILAG is briefly described and the results of experiments with simulated waste are provided. The experiments led to the conclusion that the plant is well suited for handling low- and intermediate level radioactive wastes. (author) 1 fig., 3 tabs

  15. Low level radioactive liquid waste treatment at ORNL

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lasher, L.C.

    1977-01-01

    A new Process Waste Treatment Plant has been constructed at ORNL. The wastes are processed through a precipitation-clarification step and then through an ion exchange step to remove the low-level activity in the waste before discharge into White Oak Creek

  16. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  17. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  18. Research and development of radioactive waste treatment methods

    International Nuclear Information System (INIS)

    Nguyen Thi Nang

    2000-01-01

    The Nuclear Research Institute (NRI) uses the reactor for research, training, isotope production and activation analyses. NRI generates about 150 m 3 of liquid and 5 m 3 of solid wastes every year. The researched methods applied to treatment of radwastes are coagulation-precipitation and two steps ion-exchange for liquid waste and compaction for solid waste are described. (author)

  19. Chemical treatment of mixed waste at the FEMP

    International Nuclear Information System (INIS)

    Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

    1996-01-01

    The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams

  20. Process development for treatment of fluoride containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahesh; Kanvinde, V Y [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many chemical and metallurgical industries generate liquid wastes containing high values of fluorides in association of nitrates and other metals. Due to harmful effects of fluorides these type of wastes can not be disposed off in the environment without proper treatment. Bench-scale laboratory experiments were conducted to develop a process scheme to fix the fluorides as non-leachable solid waste and fluoride free treated liquid waste for their disposal. To optimize the important parameters, simulated synthetic and actual wastes were used. For this study, three waste streams were collected from Nuclear Fuel Complex, Hyderabad. (author). 6 tabs., 1 fig.

  1. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  2. The development of radioactive waste treatment technology(IV)

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Yim, Sung Paal; Lee, Kune Woo; Yoo, Jeong Woo; Kim, Young Min; Park, Seong Chul

    1992-03-01

    Following studies were performed in the project of development of radioactive waste treatment technology. 1) Treatment of radioactive borated liquid wastes by reverse osmosis : Separation characteristics of boric acid were estimated using cellulose acetate membrane and aromatic polyamide membrane. The performance of reverse osmosis process was evaluated in terms of boric acid recovery, radiochemical rejection, and membrane flux by operating variables such as applied pressure and feed concentration. 2) Oily waste treatment : The mathematical model to estimate oil removal efficiency is to be proposed at coalescence column. 3) Treatment of radioactive laundry waste 4) Comparison of evaporation and ion-exchange 5) State of the art of high integrity container. (Author)

  3. Pyrolysis/Steam Reforming Technology for Treatment of TRU Orphan Wastes

    International Nuclear Information System (INIS)

    Mason, J. B.; McKibbin, J.; Schmoker, D.; Bacala, P.

    2003-01-01

    Certain transuranic (TRU) waste streams within the Department of Energy (DOE) complex cannot be disposed of at the Waste Isolation Pilot Plant (WIPP) because they do not meet the shipping requirements of the TRUPACT-II or the disposal requirements of the Waste Analysis Plan (WAP) in the WIPP RCRA Part B Permit. These waste streams, referred to as orphan wastes, cannot be shipped or disposed of because they contain one or more prohibited items, such as liquids, volatile organic compounds (VOCs), hydrogen gas, corrosive acids or bases, reactive metals, or high concentrations of polychlorinated biphenyl (PCB), etc. The patented, non-incineration, pyrolysis and steam reforming processes marketed by THOR Treatment Technologies LLC removes all of these prohibited items from drums of TRU waste and produces a dry, inert, inorganic waste material that meets the existing TRUPACT-II requirements for shipping, as well as the existing WAP requirements for disposal of TRU waste at WIPP. THOR Treatment Technologies is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC (WGES) to further develop and deploy Studsvik's patented THORSM technology within the DOE and Department of Defense (DoD) markets. The THORSM treatment process is a commercially proven system that has treated over 100,000 cu. ft. of nuclear waste from commercial power plants since 1999. Some of this waste has had contact dose rates of up to 400 R/hr. A distinguishing characteristic of the THORSM process for TRU waste treatment is the ability to treat drums of waste without removing the waste contents from the drum. This feature greatly minimizes criticality and contamination issues for processing of plutonium-containing wastes. The novel features described herein are protected by issued and pending patents

  4. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  5. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  6. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  7. Citric waste saccharification under different chemical treatments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2015-10-01

    Full Text Available Second generation ethanol from lignocellulose materials has been used in applications for food processing wastes. Since Brazil has a leading position in orange juice exports, the influence of acid and alkali pretreatments on liquor saccharification, solubilization of solid fraction and mass yield was evaluated. Time and Cacid or Calkaline at different concentrations of solids (low to moderate, 1 to 9% and high catalyst concentrations were analyzed. A hydrothermal pretreatment was conducted under the same conditions of acid and alkaline treatments to investigate the relative selectivity increase in using the catalysts. The chemical analyses of wastes indicated a 70% total carbohydrate level denoting a promising raw material for bioethanol production. Pretreatment caused acid saccharifications between 25 and 65% in total reducing sugars (TRS and mass yields (MY between 30 and 40%. In alkaline pretreatment, these rates ranged between 2 and 22.5% and between 30 and 80, respectively. In hydrothermal pretreatment, solubilized TRS varied between 3 and 37%, whereas MY remained between 45 and 60%, respectively. Cbiomass strongly influenced the three variables; in the same way, time affected MY.

  8. Recycling and treatment of plastic waste

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1998-01-01

    Radiation technology, using gamma or electron beams, develops its benefits at highest yield if macromolecular systems are treated. This is valid equally if build-up processes (polymerization, crosslinking) or degradative processes (chain scission, depolymerization) are initiated by radiation. Radiation-induced degradation is applied to convert polytetrafluoroethylene (Teflon) scrap into powder and low-molecular-weight products used in the production of other perfluoro compounds. The Teflon powder is blended with other materials for use as lubricant, and the perfluorocarboxylic derivatives are employed as surfactants. Radiation treatment of polymers could play a build-up role in the recycling of polymer wastes. The non-selective energy transfer from gamma or electron sources to polymer systems produces many kinds of reactive centers such as free radicals, oxydized and peroxydized active groups, on which further reactions may occur. In presence of monomer-like or oligomer-like reactive additives graft-copolymerization may take place, compatibilizing in this way the originally incompatible polymer components. Such a compatibilization is the key solution to recycling commingled plastic waste or producing composite materials of fibrous natural polymers and synthetic thermoplastics

  9. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  10. Mixed-waste treatment -- What about the residuals?

    International Nuclear Information System (INIS)

    Carlson, T.; Carpenter, C.; Cummins, L.; Haas, P.; MacInnis, J.; Maxwell, C.

    1993-01-01

    Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ''derived-from'' residuals. Major findings include that final disposal options are more significantly impacted by the type of waste treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals

  11. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  12. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  13. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  14. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  15. Challenges when Performing Economic Optimization of Waste Treatment

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, Hans

    2011-01-01

    New investments in waste treatment facilities are needed due to a number of factors including continuously increasing waste amounts, political demands for efficient utilization of the waste resources in terms of recycling or energy production, and decommissioning of existing waste treatment...... facilities due to age and stricter environmental regulation. Optimization models can assist in ensuring that these investment strategies will be economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing...... in multi criteria analysis have been developed. A thorough updated review of the existing models is presented and the main challenges and the crucial parameters to take into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both...

  16. Methods in the treatment of sodium wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.

    1997-01-01

    In the domain of sodium waste processing, we have followed a logical route that has enabled us to propose a global method with respect to sodium wastes. This approach has led to: The choice of only those sodium processes using water; The development of sodium purification methods; The development of methods for cutting metallic wastes soiled by or filled with sodium; The transformation of the resulting sodium hydroxide into ultimate solid wastes for surface storage. (author)

  17. Evaluating the technical aspects of mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Bagaasen, L.M.; Scott, P.A.

    1992-10-01

    This report discusses treatment of mixed wastes which is thought to be more complicated than treatment of either hazardous or radioactive wastes. In fact, the treatment itself is no more complicated: however, the regulations that define acceptability of the final waste disposal system are significantly more entangled, and sometimes in apparent conflict. This session explores the factors that influence the choice of waste treatment technologies, and expands on some of the limitations to their application. The objective of the presentation is to describe the technical factors that influence potential treatment processes and the ramifications associated with particular selections (for example, the generation of secondary waste streams). These collectively provide a framework for making informed treatment process selections

  18. Method for aqueous radioactive waste treatment

    Science.gov (United States)

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  19. Recycling industrial waste in brick manufacture. Part 1

    Directory of Open Access Journals (Sweden)

    Andreola, F.

    2005-12-01

    Full Text Available The ongoing accumulation of industrial waste speaks to the need to seek cost-effective disposal methods. Brick manufacture would appear to be particularly promising in this regard. The present study analyzes the possibility of recycling the sludge generated in porcelain tile polishing, as well as coal, steel and municipal incinerator ash to make a special type of facing brick whose properties readily accommodate a full analysis of all the problems deriving from the incorporation of residue in its manufacture. Physical-chemical, mechanical and structural analyses were performed on bricks made with varying percentages of the different types of waste considered. This first paper reports the results of the physical arid technological characterization of the products; the second part of the research will address their chemical, mechanical and structural properties.

    El continuo aumento de la cantidad de residuos (desechos que se generan en los procesos industriales induce a buscar nuevos métodos alternativos a la disposición final que sean altamente eficientes y a bajo costo. La industria manufac turera de ladrillos resulta muy prometedora desde este punto de vista. En este trabajo ha sido investigada la posibilidad de usar distintos residuos industriales, entre ellos barros de pulido del gres porcelánico. cenizas de carbón, cenizas de acerías y de incinerador municipal para la fabricación de ladrillos de exteriores. Fueron analizados los problemas que podrían derivar al introducir estos residuos en la pasta. En particular, en esta primera parte del trabajo se muestran los resultados derivados de la introducción de los residuos considerados, en distintos porcentajes, sobre las propiedades físicas y tecnológicas del producto final. En la segunda parte se desarrollarán los efectos causados sobre las propiedades químicas, mecánicas y microestructurales.

