WorldWideScience

Sample records for waste treatment complex

  1. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    Directory of Open Access Journals (Sweden)

    Vedi V.E.

    2012-12-01

    Full Text Available The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  2. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A. [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A. [Raveh Ecology Ltd., Haifa (Israel)

    1993-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  3. Complexing agents in waste waters of Finnish electrolytic and chemical surface treatment plants.

    Science.gov (United States)

    Pirkanniemi, Kari; Vuorio, Anna-Maria; Vilhunen, Sari; Metsärinne, Sirpa; Sillanpää, Mika

    2008-05-01

    Complexing agents are one of the major environmental concerns in electrolytic and chemical surface treatment (ECST) industry; e.g. the EU reference document on the best available technology (BREF) pays special attention to the usage of EDTA. However, no comprehensive studies are available on usage of EDTA or other complexing agents or their load to the receiving waters from ECST industry. In this study, the concentrations of complexing agents were analyzed to get an overview of their usage and load and also to recognize their relevance in the environmental permitting and compliance monitoring of such facilities. Complexing agent concentrations of treated waste water samples of 23 ECST plants with vat volume exceeding 30 m3 was studied. HPLC and GC-MS were used to analyze and identify complexing agent concentrations, ICP-AES to analyze metals, and TOC to analyse the organic load. The number of the plants in this study equals around 50% of such installations in Finland subject to environmental permit as the IPPC directive provides. EDTA, DTPA, and NTA were found in 11 samples out of 23 mainly in rather small concentrations. Their annual load to the receiving waters may be estimated to be 0.3 tons and the total load from Finnish ECST industry can be extrapolated to be up to 1 ton. Compared to the estimated use of 5-10 tons in the industry this finding is rather low, even though in Finland cast-off treatment baths are typically delivered to the hazardous waste treatment plants. Since the load of complexing agents is rather low, the chemical waste water treatment seems to be either capable of reducing complexing agent concentrations to some extent or their usage is lower than expected. On the other hand, it is possible that not all complexing agents were identified from the samples. The metal concentrations and TOC were well hand in hand with concentrations found in the Finnish environmental database, which proves that the samples were of average quality of the waste

  4. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  5. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  6. Lyophilization -Solid Waste Treatment

    Science.gov (United States)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  7. Treatment of organic waste

    Science.gov (United States)

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  8. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  9. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    Energy Technology Data Exchange (ETDEWEB)

    Holzemer, Michael J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hart, Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  10. ICDF Complex Operations Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  11. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  12. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  13. Cadmium complexation by solid waste leachates

    DEFF Research Database (Denmark)

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste....... The leachates were spiked with Cd (separated into labile complexes......, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter is due...

  14. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  15. Ceiba Pentradenta wood waste activated carbon for waste water treatment

    Directory of Open Access Journals (Sweden)

    K. Geetha

    2014-03-01

    Full Text Available Adsorption is considered to be one of the most promising techniques for waste water treatment over the last decades. The low materials originated from various sources such as agricultural sources and byproducts, agricultural residues and wastes, low-cost sources from which most complex adsorbents will be produced .The farming waste material has to be disposed either safely or must be reused for some valuable purpose. In this consent Ceiba Pentradenta Wood waste, an agricultural waste material which is being converted as Activated carbon in presence of Nitrogen atmosphere at 7000 C is used as an adsorbent for dye removal. The portrayal studies such as bulk density, moisture content, ash content, fixed carbon content, soluble matter (water, acid, matter soluble in acid, pH, decolourising power, ion exchange capacity, percentage content and surface area have been carried out to assess the suitability of these carbons as absorbents in treatment of the water and wastewater. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  18. Treatment of textile wastes

    OpenAIRE

    Srebrenkoska, Vineta; Krsteva, Silvana; Golomeova, Saska

    2013-01-01

    The production of a textile requires several stages of mechanical processing such as spinning, weaving, knitting, and garment production, which seem to be insulated from the wet treatment processes like pretreatment, dyeing, printing, and finishing operations. Тhere is a strong interrelation between treatment processes in the dry state and consecutive wet treatments. Most of the processes and products have a negative impact on the environment. Laws and standards for environmental protection a...

  19. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  20. Exploratory study of complexant concentrate waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

    1993-02-01

    The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

  1. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  2. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  3. Mixed Waste Focus Area: Department of Energy complex needs report

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  4. DOE mixed waste treatment capacity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  5. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    treatment, disposition of the decontaminated Recycle stream may be suitable for the Effluent Treatment Facility, where it could be evaporated and solidified. The contaminated slurry stream containing the absorbents and radionuclides will be preliminarily characterized in this phase of the program to evaluate disposal options, and disposition routes will be tested in the next phase. The testing described herein will aid in selection of the best disposal pathway. Several research tasks have been identified that are needed for this initial phase: imulant formulation- Concentration of Recycle to reduce storage volume; Blending of concentrated Recycle with tank waste; Sorption of radionuclides; Precipitation of radionuclides. After this initial phase of testing, additional tasks are expected to be identified for development. These tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated Recycle evaporation and solidification. Although there are a number of unknown parameters listed in the technical details of the concepts described here, many of these parameters have precedence and do not generally require fundamental new scientific breakthroughs. Many of the materials and processes described are already used in radioactive applications in the DOE complex, or have been tested previously in comparable conditions. Some of these materials and equipment are already used in High Level Waste applications, which are much more complex and aggressive conditions than the LAW Recycle stream. In some cases, the unknown parameters are simply extensions of already studied conditions, such as tank waste corrosion chemistry. The list of testing needs at first appears daunting, but virtually all have been done before, although there are potential issues with compatibility with this

  6. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The radioactive wastes treatment enterprises and environment

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, I.A.; Pol`skij, O.G.; Verbov, V.V.; Verbova, L.F.; Puzanov, Y.V.; Paramonova, T.I. [SIA Radon, Moscow (Russian Federation)

    1995-12-31

    Radioactive waste treatment is not a scientific problem only but also a social-and-economical problem. Dislike the activity of the waste treatment enterprises is a result of the population ignorance about impact level of those enterprises on environment. The results of radioecological inspection of 19 Russian enterprises for treatment of radioactive wastes are presented. Method of the impact estimation is described. No influence on the environment is displayed.

  8. Radioactive Waste Management Complex performance assessment: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  9. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  10. Effects of waste treatment technique and quality of waste on bioaerosols in Finnish waste treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Tolvanen, O.

    2004-07-01

    The last fifteen years have seen immense changes in waste treatment in Finland. The number of landfill sites has been reduced and new waste treatment plants have been constructed; source separation of the various waste fractions has been become increasingly effective. At the same time, considerable attention has been paid to environmental factors such as odour problems. Another important factor at waste treatment plants is the working conditions of employees. Earlier, there were numerous problems with occupational hygiene in sewage treatment plants and landfills. The present study was undertaken to determine whether serious problems with bioaerosols still exist now that there are new waste treatment techniques and waste is sorted. The concentrations of dust, microbes and endotoxins were investigated at one windrow composting site in 1993-1994 and at eight waste treatment plants in 1998-2003. The best environment in regard to occupational hygiene was the combined drum and tunnel composting plant in Heinola. The most problematic area in the plant was the storage room (tunnel) for compost, but the concentrations of bioaerosols were low even there. At the composting plant in Hyvinkaeae, where the same kind of technique was in use, there were problems with bioaerosols in all working areas investigated. The same problems were encountered in dirty working areas in a drum composting plant in Oulu; in the control room number of bioaerosols was low. Conditions were worst in the dry waste treatment plant in Tampere, where viable microbes were a particular problem in the processing hall. As well, the concentrations of dust and endotoxin were occasionally increased to a level harmful to human health. The dry waste was most affected with microbes, while the treatment of wood waste caused problems with dust. In the other plants of the study, sorting and crushing of waste caused the highest concentrations of bioaerosols. The two most common air-borne fungi at every plant were

  11. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  12. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  13. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    waste and waste water treatment as in pyrolysis, solar incineration and gasification for solid wastes treatment and solar pathogenic organic destruction, solar photocatalytic degradation, solar distillation and desalination for waste water treatment. These waste treatment methods require light from the sun to photocatalyse ...

  14. Input-output analysis of various elements of an energy-agro-waste complex

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The mass input and output streams of various agricultural and waste treatment processes were quantified and models developed to serve in the engineering analysis of potential waste heat utilization schemes. The unit process models can be integrated into energy-agro-waste complexes, in which waste heat from power plants is used by certain processes and the wastes of some processes are used as inputs to others. The models provide a means of determining the sizing or subsystems, the compatibility of subsystems, and the overall feasibility of an integrated complex. Ten potential complexes were qualitatively discussed and the considerations involved in forming such complexes explained. A mass balance analysis was performed on four integrated complexes demonstrating the engineering value of the analytical models developed.

  15. ICDF Complex Waste Profile and Verification Sample Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-10-01

    This guidance document will assist waste generators who characterize waste streams destined for disposal at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) Complex. The purpose of this document is to develop a conservative but appropriate way to (1) characterize waste for entry into the ICDF; (2) ensure compliance with the waste acceptance criteria; and (3) facilitate disposal at the ICDF landfill or evaporation pond. In addition, this document will establish the waste verification process used by ICDF personnel to ensure that untreated waste meets applicable ICDF acceptance limits

  16. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  17. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  18. Assessment of incineration and melting treatment technologies for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Geimer, R.; Hertzler, T.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  19. Chemicals and Allied Products Waste Treatment

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-06-01

    Full Text Available A review of the literature published from 2008 to 2010 on topics related to chemicals and allied products is presented. The review considered several sections such as waste management, physicochemical treatment, aerobic treatment, anaerobic treatment, air emissions, soils and groundwater, and reuse.

  20. Treatment of batik waste using distillation method

    Science.gov (United States)

    Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil

    2017-12-01

    In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.

  1. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  2. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  3. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  4. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  5. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    world has been adopted as a very sustainable source of energy for waste treatment. Its application in both solid waste and waste water treatment as in pyrolysis, solar incineration and gasification for solid wastes treatment and solar pathogenic organic destruction, solar photocatalytic degradation, solar distillation and ...

  6. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    Energy Technology Data Exchange (ETDEWEB)

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  7. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2015-01-01

    with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved.......This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household...

  8. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  9. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  10. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  11. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  12. Microbiological treatment of oil mill waste waters

    Directory of Open Access Journals (Sweden)

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpech

  13. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  14. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  15. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  16. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  17. The management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Jeong; An, Sum Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Sohn, Young Jun; Yim, Kil Sung; Kim, Tae Kuk; Jeong, Kyeong Hwan; Wi, Keum San; Park, Young Yoong; Park, Seung Chul; Lee, Chul Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The radioactive wastes generated at Korea Atomic Energy Research Institute (KAERI) in 1994 are about 56 m{sup 3} of liquid waste and 323 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid wastes were treated in 1994 are about 87 m{sup 3} of liquid waste and 81 drums of solid waste, respectively. 2 tabs., 26 figs., 12 refs. (Author) .new.

  18. Characterization of residues from physicochemical treatment of waste fluorescent lamps.

    Science.gov (United States)

    Urniezaite, Inga; Denafas, Gintaras; Jankunaite, Dalia

    2010-07-01

    Fluorescent lamps are widely used world-wide due to their long life and energy saving capability. These lamps contain mercury (Hg) as a source of fluorescent radiation. The object of this study is a new technology for physicochemical treatment of waste fluorescent lamps. The residuals of the technological process were evaluated for potential leaching of heavy metals into the environment. Evaluation was performed using standardized extraction tests. Additionally, X-ray diffractometry (XRD) analysis, as well as tests with complex-forming agents and under pH-stable conditions were performed aiming to predict stability of the residuals in various environmental conditions. According to the XRD analysis, the minerals fluorapatite and hydroxylapatite were dominant in analyzed samples. The results of total extraction by aqua regia revealed that residuals contain relatively high total concentrations of Hg, Mn, and Zn. Concentrations of heavy metals, leaching to aqueous solution, were compared to leaching limit values (according to EU legislation). The concentrations of available Hg in the waste fluorescent lamp treatment products, according to its solubility in the water, exceed the limit values. The measured water-leachable Hg concentration was 4.88 mg kg(-1), while the value for waste acceptable at hazardous waste landfill sites is 2 mg kg(-1). Concentrations of other measured heavy metals did not exceed the limit values. According to the results, Hg stabilization potential for presented technology exceeds 99%.

  19. Membrane technologies for liquid radioactive waste treatment

    Science.gov (United States)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  20. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  1. 1st Quarter Transportation Report FY2017: Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2017-01-31

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.

  2. Treatment technology analysis for mixed waste containers and debris

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, R.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Brown, C.H. [Oak Ridge National Lab., TN (United States); Langton, C.A.; Askew, N.M. [Savannah River Lab., Aiken, SC (United States); Kan, T. [Lawrence Livermore National Lab., CA (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States)

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  3. 340 waste handling complex: Deactivation project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  4. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    % of the organic and degradable material. Source sorting is another way of collecting the household waste in its respective fractions. However, this separation technique is hard to enforce and expensive. Future waste management calls for novel and efficient technologies for the separation of unsorted MSW in order......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...

  5. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  6. Treatment technology for organic radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. J.; Lee, Y. H.; Shon, J. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    In this report, various alternative technologies to the incineration for the treatment of radioactive organic wastes were described and reviewed, fallen into two groups of low temperature technologies and high temperature technologies. These technologies have the advantages of low volume gaseous emission, few or no dioxin generation, and operation at low enough temperature that radionuclides are not volatilized. Delphi chemical oxidation, mediated electrochemical oxidation, and photolytic ultraviolet oxidation appear to be the most promising low temperature oxidation process and steam reforming and supercritical water oxidation in the high temperature technologies. 52 refs., 39 figs., 2 tabs. (Author)

  7. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  9. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  10. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  11. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... source of energy. Future effort will be focus on improving the efficiency of energy used in the waste water [3]. Aim. The aim of this project is to bring into existence a Small Scale Waste Water. Treatment Plant that can convert a waste water with high Chemical Oxygen Demand (COD) and high Biological ...

  12. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  13. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  14. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  15. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  16. Thermophilic anaerobic digestion for waste and wastewater treatment

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning

  17. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  18. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    Science.gov (United States)

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Citric waste saccharification under different chemical treatments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2015-10-01

    Full Text Available Second generation ethanol from lignocellulose materials has been used in applications for food processing wastes. Since Brazil has a leading position in orange juice exports, the influence of acid and alkali pretreatments on liquor saccharification, solubilization of solid fraction and mass yield was evaluated. Time and Cacid or Calkaline at different concentrations of solids (low to moderate, 1 to 9% and high catalyst concentrations were analyzed. A hydrothermal pretreatment was conducted under the same conditions of acid and alkaline treatments to investigate the relative selectivity increase in using the catalysts. The chemical analyses of wastes indicated a 70% total carbohydrate level denoting a promising raw material for bioethanol production. Pretreatment caused acid saccharifications between 25 and 65% in total reducing sugars (TRS and mass yields (MY between 30 and 40%. In alkaline pretreatment, these rates ranged between 2 and 22.5% and between 30 and 80, respectively. In hydrothermal pretreatment, solubilized TRS varied between 3 and 37%, whereas MY remained between 45 and 60%, respectively. Cbiomass strongly influenced the three variables; in the same way, time affected MY.

  20. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  1. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  2. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University

  3. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    Science.gov (United States)

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  4. Challenges when performing economic optimization of waste treatment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Juul, N., E-mail: njua@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Münster, M., E-mail: maem@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Ravn, H., E-mail: hans.ravn@aeblevangen.dk [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Söderman, M. Ljunggren, E-mail: maria.ljunggren@chalmers.se [Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); IVL Swedish Environmental Research Institute, Gothenburg (Sweden)

    2013-09-15

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

  5. ALKALINE TREATMENT AND IMMOBILIZATION OF SECONDARY WASTE FROM WASTE INCINERATION

    Directory of Open Access Journals (Sweden)

    Dariusz Mierzwiński

    2017-04-01

    Full Text Available This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, three sets of geopolymer mixtures were prepared containing 60, 50 and 30% of ash and slag from the combustion of waste and fly ash combustion of sewage skudge. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the PN-EN 206-1 norm, were subjected to 75°C for 24h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of concrete.

  6. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  7. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP ...

    African Journals Online (AJOL)

    One of the most important environmental problems faced by the world today is waste handling and due to variation in waste water with respect to homes. The two main treatment used here are the aerobic and the anaerobic treatment process. The processes are brought to increase the efficiency of the plant. The plant has ...

  8. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve industrial...

  9. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... Abstract. One of the most important environmental problems faced by the world today is waste handling and management, due to variation in waste water with respect to homes. The two main treatment methods used here are the aerobic and the anaerobic treatment process. The processes are brought.

  10. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    The biological processes improving fast are shown among the future technologies. In these processes which biological materials are used as degraders, raw wastes are processed to remove the contaminants in them. Biotechnological processes are used for wastewater treatment, gas treatment and disposal of solid wastes ...