  20. Challenges when performing economic optimization of waste treatment: A review

    International Nuclear Information System (INIS)

    Juul, N.; Münster, M.; Ravn, H.; Söderman, M. Ljunggren

    2013-01-01

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives

  1. Challenges when performing economic optimization of waste treatment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Juul, N., E-mail: njua@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Münster, M., E-mail: maem@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Ravn, H., E-mail: hans.ravn@aeblevangen.dk [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Söderman, M. Ljunggren, E-mail: maria.ljunggren@chalmers.se [Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); IVL Swedish Environmental Research Institute, Gothenburg (Sweden)

    2013-09-15

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

  2. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  3. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  4. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  5. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1994-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  6. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  7. Thermal treatment of high-caloric waste in fluidized bed incineration plants in Austria

    International Nuclear Information System (INIS)

    Ragossnig, A.M.

    2001-05-01

    The importance of thermal treatment of waste and residues in Austria is expected to rise due to the current changes of the legal situation in waste management. Assessing the rank order of different thermal treatment processes for waste management it has been shown that - especially caused by the rising importance of the mechanical treatment step in the mechanical-biological residual waste treatment and the subsequent necessity of the thermal treatment of a high-caloric preprocessed waste stream - the importance of the fluidized bed technology will increase. The main advantages are the high existing capacities as well as the flexibility of this technology in regard of fuel properties and further on the fact of the lacking influence of the ash towards the quality of a product. This is true although the thermal treatment in fluidized bed incinerators requires some processing of the waste. This doctoral thesis also contains a thorough physical and chemical characterization of various waste fuels - especially those which have been used during full scale incineration experiments. This characterization includes a comparison with fossil fuel. The practical part contains the documentation and balancing of full scale incineration experiments. A comparison of a reference experiment with experiments when waste fuel has been thermally utilized showed that a significant increase of emissions to the atmosphere has not been observed. Based on the incineration experiments conclusions in regard of waste fuels as well as different categories of thermal treatment plants are being stated. Finally, a recommendation of the assignation of various waste streams to different categories of thermal treatment plants is being made. (author)

  8. Graphite electrode DC arc technology program for buried waste treatment

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Woskov, P.P.; Thomas, P.; Surma, J.E.; Titus, C.H.

    1994-01-01

    The goal of the program is to apply EPI's Arc Furnace to the processing of Subsurface Disposal Area (SDA) waste from Idaho National Engineering Laboratory. This is being facilitated through the Department of Energy's Buried Waste Integrated Demonstration (BWID) program. A second objective is to apply the diagnostics capability of MIT's Plasma Fusion Center to the understanding of the high temperature processes taking place in the furnace. This diagnostics technology has promise for being applicable in other thermal treatment processes. The program has two parts, a test series in an engineering-scale DC arc furnace which was conducted in an EPI furnace installed at the Plasma Fusion Center and a pilot-scale unit which is under construction at MIT. This pilot-scale furnace will be capable of operating in a continuous feed and continuous tap mode. Included in this work is the development and implementation of diagnostics to evaluate high temperature processes such as DC arc technology. This technology can be used as an effective stabilization process for Superfund wastes

  9. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Glover, T.

    1999-01-01

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task

  10. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  11. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  12. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  13. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    International Nuclear Information System (INIS)

    Hamel, W. F.; Gerdes, K.; Holton, L. K.; Pegg, I.L.; Bowan, B.W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  14. ALKALINE TREATMENT AND IMMOBILIZATION OF SECONDARY WASTE FROM WASTE INCINERATION

    Directory of Open Access Journals (Sweden)

    Dariusz Mierzwiński

    2017-04-01

    Full Text Available This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, three sets of geopolymer mixtures were prepared containing 60, 50 and 30% of ash and slag from the combustion of waste and fly ash combustion of sewage skudge. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the PN-EN 206-1 norm, were subjected to 75°C for 24h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of concrete.

  15. Treatment of concentrated waste for storage

    International Nuclear Information System (INIS)

    Vidal, H.

    1982-01-01

    The french experience in bituminization of radioactive wastes is described through the successive items, an outline on the industrial realizations is followed by the inventories of the coatable wastes, the constraints to be respected for embedding and quality of bitumen to be used. The technological aspect is described with the example of brennilis, characteristics and properties of coated wastes are given in conclusion. (orig./RW)

  16. EPA/DOE joint efforts on mixed waste treatment

    International Nuclear Information System (INIS)

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-01-01

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final open-quotes Hazardous Waste Combustion Strategyclose quotes in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit open-quotes Roadmapclose quotes Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit

  17. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  18. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    International Nuclear Information System (INIS)

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE's Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP's charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program

  19. Uses of biotechnology in waste treatment

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Benson, J.

    1996-01-01

    BNFL have invested in a Biotechnology programme to address waste treatment problems. The use of biotechnology to destroy organic pollutants is well known and has been successfully employed both in-situ and ex-situ. The BNFL approach has been to concentrate on the interaction of microbial systems with inorganic materials. This study has resulted in two major programmes of work that show every indication of being suitable for large scale application. The first programme of work investigated using, to decontaminate concrete surfaces, the phenomena of concrete degradation by sulphur oxidizing bacteria. Laboratory tests proved encouraging and have resulted in a Co-operative Research and Development Agreement (CRADA), between BNFL and Lockheed Martin Idaho Technologies Company for the INEL site. The CRADA will lead to a demonstration of the technology. The second major area of investigation is the development of an integrated bioremediation process for the removal and recovery of toxic heavy metals from contaminated land. The two stage process, which can be employed in an in-situ or ex-situ mode, involves the use of indigenous micro-organisms to generate sulphuric acid and environmental consortia to generate hydrogen sulphide. This project has reached the point of field trials. Results from both programmes will be presented and their applications at nuclear sites detailed

  20. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  1. Treatment of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  2. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Vath, J.E.

    1981-01-01

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas have been selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting

  3. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-01-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH) 2 and, for some metals, Na 2 S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW

  4. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  5. Treatment and disposal of toxic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Train, D

    1983-03-01

    An unparallelled expansion of material benefits to life and commerce in the '50s and '60s caused wastes to increase in variety and complexity. Amongst these some materials were particularly hazardous, being flammable, corrosive, reactive or toxic. This article presents simple guidelines for use in complex waste disposal situations.

  6. Treatment of uranium-containing effluent in the process of metallic uranium parts

    International Nuclear Information System (INIS)

    Yuan Guoqi

    1993-01-01

    The anion exchange method used in treatment of uranium-containing effluent in the process of metallic parts is the subject of the paper. The results of the experiments shows that the uranium concentration in created water remains is less than 10 μg/l when the waste water flowed through 10000 column volume. A small facility with column volume 150 litre was installed and 1500 m 3 of waste water can be cleaned per year. (1 tab.)

  7. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  8. Guide Of Treatment On Noxious Waste Of Experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-05-15

    This book deals with environmental safe management and smooth driving of facilities, which indicates purpose of this guide, responsibility of environmental safe management, division of collect of starting point treatment, batch processing system, treatment of noxious waste of experiment, regulation of harmful waste such as medicine, corrosivity liquid, and treatment of cleaning solution of chrome-sulfuric acid, and regulation of Kyungpook National University Department Environmental Engineering Research Center, environmental protection law and the other related law.

  9. Guide Of Treatment On Noxious Waste Of Experiment

    International Nuclear Information System (INIS)

    1987-05-01

    This book deals with environmental safe management and smooth driving of facilities, which indicates purpose of this guide, responsibility of environmental safe management, division of collect of starting point treatment, batch processing system, treatment of noxious waste of experiment, regulation of harmful waste such as medicine, corrosivity liquid, and treatment of cleaning solution of chrome-sulfuric acid, and regulation of Kyungpook National University Department Environmental Engineering Research Center, environmental protection law and the other related law.

  10. Ariab acidic min-influenced water: a waste to waste treatment

    International Nuclear Information System (INIS)

    Elamin, M. R.; Abd El Aziz, M. E.

    2009-01-01

    Six samples of acidic mine-influenced water (AMIW) from Ariab area, Red Sea Hills, northeastern part of Sudan, were analyzed for some waste water parameters. The investigation showed that, the pH ranged between 1.30 to 1.88, sulphate content between 40200 to 235300 mg/1, total iron 9879 to 103969 mg/1, copper, 280.0 to 1112.5 mg/1, zinc, 1825 to 3345 mg/1, manganese, 210.0 to 570.0 mg /1 in addition to high contents of cobalt and cadmium which are known for their negative impact on the environment. Khartoum Refinery Sour Water (KRSW) sample was analyzed for some pollutants, the analysis showed that it is alkaline industrial waste having a pH of 10.10, alkalinity of 26381 mg/1 as CaC 3 /1, Chemical Oxygen Demand (COD) of 29400 mg/1 as O 2 . It was found to be relatively free of heavy and environmentally hazardous elements such as Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb and Mg. A waste to waste treatment was carried to Ariab AMIW with KRSW, satisfactory results were obtained in reduction of the parameters studied in the treated effluent. The pH of AMIW was raised to about 8.50, and the element contents of Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb were either completely removed or reduced to levels that meet the allowed limits of the industrial effluent disposal threshold. Sulphate content, however, decreased due to dilution, but still above the specified limits of the effluent disposal. (Author)

  11. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  12. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  13. Treatment and conditioning of radioactive solid wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  14. Development and status of the AL Mixed Waste Treatment Plan or I love that mobile unit of mine

    International Nuclear Information System (INIS)

    Bounini, L.; Williams, M.; Zygmunt, S.

    1995-01-01

    Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for much of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites

  15. The thermal waste treatment: A technology for the environment; Termodistruzione dei rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, P. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-09-01

    The present report is divided into three parts: the first describes the combustion technology and energy recovery process, analyses the most efficient devices to reduce exhaust emissions, examines the environmental effects of emissions and reports economical considerations on the technology. The second part describes the commercial, pre commercial and experimental devices and their appliance sectors. The third part analyses the Italian situation taking into account separately industrial and municipal solid wastes. The aim of the distinction is to define for each stream the problems connected to the diffusion of the thermal waste treatment and the obstacles encountered to obtain information about the existent plant.

  16. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  17. Treatment of low- and intermediate-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    1984-01-01

    This report aims at giving the reader details of the experience gained in the treatment of both low- and intermediate-level radioactive liquid wastes. The treatment comprises those operations to remove radioactivity from the wastes and those that change only its chemical composition, so as to permit its discharge. Considerable experience has been accumulated in the satisfactory treatment of such wastes. Although there are no universally accepted definitions for low- and intermediate-level liquid radioactive wastes, the IAEA classification (see section 3.2) is used in this report. The two categories differ from one another in the fact that for low-level liquids the actual radiation does not require shielding during normal handling of the wastes. Liquid wastes which are not considered in this report are those from mining and milling operations and the high-level liquid wastes resulting from fuel reprocessing. These are referred to in separate IAEA reports. Likewise, wastes from decommissioning operations are not within the scope of this report. Apart from the description of existing methods and facilities, this report is intended to provide advice to the reader for the selection of appropriate solutions to waste management problems. In addition, new and promising techniques which are either being investigated or being considered for the future are discussed

  18. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  19. Review of the treatment of actinides-bearing radioactive wastes

    International Nuclear Information System (INIS)

    Krause, H.