  11. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    These waste treatment methods require light from the sun to photocatalyse reactions and also heat as thermal energy for the various endothermic reactions. This review therefore highlighted various methods of waste treatment which does not require the limited conventional energy sources. It also reveals that model ...

  12. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  13. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  14. Complex-wide review of DOE`s management of low-level radioactive waste - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.

    1995-12-31

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE`s Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste.

  15. COMPLEX PROCESSING OF CELLULOSE WASTE FROM POULTRY AND SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    E. V. Sklyadnev

    2015-01-01

    Full Text Available Summary.To solve the problem of disposing of huge volumes of cellulose waste from sugar production in the form of beet pulp and waste of poultry farms in the form of poultry manure is proposed to use the joint use of two methods of thermal processing of waste - pyrolysis and gasification. The possibility of using pyrolysis applied to the waste are confirmed by experimental results. Based on the results of laboratory studies of the properties of by-products resulting from the thermal processing of the feedstock, it is proposed complex processing to produce useful products, to be implemented in the form of marketable products, and the organization's own process energy utilization. Developed flow diagram of an integrated processing said waste comprises 3 sections, which successively carried out: pyrolytic decomposition of the feedstock to obtain a secondary product in the form of solid, liquid and gas fractions, the gasification of solids to obtain combustible gas and separating the liquid fraction by distillation to obtain valuable products. The main equipment in the first region is the pyrolysis reactor cascade condensers; the second section - gasifiers layers and stream type; the third - one or more distillation columns with the necessary strapping. Proper power supply installation is organized by the use of the heat produced during combustion of the synthesis gas for heating and gasification reactor. For the developed scheme presents calculations of the heat balance of the installation, supporting the energy efficiency of the proposed disposal process. Developments carried out in the framework of the project the winner of the Youth Prize Competition Government of Voronezh region to support youth programs in the 2014-2015.

  16. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  17. Challenges when performing economic optimization of waste treatment: a review.

    Science.gov (United States)

    Juul, N; Münster, M; Ravn, H; Söderman, M Ljunggren

    2013-09-01

    Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant's economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nuclear waste treatment program: Annual report for FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  19. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  20. Focus on CSIR research in pollution waste: Technologies for waste and wastewater treatment

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available The Pollution and Waste Group of the CSIR specialises in the development of practicable treatment solutions for waste and wastewater arising from numerous industrial sectors. The group’s objective is to resolve potential pollution problems at mines...

  1. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  2. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  3. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    UYTIOCO EM

    2007-11-14

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State

  4. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  5. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  6. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Antoni Sánchez

    2011-04-01

    Full Text Available Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  7. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    Science.gov (United States)

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  8. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste

  9. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  10. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard|info:eu-repo/dai/nl/6603148005; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  11. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  12. WASTE MINIMIZATION PRACTICES AT TWO CCA WOOD TREATMENT PLANTS

    Science.gov (United States)

    Two chromated copper arsenate (CCA) wood-treatment plants were assessed for their waste minimization practices. These practices have been reflected in several areas, including facility designs, process controls, and management practices. he objectives were to estimate the amount...

  13. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  14. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  16. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  17. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  18. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  19. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  20. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  1. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  2. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  3. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  4. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  5. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co...

  6. Microbiological aspects of aerobic thermophilic treatment of swine waste.

    Science.gov (United States)

    Beaudet, R; Gagnon, C; Bisaillon, J G; Ishaque, M

    1990-04-01

    A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping.

  7. Treatment of ammonia in liquid hospital waste using activated carbon

    Science.gov (United States)

    Riyanto, Hayati, Lena

    2017-12-01

    In this research study of the treatment of ammonia in liquid hospitals waste using activated carbon. This study aims to the effect of activated carbon weight and precipitation time to the treatment of ammonia in liquid hospitals waste. Hospital liquid waste has been taken from Jogja International Hospital (JIH) Yogyakarta, Indonesia. Hospital liquid waste 100 mL is mixed with activated carbon with the varied weight that is 15, 30 and 60 g. After added with activated carbon then stirred with a magnetic stirrer for 15 minutes and a precipitation time of 0.5, 1.0 and 2.0 hours. The next step is the filtrate analyzed ammonia concentrations before and after treatment using UV-Vis Spectrophotometer. The results showed that activated carbon can reduce ammonia concentration in hospital liquid waste. The amount of the active carbon and the time of stirring, the greater the ammonia concentration decreases in hospital liquid waste. The best condition for the decrease of the ammonia concentration was obtained with active carbon and precipitation time is 60 g and 1.0 hours, respectively with ammonia decrease of 95.93%. The conclusion is that activated carbon can reduce ammonia concentration in hospital liquid waste.

  8. Use of Saccharomyces cerevisiae in radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de P.; Marumo, Julio T.; Bellini, Maria H.; Potiens Junior, Ademar J.; Takara, Aline S.; Goes, Marcos M. de; Borba, Tania R. de; Nascimento, Carina M. do; Sakata, Solange K. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: rpadua@ipen.br

    2007-07-01

    Waste management plays an important role in reducing the volume of radioactive waste streams, minimizing the cost of the final disposal and the impact on the environment. In this context, new research should focus on the development of simpler and cheaper techniques which may improve the waste processing. The use of biomass in processes concerned with the removal of heavy metals and radionuclides offers significant potential in the treatment of waste-liquid streams. Saccharomyces cerevisiae is well known for its capacity of heavy metals biosorption and it also has the additional advantages such as easy availability and the possibility of genetic manipulation. The aim of this work is to study the potential of the free cell and immobilized S. cerevisiae in bentonite in the removal Americium-241 from radioactive liquid streams produced by Radioactive Waste Laboratory of Nuclear and Energy Research Institute (IPEN-CNEN/SP). (author)

  9. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic......Decrease of fossil fuel dependence and resource saving has become increasingly important during the last years. In this perspective, higher recycling rates for valuable materials as well as energy recovery from waste streams could play a significant role substituting for virgin material production...... treatment of municipal solid waste (MSW) was presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the utilization of the two outputs were analyzed. Co-combustion in existing power...

  10. Elementary study on evaluation of environmental loads and costs for waste treatment system in Bangkok

    OpenAIRE

    INAZUMI, Shinya; OHTSU, Hiroyasu; SHIOTANI, Tomoki; KATSUMI, Takeshi

    2010-01-01

    It is very important for waste to be controlled and appropriately treated in a waste treatment system because of its impact on the environment. This study quantitatively evaluates the current waste treatment system and suggests countermeasures based on their impact on reducing the environmental and treatment costs in order to solve waste treatment problems in Bangkok, Thailand. Evaluation models are applied to estimate the treatment and environmental costs in the current waste treatment syste...

  11. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  12. AVAILABILITY OF SEMIPERMEABLE MEMBRANES SEPARATION TECHNIQUES FOR THE TREATMENT OF LIQUID RADIOACTIVE WASTE

    Directory of Open Access Journals (Sweden)

    Mirela DULAMA

    2012-05-01

    Full Text Available The semipermeable membranes separation techniques (like: microfiltration, ultrafiltration and reverse osmosis concern a wide range of radwastes that includes solutions, which are usually putting serious problems during treatment operations. A relevant example is given by the wastes issued from the decontamination operations which contain large quantities of detergents and complexant agents. The paper presents several experimental tests by membrane techniques carried out on a pilot scale device at Institute for Nuclear Research Piteşti. The purpose of the experimental study was to elaborate and evaluate an adequate technology for treatment of low salt content liquid radioactive waste, by using indigenous semipermeable membrane.

  13. Complex Regional Pain Syndrome and Treatment Approaches

    Directory of Open Access Journals (Sweden)

    Neslihan Gokcen

    2013-08-01

    Full Text Available Complex Regional Pain Syndrome is a symptom complex including severe pain which is disproportioned by the initiating event. Formerly, it was known as reflex sympathetic dystropy, Sudeck’s atrophy and algoneurodystrophy. There are two types of complex regional pain syndrome (CPRS. CRPS type 1 (Reflex sympathetic dystropy occurs after a minor trauma of the extremities, CRPS type 2 (Causalgia occurs following peripheral nevre injury. Diagnosis is made according to the history, symptoms and physical findings of the patients. Patient education, physical therapy and medical treatment are the most common treatment approaches of complex regional pain syndrome. The aim of this review is to revise the treatment options ofcomplex regional pain syndrome, as well as to overview the new treatment approaches and options for the refractory complex regional pain syndrome cases. [Archives Medical Review Journal 2013; 22(4.000: 514-531

  14. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    Science.gov (United States)

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  16. Disposal of water treatment wastes containing arsenic - a review.

    Science.gov (United States)

    Sullivan, Colin; Tyrer, Mark; Cheeseman, Christopher R; Graham, Nigel J D

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilize soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As.

  17. Disposal of water treatment wastes containing arsenic - A review

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Colin; Tyrer, Mark [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Graham, Nigel J.D. [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilise soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As.

  18. Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams.

    Science.gov (United States)

    Palmowski, L; Simons, L; Brooks, R

    2006-01-01

    The dairy-processing industry generates various types of organic wastes, which are utilised as stock feed, for anaerobic digestion, spread on land or alternatively land-filled at high costs. Owing to the generation of renewable energy, anaerobic digestion is an attractive option for many factories. To enhance the biological degradation process, a mechanical disintegration of various waste dairy streams was undertaken. While the successful application of ultrasonic treatment has been reported for various municipal waste streams, limited information was available for dairy industry applications. The results of this study showed that ultrasonic treatment can improve the digestibility of the more problematic dairy waste streams, such as sludges, by breaking down micro-organisms' cell walls and releasing soluble cell compounds. For more soluble streams, such as dairy factory effluent, an increased gas production was observed and attributed to the reduced particle size of the fat globules.

  19. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  20. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  1. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  2. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zezova, Silvana; Spasova, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  3. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  4. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  5. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    Science.gov (United States)

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Techniques of WasteWater Treatment-Introduction to Effluent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  7. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Robert D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  8. The use of fly larvae for organic waste treatment.

    Science.gov (United States)

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  9. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    Science.gov (United States)

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Development of plutonium liquid waste treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kouji; Nemoto, Takeshi; Todokoro, Akio [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1995-06-01

    At plutonium Fuel Facility, radioactive liquid waste is treated with the flocculating precipitation method, which gives by-product such as sludge. To reduce the by-product, fundamental experiments have been carried out on undisolved tannin as an adsorbent with mainly examining plutonium adsorption characteristics and pyrolysis characteristics. The results of these experiments show that the {alpha}-activity of the treated solution is satisfactorily reduced and further, the used tannin is completely gasified by pyrolysis with the adsorbed plutonium to be recovered in a stable oxide form. (author).

  11. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  12. A Prototype of Industrial Waste Water Treatment Using Electrocoagulation

    Directory of Open Access Journals (Sweden)

    Boriboonsuksri Phonnipha

    2017-01-01

    Full Text Available This paper proposes a construct of electrocoagulation waste water treatment system. The system consists of reactor tank, skimmer, cyclone tank and sediment tank. Waste water is feed into reactor tank. The electrochemical reaction is made emulsification to waste water. The contaminants are removed from waste water and can be divided to two kinds: light weight suspensions be floating up and another be sediment. The flocculants are skim out and the sediments are pumped out to sludge container. An electrical power which feed to electro-coagulation procedure is controlled by microcontroller. The user can be adjusted for suitable with waste water loaded. The input of waste water and output of sediments are controlled by PLC. The results, when operate with industrial waste water, can be treat by 30 m3/day rates and the controlled parameter value: pH, BOD, Oil & Grease, COD, SS, TDS, and Ni are not exceed than the standard limit. The advantages of this system are consume small area and low power consumption.

  13. The final treatment of FGD-waste water sludge

    Energy Technology Data Exchange (ETDEWEB)

    Brugghen, F.W. van der (N.V. KEMA, Arnhem (Netherlands))

    1993-01-01

    FGD installations based on lime/limestone gypsum processes produce waste water. This waste water has to be treated prior to discharge. The sludge formed during this waste water treatment contains gypsum, CaF[sub 2], Al[sub 2]O[sub 3], SiO[sub 2], Fe[sub 2]O[sub 3] and MgO as well as minor amounts of heavy metals like As, Cd, Pb, Zn and Hg. There are three methods for the final treatment of the sludges: disposal; mixing with gypsum; coffering in the boiler. An inventory has been made of the amounts and composition of the sludge produced by FGD plants in The Netherlands. The consequences of the three treatment methods for emissions, by-product quality and costs are described and compared. 1 ref., 2 figs., 7 tabs.

  14. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted.

  15. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... for biogas production for either CHP generation or as fuel in vehicles. The case study illustrates, that what is the optimal solution depends on the objective and assumptions regarding the background system – here illustrated with different assumptions regarding displaced electricity production. The article...

  16. Environment Canada research on land treatment of petroleum wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bulman, T.L.; Scroggins, R.P. (Wastewater Technolgy Centre, Burlington, Ontario (CA))

    1988-01-01

    The purpose of the studies presented in this book is to identify wastes which can be applied to land in an environmentally acceptable manner and to provide information on which to base guidelines for the proper application of such wastes to land. The information which has been collected to date has focused on the persistence and fate of oil and toxic constituents of petroleum wastes when applied to soil, potential environmental impacts and risk to human health associated with application to land, and site managements techniques which enhance treatment of organic constituents of wastes while protecting environmental quality. The potential for contamination of groundwater, the accumulation of hazardous substances in soil and effects on plant growth have undergone the most intensive investigation to date. Impingement on air quality has received limited study.

  17. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  18. Challenges when performing economic optimization of waste treatment: A review

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, H.

    2013-01-01

    example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi......-criteria analysis have been developed.A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy...

  19. Recycling of waste printed circuit boards: a review of current technologies and treatment status in China.

    Science.gov (United States)

    Huang, Kui; Guo, Jie; Xu, Zhenming

    2009-05-30

    From the use of renewable resources and environmental protection viewpoints, recycling of waste printed circuit boards (PCBs) receives wide concerns as the amounts of scrap PCBs increases dramatically. However, treatment for waste PCBs is a challenge due to the fact that PCBs are diverse and complex in terms of materials and components makeup as well as the original equipment's manufacturing processes. Recycle technology for waste PCBs in China is still immature. Previous studies focused on metals recovery, but resource utilization for nonmetals and further separation of the mixed metals are relatively fewer. Therefore, it is urgent to develop a proper recycle technology for waste PCBs. In this paper, current status of waste PCBs treatment in China was introduced, and several recycle technologies were analyzed. Some advices against the existing problems during recycling process were presented. Based on circular economy concept in China and complete recycling and resource utilization for all materials, a new environmental-friendly integrated recycling process with no pollution and high efficiency for waste PCBs was provided and discussed in detail.

  20. Complex Treatment of Sensorineural Hearing Loss

    OpenAIRE

    Aleksandruk, N. V.

    2014-01-01

    Recent data on use of Ginkgo Biloba extract in otorhinolaryngological practice were presented. The mechanism of the curative action of Ginkgo Biloba extract (vasoprotective, antioxidative, rheological, and edematous) was described. Effectiveness of Ginkgo Biloba as a part of complex treatment of sensorineural hearing loss in children was elucidated. Results of the research proved effectiveness of treatment with Ginkgo Biloba and showed perspectives of Ginkgo Biloba use in treatment programs f...

  1. IDENTIFICATION AND CLASSIFICATION OF INDUSTRIAL SOLID WASTES IN AMMONIA UNIT OF RAZI PETROCHEMICAL COMPLEX AND FEASIBILITY OF WASTE MINIMIZATION

    Directory of Open Access Journals (Sweden)

    F. Fakheri Raouf, R. Nabizadeh and N. Jafarzadeh

    2005-10-01

    Full Text Available Petrochemical industries are considered as strategic and important sectors in economic development of Iran. Razi petrochemical factory is one of complex in Iran, established in 1970 with 100 hectare. In this research, the possibility of waste minimization in the ammonia unit of Razi petrochemical complex with about 1000 tons per year was studied for a period of 18 months from September 2003 to April 2005. More than 20 site visits were conducted and the required information was collected. Factors such as industrial solid wastes quality and quantity, sources of generation, production period and the present management practice, were studied. Petrochemical solid wastes were classified based on the recommended method of the United Nations and appropriate policies were suggested for waste minimization. The collected results of this study show production of 185 tons of industrial solid wastes from 45 sources which contained 68.5% catalysts, 10.25% metal barrels, 18.61% aluminum ball, 2.62% plastic barrels and 0.02% paper. 93.3% of these wastes were generated as the result of catalysts change, 3.3% as the result of using chemicals and oils, 1.7% as the result of methanol solution amid application, and 1.1% because of aluminum ball changes. Based on the UNEP methods, the ammonia unit wastes classified as 19/7%hazadrous and 87,12% non hazardous. At present 87.12% of these wastes are being dumped in the area and 12.88% are sold. Proposed procedures for waste minimization contain 68.5% reuse and recycling and 31.5% recycling.

  2. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  3. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

  4. Principles of biotechnological treatment of industrial wastes.

    Science.gov (United States)

    Roig, M G; Martín Rodriguez, M J; Cachaza, J M; Mendoza Sánchez, L; Kennedy, J F

    1993-01-01

    This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents.

  5. Benchmarking in the Dutch waste-water treatment sector

    NARCIS (Netherlands)

    Admiraal, R.J.; van Helden, G.J.

    The Dutch water boards have recently completed a performance measurement and evaluation project for waste-water treatment. This Project was intended to strengthen the boards' accountability to their stakeholders and to identify starting Points for Performance improvement. The Balanced Scorecard was

  6. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  7. Waste treatment in physical input-output analysis

    NARCIS (Netherlands)

    Dietzenbacher, E

    2005-01-01

    When compared to monetary input-output tables (MIOTs), a distinctive feature of physical input-output tables (PIOTs) is that they include the generation of waste as part of a consistent accounting framework. As a consequence, however, physical input-output analysis thus requires that the treatment

  8. tannery wastes water treatment using moringa stenopetala seed ...

    African Journals Online (AJOL)

    PROF EKWUEME

    processes are available for the adsorption of heavy metals ... temperatures are limiting factor for the cultivation of the species (Orwa et al., 2009).The water soluble Moringa seed proteins possess coagulating properties. .... TANNERY WASTES WATER TREATMENT USING MORINGA STENOPETALA SEED EXTRACT 31 ...

  9. Challenges when Performing Economic Optimization of Waste Treatment

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, Hans

    2011-01-01

    on transport are one example but models focusing on energy production have also been developed as well as models which take into account the plants economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for selection of waste treatment methods...

  10. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  11. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  12. Tannery wastes water treatment using Moringa Stenopetala seed ...

    African Journals Online (AJOL)

    High amount of heavy metal ions like Cr in the environment has been harmful for animal and human health. Bioadsorption of Cr from tannery wastes would be an alternative method to the chemical treatment in tannery industries. Hence, in this study the efficiency of Moringa stenopetala seed extract to adsorption Cr from ...

  13. Balancing Waste Water Treatment Plant Load Using Branch and Bound

    NARCIS (Netherlands)

    van Nooijen, R.R.P.; Kolechkina, A.G.

    2016-01-01

    The problem of smoothing dry weather inflow variations for
    a Waste Water Treatment Plant (WWTP) that receives sewage from
    multiple mixed sewer systems is presented, together with a first rough
    solution algorithm. A simplification followed by a naive translation into
    a zero-one linear

  14. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  15. Waste Water Treatment of Dye Contamination

    Directory of Open Access Journals (Sweden)

    Pattana Boonyaprapa

    2009-01-01

    Full Text Available The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment systems. Eighty-five percent of tie-dye entrepreneurs agreed that there must be wastewater treatment before release into the environment. From group discussions, it was found that the entrepreneurs realized the wastewater problem and wanted to carry out environment friendly tie-dyeing. Our study demonstrated that the average value of the colour density, chemical oxygen demand (COD, total dissolved solids (TDS and pH of the wastewater characteristics were 170 SU (space units, 1584 mg/l, 2487 mg/l and 8, respectively. For the upflow anaerobic filter, 5 sets of experiments, with 24 hours retention time, were designed, with 0, 1, 2, 3 and 4 % of cow’s feces ferment, respectively (sets 1st-5th. The result showed decreasing colour densities from 170 SU to 160 SU (dark colour, 60 SU (very light colour, 12 SU (no colour, 10 SU (no colour and 10 SU (no colour, respectively. We conclude that the upflow anaerobic filter, containing 2% cow’s feces ferment is an efficient way to reduce colour density of the wastewater. Mixing cow’s feces ferment with tie-dye wastewater increased COD and TDS in wastewater. Mean COD was increased by residual organic matter from 1584 mg/l (before treatment to (after-treatment, sets 2nd- 5th 1600 mg/l, 1680 mg/l, 1710 mg/l and 1750 mg/l, respectively. COD aftertreatment was higher than the industrial effluence standard (400 mg/l. Further treatment COD might include wetland procedures. TDS was increased by some residual organic matter

  16. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  17. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  18. Waste Water Treatment of Dye Contamination

    OpenAIRE

    Pattana Boonyaprapa

    2009-01-01

    The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment s...

  19. Treatment of Molybdate Containing Waste Streams

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2008-01-01

    The invention is directed to a process for the treatment of an aqueous solution comprising sodium carbonate and/or sodium bicarbonate and sodium molybdate, said process comprising freeze crystallising the solution at the eutectic freezing point thereof and recovering substantially pure ice crystals,

  20. Membrane bioreactor for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.

    1997-01-01

    Summary

    This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of

  1. Report on sampling and analysis of ambient air at the central waste complex

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M., Fluor Daniel Hanford

    1997-02-13

    Over 160 ambient indoor air samples were collected from warehouses at the Central Waste Complex used for the storage of low- level radioactive and mixed wastes. These grab (SUMMA) samples were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data from this survey suggest that several buildings had elevated concentrations of volatile organic compounds.

  2. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO2) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al2O3 and Ni-Co/Al2O3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al2O3 catalyst, producing 153.67mmolsyngasg-1waste. The addition of cobalt metal as a promoter to the Ni/Al2O3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  4. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    Science.gov (United States)

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  5. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  6. Innovative processes for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pacary, V.; Barre, Y. [Laboratoire des Procedes Avances de Decontamination, CEA, Marcoule 30 (France); Plasari, E. [Ecole Nationale Superieure des Industries Chimiques - Institut National Polytechnique de Lorraine - Laboratoire des Sciences du Genie Chimique - CNRS, Nancy 54 (France)

    2008-07-01

    Full text of publication follows: Because of the high salinity (0.5 to 2 M) of liquid wastes and the variability of their composition, the method which is the most appropriate and commonly used to remove the contaminants consists in the in situ formation of adsorbent particles in the waste stream. This technique is often called coprecipitation. To increase the efficiency of this treatment, a study is performed to point out the impact of the choice of the process and the influence of operating parameters (mean residence time, stirring speed, etc.) on the formation of crystals and ultimately on their ability to capture radionuclide. Barium sulphate was chosen as a reference because it is a well known precipitate and a material used in the decontamination facilities to remove radiostrontium. Two issues are encountered with the classic treatments which are consequences of the variability of effluents composition. On the one hand when high activity effluents have to be treated, the efficiency of the classic processes can not be sufficient and the liquid must be once again decontaminated. Thus the volume of disposal waste produced by the treatment is doubled. On the other hand when low activity effluents have to be treated, the classic processes produce a low activity waste. Consequently the volume of storage occupied by this waste is disproportionate with regard to its low activity. To return the more flexible process, various configurations were tested. They can be classified in two categories: improvements of the classic treatments and new types of reactors. Because of the good results which are obtained, these processes are patent pending. To support the experimental investigations, a modelling study at the reactor scale is initiated to distinguish the influence of each process parameter. These models assume that the surface of adsorbent particles is continuously renewed by crystal growth. The aim of this work is to determine the decisive parameters which allow the

  7. Pure oxygen for the urban water waste treatment; Oxigeno puro para tratamiento de aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Estevez Pastor, F.S.; Ferrer Gaztambide, J. [EDAR La China (Spain)

    1995-11-01

    The pilot plant for waste water treatment in La China (Spain) is described. This plant used pure oxygen for the waste water treatment. The best depuration, the flexibility to experiment the fluctuations of flow and change are studied. (Author)

  8. Solid waste operations complex engineering verification program plan

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, C.L.

    1994-09-28

    This plan supersedes, but does not replace, the previous Waste Receiving and Processing/Solid Waste Engineering Development Program Plan. In doing this, it does not repeat the basic definitions of the various types or classes of development activities nor provide the rigorous written description of each facility and assign the equipment to development classes. The methodology described in the previous document is still valid and was used to determine the types of verification efforts required. This Engineering Verification Program Plan will be updated on a yearly basis. This EVPP provides programmatic definition of all engineering verification activities for the following SWOC projects: (1) Project W-026 - Waste Receiving and Processing Facility Module 1; (2) Project W-100 - Waste Receiving and Processing Facility Module 2A; (3) Project W-112 - Phase V Storage Facility; and (4) Project W-113 - Solid Waste Retrieval. No engineering verification activities are defined for Project W-112 as no verification work was identified. The Acceptance Test Procedures/Operational Test Procedures will be part of each project`s Title III operation test efforts. The ATPs/OTPs are not covered by this EVPP.

  9. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  10. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  11. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  12. Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, Rebecca M.; Arterburn, Jeffrey B. rmchamberlin@lanl.gov; jarterbu@nmsu.edu

    2000-10-01

    from the waste. Using NMR-active labels in the chelators, we will use a combinatorial approach of generating multiple chelator fragments in a single experiment and then determining which, if any, of the fragments have a negative effect on the separations chemistry. Our successful completion of this goal will specifically identify the most problematic organic fragments in complexant-containing waste and provide the basis for developing successful treatment strategies for these wastes.

  13. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  14. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Sposito, Fabio; Frunzo, Luigi; Trably, Eric; Escudié, Renaud; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-04-01

    This work aimed to investigate the effect of the initial pH, combination of food to microorganism ratio (F/M) and initial pH, substrate pre-treatment and different inoculum sources on the dark fermentative biohydrogen (H2) yields. Three model complex waste biomasses (food waste, olive mill wastewater (OMWW) and rice straw) were used to assess the effect of the aforementioned parameters. The effect of the initial pH between 4.5 and 7.0 was investigated in batch tests carried out with food waste. The highest H2 yields were shown at initial pH 4.5 (60.6 ± 9.0 mL H2/g VS) and pH 5.0 (50.7 ± 0.8 mL H2/g VS). Furthermore, tests carried out with F/M ratios of 0.5, 1.0 and 1.5 at initial pH 5.0 and 6.5 revealed that a lower F/M ratio (0.5 and 1.0) favored the H2 production at an initial pH 5.0 compared to pH 6.5. Alkaline pre-treatment of raw rice straw using 4% and 8% NaOH at 55°C for 24h, increased the H2 yield by 26 and 57-fold, respectively. In the dark fermentation of OMWW, the H2 yield was doubled when heat-shock pre-treated activated sludge was used as inoculum in comparison to anaerobic sludge. Overall, this study shows that the application of different operating parameters to maximize the H2 yields strongly depends on the biodegradability of the substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  17. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    . This study allows multiple stakeholders to participate in the process of decision-making and they are also allowed to use linguistic variables to rate the alternatives and determine the weights of the evaluation criteria. The interval-valued fuzzy group decision making trail and evaluation laboratory......The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  18. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  19. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  20. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  1. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  2. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Pingting Liu

    2014-01-01

    Full Text Available Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA, as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  3. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    Science.gov (United States)

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  4. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    Science.gov (United States)

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Proposal for the award of a contract for the collection and transport of waste and the treatment of standard waste

    CERN Document Server

    2006-01-01

    This document concerns the award of a contract for the collection of waste from the CERN site and its transport and treatment of the standard waste. The Finance Committee is invited to agree to the negotiation of a contract with SAUVIN SCHMIDT (CH), the lowest bidder, for the collection and transport of waste and the treatment of standard waste for a period of three years for a maximum estimated amount of 2 220 000 Swiss francs, not subject to revision until 30 June 2009. The contract will include options for two one-year extensions beyond the initial three-year period.

  6. Wow Technology’s innovative radioactive liquid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A.

    2015-07-01

    WOW presents its revolutionary technology and equipment for liquid radioactive waste treatment: outperforming ultimate water decontamination and purification process, enhanced sludge concentration, no secondary waste nor consumables, fully automated, remote controlled and self-decontaminating device. The WOW’s technology is based upon a never before observed discovery of fluid dynamics science: the possibility of performing a molecular separation between solute and suspended elements and the solvent. The combination of such a molecular separation process with a standard vacuum evaporation improves the abatement performances by thousands of times, with respect to those of the state of the art vacuum evaporators. In addition to this, no secondary waste is produced during the process, as no filters, membranes, resins or additives are used. WOW equipment, automated and remote controlled, self decontaminates after use and can be designed and constructed either tailored to the application needs or with a modular approach for enhanced transportability and application flexibility. After the preliminary verification by CNR, the Italian National Research Center, Wow Technology decontamination device was tested c/o LENA, the Laboratory of Applied Nuclear Energy of the University of Pavia, Italy with a simulated solution 6000 times more contaminated than the nuclear reactor’s cooling water of Fukushima-Daiichi NPP. In addition to that, WOW Technology was also used in a real case at the Radiochemistry laboratory of the Pavia’s University Chemistry department. Both the above mentioned contaminated fluids have been successfully decontaminated without production of additional or secondary waste WOW Technology has already performed on industrial scale c/o the Nuclear Repository of S.S.M. in Saluggia, Italy: 45000 liters of acid radioactive solution have been successfully decontaminated to a Decontamination Factor (DF) of 335000 for Cs-137 by one single evaporation step and

  7. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    is collected, and that our system boundary begins when waste is thrown away and ends with disposal or conversion to air emissions, reducing California’s residual waste by 40% can lead to a savings of 6 Mt (million metric tonnes) of CO2-e per year, and digesting California’s biogenic waste could save 0.6 Mt CO2......-e per year. Source reduction is the most robust means to mitigate GHG emissions from waste, though either increasing landfill gas capture rates within the current management plan or digesting biogenic waste (and designing landfills to maximize carbon sequestration) provide two other important means......How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...

  8. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    Science.gov (United States)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  9. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  10. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  11. Thermal plasma technology for the treatment of wastes: a critical review.

    Science.gov (United States)

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  12. Treatment of waste water by coagulation and flocculation using biomaterials

    Science.gov (United States)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  13. Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials.

    Science.gov (United States)

    Basu, Subhankar; Singh, Saurabh K; Tewari, Prahlad K; Batra, Vidya S; Balakrishnan, Malini

    2014-12-15

    Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3-N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Optimising waste treatment and energy systems - focusing on spatial and temporal issues

    DEFF Research Database (Denmark)

    Pizarro Alonso, Amalia Rosa; Münster, Marie; Ravn, H.

    The aim of the TOPWASTE project is to evaluate current and future optimal treatment of waste fractions in terms of economy and the environment, with a focus on recycling versus Waste-to-Energy technologies. After optimization of the waste management system, results must be analysed so...... as to identify drivers and barriers that efficient waste utilization in Denmark is facing and discuss the economic and/or environmental benefits that might arise from a change of the current waste management system....

  15. Treatment of dairy waste water by coagulation and filtration.

    Science.gov (United States)

    Sharma, Deepak; Choudhari, P K

    2013-01-01

    The dairy waste: effluent contains high COD, which indicates the presence of organic matter. Therefore, the studies were carried out to reduce this COD in the dairy waste water through a proper treatment. The COD reduction with alum coagulant dose 3.2 g/ dm3 within pH03 to 11 was obtained to be 438 mg/dmi at pH03, 348 mg/dm3 at pH05, 404 mg/dm3 at pH07, 295 mg/dm3 at pH08, 407 mg/dm3 at pH011 and 422 mg/dm3 at pH09 from the initial COD (COD0)1070 mg/dm3. Maximum COD reduction was 72.4% at pH08 and minimum COD reduction was 55.10 % at pH05.

  16. Design of electrochemical processes for treatment of unusual waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.

    1998-01-01

    UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is

  17. Sequential biological waste water treatment - new approaches to decentralized waste water treatment. [Sequential biological cleaning]. SBR-Technik: Neue Moeglichkeiten in der dezentralen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, C. (DYWIDAG Beton- und Umweltprodukte GmbH, Zeithain (Germany)); Raupp, M. (DYWIDAG Beton- und Umweltprodukte GmbH, Zeithain (Germany))

    1993-09-01

    Optimum new waste water treatment solutions are urgently required to improve pollution abatement in the new Lands of unified Germany. Sequential biological waste water treatment opens up completely new prospects of decentralized waste water treatment on account of short construction periods, minimum space requirements and an excellent purification. This state-of-the-art method is a time-oriented sludge activation method which was developed by TU Muenchen and the DYWIDAG group. Different chemical conditions can be adjusted for carbon degradation, nitrification, denitrification and biological phosphate elimination in one reactor without secondary settler and return-sludge treatment. Space requirements and investment costs are minimized in that way. A PC-controlled waste water treatment plant which can be monitored through long-distance data transmission from a supervisory control center together with other waste water treatment plants is introduced. (orig.)

  18. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  19. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  20. Biostabilization of municipal solid waste fractions from an Advanced Waste Treatment plant

    Directory of Open Access Journals (Sweden)

    Andrew S. Ball

    2017-04-01

    Full Text Available Controlling the safe disposal of Municipal Solid Waste (MSW, especially the biodegradable fraction, is an important goal of waste management. This study reports the effects of using composting to biostabilize the biodegradable fraction of MSW sourced from an Advanced Waste Treatment plant in Australia. The impact of biostabilization on the initial aerobic degradation of the material showed a reduction in oxygen consumption of 30% (230 g O2/kg loss of ignition (LOI in immature compost and 45% (181 g O2 kg−1 LOI in mature compost when compared with the input material (330 g O2/kg LOI. Anaerobic tests showed a reduction in biodegradability of 40% in the immature compost with biogas production 250 L/kg LOI compared with 50% in mature compost with biogas production of 218 L/kg LOI. The results confirm that the biostabilization of the biodegradable fraction of MSW diverted from landfill can result in a significant reduction of greenhouse gas emission.