    1983-01-01

    Actinides bearing wastes are produced above all in the course of irradiated nuclear fuel reprocessing and during fabrication of mixed oxide fuel elements. Particular attention in research and development work must be paid to this type of waste, mainly on account of its longevity. In practical application, the specific character of the actinides bearing wastes has been largely recognized. Nevertheless, definitions and methods of treatment generally accepted worldwide are still missing today. This has no bearing as yet on present day treatment of radioactive wastes. But by the time of application of the breeder technology at the latest a special treatment concept should be available which complies with the high actinide contents and short precooling periods of the wastes

  20. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  1. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  2. Overview of DOE LLWMP waste treatment, packaging, and handling activities

    International Nuclear Information System (INIS)

    Pechin, W.H.

    1982-01-01

    The program objective is to develop the best available technology for waste treatment, packaging, and handling to meet the needs of shallow land burial disposal and for greater confinement than shallow land burial. The program has reviewed many of the hardware options for appropriate usage with low-level waste, but promising options remain to be evaluated. The testing of treatment technologies with actual radioactive process wastes has been initiated. The analysis of the interaction of treatment, solidification and disposal needs to be completed

  3. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  4. Treatment of rod shaped intermediate active waste

    International Nuclear Information System (INIS)

    Graf, A.; Blase, F.; Dirks, F.; Valencia, L.

    2002-01-01

    The Central Decontamination Operation Department (HDB) of the Research Center Karlsruhe operates facilities for the disposal of radioactive waste. In general, their objective is to reduce the volume of the radioactive waste and to obtain waste products suitable for repository storage. One of the central facilities of the HDB is the intermediate level waste (ILW) scrapping facility which processes intermediate level waste. Since the ILW scrapping facility was not large enough to handle radioactive waste coming from the dismantling and operating of nuclear facilities, HDB expanded and built a larger hot cell. It contains a hydraulically driven metal cutter with a guiding channel and a high pressure compactor. A major task in the hot cell of the ILW scrapping facility is disposing of fuel boxes. These are cut in pieces and scrapped, which is a unique technique in Germany for fuel box disposal. HDB's experiences in disposing of radioactive waste in the ILW scrapping facility will described in detail, with special emphasis on the handling of rod shaped components. (author)

  5. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  6. Cogeneration from Poultry Industry Wastes -- Part I: Indirectly Fired Gas Turbine Application

    DEFF Research Database (Denmark)

    Peretto, A.; Bianchi, M.; Cherubini, F.

    2003-01-01

    The availability of wet biomass as waste from a agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on the biomass characteristics, namely water content, density....... Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant which can consist of a Indirectly Fired Gas Turbine....../production and of return of the investments (Part II). Keywords: biomass, cogeneration, Gas Turbine, IFGT...

  7. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  8. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  9. Developing a dependable approach for evaluating waste treatment data

    International Nuclear Information System (INIS)

    Gering, K.L.

    1997-01-01

    Decision makers involved with hazardous waste treatment issues are faced with the challenge of making objective evaluations concerning treatment formulations. This work utilizes an effectiveness factor (denoted as η) as the basis for waste treatment evaluations, which was recently developed for application to mixed waste treatability studies involving solidification and stabilization at the Idaho National Engineering and Environmental Laboratory. The effectiveness factor incorporates an arbitrary treatment criterion Φ, which in practice could be the Toxicity Characteristic Leaching Procedure, Unconfined Compressive Strength, Leachability Index, or any other criterion used to judge treatment performance. Three values for Φ are utilized when assessing a given treatment formulation: before treatment, after treatment, and a reference value (typically a treatment standard). The expression for η also incorporates the waste loading as the prime experimental parameter, and accounts for the contribution that each hazard has upon the overall treatment performance. Also discussed are general guidelines for numerical boundaries and statistical interpretations of treatment data. Case studies are presented that demonstrate the usefulness of the effectiveness factor and related numerical methods, where the typical hazards encountered are toxic metals within mixed waste

  10. Evaluation of an external exposure of a worker during manipulation with waste packages stored in Bohunice radioactive waste treatment centre

    International Nuclear Information System (INIS)

    Slimak, A.; Hrncir, T.; Necas, V.

    2012-01-01

    The paper briefly describes current state of radioactive waste management as well as radioactive waste treatment and conditioning technologies used in Bohunice Radioactive Waste Treatment Centre. Radioactive Waste management includes pretreatment, treatment, conditioning, storage, transport and disposal of radioactive waste. Presented paper deals with the evaluation of an external exposure of a worker during manipulation with fibre-reinforced concrete container stored under shelter object. The external exposure of a worker was evaluated using VISIPLAN 3D ALARA code. (Authors)

  11. Innovative systems for mixed waste retrieval and/or treatment in confined spaces

    International Nuclear Information System (INIS)

    Fekete, L.J.; Ghusn, A.E.

    1993-03-01

    Fernald established operations in 1951 and produced uranium and other metals for use at other DOE facilities. A part of the sitewide remediation effort is the removal, treatment, and disposal of the K-65 wastes from Silos 1 and 2. These silos contain radium-bearing residues from the processing of pitchblende ore. An Engineering Evaluation/Cost Analysis was prepared to evaluate the removal action alternatives using the preliminary characterization data and select a preferred alternative. The selected alternative consisted of covering the K-65 residues and the silo dome. The remediation of the K-65 wastes consists of the retrieval and treatment of the wastes prior to final disposal, which has not yet been determined. Treatment will be performed in a new facility to be built adjacent to the silos. The wastes must be retrieved from silos in an efficient and reliable way and delivered to the treatment facility. The first challenge of covering the wastes with bentonite has been successfully met. The second phase of retrieving the wastes from the silos is not due for a few years. However, conceptual design and configuration of the retrieval system have been developed as part of the Conceptual Design Report. The system is based on the utilization of hydraulic mining techniques, and is based on similar successful applications. This report describes the emplacement of the bentonite grant and the design for the slurry retrieval system

  12. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    International Nuclear Information System (INIS)

    Streit, R.D.; Couture, S.A.

    1995-03-01

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ''demonstration technologies.'' Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria

  13. Microbiological treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pugh, S.Y.R.; Banks, C.J.; Humphreys, P.N.

    1992-01-01

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  14. Treatment and immobilization of intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Lerch, R.E.; Greenhalgh, W.O.; Partridge, J.A.; Richardson, G.L.

    1979-01-01

    A new program underway at the Hanford Engineering Development Laboratory (HEDL) to develop and demonstrate treatment and immobilization technologies for intermediate-level wastes (ILW) generated in the nuclear fuel cycle is discussed. ILW are defined as those liquid and solid radioactive wastes, other than high-level wastes and fuel cladding hulls, that in packaged form have radiation dose readings greater than 200 millirem/hr at the packaged surface and 10 millirem/hr at three feet from the surface. The IAEA value of 10 4 Ci/m 3 for ILW defines the upper limit. For comparative purposes, reference is also made to certain aspects of low-level radioactive wastes (LLW). Initial work has defined the sources, quantities and types of wastes which comprise ILW. Because of the wide differences in composition (e.g., acids, salt solutions, resins and zeolites, HEPA filters, etc.) the wastes may require different treatments, particularly those wastes containing volatile contaminants. The various types of ILW have been grouped into categories amenable to similar treatment. Laboratory studies are underway to define treatment technologies for liquid ILW which contain volatile contaminants and to define immobilization parameters for the residues resulting from treatment of ILW. Immobilization agents initially being evaluated for the various residues include cement, urea-formaldehyde, and bitumen although other immobilization agents will be studied. The program also includes development of acceptable test procedures for the final immobilized products as well as development of proposed criteria for storage, transportation, and disposal of the immobilized ILW

  15. Design and construction of the low-level liquid waste treatment system

    International Nuclear Information System (INIS)

    Baker, M.N.; Mateer, W.E.; Metzler, G.H.; Reeves, S.R.; Rickettson, D.J.

    1989-03-01

    This report describes the design and construction of the Low-Level Liquid Waste Treatment System (LWTS). The LWTS is part of a system that will prepare High-Level Radioactive Waste for solidification in glass. This preparation includes removal of water and salts from the stored waste. The topics addressed are: the design objective to reuse the Process Building to contain LWTS, the special considerations that arise when building a new system inside a decontaminated facility, interface to existing plant systems, phased construction, and construction testing. 8 refs., 24 figs

  16. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases. (CBS)

  17. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management

    International Nuclear Information System (INIS)

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases

  18. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  19. Prospects of effective microorganisms technology in wastes treatment in Egypt

    Institute of Scientific and Technical Information of China (English)

    Emad A Shalaby

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  20. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  1. 300 Area waste acid treatment system closure plan. Revision 1

    International Nuclear Information System (INIS)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan

  2. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  3. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  4. Advanced mixed waste treatment project draft environmental impact statement

    International Nuclear Information System (INIS)

    1998-07-01

    The AMWTP DEIS assesses the potential environmental impacts associated with four alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. Four alternatives were analyzed: The No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The proposed AMWTP facility would treat low-level mixed waste, alpha-contaminated low-level mixed waste, and transuranic waste in preparation for disposal. Transuranic waste would be disposed of at the Waste isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approval disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socio-economics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment. The AMWTP DEIS identifies as the Preferred Alternative the Proposed Action, which is the construction and operation of the AMWTP facility

  5. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  6. Membrane preparation and process development for radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. W.; Kim, S. K.

    2012-01-01

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil

  7. Membrane preparation and process development for radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kim, G. W.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil.

  8. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  9. Treatment of ORNL liquid low-level waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Discontinuation of the hydrofracture disposal method at Oak Ridge National Laboratory (ORNL) has caused intensive efforts to reduce liquid waste generation. Improving the treatment of slightly radioactive liquid waste, called process waste, has reduced the volume of the resulting contaminated liquid radioactive waste effluent by 66%. Proposed processing improvements could eliminate the contaminated liquid effluent and reduce solid low-level waste by an additional one-third. The improved process meets stringent discharge limits for radionuclides. Discharge limits for radionuclides are expected to be enforced at the outfall of the treatment plant to a creek; currently, limits are enforced at the reservation boundary. Plant discharge is monitored according to the National Pollutant Discharge Elimination System (NPDES) permit for ORNL. 1 ref., 4 figs., 2 tabs

  10. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  11. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective...