  1. Polyoxometalates for radioactive waste treatment. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M.T.

    1998-06-01

    'This research is directed towards the use of polyoxoanions of the early transition metals (primarily tungsten) as possible sequestrants and storage matrices for lanthanide, actinide, and technetium species. The latter substances are important radioactive components of tank wastes from spent commercial nuclear fuel, but are present in low proportion by mass. Technetium is a particularly troublesome component because it is highly mobile in groundwater and is volatilized in vitrification processes currently under examination for long-term storage. Scientific goals: synthesis and characterization of new and selective polyoxotungstate complexes of Ln{sup 3+}, An{sup 4+}, UO{sub 2}{sup 2+}; exploration of stable polyoxoanions containing Tc (using, in the first instance, Re as a nonradioactive surrogate); thermal conversion of polytungstate complexes to tungsten bronze materials for their evaluation as inert storage matrices. This report summarizes the results after 20 months of a 3-year project.'

  2. Surgical Treatment of a Large Complex Odontoma

    Directory of Open Access Journals (Sweden)

    Burak Cezairli

    2017-08-01

    Full Text Available The treatment modalities for odontomas are generally depend on the tumors size. Small and medium lesions can usually be removed easily allowing preservation of surrounding anatomical structures. In our study, we reported a conservative surgical treatment of a large complex odontoma. A 19-year-old woman was referred to our clinic after an incidentally observed lesion on her right mandibular angle. The patient was symptom-free at the time of visit. Computed tomography (CT images showed a mass with a size of 3.5 cm x 3 cm x 2 cm. CT sections and tridimensional images showed partially eroded buccal and lingual cortex. Surgical treatment was indicated with an initial diagnosis of compound odontoma. The lesion removed after sectioning with bur and maxillo-mandibular fixation (MMF were not thought to be necessary while the buccal and lingual cortexes were mostly reliable for preventing a fracture. In our case, the size of the odontoma was suitable for a conservative treatment method and with this modality we managed to prevent a possible fracture and eliminate the disadvantages of MMF.

  3. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  4. Quantifying capital goods for biological treatment of organic waste.

    Science.gov (United States)

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. © The Author(s) 2015.

  5. Sodium-bearing Waste Treatment Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  6. Treatment and recycling of asbestos-cement containing waste

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, F. [Department of Technology, University Parthenope, Naples (Italy); Cioffi, R., E-mail: raffaele.cioffi@uniparthenope.it [Department of Technology, University Parthenope, Naples (Italy); Lavorgna, M.; Verdolotti, L. [Institute for Biomedical and Composite Materials - CNR, Naples (Italy); De Stefano, L. [Institute for Microelectronics and Microsystems - CNR, Naples (Italy)

    2011-11-15

    Highlights: {yields} Asbestos-cement wastes are hazardous. {yields} High energy milling treatment at room temperature allows mineralogical and morphological transformation of asbestos phases. {yields} The obtained milled powders are not-hazardous. {yields} The inert powders can be recycled as pozzolanic materials. {yields} The hydraulic mortars containing the milled inert powders are good building materials. - Abstract: The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4 h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm{sup -1}, of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive

  7. Innovative processes for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pacary, V.; Jaubert, C.; Barre, Y. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Plasari, E. [Ecole Nationale Superieure des Industries Chimiques - Institut National Polytechnique de Lorraine - Lab. des Sciences du Genie Chimique - CNRS, 54 - Nancy (France)

    2008-07-01

    The nuclear industry produces a wide range of liquid radioactive wastes. Many of these wastes need treatment to reduce the quantities of radioactive contaminants to levels allowed for disposal. To treat these contaminated streams, various processes can be used with varying degree of efficiency according to the characteristics (ionic strength, compositions) of waste streams. The processes using solid precipitates are the most versatile and can be divided into two groups. When particles are directly introduced in the effluent, it is an adsorption process, and when particles are formed in situ, it is a coprecipitation process. In the reprocessing plant of La Hague and in nuclear research centres of CEA (Commissariat a l'Energie Atomique), the coprecipitation process has been chosen for many years to perform decontamination of liquid wastes which can not be concentrated by evaporation. The significance of coprecipitation hinges on the fact that the solubility of a minor constituent coprecipitated with a carrier is smaller than the solubility of its pure solid. The coprecipitation process has significant consequences on subsequent steps. Not only the settling and the filtration are made easier if the crystals are large, but also the stability of radionuclides in the binding agent (concrete or bitumen) is higher if they are captured in the crystalline structure of the precipitate, so the control of the coprecipitation step is essential to carry out a practical and efficient decontamination. As a consequence we chose to study the impact of process parameters (reactor design, mixing, mean residence time) on the formation of precipitates and in fine on their ability to uptake radionuclide. (authors)

  8. Thermoradiation treatment of sewage sludge using reactor waste fission products

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M. C.; Hagengruber, R. L.; Zuppero, A. C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined.

  9. Waste Not, Want Not: Role of Waste Generation, Management, and Treatment in Food-Energy-Water Nexus Interactions

    Science.gov (United States)

    Gunda, T.; Tidwell, V. C.

    2016-12-01

    While the food-water-energy (FEW) nexus framework has focused on the interactions between primary production and resource requirements (for example, water used to produce electricity), the waste component of these interactions has been largely overlooked. We use the electric utility industry as a case study to explore the burden posed by waste generation, management, and treatment. Using EPA datasets such as the Toxics Release Inventory, we quantify the current waste budget for the electric utility industry. Some aspects of generated waste from the electric utility industry are well-known (e.g., greenhouse gas emissions and criteria air pollutants). Others, however, such as discharges to water and associated water and energy requirements used for treatment are less understood. Overall, the electric industry accounts for 25% of all US air releases, 21% of surface water discharges, and 28% of all land releases. We conclude with a proposed framework to incorporate waste more systematically into the FEW dialogue.

  10. Bulky waste quantities and treatment methods in Denmark

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Petersen, Claus; Christensen, Thomas Højlund

    2012-01-01

    were identified of which ten were recyclable and constituted 50–60% of the total quantity. The others were combustible waste for incineration (30–40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste....... In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150–250 kg capita−1 year−1, and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions......, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled...

  11. Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-09-01

    Full Text Available Municipal waste water, or sewage, is a combination of domestic and industrial effluent. The increasing volume of sewage due to urbanisation and economic growth places pressure on the treatment performance of existing waste treatment systems...

  12. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  13. Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).

    Science.gov (United States)

    Redouane, Fares; Mourad, Lounis

    2016-03-01

    The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.

  14. Comparison of alternative treatment systems for DOE mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

  15. Integrated Waste Treatment Unit GFSI Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  16. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Castaldi, F.J.; Bombaugh, K.J. [Radian Corp., Austin, TX (United States); McFarland, B. [Chevron Research and Technology Co., Richmond, CA (United States)

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  17. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  18. Physical properties of sand from the waste water treatment plants

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2010-01-01

    Full Text Available The work is focused on characterization of selected physical properties of sewage sand from the waste water treatment plants. Sand is transported into wastewater mainly in areas with a combined se­we­ra­ge system – principally in connection with rainfalls, in case of which it is transported through the sewerage system together with rainwater, but also (within smaller extents due to leakages of sewerage systems or bad conduct of natural persons and legal entities. The main attention was focused on basic physical parameters such as content of total solid, ash free dry mass, density and granulometry. These material parameters are very often underestimated so the set of quality data is completly missing, as well as a background for designers of wastewater treatment plants. This paper should be quite useful e.g. for the purpose of technological equipment design in the region of South Moravia.

  19. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  20. 40 CFR 268.41 - Treatment standards expressed as concentrations in waste extract.

    Science.gov (United States)

    2010-07-01

    ... concentrations in waste extract. 268.41 Section 268.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... standards expressed as concentrations in waste extract. For the requirements previously found in this section and for treatment standards in Table CCWE—Constituent Concentrations in Waste Extracts, refer to...

  1. Identification, classification and management of industrial waste in Kavir steel complex according to the Bazel convention and RCRA

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Ehrampoush

    2016-06-01

    Full Text Available Introduction: Requiring industries for implementing industrial waste management programs and planning for proper waste disposal is essential in order to achieve sustainable development. Therefore, industrial waste management program was done in Kavir Steel Complex, in Aran va Bidgol region to identify and classify industrial waste and also to present solutions for improving waste management. In this complex, production process is hot rolling steel and the product is rebar. Material and Method: The preset study was conducted in Kavir Steel Complex. Following survey of production process and sources of waste, the type and volume of produced waste were identified and measured during 3 months. Then, the classification of wastes was done according to the Bazel Convention and Resource Conservation and Recovery Act (RCRA, and finally new industrial & health solid waste management program was presented. Result: Considering the volume, industrial waste of production process in Kavir Steel Complex was between 130 to 180 grams per each ton of rebar. Main industrial waste included oxide of steel billet, industrial sludge, used oil and lubricant which were classified according to the RCRA: 8 materials with T code, 1 with C code, 5 with I code and 3 materials with C code. Conclusion: The results revealed that the most amount of industrial waste in Kavir Steel Complex is the waste of steel billet and industrial sludge, and more than 90% of Kavir steel industrial waste were reused and recycled inside or outside of this complex. It is recommended that used oil to be transport and maintain in the safe containers.

  2. Use of Iron (II Salts and Complexes for the Production of Soil Amendments from Organic Solid Wastes

    Directory of Open Access Journals (Sweden)

    Amerigo Beneduci

    2012-01-01

    Full Text Available A method to obtain rapidly stabilized composts for crops from solid organic wastes is evaluated. Here we used a laboratory scale reaction chamber where solid waste treatment was performed under strictly controlled temperature and pressure conditions. The row organic waste was mixed with acid solutions containing iron (II ions either in the fully hydrated form or in the form of complexes with the diethylentriaminopentaacetic acid. Data from elemental analysis distribution and GC/MS analysis of the polar and non polar dissolved organic matter, clearly showed that Fe(II ions significantly enhance organic substrate oxidation of the initial solid waste, compared to a material obtained without the addition of the Fe(II ions to the raw organic matrix. These results suggest that Fe(II ions might be involved in a catalytic oxidation pathway that would be activated under the experimental conditions used. The extent of the oxidation process was evaluated by the value of the C/N ratio and, qualitatively, by the molecular composition of the dissolved organic matter. After about 6 hours of incubation, dark-brown and dry organic matrices were obtained with C/N ratio as low as 12 and a high degree of oxidative decomposition into low-molecular-weight compounds at high oxidation state.

  3. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  4. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  5. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    Energy Technology Data Exchange (ETDEWEB)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  6. The role of bioremediation in the treatment of gas industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.

    1993-12-31

    Bioremediation is a technology that integrates microbiology, ecology, chemistry, geology, and engineering in order to solve a major problem in today`s society, restoration of our environment This is not a collection of abstract disciplines, but a new and functional technology based on processes with a long, successful history, that is, biological waste treatment. Sewage and wastewater treatment, composting, and landfills are mature sources and starting points of this technology, but the complexity of manmade or man-released hazardous wastes in the heterogeneous matrices of contaminated water, soil, and sediment requires diligent research and development for successful application of bioremediation. The technology is being applied to various sites contaminated by organic and inorganic toxic compounds or elements, and these processes, techniques, and data can be tested and applied to the gas industry`s contaminated environments. An immediate opportunity for the application of this technology is manufactured town gas sites. Ongoing research into the remediation of polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and cyanides - which are common gas industry associated wastes - is leading to an awareness of limitations of biodegradation of these compounds and to possible technical and engineering paradigms required to overcome or minimize them. Future research in microbiology, ecology, and engineering of bioremediation should lead to effective remediation technologies for present and future challenges facing this industry.

  7. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  8. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  9. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Cafferty, Kara Grace [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  10. Separation technologies for the treatment of Idaho National Engineering Laboratory Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.; Herbst, S.

    1996-10-01

    The Idaho National Engineering Laboratory (INEL) is collaborating with several DOE and international organizations to develop and evaluate: technologies for the treatment of acidic high-level radioactive wastes. The focus on the treatment of high-level radioactive wastes is on the removal of cesium and strontium from wastes typically 1 to 3 M in acidity. Technologies to treat groundwater contaminated with radionuclides and/or toxic metals. Technologies to remove toxic metals from hazardous or mixed waste streams, for neutral pH to 3 M acidic waste streams.

  11. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  12. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    Science.gov (United States)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  13. Biofilm treatment of soil for waste containment and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A. [Univ. of Wyoming, Laramie, WY (United States)

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  14. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  15. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Effects of animal wastes treatments of diesel polluted soils on ...

    African Journals Online (AJOL)

    utilizing microbial counts and oil degradation in diesel-polluted soil was investigated. Heavily and moderately polluted soil samples were amended with different grades (200, 400 and 600 g) of organic nutrient supplements (poultry waste, pig waste ...

  17. Implementing separate waste collection and mechanical biological waste treatment in South Africa: a comparison with Austria and England.

    Science.gov (United States)

    Trois, Cristina; Simelane, Oscar T

    2010-01-01

    The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 degrees C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD(5) and BOD(5)/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries. 2010 Elsevier Ltd. All rights reserved.

  18. Aggradational and erosional history of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dechert, T.V.; McDaniel, P.A.; Falen, A.L. [Idaho Univ., Moscow, ID (United States)

    1994-09-01

    Long-term performance of the low-level waste disposal site at the Radioactive Waste Management Complex (RWMC) is partially dependent on the stability of the land surface with respect to erosion of cover materials. This document discusses the aggradational and erosional history of the naturally occurring sediments and soils in and around the RWMC, focusing on the late-Pleistocene and Holocene epochs. Other related issues include the ages of the various deposits, the extent to which they have been altered by soil formation and other processes, their relationships to the basalt flows in the area, and the impact of human activity on the materials at the RWMC.

  19. Solid waste handling

    Energy Technology Data Exchange (ETDEWEB)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  20. Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system

    Science.gov (United States)

    Lee, S. S.; Shuler, M. L.

    1986-01-01

    An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.

  1. Effect of thermal and physicochemical treatment on abattoir waste ...

    African Journals Online (AJOL)

    Evacuation of abattoir waste waters into water bodies results in excessive proliferation of decomposers, thus causing oxygen depletion and eutrophication. This study is designed to find means of effectively treating the abattoir waste water before they are reused or discharged into water bodies. The waste water was taken ...

  2. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  3. State-of-the-art report on low-level radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  4. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Crolley, R.; Thompson, M.

    2011-01-31

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  5. Treatment of Radioactive Contaminated Soil and Concrete Wastes Using the Regulatory Clearance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Ryu, W. S.; Kim, T. K.; Shon, J. S.; Ahn, S. J.; Lee, Y. H.; Bae, S. M.; Hong, D. S.; Ji, Y. Y.; Lee, B. C

    2008-11-15

    In the radioactive waste storage facilities at the Korea Atomic Energy Research Institute (KAERI) in Daejoen, there are thousands drums of radioactive contaminated soil and concrete wastes. The soil and concrete wastes were generated in 1988 during the decommissioning process of the research reactor and the attached radioactive waste treatment facility which were located in Seoul. The wastes were transported to Daejeon and have been stored since then. At the generation time, the radioactive contamination of the wastes was very low, and the radionuclides in the wastes was Co-60 and Cs-137. As the wastes have been stored for more than 20 years, the radioactivity concentration of the wastes has been decayed to become very extremely low. The wastes are needed to be treated because they take up large spaces at the storage facility. Also by treating the wastes, final disposal cost can be saved. So, the regulatory clearance was considered as a treatment method for the soil and concrete wastes with extremely low radioactivity concentration.

  6. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  7. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  8. Importance of biological systems in industrial waste treatment potential application to the space station

    Science.gov (United States)

    Revis, Nathaniel; Holdsworth, George

    1990-01-01

    In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.

  9. Radiological and chemical source terms for Solid Waste Operations Complex. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Boothe, G.F.

    1994-06-03

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ``source term`` means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements.

  10. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    Science.gov (United States)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  11. Discharge and Treatment of Waste Water in Denmark:a case study about Esbjerg

    OpenAIRE

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From ...

  12. Estimation of marginal costs at existing waste treatment facilities

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus

    2016-01-01

    , based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power...... (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain...... a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven...

  13. Treatment of urban residential organic waste through anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Fabiane Granzotto

    2016-10-01

    Full Text Available The amount of waste generated nowadays is a reflection of population growth and consumerism, many times, unnecessary by people. Organic waste is the most part of the solid waste generated. This waste need to be treated adequately to avoid environmental problems and health problems in people. The objective was to treat urban residential organic waste and to verify the efficiency of the transformation into biogas and bio fertilizers. A digester of the Indian type was used in Nova Palma, Rio Grande do Sul. The research was developed in the period of three years with a daily monitoring. The average biogas production was higher in the summer for three years and it was more stable in the third year in different seasons. There were no reagents to coliforms. The study found that anaerobic digestion has potential in treating organic waste.

  14. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  15. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    Directory of Open Access Journals (Sweden)

    Micky A. Babalola

    2015-10-01

    Full Text Available Dealing with large-scale Food and Biodegradable Waste (FBW often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of conflicting objectives, since increasing one benefit may decrease the others. In this study a Multi-Criteria Decision Analysis (MCDA is presented to evaluate different waste management options and their applicability in Japan. The analytical process aims at selecting the most suitable waste treatment option, using pairwise comparisons conducted within a decision hierarchy that was developed through the Analytical Hierarchy Process (AHP. The results of this study show that anaerobic digestion should be chosen as the best FBW treatment option with regards to resource recovery. The study also presents some conditions and recommendations that can enhance the suitability of other options like incineration and composting.

  16. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  17. The status and developments of leather solid waste treatment: A mini-review.

    Science.gov (United States)

    Jiang, Huiyan; Liu, Junsheng; Han, Wei

    2016-05-01

    Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.

  18. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    Science.gov (United States)

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  19. Environmental performance of an innovative waste refinery based on enzymatic treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2011-01-01

    ) from the waste. The waste refinery was compared to alternative treatments such as incineration, bioreactor landfill and mechanical-biological treatment followed by utilization of the RDF (refuse-derived fuel) for energy. The performance of the waste refinery turned out to be comparable...... for virgin material and saving fossil resources. In this paper a life-cycle assessment of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials...... with incineration for most environmental categories. Landfilling turned out to be the worst option with respect to most categories (especially energy-related such as GW). The refinery treatment has large margins of improvement with respect to the environmental performance. These are mainly associated...

  20. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Connie C.

    2013-09-30

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the

  1. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  2. Treatment of Household Waste in Small Towns of China: Status, Basic Conditions and Appropriate Modes

    Directory of Open Access Journals (Sweden)

    HE Pin-jing

    2015-04-01

    Full Text Available Small town is the gateway of population migrating from rural areas to urban areas in the process of urbanization. The level of its household solid waste treatment is pivotal to the environmental and sanitary quality of surrounding rural areas. Furthermore, small town is the primary administrative center for rural districts, and will impose important influences on the solid waste management in villages. Therefore, it is necessary to investigate the effects of treatment modes on the household solid waste treatment in towns and surrounding villages. Based on the waste generation in small towns, this study analyzed the current status and existing problems for solid waste treatment, and discussed the related administrative management and financial supporting conditions in small towns. By summarizing the characteristics of the existing modes and comparing the costs for different treatment modes, the present study proposed that the most appropriate mode was“diversion in villages-diversion, transportation or treatment in towns-treatment and disposal in counties”, in which the town was the core node for the treatment of rural solid waste, so that the administrative and financial advantages of small towns could be highlighted and consequentially promoted the management of rural solid waste.

  3. Characterization of Waste Poly(Ethylene-Terephthalate after Alkali Treatment

    Directory of Open Access Journals (Sweden)

    Rešček, A.

    2011-07-01

    Full Text Available Poly(ethylene terephthalate, PET, recycling represents one of the most successful and widespread examples of polymer recycling. This material is fully recyclable and may be used for manufacturing new products in many industrial areas. Nevertheless, the excellent properties of PET needed for its many applications are also responsible for the difficult degradation of PET and an accumulation of polymer waste, which in turn creates serious environmental problems connected to littering and illegal landfilling or incineration. The main goal of this study was to examine the effect of alkali pretreatment on the properties of PET flakes. PET flakes were washed at twotemperatures, 70 °C and 75 °C and in various time intervals of 15, 18, 21, 25, and 30 min. All samples were characterized by FTIR spectroscopy, differential scanning calorimetry and by contact angle measurements. The results showed that during the alkali treatment the partial depolymerization of PET was obtained, which resulted in the formation of various types of oligomers with hydroxyl and carboxyl end groups, which were the result of loss of high molecular structure. Decrease of intensity of characteristic vibrational bands (CO at 1717, COO at 1265 and CH2 at 722 cm-1 with extended time was observed (Figs. 1 and 2. Further on, the formation of hydroxyl groups at ṽ = 3428 cm-1 was also observed as a result of PET depolimerization during the alkali treatment, which behaviour was better visible for samples washed at 75 °C and with extended washing time (Fig 2b. During the DSC thermal analysis, multiple melting peaks were observed in some studied samples which could be linked to partial melting and re-crystallization of PET or to the occurrence of new polymer fractions of lower molecular mass (Figs. 3 and 4. It is evident that the contact angle of PET samples (Fig. 5 decreases in comparison to the PET 0, which points to the changes on the PET surface during the alkali treatment. Decrease

  4. Effects of animal wastes treatments of diesel polluted soils on ...

    African Journals Online (AJOL)

    Heavily and moderately polluted soil samples were amended with different grades (200, 400 and 600 g) of organic nutrient supplements (poultry waste, pig waste and cow dung) and inorganic fertilizer. Soil samples obtained were also polluted with different percentage of diesel oil. Viable aerobic diesel oil-utilizing ...

  5. Thermal Treatment of Mercury Mine Wastes Using a Rotary Solar Kiln

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2014-01-01

    Full Text Available Thermal desorption, by a rotary kiln of mercury contaminated soil and mine wastes, has been used in order to volatilize mercury from the contaminated medium. Solar thermal desorption is an innovative treatment that uses solar energy to increase the volatility of contaminants, which are removed from a solid matrix by a controlled air flow system. Samples of soils and mine wastes used in the experiments were collected in the abandoned Valle del Azogue mine (SE, Spain, where a complex ore, composed mainly of cinnabar, arsenic minerals (realgar and orpiment and stibnite, was mined. The results showed that thermal treatment at temperatures >400 °C successfully lowered the Hg content (2070–116 ppm to <15 mg kg−1. The lowest values of mercury in treated samples were obtained at a higher temperature and exposition time. The samples that showed a high removal efficiency (>99% were associated with the presence of significant contents of cinnabar and an equivalent diameter above 0.8 mm.

  6. Evaluation of an Organic Waste Composting Device to Household Treatment

    Directory of Open Access Journals (Sweden)

    C. Alejandro Falcó

    2015-09-01

    Full Text Available The performance of a plug-flow automated aerobic digester for the composting of the biodegradable organic waste (BOW from a typical family at its generation rhythm was evaluated. During 13 month assessment, 179.7 kg of BOW were treated and 106.7 kg of compost were obtained with a C:N ratio of 12 and an average concentration of N of about 2.72%. Additional tests enabled to assess the generation of stable and good quality compost according to the considered standards, suitable for using as organic fertilizer and other uses, such as biotreatments. The design, location and operational characteristics of the device have determined reduced leachate emissions, the absence of unpleasant odour generation and incidence of insects or other vectors, implying the viability of their use without affecting the user´s quality of life. It could be an efficient alternative treatment for household BOW, from a technical, economic, energy, cultural and environmental point of view, easy to implement for users lacking in special training. 

  7. Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region.

    Science.gov (United States)

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2014-04-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

  8. Economies of density for on-site waste water treatment.

    Science.gov (United States)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  9. [Artemisia absinthium L. in complex treatment of inflammatory periodontal disease].

    Science.gov (United States)

    Krechina, E K; Belorukov, V V

    2012-01-01

    The effectiveness of Artemisia absinthium L. in complex treatment of inflammatory periodontal disease was assessed in the study by ELIZA evaluation of PGE2 in mixed saliva. Microcirculation in periodontal tissues was also assessed by means of laser Doppler flowmetry. It was found out that complex treatment involving Artemisia absinthium L. improves microcirculation in periodontal tissues and reduces inflammation.

  10. EUROPEAN INTEGRATION: TREATMENT OF STONE PROCESSING ENTERPRISES WASTE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Korobiіchuk V. V.

    2017-04-01

    Full Text Available Ukraine Stone industry is undergoing dramatic changes. Today is a restructuring of the industry. In a market economy, modernization of existing stone processing enterprises, the use of new technologies in the production of stone products is actually. Analysis of stone processing enterprise activity shows a large variation in quantitative and qualitative indicators, low competitiveness. However, the demand for stone products with traditional characteristics is stored. Waste stone processing enterprises often exported to landfills that are not suited to the storage of waste or unauthorized, and remain there, taking up more and more land area. During the Earth Summit in Rio de Janeiro independent Ukraine declared its intention to be actively involved in global environmental policy and development strategy of sustainable development, implementing guidelines defining international instruments at the national level. Consequently, there is an urgent need for real action on comprehensive recycling stone processing enterprises to obtain a secondary product. It should be noted that the use of modern methods of stone processing enterprises will waste the protection of nature and natural resources, improve the quality of life, restore lost harmony between man and nature. This publication analyzes the level of recycling waste stone processing enterprises. These volumes of industrial waste stone processing enterprises and highlights stone processing companies hand waste I-IV classes of danger Zhitomir region (Ukraine. These waste composition and properties of stone processing enterprises. Principles of artificial and natural lighting water are noted. Mathematical and economical model of the stone processing enterprises are constructed.

  11. Complex processing and utilization of waste as the basis for sustainable economic development district

    Directory of Open Access Journals (Sweden)

    V.М. Ilchenko

    2015-06-01

    Full Text Available The article describes the main environmental problems of Ukraine. The problems that are connected with complex processing and recycling, the example Dnieper economic paradise-one, which allows more detailed present environmental situation of the country at this stage. The article is used and analyzed recent environmental performance and the basic problems of on-disposal and recycling. Basic research methods: observation, analysis and comparison. The aim was to find ways to overcome the ecological crisis in Ukraine. As a result of the research, it was determined that most types of waste-tion prevail in Ukraine and found the best solutions to problems related to waste and their processing. It was possible to find the main problem that has caused serious environmental situation, and the main task for the country at this stage. The main problems and tasks Dnieper economic region. Also indicate how to save, due to complex processing waste. The article is very relevant and important because it is here that the basic problems and tasks of Ukraine concerning the ecological situation. It also focuses on eco-logical problems, which the government does not pay enough attention.

  12. Treatment technologies of wastes asbestos contents; Tecnologie di trattamento di rifiuti contenenti amianto. Documento di indirizzo

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G.; Ferri, F. [ENEA, Rome (Italy); Paglietti, F.; Plescia, P. [Consiglio Nazionale delle Ricerche, Istituto Trattamento Minerali, Rome (Italy); Reynaud, S. [Electric Power Production Company-Struttura e Ricerca, Rome (Italy); Todarello, G. [Centro Sviluppo Materiali SpA, Rome (Italy); Martinelli, C. [ARPAV, Dipt. provinciale di Verona, Verona (Italy)

    1998-07-01

    This report illustrates the actual situation on waste treatment and disposal of asbestos containing wastes. Particularly Italian experiences in the industrial sector. [Italian] Il presente documento fa il punto della situazione per quanto attiene alle problematiche relative al trattamento ed allo smaltimento dei rifiuti contenenti amianto. Un cenno particolare e' stato posto sulle esperienze industriali italiane.

  13. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

  14. Health-Care Waste Treatment Technology Selection Using the Interval 2-Tuple Induced TOPSIS Method.

    Science.gov (United States)

    Lu, Chao; You, Jian-Xin; Liu, Hu-Chen; Li, Ping

    2016-06-04

    Health-care waste (HCW) management is a major challenge for municipalities, particularly in the cities of developing nations. Selecting the best treatment technology for HCW can be regarded as a complex multi-criteria decision making (MCDM) issue involving a number of alternatives and multiple evaluation criteria. In addition, decision makers tend to express their personal assessments via multi-granularity linguistic term sets because of different backgrounds and knowledge, some of which may be imprecise, uncertain and incomplete. Therefore, the main objective of this study is to propose a new hybrid decision making approach combining interval 2-tuple induced distance operators with the technique for order preference by similarity to an ideal solution (TOPSIS) for tackling HCW treatment technology selection problems with linguistic information. The proposed interval 2-tuple induced TOPSIS (ITI-TOPSIS) can not only model the uncertainty and diversity of the assessment information given by decision makers, but also reflect the complex attitudinal characters of decision makers and provide much more complete information for the selection of the optimum disposal alternative. Finally, an empirical example in Shanghai, China is provided to illustrate the proposed decision making method, and results show that the ITI-TOPSIS proposed in this paper can solve the problem of HCW treatment technology selection effectively.

  15. Treatment effectiveness of complex casualty amputee patients

    OpenAIRE

    Farrar, Elizabeth D.

    2013-01-01

    Approved for public release; distribution is unlimited This study analyzes data from 182 Comprehensive Combat and Complex Casualty Care (C5) amputee patients with the goal to better understand the factors that influence their care. The data was provided from the Navy Bureau of Medicine and Surgery while visiting the Naval Medical Center at San Diego. The analysis examines two response variables, opiate drug usage and duration in the C5 program, as a function of a number of exploratory vari...

  16. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant : recovering a wasted methane potential and enhancing the biogas yield

    OpenAIRE

    Martín González, Lucia

    2010-01-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valori...

  17. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical–biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly...... biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance...

  18. Assessment of Animal Waste Treatment by Means of Biodigesters on Pig Farms in the Red River

    OpenAIRE

    Nguyen Van Duy; Vu Dinh, Ton; Lai Thi, Cuc

    2008-01-01

    The present study was carried out at 12 pig farms in three provinces of Hai Duong, Hung Yen and Bac Ninh. Results showed that the daily amounts of solid and liquid wastes were rather large (50 - 260 kg of solid wastes and 3 - 20 m3 of liquid wastes). The liquid waste treatment with biodigesters decreased the BOD5 and COD concentrations (BOD5 decreased by 75.0 - 80.8% at the sow houses and 75.89 – 80.36% at the growing–finishing pig houses; COD decreased by 66.85% and 64.94 - 69.73% at the sow...

  19. Air flotation treatment of salmon processing waste water

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper discusses methods for the reduction of the pollution strength of salmon processing waste water. Past research has indicated the success of air pressure...

  20. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  1. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  2. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    Science.gov (United States)

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. © 2013 FEBS.

  3. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy

    Science.gov (United States)

    Marshall, Jamie L.; Kwok, Yukwah; McMorran, Brian; Baum, Linda G.; Crosbie-Watson, Rachelle H.

    2013-01-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important therapeutic target. Here, we review current protein replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  4. [Mixed episode: complex recognition and complicated treatment].

    Science.gov (United States)

    Gargoloff, Pedro Rafael

    2003-01-01

    Mixed Episode is a complex syndrome with difficult in its recognition, the most prolonged duration of bipolar episodes, more frequent psychotic profile than Pure Manic Episode, with high suicidality and poor response to drugs. There are evidences of less efficacy with Lithium and Carbamazepine in Manic Episode than mixed states. Valproate improve both, manic and depressive symptoms, and it is proposed to be first choice. Olanzapine has been widely evaluated, showing robust response in acute Mania as well in depressive symptoms during Mixed episode. In the field of clinical practice, there are many patients receiving more than one drug, usually Valproate plus a second generation antipsychotic.

  5. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  6. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  7. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  8. Complex PTSD and phased treatment in refugees: a debate piece

    Science.gov (United States)

    ter Heide, F. Jackie June; Mooren, Trudy M.; Kleber, Rolf J.

    2016-01-01

    Background Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD). Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. Objective The aim of this debate piece is to defend two theses: (1) that complex trauma leads to complex PTSD in a minority of refugees only and (2) that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. Methods The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Results Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET) and culturally adapted cognitive-behaviour therapy (CA-CBT), have consistently been found to be high. Conclusions Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers. PMID:26886486

  9. Complex PTSD and phased treatment in refugees: a debate piece

    Directory of Open Access Journals (Sweden)

    F. Jackie June ter Heide

    2016-02-01

    Full Text Available Background: Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD. Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. Objective: The aim of this debate piece is to defend two theses: (1 that complex trauma leads to complex PTSD in a minority of refugees only and (2 that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. Methods: The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Results: Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET and culturally adapted cognitive-behaviour therapy (CA-CBT, have consistently been found to be high. Conclusions: Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers.

  10. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  11. The treatment and purification of wool and mohair scouring wastes- a survey

    CSIR Research Space (South Africa)

    Mozes, TE

    1982-08-01

    Full Text Available in these streams. The aim of this survey is to provide a retrospect of the various processes for the treatment and purification of wool and mohair scouring wastes from 1874 to the present....

  12. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  13. Mercury emissions control technologies for mixed waste thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  14. Simultaneous treatment of low-level miscellaneous solid waste by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Amakawa, T.; Adachi, K.; Yasui, S. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2001-07-01

    Volume reduction is a cost saving method for the final disposal of radioactive waste. On one hand, arc plasma heating can provide sufficient heat independent of the chemical and physical properties of waste, therefore enabling stable heating at high treatment rates. CRIEPI (central research institute of electric power industry) focused on the advantages of arc plasma heating, and has clarified that arc plasma heating can be used in a simultaneous melting treatment process for low-level miscellaneous mixed solid waste, generated from nuclear power plants for volume reduction, and in the stabilization of radionuclides. (authors)

  15. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...... the environmental performance of alternative biological treatment technologies in relation to their mass flows, energy consumption, gaseous emissions, biogas recovery and compost/digestate utilization....