  12. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false LDR Effective Dates of Injected Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION... to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  13. Shielding evaluation of the Thorium Lean Raffinate (TLR) waste treatment system at Waste Immobilisation Plant, Trombay

    International Nuclear Information System (INIS)

    Bhosale, Nitin A.; Deepa, A.K.; Jakhete, A.P.; Gopalakrishnan, R.K.; Prasad, S.K.; Gangadharan, Anand; Singh, Neelima

    2012-01-01

    Thoria rods irradiated in research reactors were reprocessed for 233 U recovery and resulted in 9 m 3 of acidic Th-bearing raffinate waste. A two step treatment system was planned to treat the raffinate waste. The first step was the generation of thorium lean raffinate waste (TLR) after separation of thorium and the second step was the separation of residual radioactivity and conditioning planned at WIP. The beta activity in the TLR waste is around 50 mCi/i having 137 Cs, 90 Sr and 125 Sb as its main constituents. Shielding calculations were carried out for the various stages of the treatment system at Area-61 of WIP, Trombay. Dose rate evaluations at each step of the treatment system were evaluated to keep the personnel exposure during campaign, ALARA. The work set the base for the shielding design of the treatment system and for the estimation of the man-rem budgeting during commissioning of the system

  14. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  15. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  16. Performance estimates for waste treatment pyroprocesses in ATW

    International Nuclear Information System (INIS)

    Li, N.

    1997-01-01

    The author has identified several pyrometallurgical processes for the conceptual ATW waste treatment cycle. These processes include reductive extraction, electrowinning and electrorefining, which constitute some versatile treatment cycles for liquid-metal based and molten-salt based waste forms when they are properly integrated. This paper examines the implementation of these processes and the achievable separations for some typical species. The author also presents a simple analysis of the processing rates limited by mass diffusion through a thin hydrodynamic boundary layer. It is shown that these processes can be realized with compact and efficient devices to meet the ATW demand for the periodic feeding and cleaning of the waste

  17. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  18. Treatment and conditioning of metallic intermediate level waste

    International Nuclear Information System (INIS)

    Lidar, Per; Larsson, Arne; Huutoniemi, Tommi; Blank, Eva; Elfwing, Mattias

    2014-01-01

    In 2011 SKB started an R and D program for evaluating different disposal concepts for LL-LILW. The purpose was to develop alternative repository concepts and conditioning methods for LL-LILW and to evaluate and compare them from a range of parameters. The goal is to present a comparison between identified repository concepts by 2013. The material should be of such a quality that SKB can make decisions of which concepts that are to be further investigated in a safety analysis. As a part of the R and D program for the LL-LILW disposal facility, Studsvik was assigned to investigate whether melting of metallic LL-LILW is technically feasible and, if so, what the requirements are to build and operate such a facility. Specific concern was given to the following metallic components: - Core components and reactor internals from both boiling water reactors (BWRs) and pressurized water reactors (PWRs). - Reactor pressure vessels from PWRs. The paper presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the Studsvik authors' experience in operating a low level waste melting facility, their conclusion is presented in the paper, considering cost of constructing and operating such a facility, in conjunction with the radio-logical risks associated with operation and the benefits to disposal and long term safety. Studsvik also investigated alternative techniques for embedding of metallic ILW components. Embedding of radioactive metallic ILW components protects the component from corrosion and leakage of radionuclides from repository to biosphere can thereby be both delayed and decreased. Conditioning by embedding has

  19. Quantity assessment of waste in the dismantlement of liquid waste treatment plant and its actual state

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Mitsuhashi, Ishi; Matsumoto, Tetsuo; Morishima, Kayoko; Tanzawa, Tomio

    2016-01-01

    From the progress of decommissioning project work of Tokyo City University Atomic Energy Research Institute, this paper reports the comparison between the actual amount of the waste generated during dismantlement work at liquid waste treatment facilities and the assessment quantity before starting the dismantlement. The quantity assessment was made on the basis of the installation license application, design specifications, drawings, records, history of use, site investigation results, etc. Since this quantity assessment did not take into account the dismantling contents of reservoir concrete, the assessed quantity of non-radioactive waste (NR waste) did not match the sum of actual NR waste. However, if an actually generated quantity of concrete of radioactive waste was added to the quantity assessment as NR waste, the quantity of actually generated NR waste and that of assessed NR waste were nearly consistent, which verified the validity of this assessment. This method is considered to be able to be utilized in the future quantity assessment of decommissioning work and the like. On the other hand, it was found that the number of drums that were actually stored tended to increase more than the estimated number of drum conversion. In old buildings, it is necessary to take into account the generation of waste other than radioactive materials in the quantity assessment stage and dismantlement stage. (A.O.)

  20. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  1. Technology for safe treatment of radioisotope organic wastes

    International Nuclear Information System (INIS)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C.

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na + substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH 2 PO 4 . From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  2. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  3. Waste Management Strategy in The Netherlands. Part 3. Strategy Selection

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.

    2003-01-01

    This report reflects the Dutch input prepared in the framework of work package 3 of the EU thematic network COMPAS, which dealt with the evaluation and comparison of waste management strategies in EU member states and their applicant countries. Based on three generic decision trees the current strategy as well as the reason(s) for the selected options regarding radioactive waste management in The Netherlands is extensively described in this report. The trees are represented in terms of (numbered) decision nodes. Each node is discussed in the context of the Dutch situation, with relevant potential outcomes being highlighted where possible. After a short introduction (chapter 1) followed by a brief waste management policy overview (chapter 2), this approach is considered, in chapter 3, for: spent nuclear fuel and high level waste; low and intermediate level waste; disposal strategy

  4. Treatment of short-lived radioactive wastes

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri

    1976-01-01

    Recently short life nuclides have come to be utilized increasingly as diagnostic radioisotopes, and Tc-99m (half-life; 6.05 hours) and Ga-67 (half-life 7.79 hours) are replacing the most nuclides fomerly used in vivo test. Such development of radioactive products inevitably causes the rapid increase of their wastes. At present, the radioactive wastes produced by hospitals and university laboratories in Japan are collected by the Japan Radioisotope Association, and treated by the Japan Atomic Energy Research Institute. These wastes are divided into combustibles and incombustibles to store in the store house in the Japan Atomic Energy Research Institute. The present law in Japan contains the contradiction which treats the matter with one several millionth of radioactivity after decay same as the original radioactive matter. Thus solid must be stored permanently, while gas and liquid can be discharged after dilution. (Kobatake, H.)

  5. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  6. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  7. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  8. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  9. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  10. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  11. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  12. Study of integral waste management systems and their effects on the environment in Thailand. Part of a coordinated programme on migration and disperios of radionuclides from storage of radioactive waste under various conditions in the terrestrial environment

    International Nuclear Information System (INIS)

    Karasuddhi, P.

    1976-02-01

    The research work carried out is divided into 3 parts: 1. Experimental study of sorption capacity of Sr-90, Cs-137 and radioactive liquid waste of OAEP onto soil and clay. 2. The fixation of radioactive sludge and resin in cement, gumcrete and bitumen. The results show that the sludge from the OAEP waste treatment plant can be fixed very well with concrete, gumcrete and bitumen, but the solidification of resin in concrete, gumcrete and bitumen is not a good method for waste treatment. In the third part, the results of environment studies around the nuclear research center are presented

  13. Treatment of animal wastes contaminated with radioisotopes

    International Nuclear Information System (INIS)

    Morikawa, Naotake

    1979-01-01

    With increase of isotope utilizations as tracers in medicine, pharmacy, agriculture, biology and others, the management of resultant organic waste liquids and animal wastes is becoming a major problem. For the animal wastes contaminated with radioisotopes, numbers of studies and tests showed that drying them fully and the subsequent suitable disposal would be the most feasible procedures. This new method is being carried out since last year, which will shortly take the place of the keeping in formalin. For the drying, two alternative processes in particular are being investigated. As the one, freeze-drying apparatuses consist of refrigerating and freeze-drying devices. As the other, microwave-drying apparatuses feature rapid dehydration. The following matters are described: problems emerged in the course of studies and test; the drying processes, i.e. freeze-drying and microwave-drying, and their respective characteristics; and views of the Nuclear Safety Bureau, Science and Technology Agency, on animal waste drying. (J.P.N.)

  14. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    The long-term performance of the grout disposal system for Phosphate/Sulfate Waste (PSW) was analyzed. PSW is a low-level liquid generated by activities associated with N Reactor operations. The waste will be mixed with dry solids and permanently disposed of as a cementitious grout in sub-surface concrete vaults at Hanford's 200-East Area. Two categories of scenarios were analyzed that could cause humans to be exposed to radionuclides and chemicals from the grouted waste: contaminated groundwater and direct intrusion. In the groundwater scenario, contaminants are released from the buried grout monoliths, then eventually transported via the groundwater to the Columbia River. As modeled, the contaminants are assumed to leach out of the monoliths at a constant rate over a 10,000-year period. The other category of exposure involves intruders who inadvertently contact the waste directly, either by drilling, excavating, or gardening. Long-term impacts that could result from disposal of PSW grout were expressed in terms of incremental increases of (1) chemical concentrations in the groundwater and surface waters, and (2) radiation doses. None of the calculated impacts exceeded the corresponding regulatory limits set by Washington State, Department of Energy, or the Nuclear Regulatory Commission

  15. Plasma vitrification program for radioactive waste treatment

    International Nuclear Information System (INIS)

    Hung, Tsungmin; Tzeng, Chinchin; Kuo, Pingchun

    1998-01-01

    In order to treat radioactive wastes effectively and solve storage problems, INER has developed the plasma arc technology and plasma process for various waste forms for several years. The plasma vitrification program is commenced via different developing stages through nine years. It includes (a) development of non-transferred DC plasma torch, (b) establishment of a lab-scale plasma system with home-made 100kW non-transferred DC plasma torch, (c) testing of plasma vitrification of simulated radioactive wastes, (d) establishment of a transferred DC plasma torch delivering output power more than 800 kW, (e) study of NOx reduction process for the plasma furnace, (f) development of a pilot-scale plasma melting furnace to verify the vitrification process, and (g) constructing a plasma furnace facility in INER. The final goal of the program is to establish a plasma processing plant with capacity of 250 kg/hr to treat the low-level radioactive wastes generated from INER itself and domestic institutes due to isotope applications. (author)

  16. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  17. Reusing of types wastes in way construction. First part; Reutilizacion de neumaticos usados en la construccion de carreteras 1 parte

    Energy Technology Data Exchange (ETDEWEB)

    Tomas Raz, R.

    2001-07-01

    Used vehicle tyres involve an ecological problem, regarding waste products. Both Spanish and European Environmental Standards promote waste recycling instead of waste incineration, which is specifically applicable to waste tyres. The Engineering Group, Elsamex, has developed, through its research centre CIESM, a researching line completely feasible, offering a recycling option based on the addition, by means of three different techniques, of the refused tyres rubber powder to the asphalt mixes for road construction. This is the refused tyre treatment, which contributes, to a greater extent, to a sustainable development, mostly thanks to the great capacity of roads for using this product as raw materials. Added to this, there is an environmental benefit derived from the ecological treatment used with refused tyres, and its efficacy. Moreover, the treatment helps to the production of asphalt mixes with longer durability with a wet process. This allows long term money saving in road maintenance. (Author)

  18. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  19. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowlton, D.E.; Bonner, W.F.

    1983-06-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the US as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations atre met in a cost-effective manner. 7 references, 2 figures, 3 tables

  20. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowles, D.E.; Bonner, W.F.

    1983-01-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the U.S. as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations are met in a cost-effective manner

  1. Application of macrophytes as biosorbents for radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Vieira, Ludmila Cabreira

    2016-01-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  2. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  3. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  4. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Science.gov (United States)

    2010-07-01

    ... Waste-Derived Residues* VII Appendix VII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Pt. 266, App. VII Appendix VII to Part 266—Health...

  5. Treatment of contaminated waste plastics material

    International Nuclear Information System (INIS)

    Sims, J.; Hitchcock, J.W.

    1984-01-01

    Radioactive contaminated plastics material is treated by reducing it to uniform-sized debris and extruding it from a heated extruder into a sealed container in monolithic block form or as an in-fill matrix for other contaminated waste articles to create a substantially void-free sealed mass for disposal. Density adjusting fillers may be included. Extrusion may alternatively take place into a clean sealable plastics tube. (author)

  6. Treatment and disposal of radioactive waste from nuclear power stations

    International Nuclear Information System (INIS)

    Baehr, W.

    1981-01-01

    The Federal Republic of Germany and many other European countries, having very high population densities, must make the most efficient use of their soil, their ground and surface waters. In Germany, no method of waste disposal could be used which included direct storage or seepage into the upper strata of the soil or a discharge into rivers or lakes. It has been shown after more than 20 years experience of treatment of low and intermediate level liquid and solid wastes and disposal of solidified residues in a salt mine, that a number of techniques and procedures are available for manageing this kind of waste with a high degree of safety. A complete system of waste collection, treatment methods and controlled disposal of low and intermediate radioactive residues in accordance with legally established rules and regulations offers the best guarantee for environmental protection. (orig./RW)

  7. Risk assessments of innovative technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Aycock, M.T.; Russell, J.E.

    1993-01-01

    The mission of the US Department of Energy's (DOE'S) Mixed Waste Integrated Program (MWIP) is to develop complete and appropriate technologies for the treatment of DOE mixed low-level waste and transuranic wastes in order to ensure that all affected DOE installations and projects can come into compliance with environmental law and meet DOE's 30-yr cleanup and operational goals. The MWIP will achieve its goal by developing technologies that are in compliance with regulatory requirements, are socially and politically viable, and are cost beneficial and effective in disposed waste source term and volume reduction. The project management plan for MWIP requires that technologies be evaluated in accordance with criteria that rank technologies with regard to performance, risk, and cost-effectiveness. This paper addresses the methodology used to rank alternative mixed-water treatment technologies with regard to relative risk

  8. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...

  9. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  10. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  11. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  12. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  13. Treatment of liquid waste containing alpha nuclides by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Jishu, Zeng; Xiguang, Su; Dejing, Xia; Sianhua, Fan [China Inst. of Atomic Energy, Beijing (China). Radiochemistry Dept.

    1997-02-01

    In this paper, experimental investigations on the removal of actinides from a decontaminating waste stream by using adsorption technique following the cementation of a resultant absorbent sludge are described. One kind of apatites was selected as an actinide absorbent from a number of indigenous materials by batch equilibrium tests. The influence of contact time, temperature, particle size and pH variables on the adsorption of actinides is given. The removal of total alpha activity is higher tan 97% by absorbent precipitation process when the absorbent addition percentage of the liquid waste is more than 3.25 wt%, making alpha-activity level of the primary waste stream below 3.7 x 10{sup 3} Bq/L, which can meet the acceptance requirements of the Low Level Radwaste Treatment Plant. The studies on the cementation of the absorbent sludge included the selection of cements used for solidification, formulation and characterization of the selected cemented waste forms. The results obtained have shown that both 525 type Portland cement and 325 type Portland pozzolana cement were compatible with the absorbent sludge. The selected cemented waste forms meet the requirements of the Chinese National Standard (GB 14569.1-93): Characteristic Requirements for Solidified Waste of Low and Intermediate Level Radioactive Waste - Cement Solidified Waste. (author). 9 refs, 3 figs, 14 tabs.

  14. Treatment of liquid waste containing alpha nuclides by adsorption

    International Nuclear Information System (INIS)

    Zeng Jishu; Su Xiguang; Xia Dejing; Fan Sianhua

    1997-01-01

    In this paper, experimental investigations on the removal of actinides from a decontaminating waste stream by using adsorption technique following the cementation of a resultant absorbent sludge are described. One kind of apatites was selected as an actinide absorbent from a number of indigenous materials by batch equilibrium tests. The influence of contact time, temperature, particle size and pH variables on the adsorption of actinides is given. The removal of total alpha activity is higher tan 97% by absorbent precipitation process when the absorbent addition percentage of the liquid waste is more than 3.25 wt%, making alpha-activity level of the primary waste stream below 3.7 x 10 3 Bq/L, which can meet the acceptance requirements of the Low Level Radwaste Treatment Plant. The studies on the cementation of the absorbent sludge included the selection of cements used for solidification, formulation and characterization of the selected cemented waste forms. The results obtained have shown that both 525 type Portland cement and 325 type Portland pozzolana cement were compatible with the absorbent sludge. The selected cemented waste forms meet the requirements of the Chinese National Standard (GB 14569.1-93): Characteristic Requirements for Solidified Waste of Low and Intermediate Level Radioactive Waste - Cement Solidified Waste. (author). 9 refs, 3 figs, 14 tabs

  15. Suspicions about the practice of radioactive waste treatment

    International Nuclear Information System (INIS)

    Merz, E.

    1988-01-01

    Two quite distinct events associated with the treatment and disposal of radioactive waste have created a turmoil in the past twelve months. In the discussions about the Hanau nuclear fuel industries, the pressure buildup in conditioned waste drums, which had been known for two years and had meanwhile been investigated in various places, was mixed up with the irregularities at Transnuklear either out of ignorance or intentionally. In the public, this was bound to create the impression as if the ballooning of a large number of waste drums as a result of gas evolution were connected with the goings-on at Transnuklear. Actually, however, these are two absolutely separate issues. (orig.) [de

  16. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  17. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  18. Treatment and minimization of heavy metal-containing wastes 1995

    International Nuclear Information System (INIS)

    Hager, J.P.; Mishra, B.; Litz, J.L.

    1995-01-01

    This symposium was held in conjunction with the 1995 Annual Meeting of the Minerals, Metals and Materials Society in Las Vegas, Nevada, February 12--16, 1995. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information on treating and minimizing heavy metal-containing wastes. Papers were categorized under the following broad headings: aqueous processing; waste water treatment; thermal processing and stabilization; processing of fly ash, flue dusts, and slags; and processing of lead, mercury, and battery wastes. Individual papers have been processed separately for inclusion in the appropriate data bases

  19. Progress on the treatment of radioactive waste from reprocessing facilities

    International Nuclear Information System (INIS)

    Krause, H.

    With the opening of large-scale reprocessing plants, waste treatment will have to be dealt with on a new order of magnitude. Fundamental solutions to the waste problems are visible in the current lectures. Many procedures are still under study at the laboratory scale or somewhat above; much, therefore, remains to be done in order to bring such procedures to the requisite large scale magnitude in the available short time. Much also remains to be accomplished in the way of improving processes which are barely adequate, and rendering them completely satisfactory for an effective waste disposal system

  20. Quantifying capital goods for biological treatment of organic waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Petersen, Per H.; Nielsen, Peter D.

    2015-01-01

    for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest...... on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials...

  1. Reliability analysis of common hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption

  2. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Robert D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  3. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  4. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  5. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  6. Basic factors for the treatment and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1967-01-01

    This manual discusses factors such as type of waste, legislation, climate, location and availability of materials, equipment and services, etc., which must be taken into account before the preliminary evaluation can be made to decide which treatment and disposal methods should be further investigated. As an aid in selecting the most suitable type of waste management system, a questionnaire has been prepared drawing attention to those factors which should be taken into consideration.

  7. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  8. Radioactive sodium waste treatment and conditioning. Review of main aspects

    International Nuclear Information System (INIS)

    2007-01-01

    This publication reviews the main aspects relating to the treatment and conditioning of radioactive sodium waste. This waste arises from the operation of liquid metal fast reactors (LMFRs). In this type of reactor, sodium (Na) or sodium-potassium alloys (NaK) are used as a low-effect neutron moderating coolant medium for extracting and transferring thermal energy from the core and they represent a significant technical and safety challenge during operation and decommissioning. This publication provides the reader with technologically oriented information on the present status of sodium waste management approaches and recent achievements related to treatment and conditioning, with the objective of facilitating planning and preparatory work for the decommissioning of LMFRs. This publication provides a comprehensive review of the hazards associated with sodium waste management. Given the large quantities of sodium waste arising during decommissioning or reactor refurbishment, as well as the challenges and varied techniques associated with removal of 100% of all sodium and NaK bulk quantities and residues during decommissioning, a hazards review and analysis is a critical component in planning the dismantling and waste management activities. Roughly half of this publication focuses on sodium waste generating, handling and treatment processes. This includes draining sodium and NaK from plant systems; in situ treatment of residual sodium; cutting techniques for pumps, valves, piping and other components; cleaning of components; potential reuse of sodium; and removal of selected radionuclides from sodium waste with the objective of reducing the waste classification or converting it to exempt waste. The focus is on proven techniques and technologies, and each discussed method includes a review of the associated principle or theory, practical applications, advantages and disadvantages, limitations, industry experience, and final waste products. A review is provided of final

  9. Discussion about the application of treatment process for dehydrated wet waste at nuclear power station

    International Nuclear Information System (INIS)