  16. The complex treatment of acute pancreatitis using miniinvasive surgical treatment

    Directory of Open Access Journals (Sweden)

    G. I. Ohrimenko

    2015-06-01

    Full Text Available Nowadays methods used in acute pancreatitis diagnostic do not allow to find the most optimal indications, terms of surgical drainage approaches in surgical treatment of acute pancreatitis. Aim. In order to develop optimal diagnostic and treatment algorithm 316 patients took part in the study. Methods and results. Surgery outcomes were assessed by the next methods: ultrasound, computed tomography. We determined that destructive changes in pancreas in group of sterile pancreatic necrosis were limited. In cases of infected pancreatic necrosis the damage was spread and the disease course was septic. That’s why the operative treatment in cases of sterile pancreatitis has to be used with strict indications such as fermentative peritonitis, acute liquid formations, acute pseudocysts. Conclusion. In such cases miniinvasive surgery is mainly used while in the cases of infected pancreatic necrosis we ought to choose open surgery treatment.

  17. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  18. Wet Oxidation as a Waste Treatment Method in Closed Systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  19. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  20. Environmental impact by toxic compounds from waste treatment; Miljoepaaverkan fraan toxiska aemnen vid hantering av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Loefblad, Gun; Bisaillon, Mattias; Sundberg, Johan (Profu AB (Sweden))

    2010-07-01

    The study deals with emissions of toxic compounds from waste treatment to the environment with the aim of improving the state of knowledge and to find a way of describing the environmental impact from these substances. Toxicity is one of a number of environmental aspects necessary to address in the planning of waste treatment and in the daily waste treatment routines in order to fulfill the environmental objective A Non-Toxic Environment and other environmental requirements. The study includes waste to incineration, composting and anaerobic digestion. A comparison between methods were made for biological household waste. According to our study, the compounds of importance for waste treatment are metals and persistent organic compounds. These tend to bioaccumulate and enrich in food chains. The substances are important for the environmental objective A Non-Toxic Environment. In a first step the compounds chosen in this study may be suggested for describing toxicity from waste treatment: As, Cd, Cu, Hg, Pb, dioxin, PCB, the phthalate DEHP and the brominated flame retardant HBCDD. Other substances may be added to the list in a next step from up-dated and quality-assured characterisation factors or from other requirements or preferences. There is a limited knowledge on toxic compounds in waste flows and in different environmental compartments. More data are available for metals than for organic substances. There is also a limited knowledge on the fate of the compounds during the waste treatment processes. Most information is found for incineration. During composting and anaerobic digestion the metals will mainly be emitted to the environment by use of the compost and the anaerobic digestion residue. Organic substances will to some extent be degraded during the processes. However, there are gaps of knowledge to fill for the further work on estimating toxic emissions. There is mainly a need for more extensive data on toxic compounds in waste and their variations. A test

  1. Environmental Restoration and Waste Management manpower needs assessment: US Department of Energy complex

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, C.W.; Lewis, R.E.; Hunt, S.T. (Pacific Northwest Lab., Richland, WA (United States)); Finn, M.G. (Oak Ridge Associated Universities, Inc., TN (United States))

    1992-06-01

    A study was conducted Pacific Northwest Laboratory and Oak Ridge Associated Universities, Inc. to assess the supply and demand for 53 scientific, engineering, and technical occupations relevant to the US Department of Energy's (DOE's) Office of Environmental Restoration and Waste management (EM). These assessments were made by examining budget projections and the input of program/project and human resources managers throughout the DOE complex. Quantitative projections of full-time equivalent employees slots for each occupation have been developed for the 1993--1997 time frame. Qualitative assessments of the factors that affect recruitment, staffing, and retention are also reported. The implications of the study are discussed within the likely skills mix of the future workforce and the education and organization interventions most likely to address the needs of the DOE complex.

  2. Environmental Restoration and Waste Management manpower needs assessment: US Department of Energy complex

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, C.W.; Lewis, R.E.; Hunt, S.T. [Pacific Northwest Lab., Richland, WA (United States); Finn, M.G. [Oak Ridge Associated Universities, Inc., TN (United States)

    1992-06-01

    A study was conducted Pacific Northwest Laboratory and Oak Ridge Associated Universities, Inc. to assess the supply and demand for 53 scientific, engineering, and technical occupations relevant to the US Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste management (EM). These assessments were made by examining budget projections and the input of program/project and human resources managers throughout the DOE complex. Quantitative projections of full-time equivalent employees slots for each occupation have been developed for the 1993--1997 time frame. Qualitative assessments of the factors that affect recruitment, staffing, and retention are also reported. The implications of the study are discussed within the likely skills mix of the future workforce and the education and organization interventions most likely to address the needs of the DOE complex.

  3. Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes.

    Science.gov (United States)

    Buendía, Inmaculada M; Fernández, Francisco J; Villaseñor, José; Rodríguez, Lourdes

    2009-03-01

    The anaerobic biodegradability of meat industry wastes was investigated in mesophilic batch reactors and combined with a mathematical model for describing their biodegradable fractions. The characteristics and methane yield achieved when digesting waste sludge, suggested the use of this as co-substrate for enhancing the biodegradability of the other wastes. The co-digestion experiments showed that it would be feasible to co-digest cow manure or ruminal waste with waste sludge, but biodegradability of pig/cow slurries was not improved, being strongly influenced by the ammonium concentration of co-digestion mixture. By applying the mathematical model, it was observed that when increasing the amount of waste sludge in the co-digestion mixtures, the amount of inert and slowly biodegradable fractions decreased leading to an increase in readily biodegradable fractions, volatile solid removal efficiencies and methane yields. These results suggest that using readily biodegradable wastes as co-substrate, the anaerobic biodegradability of complex organic wastes can be improved.

  4. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    Science.gov (United States)

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity. © The Author(s) 2014.

  5. Complex PTSD and phased treatment in refugees : a debate piece

    NARCIS (Netherlands)

    Ter Heide, F Jackie June; Mooren, Trudy M; Kleber, Rolf J

    2016-01-01

    BACKGROUND: Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD). Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused

  6. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  7. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  8. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  9. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  10. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  11. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    Science.gov (United States)

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  13. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  14. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  15. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  16. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  17. Complex aesthetic treatment on anterior maxillary teeth with malposition

    Directory of Open Access Journals (Sweden)

    Febriastuti Febriastuti

    2008-12-01

    Full Text Available Background: Complex aesthetic treatment on anterior teeth involves more than one caries tooth with malformed shape and malposition. Purpose: The purpose of this paper is to find the alternative treatment for anterior maxillary teeth with malposition. Case: In this case, a 25 year-old man with a peg shaped teeth and caries on several teeth and malposition can be treated with complex aesthetic treatment. Case management: Endodontic pulpectomy treatment on anterior maxillary teeth and post construction with splint porcelain fused to metal crowns on 11, 12, and 21, 22 to correct the shape and position into normal position. Conclusion: Malformed and malpositioned teeth with caries can be treated with complex aesthetic treatment.

  18. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield.

    Science.gov (United States)

    Cuetos, M J; Gómez, X; Otero, M; Morán, A

    2010-10-01

    Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Treatment of waste metalworking fluid by a hybrid ozone-biological process.

    Science.gov (United States)

    Jagadevan, Sheeja; Graham, Nigel J; Thompson, Ian P

    2013-01-15

    In metal machining processes, the regulation of heat generation and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF). MWFs inevitably become operationally exhausted with age and intensive use, which leads to compromised properties, thereby necessitating their safe disposal. Disposal of this waste through a biological route is an increasingly attractive option, since it is effective with relatively low energy demands. However, successful biological treatment is challenging since MWFs are chemically complex, and include biocides specifically to retard microbial deterioration whilst the fluids are operational. In this study remediation of the recalcitrant component of a semi-synthetic MWF by a novel hybrid ozone-bacteriological treatment, was investigated. The hybrid treatment proved to be effective and reduced the chemical oxygen demand by 72% (26.9% and 44.9% reduction after ozonation and biological oxidation respectively). Furthermore, a near-complete degradation of three non-biodegradable compounds (viz. benzotriazole, monoethanolamine, triethanolamine), commonly added as biocides and corrosion inhibitors in MWF formulations, under ozonation was observed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  1. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  2. Polyoxometalates for Radioactive Waste Treatment - Final Report - 06/15/1996 - 09/14/2000

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael T.

    2000-09-14

    The research was directed primarily towards the use of polyoxometalate complexes for separation of lanthanide, actinide, and technetium species from aqueous waste solutions, such as the Hanford Tank Wastes. Selective binding of these species responsible for much of the high level waste (HWL) activity, can reduce the volume of material to be subsequently vitrified or otherwise converted for long-term storage. A secondary objective was to explore the direct conversion of the polyoxometalate complexes into possible waste forms, oxide bronzes, thereby avoiding additional handling and energy-intensive vitrification procedures. Although the advantages of polyoxometalate anions (POMs) lie in their high thermal and radiolytical stabilities, that has been no attempt to exploit the remarkable variety of these complexes beyond the use of the two anions mentioned above. Our broad knowledge of POM chemistry has allowed us to address and rectify this omission. The innovative aspects of the project are: (a) the selective sequestration of lanthanide and actinide cations by a POM system in the presence of excess alkali and transition metal cations; (b) the formation of the first examples of POM complexes of UO2-2+ and their extraction into nonaqueous solvents; (c) the thermal conversion of ammonium salts of lanthanide and actinide POM complexes into inert oxide bronzes at relatively low temperatures; and (d) the direct formation of highly thermally-robust niobate and tantalate complexes of Re (surrogate for Tc) in highly basic solutions.

  3. Seminar on waste treatment and disposal; Seminar po obrashcheniyu s otkhodami i ikh utilizatsii

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  4. Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste

    Science.gov (United States)

    2015-09-01

    security and sustainability is essential to mission accomplishment. The Army’s goal is to manage “net zero installations” (NZI), i.e., installations that...and sustainability at Army installations is operationally necessary, financially prudent, and essential to mission accomplishment. Moreover, the Army... restaurants , schools, hospitals, and dining halls) and family housing areas where food waste is continually generated. ERDC/CERL TR-15-21 24

  5. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    Science.gov (United States)

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  6. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C.; Convertti, A.; Rovatti, M. [Genoa Univ. (Italy); Boschi, R.; Cozzani, V.; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1995-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  7. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    Science.gov (United States)

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  8. An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.

    Science.gov (United States)

    Baird, J; Curry, R; Cruz, P

    2014-02-01

    While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.

  9. Monitoring for a specific management objective: protection of shorebird foraging habitat adjacent to a waste water treatment plant.

    Science.gov (United States)

    Morris, Liz; Petch, David; May, David; Steele, William K

    2017-05-01

    Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.

  10. Scori: specialist of the thermal treatment of wastes in cement industry; Scori: specialiste du traitement thermique des dechets en cimenterie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    Todays, the valorization in cement industry is an integral part of the treatment of industrial wastes in France. This solution, widely developed in other European countries, has been considered as an integral way of wastes elimination by the European directive on special industrial wastes incineration. In this context, with 460000 t processed in France and Belgium and a 600000 t capacity, the SCORI company is considered as the European specialist of the industrial wastes treatment in cement industry thanks to its know-how developed with its partners Ciment Calcia, Lafarge Ciments, Holderbank and Vicat. This paper describes the advantages of cement kilns for the destruction of organic compounds, the part of inorganic and mineral wastes introduced, the purification of combustion gases, the energy valorization of wastes, the pre-treatment of some special wastes before combustion, and the different types of wastes accepted in cement industry (selection, risk assessment, legal aspects and safety). (J.S.)

  11. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  12. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.

    Science.gov (United States)

    Poulsen, Tjalfe G; Hansen, Jens Aage

    2009-11-01

    Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.

  13. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    Science.gov (United States)

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  14. Olive oil waste treatment: a comparative and critical presentation of methods, advantages & disadvantages.

    Science.gov (United States)

    Arvanitoyannis, Ioannis S; Kassaveti, Aikaterini; Stefanatos, Stelios

    2007-01-01

    Since olive oil industries were considered responsible for a great amount of pollution there has been a strong need for optimization of olive oil waste treatment systems. The currently employed systems are numerous and fall in the following large categories; bioremediation (ex-situ, in-situ), thermal processes (incineration, pyrolysis, gasification), evaporation, membrance processes, electrolysis, ozonation, digestion, coagulation/flocculation/precipitation, and distillation. Both advantages and disadvantages in conjunction with respective methodology and explicit flow diagrams were presented per waste treatment method. Furthermore, most recent studies were reported and more than twenty-five figures showing mainly the effectiveness of the current waste treatment methods versus time or temperature were displayed. The comparative presentation of the various olive oil waste treatment methodologies showed that though bioremediation stands for the most enviromentally friendly technique, its required longer treatment time in conjuction with its weakness to deal with elemental contaminants makes imperative the employment of a second alternative technique which could either be a membrance process (low energy cost, reliability, reduced capital cost) or a coagulation/flocculation method because of its low cost and high effectiveness. Biogas production appears to be another promising and energy effective waste treatment method. On the other hand, methods like distillation and ozonation (high cost) and electrolysis (experimental level) are unlikely to dominate this field unless their high cost is substantially reduced in the near future.

  15. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  16. Selectivity of NF membrane for treatment of liquid waste containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Afonso, Julio C., E-mail: julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica

    2013-07-01

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF{sub 6} to UO{sub 2} in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L{sup -1}, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  17. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  18. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic...... waste have shown reductions of microorganisms allowing for unrestricted utilization in agriculture, meeting the product control:FS below 100/g and no Salmonella detected. The effect of storage of sludge at summer and winter temperatures respectively has been investigated. At temperatures (around 20°C...

  19. Technology for Waste Treatment at Remote Army Sites

    Science.gov (United States)

    1986-09-01

    Chollenge Dose (log 10 ) ILow IMedium High ORGANISM 0 1 2 3 4 5 6 7 8 9 10 11111111111KEYc 1. Ascaris lumbricoides t ____o 2. Ancylostoma duodenale...histolytica ង but usually - 10 cysts Helminths Ascaris lumbricoides Many rnontns eggs 171 APPENDIX J: INPUT WASTE CHARACTERIZATION Domestic composting...destroy most pathogens. For determining the extent of pathogen destruction in sewage sludge, Ascaris (a parasitic helminth) is one of the intestinal

  20. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch.; Stucki, S.; Schuler, A.J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  1. US - European Workshop on Thermal Waste Treatment for Naval Vessels

    Science.gov (United States)

    1997-01-01

    a 2 20 2 -C02 .H𔃼 0 vapeul- organique de30A _________Effuetsno Bassi de vitesse:te 1Ion5 n/ diluDEt 400 A...Temperatures et Pressions assurant une liquefaction des solides organiques en 1 Heure 12 Table Il. Chemicals Successfully Treated by Supercritical Water...Bordeaux, France HYDROTHERMAL CONVERSION OF WASTES ->Oxidation -Reduction Research Director (CNRS) Institut de Chimie de la Matie’re Condense~e de

  2. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Poulsen, Tjalfe

    2009-01-01

    production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes......Historical data on organic waste and wastewater treatment during the period of 1970ĝ€"2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper...... in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed...

  3. Development and status of the AL Mixed Waste Treatment Plan or I love that mobile unit of mine

    Energy Technology Data Exchange (ETDEWEB)

    Bounini, L. [USDOE Grand Junction Project Office, CO (United States); Williams, M. [USDOE Albuquerque Operations Office, NM (United States); Zygmunt, S. [Los Alamos National Lab., NM (United States)

    1995-02-01

    Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for much of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites.

  4. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  5. [Optimization of complex treatment of patients with severe oral leukoplakia].

    Science.gov (United States)

    Rabinovich, O F; Rabinovich, I M; Abramova, E S

    2015-01-01

    The aim of the study was to prove the rationale for antiviral therapy combined with surgical procedures for treatment of severe oral leukoplakia. Complex clinical and laboratory evaluation and treatment was performed in 56 patients divided in 2 groups. Control group was presented by 13 patients receiving dental treatment, local and systemic keratoplastic formulations. Main group involved 43 patients in which conventional treatment protocol was completed by antiviral therapy and surgical procedures. Leukoplakia diagnosis was based on clinical findings, histological and immunohistochemical studies as well as optic coherent tomography data. The obtained results evidently prove the necessity for including antiviral therapy and surgical procedures in treatment scheme of severe oral leukoplakia.

  6. Environmental and economic vision of plasma treatment of waste in Makkah

    Science.gov (United States)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  7. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    OpenAIRE

    Kristýna Černá; Zdeňka Wittlingerová; Magdaléna Zimová; Zdeněk Janovský

    2017-01-01

    Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different ty...

  8. Alternative treatment of solid waste and energy recovery through burning furnaces: an analysis

    OpenAIRE

    coelho, thaysi castro; Universidade Federal do Tocantins; Serra, Juan Carlos Valdés; Universidade Federal do Tocantins; Lustosa, Jordanna Barreira; Universidade Federal do Tocantins

    2013-01-01

    Currently a new alternative for the treatment of urban solid waste consisting of a technology that promotes reduction of the volume of the solid residues combined with power generation has been observed. Such technology is the waste burning kilns, which had its greatest expansion in Europe and the United States, currently being introduced in Brazil, yet so timid, lacking large plants in operation. Therefore, from a literature review and identification of plants in operation, the proposal was ...

  9. Valorisation of Moringaoleifera waste: treatment and reuse of textile dye effluents

    OpenAIRE

    Vilaseca Vallvé, M. Mercedes; López Grimau, Víctor; Gutiérrez Bouzán, María Carmen

    2015-01-01

    This work is focused on the valorisation of an agricultural waste as natural coagulant to treat wastewater from the textile industry. In this paper, the waste of Moringaoleifera oil extraction is used as coagulant to remove five reactive dyes from synthetic textile effluents. Moringaoleifera shows better results for dye removal than conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high...

  10. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  11. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  12. An evaluation of alternative household solid waste treatment practices using life cycle inventory assessment mode.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro

    2012-06-01

    Waste disposal is an important part of the life cycle of a product and is associated with environmental burdens like any other life-cycle stages. In this study, an integrated assessment for solid waste treatment practices, especially household solid waste, was undertaken to evaluate the impact contribution of household solid waste treatment alternatives towards the sustainable development by using Life Cycle Inventory Assessment method. A case study has been investigated under various possible scenarios, such as (1) landfill without landfill gas recovery, (2) landfill with landfill gas recovery and flaring, (3) landfill with landfill gas recovery and electric generation, (4) composting, and (5) incineration. The evaluation utilized the Life Cycle Inventory Assessment method for multiple assessments based on various aspects, such as greenhouse gas emission/reduction, energy generation/consumption, economic benefit, investment and operating cost, and land use burden. The results showed that incineration was the most efficient alternative for greenhouse gas emission reduction, economic benefit, energy recovery, and land use reduction, although it was identified as the most expensive for investment and operating cost, while composting scenario was also an efficient alternative with quite economic benefit, low investment and operating cost, and high reduction of land use, although it was identified as existing greenhouse gas emission and no energy generation. Furthermore, the aim of this study was also to establish localized assessment methods that waste management agencies, environmental engineers, and environmental policy decision makers can use to quantify and compare the contribution to the impacts from different waste treatment options.

  13. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  14. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    Science.gov (United States)

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  15. Treatment of M-area mixed wastes at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  16. EXPERIENCES OF POLISH MECHANICAL HEAT TREATMENT TECHNOLOGY APPLIED TO MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Jurand Damian Bień

    2017-08-01

    Full Text Available In Poland and in several EU countries, the processing of mixed municipal waste is based on waste treatment in mechanical and biological installations and thermal processing plants. The experience gained from the operation of these installations, particularly in the aspect of material recycling, what is important in an aspect of the circular economy formulation is not satisfactory. To think about a high level of reuse and recycling of municipal waste, which is expected to be at least 65% by 2030, efforts to improve waste quality are needed. Certainly, one of the solution is a selective collection of waste at source, but here it is important to say that it should be conducted at a real high level. How costly it is, many countries already know. In search of other methods the UK countries are turning their attention to mechanical heat treatment technology. In Poland there is one such installation so the idea of this paper is discuss issues connected with it. The practical experience of operating of this installations shows so far that the process gives an ability to match good process parameters to a variable input. The very good quality of secondary raw materials obtained in the process has a higher attractiveness to the final consumer. Also levels of recycling for the four fractions of waste, such as: paper, metals, plastics and glass are high and exceeds significantly factors achieved in the process of mechanical and biological treatment.

  17. Application of thermal plasma technology for the treatment of solid wastes in China: An overview.

    Science.gov (United States)

    Li, Jun; Liu, Kou; Yan, Shengjun; Li, Yaojian; Han, Dan

    2016-12-01

    With its enormous social and economical development, China is now experiencing a rapid increase in solid wastes generation and growing pressure for solid wastes management. Today solid wastes in China are mainly managed by a combination of landfill, incineration, and composting. Within different possible treatment routes, thermal plasma technology (TPT) offers the advantages of efficiently gasifying the organic contents of solid wastes into syngas that can be used for heat and power generation, and vitrifying the inorganics simultaneously into glassy slag with very low leachabilities. This process makes it feasible for near-zero emission into the environment while making use of all the useful components. Encouraged by the industrial operations of solid wastes treatment plants using TPT in some countries, several plasma demonstration projects have already been undertaken in China. This paper provides a preliminary overview of the current laboratory researches and industrial developments status of TPT for the treatment of solid wastes in China and analyzes the existing challenges. Furthermore, the future prospects for TPT in China are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, Andrey S. [National Nuclear Centre of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Shakarim Semey State Univ. (Kazakhstan); Satayeva, Aliya R. [Shakarim Semey State Univ. (Kazakhstan); Mikhalovsky, Sergey [Nazarbayev Univ. (Kazakhstan); Brighton Univ. (United Kingdom); Cundy, Andrew B. [Brighton Univ. (United Kingdom)

    2014-07-01

    The use of composite materials based on metal ferrocyanides combined with natural mineral sorbents for treatment of high salinity Cs-containing liquid radioactive waste (LRW) was investigated. The study indicated that among the investigated composites, the best sorption characteristics for Cs were shown by materials based on copper ferrocyanide. Several factors affecting the removal of cesium from LRW, namely total salt content, pH and organic matter content, were also investigated. High concentrations of complexing organic matter significantly reduced the sorption capacity of ferrocyanide sorbents.

  19. Innovative technologies of liquid media treatment in the system of ecological and sanitary-hygienic control of waste landfills

    Directory of Open Access Journals (Sweden)

    Shevchenko Andrey

    2017-01-01

    Full Text Available The article focuses on the scientific and practical aspects of establishing a comprehensive system of environmental compliance for industrial and household waste landfills, including the system of industrial and environmental monitoring and control, modern innovations in the field of instrumental-analytical control of the state of environmental components, new methods of neutralization of complex industrial pollution. Priority is given to wastewater treatment from toxic compounds coming from the surface and drainage water seepage of landfill sites into surface and underground water sources.

  20. Exergy analysis in the assessment of the sustainability of waste gas treatment systems.

    Science.gov (United States)

    Dewulf, J; Van Langenhove, H; Dirckx, J

    2001-06-12

    This study focuses on the sustainability of different technological options for the treatment of waste gases from a waste water treatment plant loaded with volatile organic compounds. The options considered are biofiltration, active carbon adsorption and catalytic and thermal oxidation. The amount of resources and utilities to construct and operate each system have been investigated from the point of view of the Second Law of thermodynamics. The unit in which all resources are treated is Joules of exergy. It was concluded that biofiltration was the most exergetically efficient system. The cumulative exergy consumption of the resources and utilities for construction and operation have been quantified in exergy terms. Further on, the requirements for the abatement of emissions generated by operating the waste gas treatment systems and the amount of renewables have been taken into account in the assessment of the sustainability of the waste gas treatment technologies. Finally, a comparison between exergy analysis and life cycle analysis in assessing the sustainability of the waste gas treatment options, is presented.

  1. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1993-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  2. Effects of thermal pre-treatments on solid slaughterhouse waste methane potential.

    Science.gov (United States)

    Rodríguez-Abalde, A; Fernández, B; Silvestre, G; Flotats, X

    2011-07-01

    The effects of thermal pre-treatments on the biogas production potential of two solid slaughterhouse waste types (poultry and piggery slaughterhouse by-products) were assessed by means of batch experiments. Both animal by-products were characterized in terms of fat, protein and carbohydrate concentrations. The selected thermal pre-treatments, pasteurization (70 °C for 60 min) and sterilization (133 °C and 3 bars for 20 min), are included in the current European regulations for the disposal or use of animal by-products. The pre-treatments produced notable improvements in organic matter solubilization, but had different effects on the anaerobic bioavailability of the treated substrates. The methane yield of the initial volatile solids did not increase significantly after pre-treatment when carbohydrate concentration was high, reaching a maximum of 0.48 m(CH4)(3) kg(VS)(-1) for the pasteurized poultry waste. However, this yield increased by up to 52.7% after pasteurization and 66.1% after sterilization for the lower carbohydrate concentration sample (piggery waste), reaching maxima of 0.88 and 0.96 m(CH4)(3) kg(VS)(-1), respectively. The maximum methane production rates, measured as the maximum slope of the accumulated methane production curve, per unit of initial biomass content, were also different. While this rate increased by 52.6% and 211.6% for piggery waste after pasteurization and sterilization, respectively, it decreased by 43.8% for poultry waste after pasteurization with respect to untreated waste. Compounds with low biodegradability that are produced by Maillard reactions during thermal pre-treatment could explain the low bioavailability observed for waste with a high carbohydrate concentration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Formation of shaped barium sulfate-dye hybrids: waste dye utilization for eco-friendly treatment of wastewater.

    Science.gov (United States)

    Gao, Hong-Wen; Lin, Jing; Li, Wei-Ying; Hu, Zhang-Jun; Zhang, Ya-Lei

    2010-01-01

    Owing to the present complexity and difficulty of concentrated dye wastewater treatment, this work aimed to synthesize a reproducible waste-sorbing material for the treatment of wastewater by forming the dye-conjugating complex hybrid. The inorganic/organic hybridization was applied to prepare the objective material by immobilizing waster dye-Mordant blue 9 (MB) with barium sulfate (BaSO4). The composition and pattern of the formed material were determined by spectrometry and characterized by SEM and XRD, and their formation process was clarified. The adsorption of cationic dye-basic blue BO (BB) and copper ion was investigated. The hybrid of MB alone into growing BaSO4 formed the pineapple-like particles while that of the MB/BB-conjugating complex was the rhombus material. The adsorption of BB on the MB-BaSO4 hybrid was probably attributed to ion-pair equilibrium and that of Cu2+ may result from the complexation. The treatment of dye and heavy metal wastewaters indicated that the MB hybrid material removed 99.8% BB and 97% Cu2+ and the dye-conjugating hybrid with growing BaSO4 100% MB, 99.5% BB, and 44% Cu2+. The waste MB-BaSO4 hybrid material is efficient to treat cationic dye and Cu2+ wastewater. The dye-conjugating hybridization method is the first to be advanced for in situ wastewater treatment, and it showed a combined effect for the removal of both organic dyes and heavy metals.

  4. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  5. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes.

    Science.gov (United States)

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P

    2012-01-01

    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  6. Biological treatment of habitation waste streams using full scale MABRs

    Science.gov (United States)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  7. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  8. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won; Leckie, J.O. [Stanford Univ., CA (United States); Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  9. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  10. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  11. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  12. Treatment of oily wastes using high-shear rotary ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E.; Viadero, R. Jr.; Young, J. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil and Environmental Engineering; Lin, W. [North Dakota State Univ., Fargo, ND (United States). Dept. of Civil Engineering

    1997-12-01

    The high-shear rotary ultrafiltration (UF) system uses membrane rotation to provide the turbulence required to minimize concentration polarization and flux decline. The high-shear UF system was effective in concentrating oily wastes from about 5% to as high as 65%. The decoupling of turbulence promotion from feed pressurization/recirculation by rotating the membrane was the primary reason for the improvement in performance over that observed with conventional UF systems. Transitional and gel layer oil concentrations (20% and 50--59%, respectively) were higher than values reported in the literature. Permeate flux was dependent on the temperature and rotational speed. Flux increased by about 45% when the temperature was increased from 43 to 60 C. A larger decrease in waste viscosity, over that predicted for water alone, and increased oil droplet diffusivity were hypothesized as reasons for the stronger than expected flux-temperature relationship. The flux-rotational speed ({omega}) relationship was described by J = f({omega}){sup 0.90}; however, the gel layer exhibited stability with increasing {omega}. The ceramic membrane was superior to the polymeric membrane in regards to permeate flux and quality as well as cleaning and durability.

  13. Bacterial Treatment and Metal Characterization of Biomedical Waste Ash

    Directory of Open Access Journals (Sweden)

    Shelly Heera

    2014-01-01

    Full Text Available Biomedical waste ash generated due to the incineration of biomedical waste contains large amounts of heavy metals and polycyclic aromatic hydrocarbons (PAHs, which is disposed of in regular landfills, and results in unfavorable amounts of hazardous materials seeping into the ground and may pollute surface water and groundwater. Therefore, it is essential to remove the toxicity of ash before disposal into landfills or reutilization. Environmental characteristic analysis of BMW ash showed increased hardness (1320 mg/L and chloride (8500 mg/L content in leachate compared to World Health Organization (WHO and Environment Protection Agency (EPA guidelines for drinking water (hardness, 300 mg/L; chloride, 250 mg/L. The alkalinity and pH of the ash leachate were 400 mg/L and 8.35, respectively. In this paper, study was carried out to investigate the metal tolerance level of bacterial isolates isolated from soil. The isolate Bacillus sp. KGMDI can tolerate up to 75 mg/L of metal concentration (Mn, Mo, Cr, Fe, Cu, and Zn in enriched growth medium. This shows that the isolated culture is capable of growing in presence of high concentration of heavy metals and acts as potential biological tool to reduce the negative impact of BMW ash on the environment during landfilling.

  14. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    Science.gov (United States)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-09-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  15. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Performance optimization of biological waste treatment by flotation clarification at a chemical manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Kerecz, B.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Miller, D.R. [Komline-Sanderson, Peapack, NJ (United States)

    1995-12-31

    Air Products and Chemicals, Inc., utilizes a deep-tank activated sludge wastewater treatment system with a dissolved air flotation clarifier (DAF) to effectively treat amine wastes containing residual organics, ammonia-nitrogen and organic nitrogen. The bio-system, a deep tank aeration system, produces a high quality final effluent low in biochemical oxygen demand (BOD), ammonia and organic nitrogen, turbidity and total suspended solids. Prior to installing the DAF, treatment performance was at risk with a gravity clarifier. Waste treatment performance was jeopardized by poor settling bio-flocs and uncontrollable solids-liquid separation problems within the gravity clarifier. The solids settleability problems resulted primarily from mixed liquor nitrogen supersaturation degassing in the clarifier. As a result of the degassing, biomass floated on the gravity clarifier or overflowed the effluent weir. As a result of biomass loss periodically organic carbon and total Kjeldahl nitrogen loadings had to be reduced in order to maintain optimal food-to-mass ratios. As biomass levels dropped within the aeration basin, waste treatment performance was at risk and waste loads had to be decreased causing waste inventories to increase in storage tanks.

  17. The potential role of aerobic biological waste treatment in regenerative life support systems

    Science.gov (United States)

    Shuler, M. L.; Nafis, D.; Sze, E.

    1981-01-01

    The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.

  18. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S. [Cornell Univ., Ithaca, NY (United States)

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  19. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McClenahan, Robert L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  20. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Science.gov (United States)

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  2. Treatment of Uranium-Contaminated Concrete for Reducing Secondary Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S; Park, U. K; Kim, G. N.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A volume reduction of the concrete waste by appropriate treatment technologies will decrease the amount of waste to be disposed of and result in a reduction of the disposal cost and an enhancement of the efficiency of the disposal site. Our group has developed a decontamination process for uranium-contaminated (U-contaminated) concrete, and some experiments were performed to reduce the second radioactive waste. A decontamination process was developed to remove uranium from concrete waste. The yellow or brown colored surface of the wall brick with high concentration of uranium was removed by a chisel until the radioactivity of remaining block reached less than 1 Bq/g. The concrete waste coated with epoxy was directly burned by an oil flame, and the burned surface was then removed using the same method as the treatment of the brick. The selective mechanical removal of the concrete block reduced the amount of secondary radioactive waste. The concrete blocks without an epoxy were crushed to below 30 mm and sifted to 1 mm. When the concrete pieces larger than 1 mm were sequentially washed with a clear recycle solution and 1.0 M of nitric acid, their radioactivity reached below the limit value of uranium for self-disposal. For the concrete pieces smaller than 1 mm, a rotary washing machine and electrokinetic equipment were also used.

  3. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  4. Surgical treatment of complex small bowel Crohn disease.

    Science.gov (United States)

    Michelassi, Fabrizio; Sultan, Samuel

    2014-08-01

    The clinical presentations of Crohn disease of the small bowel vary from low to high complexity. Understanding the complexity of Crohn disease of the small bowel is important for the surgeon and the gastroenterologist caring for the patient and may be relevant for clinical research as a way to compare outcomes. Here, we present a categorization of complex small bowel Crohn disease and review its surgical treatment as a potential initial step toward the establishment of a definition of complex disease. The complexity of small bowel Crohn disease can be sorted into several categories: technical challenges, namely, fistulae, abscesses, bowel or ureteral obstruction, hemorrhage, cancer and thickened mesentery; extensive disease; the presence of short gut; a history of prolonged use of medications, particularly steroids, immunomodulators, and biological agents; and a high risk of recurrence. Although the principles of modern surgical treatment of Crohn disease have evolved to bowel conservation such as strictureplasty techniques and limited resection margins, such practices by themselves are often not sufficient for the management of complex small bowel Crohn disease. This manuscript reviews each category of complex small bowel Crohn disease, with special emphasis on appropriate surgical strategy.