    Li Guanghua; Wu Qiang

    2009-01-01

    In nuclear power station, the most popular treatment about low level radioactive wet waste generated during the unit operating and maintenance is embedded by cement. For radioactive waste minimization, this article introduces a new treatment process to dehydrate and compress wet waste. According to the development and application of the treatment process for the wet waste, and comparing with the formerly treatment-the cement embedding, prove that the new treatment can meet the purpose for volume reduction of wet waste. (authors)

  10. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  11. Treatment of radioactive liquid organic waste using bacteria community

    International Nuclear Information System (INIS)

    Rafael Vicente de Padua Ferreira; Solange Kazumi Sakata; Maria Helena Bellini; Julio Takehiro Marumo; Fernando Dutra; Patricia Busko Di Vitta; Maria Helena Tirollo Taddei

    2012-01-01

    Waste management plays an important role in radioactive waste volume reduction as well as lowering disposal costs and minimizing the environment-detrimental impact. The employment of biomass in the removal of heavy metals and radioisotopes has a significant potential in liquid waste treatment. The aim of this study is to evaluate the radioactive waste treatment by using three different bacterial communities (BL, BS, and SS) isolated from impacted areas, removing radioisotopes and organic compounds. The best results were obtained in the BS and BL community, isolated from the soil and a lake of a uranium mine, respectively. BS community was able to remove 92% of the uranium and degraded 80% of tributyl phosphate and 70% of the ethyl acetate in 20 days of experiments. BL community removed 81% of the uranium and degraded nearly 60% of the TBP and 70% of the ethyl acetate. SS community collected from the sediment of Sao Sebastiao channel removed 76% of the uranium and 80% of the TBP and 70% of the ethyl acetate. Both americium and cesium were removed by all communities. In addition, the BS community showed to be more resistant to radioactive liquid waste than the other communities. These results indicated that the BS community is the most viable for the treatment of large volumes of radioactive liquid organic waste. (author)

  12. Radioactive waste management of the radiological accident in Goianaia, Brazil - Cooperation of Waste Treatment Division

    International Nuclear Information System (INIS)

    Guzella, M.F.R.; Miaw, S.T.W.; Reis, L.C.S.; Santos, P.O.; Silva, E.M.P.; Tello, C.C.O.

    1988-01-01

    Radioactive waste were generated in Goiania by an accidental breakage of Cesium 137 radiotherapie source (A=5,0 x 10 13 Bq) in September 1987. The Waste Treatment Division (DITRR.CN) CDTN/NUCLEBRAS has worked in all critical areas to remove the contamination and carried out the tasks at the interim storage. Experience on the waste management and the results from the R and D works conducted by the Division were applied. The R and D works conducted by the Division were applied. The R and D works conducted by the Division were applied. The R and D works comprise package for storage and transport of radioactive material, the use of selected bentonite for Cesium 137 retention, installation of waste treatment facilities and elaboration of several specific procedures. (author) [pt

  13. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low-Level Waste at the Nevada National Security Site

    International Nuclear Information System (INIS)

    2010-01-01

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: (1) Macroencapsulation; (2) Stabilization/microencapsulation; (3) Sort and segregation; and (4) Bench-scale mercury amalgamation. The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  14. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  15. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    International Nuclear Information System (INIS)

    Brown, D.F.

    1994-01-01

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package's manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ''hazardous'' as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification

  16. Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Korai, Muhammad Safar; Mahar, Rasool Bux; Uqaili, Muhammad Aslam

    2016-01-01

    Highlights: • Existing practice of municipal solid waste management of Hyderabad city, Pakistan have been analyzed. • Development of scenarios on basis of nature of waste components for optimizing waste to energy route. • Analyzing the biochemical and thermochemical potential of MSW through various scenarios. • Evaluation of various treatment technologies under scenarios to optimize waste to energy route. - Abstract: Improper disposal of municipal solid waste (MSW) has created many environmental problems in Pakistan and the country is facing energy shortages as well. The present study evaluates the biochemical and thermochemical treatment options of MSW in order to address both the endemic environmental challenges and in part the energy shortage. According to the nature of waste components, a number of scenarios were developed to optimize the waste to energy (WTE) routes. The evaluation of treatment options has been performed by mathematical equations using the special characteristics of MSW. The power generation potential (PGP) of biochemical (anaerobic digestion) has been observed in the range of 5.9–11.3 kW/ton day under various scenarios. The PGP of Refuse Derived Fuel (RDF), Mass Burn Incinerator (MBI), Gasification/Pyrolysis (Gasi./Pyro.) and Plasma Arc Gasification (PAG) have been found to be in the range of 2.7–118.6 kW/ton day, 3.8–164.7 kW/ton day, 4.2–184.5 kW/ton day and 5.2–224 kW/ton day, respectively. The highest values of biochemical and all thermochemical technologies have been obtained through the use of scenarios including the putrescible components (PCs) of MSW such as food and yard wastes, and the non-biodegradable components (NBCs) of MSW such as plastic, rubber, leather, textile and wood respectively. Therefore, routes which include these components are the optimized WTE routes for maximum PGP by biochemical and thermochemical treatments of MSW. The findings of study lead to recommend that socio-economic and environmental

  17. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  18. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    International Nuclear Information System (INIS)

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force

  19. The use of fly larvae for organic waste treatment.

    Science.gov (United States)

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  20. Conceptual design of the alcohol waste treatment equipment

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Nitta, Kazuhiko; Morita, Yasuhiro; Nakada, Eiju

    2001-01-01

    This report describes the result of Conceptual Design of the Alcohol Waste Treatment Equipment. The experimental fast Reactor, JOYO, saves the radioactive alcohol waste at storage tank. As this alcohol waste is not able to treat with existing equipment, it is stored about 5 m 3 . And the amount of this is increasing every year. So it is necessary to treat the alcohol waste by chemical resolution for example. On account of this, the investigative test about filtration and dialyzer, and conceptual design about catalyst oxidation process, which is composed from head end process to resolution, are done. The results of investigation show as follows. 1. Investigative Test about filtration and dialyzer. (1) The electric conduction is suitable for the judgement of alkyl sodium hydrolysis Alkyl sodium hydrolysis is completed below 39% alcohol concentration. (2) The microfiltration is likely to separate the solid in alcohol waste. (3) From laboratory test, the electrodialyzer is effective for sodium separation in alcohol waste. And sodium remove rate, 96-99%, is confirmed. 2. Conceptual Design. The candidate process is as follows. (1) The head end process is electrodialyzer, and chemical resolution process is catalyst oxidation. (2) The head end process is not installed, and chemical resolution process is catalyst oxidation. (3) The head end process is electrodialyzer, and alcohol extracted by pervaporation. In this Conceptual Design, as far these process, the components, treatment ability, properties of waste, chemical mass balance, safety for fire and explosion, and the plot plan are investigated. As a result, remodeling the existing facility into catalyst oxidation process is effective to treat the alcohol waste, and treatment ability is about 1.25 l/h. (author)

  1. 40 CFR Appendix V to Part 264 - Examples of Potentially Incompatible Waste

    Science.gov (United States)

    2010-07-01

    ... corrosive alkalies Lime wastewater Lime and water Spent caustic Group 1-B Acid sludge Acid and water Battery...Cl3 Other water-reactive waste Potential consequences: Fire, explosion, or heat generation; generation... Waste V Appendix V to Part 264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  2. The EIX process for radioactive waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Jones, C.P.; Neville, M.D.; Junkison, A.R.

    1991-01-01

    In Electrochemical Ion-exchange (EIX), the absorption and elution behaviour of ion-exchangers incorporated into an electrode is controlled by an external potential. A negative potential applied to a weak acid cation exchanger electrode causes cations to be absorbed progressively to low concentrations as the feed passes up through the cell - thus giving large decontamination factors, even at high cation loadings. On polarity reversal, the absorbed ions can be eluted into a limited volume to give a concentrated product for subsequent immobilization. By making multiple and complete use of ion-exchange capacity in this way, large volume reduction factors can be achieved for minimal energy expenditure. Both anion and cation systems are available -based on either organic or inorganic absorbers, although the latter have a higher radiation tolerance. A number of genuine waste streams have been treated successfully in bench-top trials - including the Harwell site LLW, MTR pond water and PWR wastes - reducing residual activity to low levels at relatively high throughputs. The system has also been scaled-up successfully on a number of these streams, initially by a factor of 11 to a single cell of 0.1 m 3 /h nominal throughput, and more recently in a multi-modular unit by a further factor of 5. (author)

  3. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  4. Recovery of zinc in phosphor wastes via electrokinetic treatments

    International Nuclear Information System (INIS)

    Yu, M.Y.; Wang, H. Paul; Chen, C.Y.; Hsiung, T.-L.; Wei, Yu-Ling; Tai, H.-S.; Chiang, K.-C.

    2007-01-01

    Speciation of zinc in phosphor wastes during electrokinetic treatments has been studied by in situ X-ray absorption near edge structure (XANES) spectroscopy in the present work. The least-square fits of the in situ XANES spectra show that the major zinc species in the phosphor waste are ZnS (77%), ZnO (10%), and Zn(OH) 2 (13%). During the electrokinetic treatment for 90 min, 25% of ZnS and 4% of ZnO are dissolved. About 42% of zinc is enriched on the cathode under the electric field (5 V/cm). Prolonging the electrokinetic treatment time to 4 h under the electric field of 5 V/cm, at least 80% of zinc in the phosphor waste can be recovered

  5. Incorporating regulatory considerations into waste treatment technology development

    International Nuclear Information System (INIS)

    Siegel, M.R.; Powell, J.A.; Williams, T.A.; Kuusinen, T.L.; Lesperance, A.M.

    1991-02-01

    It is generally recognized that the development of new and innovative waste treatment technologies can significantly benefit the US Department of Energy's (DOE) environmental restoration and waste management program. DOE has established a research, development, demonstration, testing, and evaluation (RDDT ampersand E) program, managed by its Office of Technology Development, to encourage and direct the development of new waste treatment and management technologies. The treatment, storage, and disposal of hazardous and radioactive waste is heavily regulated both at the federal and state levels. In order to achieve the goals of applying the best new technologies in the fastest and most cost-effective manner possible, it is essential that regulatory factors be considered early and often during the development process. This paper presents a number of regulatory issues that are relevant to any program intended to encourage the development of new waste treatment and management technologies. It will also address how the use of these basic regulatory considerations can help ensure that technologies that are developed are acceptable to regulators and can therefore be deployed in the field. 2 refs

  6. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  7. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  8. Anxiety disorders. Part 1: Diagnosis and treatment.

    OpenAIRE

    Labelle, A.; Lapierre, Y. D.

    1993-01-01

    Anxiety disorders often take second priority in clinical practice because many physicians do not understand them or their treatment. This paper reviews the diagnostic groupings of anxiety disorders according to the American Psychiatric Association's Revised Diagnostic and Statistical Manual of Mental Disorders (DSM 3-R) and discusses differential diagnosis and treatment.

  9. Investigations on the treatment of waste waters from pig breeding

    Energy Technology Data Exchange (ETDEWEB)

    Cute, E; Mambet, E; Juriari, E; Murgoci, C

    1967-01-01

    The introduction of intensive methods of pig breeding has caused changes in the characteristics, particularly the strength, of the piggeries waste waters; analytical data are tabulated for waste waters from 3 pig-breeding farms and 1 large pig-breeding combine in Romania. At older piggeries, waste waters are treated by sedimentation and sludge digestion in Imhoff tanks. In more recent establishments, treatment comprises primary sedimentation followed by storage of the settled waste waters in ponds to be used for irrigation, and separate digestion of sludge in open tanks. Experiments showed that precautions are necessary to prevent blocking of the sewerage system by easily-settleable material before reaching the sedimentation tanks; sedimentation is more efficient in horizontal sedimentation tanks than in the older Imhoff tanks; biological treatment is possible without addition of nutrients, but the waste waters must be diluted; and digestion requires a longer period than that for sewage sludge, difficulties being caused by the presence of coarse suspended particles of waste feeding stuffs.

  10. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    International Nuclear Information System (INIS)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions

  11. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  12. Challenges when performing economic optimization of waste treatment: A review

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, H.

    2013-01-01

    -criteria analysis have been developed.A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy...... example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi...

  13. Technical report on treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Jo, Eun Sung; Park, Seung Kook; Jung, Ki Jung

    1999-06-01

    By literature survey, this report deals with the technology on typical pre-treatment and filtration of radioactive slurry liquid waste, produced during the operation of TRIGA Mark-II, III research reactor, and produced during the decommission/decontamination of TRIGA Mark-II, III research reactor. It is reviewed pre-treatment procedure, both physical and chemical that optimise the dewatering characteristics, and also surveyed types of dewatering devices based on centrifuges, vacuum and pressure filters with particular reference to various combined field approaches using two or more complementary driving forces to achieve better performance. Dewatering operations and devises on filtration of radioactive slurry liquid waste are also analysed. (author)

  14. Low-level radioactive waste treatment systems in northern Europe

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1987-08-01

    In the United States, the use of low-level waste (LLW) treatment systems by low level waste generators can be expected to expand with increasing costs for disposal and continuing uncertainty over the availability of disposal space. This development increases the need for performance information and operational data and has prompted the US Department of Energy to commission several compilations of LLW systems experience. The present paper summarizes some of the know-how from Northern Europe where the incentive for LLW treatment and volume reduction is very high since deposition space has not been available for many years. 65 refs., 10 figs., 4 tabs

  15. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  16. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1977-11-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester, a residue recovery system, and an off-gas treatment system

  17. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1978-01-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester a residue recovery system, and an off-gas treatment system

  18. Public scandal about the nuclear waste treatment industry. Der Atommuellskandal

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The events leading to the public scandal are summarized into three main items: (1) Accusation for taking bribe in the form of money and in kind. (2) Suspicion of false labelling of radioactive waste. (3) Suspicion of offense against the Non-Proliferation Treaty. The survey in hand is intended to prepare a sober judgement of the situation by: stating the facts and their significance in terms of safety; explaining the various types of radioactive wastes, their treatment and the quantities involved; explaining the legal provisions for transport of radioactive materials; discussing the problem of nuclear waste management in terms of quantity. The lesson to be drawn is that controls and further means of quality assurance are required to make the pathways of radioactive wastes are pellucid and verifiable. (orig./HSCH).

  19. The public scandal about the nuclear waste treatment industry

    International Nuclear Information System (INIS)

    1988-01-01

    The events leading to the public scandal are summarized into three main items: (1) Accusation for taking bribe in the form of money and in kind. (2) Suspicion of false labelling of radioactive waste. (3) Suspicion of offense against the Non-Proliferation Treaty. The survey in hand is intended to prepare a sober judgement of the situation by: stating the facts and their significance in terms of safety; explaining the various types of radioactive wastes, their treatment and the quantities involved; explaining the legal provisions for transport of radioactive materials; discussing the problem of nuclear waste management in terms of quantity. The lesson to be drawn is that controls and further means of quality assurance are required to make the pathways of radioactive wastes pellucid and verifiable. (orig./HSCH) [de

  20. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  1. Evaluation of nanofiltration membranes for treatment of liquid radioactive waste

    International Nuclear Information System (INIS)

    Oliveira, Elizabeth Eugenio de Mello

    2013-01-01

    The physicochemical behavior of two nanofiltration membranes for treatment of a low-level radioactive liquid waste (carbonated water) was investigated through static, dynamic and concentration tests. This waste was produced during conversion of uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) in the cycle of nuclear fuel. This waste contains about 7.0 mg L -1 of uranium and cannot be discarded to the environment without an adequate treatment. In static tests membrane samples were immersed in the waste for 24 to 5000 h. Their transport properties (hydraulic permeability, permeate flux, sulfate and chloride ions rejection) were evaluated before and after immersion in the waste using a permeation flux front system under 0.5 MPa. The selective layer (polyamide) was characterized by zeta potential, contact angle, scanning electron microscopy for field emission, atomic force microscopy, infrared spectroscopy, x-ray fluorescence and thermogravimetric analysis before and after static tests. In dynamic tests the waste was permeated under 0.5 MPa, and the membranes showed rejection to uranium above 85% were obtained. The short-term static tests (24-72 h) showed that the selective layer and surface charge of the membranes were not chemical changed, according infrared spectra data. After 5000 h a coating layer was released from the membranes, poly(vinyl alcohol), PVA. After this loss the rejection for uranium decreased. Permeation and concentration of the waste were carried out in permeation flux tangential system under 1.5 MPa. The rejection of uranium was around 90% for permeation tests. In concentration tests the permeated was collected continuously until about 80% reduction of the feed volume. The rejection of uranium was of the 97%. The nanofiltration membranes tested were efficient to concentrate the uranium from the waste. (author)

  2. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted.

  3. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted

  4. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  5. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  6. Nordic study on reactor waste. Technical part 3

    International Nuclear Information System (INIS)

    1981-08-01

    The ground disposal alternatives examined in the Nordic study are based on establishment of relevant product specifications which can be adapted to the safety analysis of the entire waste handling sequence. Such product specifications would in turn influence the choice of incorporation techniques and may enable an optimization of the process. In order to interprete the small-scale laboratory tests with respect to long-term performance of full-scale products there were accomplished: - qualitative evaluations of the relevance of product properties for normal and abnormal events during storage, transport and disposal; - attempts to quantify the relevance of different properties, i.e. their influence on radiation doses from different stages of well specified waste management system; - assessments of available laboratory tests and of correlations between results from such tests and the long-term performance of full-scale technical products; - studies of reaction mechanisms and parameters that can affect the long-term performance of disposed products; - laboratory incorporation experiments to study impacts of process variables on the fixation of ion exchange wastes in cement and bitumen; - full-scale tests to study product performance under simulated accident conditions. (EG)

  7. Conclusions on the two technical panels on HLW-disposal and waste treatment processes respectively

    International Nuclear Information System (INIS)

    Dinkespiller, J.A.; Dejonghe, P.; Feates, F.

    1986-01-01

    The paper reports the concluding panel session at the European Community Conference on radioactive waste management and disposal, Luxembourg 1985. The panel considered the conclusions of two preceeding technical panels on high level waste (HLW) disposal and waste treatment processes. Geological disposal of HLW, waste management, safety assessment of waste disposal, public opinion, public acceptance of the manageability of radioactive wastes, international cooperation, and waste management in the United States, are all discussed. (U.K.)

  8. Process analysis transit of municipal waste. Part II - Domestic provisions of law

    Directory of Open Access Journals (Sweden)

    Starkowski Dariusz

    2017-06-01

    Full Text Available In 2013, the Polish legal system referring to municipal waste management was restructured in a revolutionary way. The analysis of new provisions of law described in the article requires particular attention, taking into account their place in the entire system of dealing with waste and connections with the remaining elements of this system. At present, Polish regulations lay down the rules of conduct with all types of waste, diversifying a subjective area of responsibility. These assumptions are determined by the provisions of law that are in force in the Republic of Poland. At present, the system of legal provisions is quite complex; however, the provisions of law of the EU constitute its base (the first article. At the level of Polish law, the goals and tasks concerned with dealing with waste were set forth, which leads to tightening of the system. All actions in this respect - from propagating the selective accumulation and collection of municipal waste, keeping the established levels of recycling and recycling of packaging wastes, and limiting the mass of biodegradable waste directed at the storage - is only a beginning of the road to reduction of environmental risks. In this case, permanent monitoring of proper waste dealing in the commune, the province as well as the entire country is essential. Third part of the article will present characterization, division, classification and identification of waste, together with the aspects of logistic process of municipal waste collection and transport.

  9. Design aspects of reverse osmosis plants for rad waste treatment

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.

    1993-01-01

    The potential of reverse osmosis process has been well established in the nuclear waste treatment. The nuclear wastes are characterised by chemically insignificant levels of radioactive nuclides and small amounts (a few hundred ppm) of inactive ionic species. The basic design objectives in these systems aim at higher volume reduction factors, i.e. corresponding to recovery factor of more than 0.9 and a decontamination factor of at least 10, i.e. corresponding to a solute rejection of more than 90%. In this paper, the salient aspects of the design of a reverse osmosis system for radioactive waste treatment is discussed in the light of the operating experience of an experimental plant based on plate module configuration and utilizing cellulose acetate membranes prepared in our laboratory. (author). 3 refs., 5 figs., 2 tabs

  10. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  11. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  12. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  13. Radioactive waste and the back part of fuel cycle of nuclear installations in Slovakia

    International Nuclear Information System (INIS)

    Koprda, V.

    2004-01-01

    This article is devoted to radioactive waste (RAW) management, an integrated system starting with collection and sorting of RAW through its storage, treatment, conditioning, handling and transport up to its disposal. Some notes will touch also the near surface depository of low level and intermediate level radioactive waste in Mochovce, and the long-term storage of waste improper for such type of disposal, and also some words will be addressed to the development and research of a deep geological depository for disposal spent fuel from nuclear power plant and long-lived radioactive waste. (author)

  14. Analysis of contamination conditions of the Joyo Waste Treatment Facility

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Ishijima, N.; Tanimoto, K.

    1999-08-01

    Decontamination methods have been studied for decommissioning of Joyo Waste Treatment Facility whose operation has been stopped in 1994. In this study, we analyzed samples of its system piping, whose dose rate was relatively low, to determine conditions of contamination. We also study appropriate decontamination methods for them. Results are as follows. 1. The inner surfaces of piping were covered with a very thin clad that was less than 1 micrometer in thickness and had many vacancies, looked like particle detachment, which were about 20 micrometers in depth. Something like corrosion product was observed near the surface and it was 440 micrometers in depth. 2. Radioactive contamination was considered to settle on a lower part of the piping and to be buried in the clad. A kind of dominant contamination nuclide was 60 Co. 3. Hot nitric acid process will be suitable for system decontamination to reduce dose rate before dismantling. But its feasibility tests are indispensable using samples of main system components that have high dose rate. Rubber lining tanks requires another methods because of its difficulty of decontamination. 4. Analyses and decontamination tests using main system are required to decide through decontamination methods according to the clearance level. (author)

  15. Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

    1998-03-01

    In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE's needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities

  16. Carpal tunnel syndrome - Part II (treatment,

    Directory of Open Access Journals (Sweden)

    Michel Chammas

    2014-10-01

    Full Text Available The treatments for non-deficit forms of carpal tunnel syndrome (CTS are corticoid infiltration and/or a nighttime immobilization brace. Surgical treatment, which includes sectioning the retinaculum of the flexors (retinaculotomy, is indicated in cases of resistance to conservative treatment in deficit forms or, more frequently, in acute forms. In minimally invasive techniques (endoscopy and mini-open, and even though the learning curve is longer, it seems that functional recovery occurs earlier than in the classical surgery, but with identical long-term results. The choice depends on the surgeon, patient, severity, etiology and availability of material. The results are satisfactory in close to 90% of the cases. Recovery of strength requires four to six months after regression of the pain of pillar pain type. This surgery has the reputation of being benign and has a complication rate of 0.2–0.5%.

  17. Hydrothermal treatment of Hanford waste constituents

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.

    1992-01-01

    The destruction of nitrates, organics, and ferrocyanides contained in underground storage tanks at the Department of Energy Hanford site in Washington state would significantly reduce the volume, hazard, and toxicity of the waste, while meeting pretreatment requirements for vitrification and grouting. The purpose of this study was to investigate the applicability of supercritical water oxidation for the destruction of nitrates organics, and ferrocyanides. Laboratory studies were performed studying oxidation/reduction reactions of nitrate with a simple organic compound, methanol, and with ammonia. Additional studies examined the reaction of nitrate with ferrocyanide. When reacted with methanol above 500 degrees C, greater than 99% of the nitrate was destroyed at the shortest residence times (< 6 seconds). At the same conditions, greater than 80% of the methanol was converted to bicarbonate and carbon dioxide. Studies involving the reaction of nitrate and nitrite with ammonia indicated that the reaction proceeds to completion in short residence times at temperatures above the critical point of water (374.2 degrees C). Ferrocyanide to also reacted rapidly with nitrate above the critical point, to produce carbon dioxide and ammonia

  18. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  19. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  20. Radiological emergency response in a medical waste treatment unit

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  1. Radiological emergency response in a medical waste treatment unit

    International Nuclear Information System (INIS)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L.

    2000-01-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  2. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  3. Treatment of waste using a hybrid gas- water stabilized torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 7-12. ISBN 4-9900642-4-8 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * waste treatment Subject RIV: BL - Plasma and Gas Discharge Physics

  4. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  5. Biological treatment of industrial wastes; Tratamiento biologico de residuos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Zarate Apodaca, J.M.; Abia Aguila, L

    1997-04-01

    There are organic elements used in industrial processes which are not able to be recovered. The biological treatment is the alternative for eliminating the organic pollutants from industrial waste water. This technology is being widely accepted because of its low environmental impact. (Author)

  6. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  7. Toxic waste treatment with sliding centrifugal plasma reactor

    International Nuclear Information System (INIS)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S.; Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C.

    2008-01-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  8. The integral treatment of urban solid wastes. Experience at Spain

    International Nuclear Information System (INIS)

    Calderon U, R.

    1995-01-01

    In this work, which is the origin of the urban solid wastes in a City, how is it classify and which are the most important methods for its elimination, once have been collected are presented. Statistics on the Spanish Case, how is the treatment system and which are the most representative methods for its elimination is describe

  9. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0...

  10. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  11. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  12. Part II - The effect of data on waste behaviour: The South African waste information system

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Linda [CSIR, Natural Resources and the Environment, PO Box 395, Pretoria 0001 (South Africa); University of KwaZulu-Natal, CRECHE - Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Durban 4041 (South Africa); Scott, Dianne [University of KwaZulu-Natal, School of Development Studies, Durban 4041 (South Africa); Difford, Mark [Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Trois, Cristina, E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE - Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Durban 4041 (South Africa)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer This empirical study explores the relationship between data and resultant waste knowledge. Black-Right-Pointing-Pointer The study shows that 'Experience, Data and Theory' account for 54.1% of the variance in knowledge. Black-Right-Pointing-Pointer A strategic framework for Municipalities emerged from this study. - Abstract: Combining the process of learning and the theory of planned behaviour into a new theoretical framework provides an opportunity to explore the impact of data on waste behaviour, and consequently on waste management, in South Africa. Fitting the data to the theoretical framework shows that there are only three constructs which have a significant effect on behaviour, viz experience, knowledge, and perceived behavioural control (PBC). Knowledge has a significant influence on all three of the antecedents to behavioural intention (attitude, subjective norm and PBC). However, it is PBC, and not intention, that has the greatest influence on waste behaviour. While respondents may have an intention to act, this intention does not always manifest as actual waste behaviour, suggesting limited volitional control. The theoretical framework accounts for 53.7% of the variance in behaviour, suggesting significant external influences on behaviour not accounted for in the framework. While the theoretical model remains the same, respondents in public and private organisations represent two statistically significant sub-groups in the data set. The theoretical framework accounts for 47.8% of the variance in behaviour of respondents in public waste organisations and 57.6% of the variance in behaviour of respondents in private organisations. The results suggest that respondents in public and private waste organisations are subject to different structural forces that shape knowledge, intention, and resultant waste behaviour.

  13. Part II – The effect of data on waste behaviour: The South African waste information system

    International Nuclear Information System (INIS)

    Godfrey, Linda; Scott, Dianne; Difford, Mark; Trois, Cristina

    2012-01-01

    Highlights: ► This empirical study explores the relationship between data and resultant waste knowledge. ► The study shows that “Experience, Data and Theory” account for 54.1% of the variance in knowledge. ► A strategic framework for Municipalities emerged from this study. - Abstract: Combining the process of learning and the theory of planned behaviour into a new theoretical framework provides an opportunity to explore the impact of data on waste behaviour, and consequently on waste management, in South Africa. Fitting the data to the theoretical framework shows that there are only three constructs which have a significant effect on behaviour, viz experience, knowledge, and perceived behavioural control (PBC). Knowledge has a significant influence on all three of the antecedents to behavioural intention (attitude, subjective norm and PBC). However, it is PBC, and not intention, that has the greatest influence on waste behaviour. While respondents may have an intention to act, this intention does not always manifest as actual waste behaviour, suggesting limited volitional control. The theoretical framework accounts for 53.7% of the variance in behaviour, suggesting significant external influences on behaviour not accounted for in the framework. While the theoretical model remains the same, respondents in public and private organisations represent two statistically significant sub-groups in the data set. The theoretical framework accounts for 47.8% of the variance in behaviour of respondents in public waste organisations and 57.6% of the variance in behaviour of respondents in private organisations. The results suggest that respondents in public and private waste organisations are subject to different structural forces that shape knowledge, intention, and resultant waste behaviour.

  14. Treatment of Molybdate Containing Waste Streams

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2008-01-01

    The invention is directed to a process for the treatment of an aqueous solution comprising sodium carbonate and/or sodium bicarbonate and sodium molybdate, said process comprising freeze crystallising the solution at the eutectic freezing point thereof and recovering substantially pure ice crystals,

  15. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  16. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  17. Waste treatment at the Radiochemical Engineering Development Center

    International Nuclear Information System (INIS)

    Brunson, R.R.; Bond, W.D.; Chattin, F.R.; Collins, R.T.; Sullivan, G.R.; Wiles, R.H.

    1997-01-01

    At the Radiochemical Engineering Development Center (REDC) irradiated targets are processed for the recovery of valuable radioisotopes, principally transuranium nuclides. A system was recently installed for treating the various liquid alkaline waste streams for removal of excess radioactive contaminants at the REDC. Radionuclides that are removed will be stored as solids and thus the future discharge of radionuclides to liquid low level waste tank storage will be greatly reduced. The treatment system is of modular design and is installed in a hot cell (Cubicle 7) in Building 7920 at the REDC where preliminary testing is in progress. The module incorporates the following: (1) a resorcinol-formaldehyde resin column for Cs removal, (2) a cross flow filtration unit for removal of rare earths and actinides as hydroxide, and (3) a waste solidification unit. Process flowsheets for operation of the module, key features of the module design, and its computer-assisted control system are presented. Good operability of the cross flow filter system is mandatory to the successful treatment of REDC wastes. Results of tests to date on the operation of the filter in its slurry collection mode and its slurry washing mode are presented. These tests include the effects of entrained organic solvent in the waste stream feed to the filter

  18. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  19. Characterization and treatment of cyanide in MGP purifier wastes

    Energy Technology Data Exchange (ETDEWEB)

    Theis, T.L. [Clarkson University, Potsdam, NY (United States). Dept. of Civil and Environmental Engineering

    1995-12-31

    Purifier wastes were generated from the clean-up gaseous impurities, principally hydrogen sulfide and hydrogen cyanide, contained in raw gas from MGP operations through retention by iron oxide solids. These materials were generated at a rate of about 10-20 kg/1000 m{sup 3} of gas produced, and although regeneration was sometimes practised, eventual disposal as fill material, usually on site, was eventually necessary. The remediation of MGP sites generally requires that the disposition of these waste solids be addressed. The effective treatment of purifier wastes presents special problems due to the acid-base properties of the material, its elevated sulfur content, and the significant quantities of carbon both added as wood shavings and present as compounds generated as a result of gas manufacture. In broad terms, treatment approaches can be divided into two classes, those aimed at destroying the cyanide and objectionable carbon compounds and otherwise disposing of the residual, and those which attempt to isolate the waste from its surroundings. The latter approach attempts to take advantage of the natural insolubility of most of the constituents of concern found in purifier wastes, while destructive technologies limit potential liability. 9 refs.

  20. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.