  5. Argonne-West facility requirements for a radioactive waste treatment demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-03-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne`s Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne`s TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment.

  6. Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report

    Directory of Open Access Journals (Sweden)

    Putus Tuula

    2010-12-01

    Full Text Available Abstract Background Finnish and Swedish waste water systems used by the forest industry were found to be exceptionally heavily contaminated with legionellae in 2005. Case presentation We report two cases of severe pneumonia in employees working at two separate mills in Finland in 2006. Legionella serological and urinary antigen tests were used to diagnose Legionnaires' disease in the symptomatic employees, who had worked at, or close to, waste water treatment plants. Since the findings indicated a Legionella infection, the waste water and home water systems were studied in more detail. The antibody response and Legionella urinary antigen finding of Case A indicated that the infection had been caused by Legionella pneumophila serogroup 1. Case A had been exposed to legionellae while installing a pump into a post-clarification basin at the waste water treatment plant of mill A. Both the water and sludge in the basin contained high concentrations of Legionella pneumophila serogroup 1, in addition to serogroups 3 and 13. Case B was working 200 meters downwind from a waste water treatment plant, which had an active sludge basin and cooling towers. The antibody response indicated that his disease was due to Legionella pneumophila serogroup 2. The cooling tower was the only site at the waste water treatment plant yielding that serogroup, though water in the active sludge basin yielded abundant growth of Legionella pneumophila serogroup 5 and Legionella rubrilucens. Both workers recovered from the disease. Conclusion These are the first reported cases of Legionnaires' disease in Finland associated with industrial waste water systems.

  7. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.

    Science.gov (United States)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-09-01

    In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams considered, mainly due to the avoided burdens associated with the production of electricity from the plant. The plasma convertor, key characteristic of the thermal process investigated, although utilising electricity shows a relatively small contribution to the overall environmental impact of the plant. The results do not significantly vary in the scenario analysis. Accounting for biogenic carbon

  8. Odour annoyance and physical symptoms among residents living near waste treatment centres.

    Science.gov (United States)

    Aatamila, Marjaleena; Verkasalo, Pia K; Korhonen, Maarit J; Suominen, Anna Liisa; Hirvonen, Maija-Riitta; Viluksela, Marja K; Nevalainen, Aino

    2011-01-01

    Waste treatment processes produce odours and biological emissions to the environment, but their health effects are controversial. The aim of our study was to assess odour-associated self-reported physical symptoms among residents living near waste treatment centres. The study was conducted in the surroundings of five large-scale Finnish waste treatment centres with composting plants. In 2006, 1142 randomly selected residents living within 1.5, 3.0 and 5.0 km of these centres were interviewed by telephone. A questionnaire with 102 items asked about respondent's personal characteristics, odour exposure and symptoms during the preceding 12 months. Physical symptoms were analysed by distance to the waste treatment centre and by the respondent's perception and annoyance of waste treatment odour. The residents who were classified as "annoyed of the odour" reported following physical symptoms more than the others did: unusual shortness of breath (OR 1.5, 95% CI 1.0-2.2), eye irritation (1.5, 1.1-2.1), hoarseness/dry throat (1.5, 1.1-2.0), toothache (1.4, 1.0-2.1), unusual tiredness (1.5, 1.1-2.0), fever/shivering (1.7, 1.1-2.5), joint pain (1.5, 1.1-2.1) and muscular pain (1.5, 1.1-2.0). Moreover, the ORs for almost all other physical symptoms were elevated among the annoyed respondents. Reported odour annoyance near the waste treatment centres showed an association with many physical symptoms among residents living in the neighbouring areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  10. Separation technologies for the treatment of Idaho National Engineering Laboratory wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-10-01

    Currently about 6.8 million L of acidic, radioactive liquid waste that is not amenable to calcination, and about 3800 m{sup 3} of calcine exist at the ICPP. Legal drivers (court orders) and agreements between the state of Idaho, the U.S. Navy, and DOE exist that obligate INEL to develop, demonstrate, and implement technologies for treatment and interim storage of the radioactive liquid and calcine wastes. Per these agreements, all tank waste must be removed from the underground liquid storage tanks by the year 2012, and high-level radioactive waste must be treated and removed from INEL by 2035. Separation of the radionuclides from the wastes, followed by immobilization of the high-activity and low-activity fractions in glass and grout, respectively, is the approach preferred by INEL. Technologies to remove actinides (U, Np, Pu, and Am), Cs, Sr, and possibly Tc from highly acidic solutions are required to process INEL wastes. Decontamination of the wastes to NRC Class A low-level waste (LLW) is planned. Separation and isolation of Resource Conservation and Recovery Act (RCRA) metals (Hg, Pb, Cd, and Cr) from the highly radioactive waste streams may also be required. Remediation efforts will begin in FY 1997 to remove volatile organic compounds (VOCs) and radionuclides (Cs and Sr) from groundwater located at the Test Area North facility at INEL. A plume of VOCs and radionuclides has spread from the former TSF-05 injection well, and a Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) remediation action is under way. A Record of Decision was signed in August 1995 that commits INEL to remediate the plume from TSF-05. Removal of Sr and Cs from the groundwater using commercially available ion-exchange resins has been unsuccessful at meeting maximum contaminant levels, which are 119 pCi/L and 8 pCi/L for Cs and Sr, respectively. Cesium and Sr are the major contaminants that must be removed from the groundwater.

  11. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  12. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  13. Techniques of material-flow-specific residual waste treatment; Techniken der stoffstromspezifischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Maak, D.; Collins, H.J. [Technische Univ. Braunschweig, Leichtweiss - Inst. fuer Wasserbau (Germany)

    1998-09-01

    The success achieved with large-scale plants for mechanical-biological residual waste treatment has led to a change of course in waste pretreatment. In view of the low emissions via the water and gas routes from landfilled wastes and the low costs of waste treatment some authorising authorities have meanwhile issued special licences pursuant to clause no. 2.4 of the Technical Code on Household Waste, thus enabling mechanical-biological residual waste treatment plants to continue operations beyond the year 2005. Beside offering a means of treatment and disposal, cost-effective mechanical-biological pretreatment also provides an opportunity for going over to material-flow-specific residual waste treatment. These process stages permit recirculating valuable materials and using other materials for energy production. They can be retrofitted on a modular basis in existing plants. If these advantages of the present innovative pretreatment methods are not used, then mechanical-biological pretreatment can still serve as a preparatory stage for thermal treatment. To date there has been no practical experience with this innovative method of residual waste treatment. However, industrial-scale trials have shown that each individual treatment stage is capable of being carried out successfully. [Deutsch] Die guten Erfolge im grosstechnischen Betrieb von Anlagen zur mechanisch-biologischen Restabfallbehandlung haben zu einer Kursaenderung bei der Vorbehandlung von Abfaellen gefuehrt. Geringe Emissionen der deponierten Abfaelle auf dem Gas- und Wasserpfad sowie geringe Kosten fuer die Behandlung der Abfaelle haben dazu gefuehrt, dass inzwischen bereits einige Genehmigungsbehoerden eine Ausnahmegenehmigung nach Nr. 2.4 der TA Siedlungsabfall erteilt haben und damit der Betrieb von mechanisch-biologischen Restabfallbehandlungsanlagen auch nach 2005 ermoeglicht wird. Neben der alleinigen Behandlung und Deponierung bietet die kostenguenstige Vorbehandlung mit mechanisch

  14. Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile

    Energy Technology Data Exchange (ETDEWEB)

    Panak, P.J.; Nitsche, H. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie; Lawrence Berkeley National Lab., Berkeley, CA (United States). Glenn T. Seaborg Center; Raff, J.; Selenska-Pobell, S.; Geipel, G.; Bernhard, G. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie

    2000-07-01

    Accumulation studies with vegetative cells and spores of three Bacillus isolates (JG-A 30, JG-A 12, JG-A 22, classified as Bacillus cereus, Bacillus sphaericus, Bacillus megaterium) from a uranium mining waste pile (Johanngeorgenstadt, Saxony) and their corresponding reference strains have shown that Bacilli accumulate high amounts of U(VI) in the concentration range examined (11-214 mg/L). Information on the binding strength and the reversibility were obtained from extraction studies with different extractants. With 0.01 M EDTA solution the uranium bound to the biomass was released almost quantitatively. The characterization of the bacterial-UO{sub 2}{sup 2+}-complexes by time-resolved laser fluorescence spectroscopy (TRLFS) showed the formation of inner-sphere complexes with phosphate groups of the biomass. The results lead to the conclusion that the cell wall components with phosphate residues e.g., polysaccharides, teichoic and teichuroic acids or phospholipide layers of the membranes are responsible for the uranium binding. The spectroscopic studies of the U(VI)-complexes with isolated bacterial cell walls and isolated surface-layer proteins of the strain Bacillus sphaericus NCTC 9602 after cell fractionation have shown that the complexation of U(VI) with intact cells (vegetative cells or spores) is different from the coordination with isolated cell wall components, especially with the S-layer proteins. For all Bacillus strains studied in this work, a significant contribution of the S-layer proteins to the binding of uranyl to living cells can be excluded. (orig.)

  15. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  16. Investigation of Oxidation Methods for Waste Soy Sauce Treatment

    Directory of Open Access Journals (Sweden)

    Hyun-Hee Jang

    2017-10-01

    Full Text Available To obtain a suitable oxidation method for removing the color and lowering the chemical oxygen demand (COD of waste soy sauce, Fenton (Fe2+, Fenton-like (Fe3+, and ozone (O3 oxidation methods are used as the target reactions. In experimental conditions for Fenton oxidation, the dose of Fe2+ and Fe3+ was varied between 100 mg/L and 300 mg/L. The dose of hydrogen peroxide for the reaction was injected from 100–1000 mg/L. For ozone oxidation, the pH was increased from 3 to 14 and the O3-containing gas was supplied continuously for 30 min through a gas diffuser at the bottom of the reactor at different applied O3 doses (10–90 mg/L. We subjected it to a simple 1:20 dilution with deionized water to identify the comparison result in detail. O3 oxidation shows the highest efficiencies of color removal (81.1% and COD lowering (64.9% among the three oxidation methods. This is mainly due to the fact that it has a relatively large amount of hydroxyl radical, resulting in the degradation of organics. Thus, O3 oxidation could be a promising method for removing the color and lowering the COD of waste soy sauce. The critical parameters (pH and applied O3 dose were varied systematically to optimize O3 oxidation. It was found that the optimum pH and applied O3 dose are 11.0 mg/L and 50.0 mg/L, respectively (color removal = 34.2%, COD removal = 27.4%.

  17. Investigation of Oxidation Methods for Waste Soy Sauce Treatment.

    Science.gov (United States)

    Jang, Hyun-Hee; Seo, Gyu-Tae; Jeong, Dae-Woon

    2017-10-07

    To obtain a suitable oxidation method for removing the color and lowering the chemical oxygen demand (COD) of waste soy sauce, Fenton (Fe(2+)), Fenton-like (Fe(3+)), and ozone (O₃) oxidation methods are used as the target reactions. In experimental conditions for Fenton oxidation, the dose of Fe(2+) and Fe(3+) was varied between 100 mg/L and 300 mg/L. The dose of hydrogen peroxide for the reaction was injected from 100-1000 mg/L. For ozone oxidation, the pH was increased from 3 to 14 and the O₃-containing gas was supplied continuously for 30 min through a gas diffuser at the bottom of the reactor at different applied O₃ doses (10-90 mg/L). We subjected it to a simple 1:20 dilution with deionized water to identify the comparison result in detail. O3 oxidation shows the highest efficiencies of color removal (81.1%) and COD lowering (64.9%) among the three oxidation methods. This is mainly due to the fact that it has a relatively large amount of hydroxyl radical, resulting in the degradation of organics. Thus, O₃ oxidation could be a promising method for removing the color and lowering the COD of waste soy sauce. The critical parameters (pH and applied O₃ dose) were varied systematically to optimize O₃ oxidation. It was found that the optimum pH and applied O₃ dose are 11.0 mg/L and 50.0 mg/L, respectively (color removal = 34.2%, COD removal = 27.4%).

  18. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  19. Characterization of compost-like outputs from mechanical biological treatment of municipal solid waste.

    Science.gov (United States)

    Donovan, Sally M; Bateson, Thomas; Gronow, Jan R; Voulvoulis, Nikolaos

    2010-06-01

    Throughout the world, most municipal solid waste consists of biodegradable components. The most abundant biological component is cellulose, followed by hemicellulose and lignin. Recycling of these components is important for the carbon cycle. In an attempt to reduce the environmental impacts of biodegradable wastes, mechanical biological treatments (MBTs) are being used as a waste management process in many countries. MBT plants attempt to mechanically separate the biodegradable and nonbiodegradable components. The nonbiodegradable components are then sent for reprocessing or landfilled, whereas the biodegradable components are reduced in biological content through composting or anaerobic digestion, leaving a compost-like output (CLO). The further use of these partially degraded residues is uncertain, and in many cases it is likely that they will be landfilled. The implications of this for the future of landfill management are causing some concern because there is little evidence that the long-term emissions tail will be reduced. In this study, the CLOs from four different biological treatment processes were characterized for physical contamination through visual inspection and for biological content using a sequential digestion analysis. The results indicate that the composition of the incoming waste, dependent on the way the waste was collected/segregated, was the factor that influenced biological content most, with length of treatment process the second most important.

  20. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    Science.gov (United States)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  1. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  2. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...

  3. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    Science.gov (United States)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  4. [Tactic of surgical treatment of complex rectal fistula].

    Science.gov (United States)

    Grubnik, V V; Degtiarenko, S P

    2014-11-01

    The experience of the examination and treatment of 646 patients for different forms of complex rectal fistula (CRF) summarized. A working classification of the CRF with regard to their complication was developed and implemented. A differentiated approach has allowed greater use sphincter-preserving methods to improve functional outcome, quality of life, reduce the duration of the disability period and frequency of patients disability.

  5. Treatment of Voice Disorders in Medically Complex Children.

    Science.gov (United States)

    Harvey, Geralyn L.

    1996-01-01

    Children with laryngeal pathologies or alterations in laryngeal structure and/or function often present with complex medical profiles. This article presents case studies for the speech-language pathologist that provide information regarding management decisions and specific treatment options. (Author/DB)

  6. The Treatment of Complex Urethral Strictures Using Ventral Onlay ...

    African Journals Online (AJOL)

    Objectives: To compare the outcome of free onlay Buccal Mucosa Graft (BMG) with onlay penile Skin Island Flap (SIF) urethroplasty in the treatment of complex urethral strictures. Patients and Methods: A prospective comparative study was conducted at the Universitas Academic Hospital in Bloemfontein, South Africa.

  7. Diagnosis, monitoring and treatment of tuberous sclerosis complex ...

    African Journals Online (AJOL)

    NC 4.0. Diagnosis, monitoring and treatment of tuberous sclerosis complex: A South African consensus response to international guidelines. P J de Vries,1 MB ChB, MRCPsych, PhD; L Leclezio,1 MSc (Med) Neurosci; J M Wilmshurst,2 MB BS, ...

  8. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    Science.gov (United States)

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  9. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  10. Patients' perceptions, treatment need, and complexity of orthodontic re-treatment

    NARCIS (Netherlands)

    Ren, Yijin; Boxum, Christo; Sandham, John

    The aim of the present study was to investigate the subjective perception and objective treatment need and complexity of patients seeking orthodontic re-treatment. One hundred subjects (66 females, 34 males, age 26.7+/-8.2 years) seeking re-treatment were asked to complete a questionnaire which was

  11. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  12. Reverse osmosis treatment of wastes from the textile industry

    Energy Technology Data Exchange (ETDEWEB)

    Audran, J. [Electricite de France (EDF), 75 - Paris (France); Frizzarin, L.

    1995-09-01

    Reserve osmosis has been used in the textile industry for cleaning up effluent before sending it to the treatment plant. This process was preceded by a combination of flocculation and sedimentation. This system reduced water consumption since part of the water was reused, and also reduced the quantity of effluent to be dealt with by the treatment plant. (authors). 2 figs.

  13. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  14. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  15. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  16. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation.

    Science.gov (United States)

    Huang, Renliang; Cao, Ming; Guo, Hong; Qi, Wei; Su, Rongxin; He, Zhimin

    2014-05-21

    Pomelo peel is an abundant pectin-rich biomass waste in China and has the potential to serve as a source of fuels and chemicals. This study reports a promising way to deal with pomelo peel waste and to utilize it as raw material for ethanol production via simultaneous saccharification and fermentation (SSF). An integrated strategy, incorporating hydrothermal treatment, multienzyme formulation, and fed-batch operation, was further developed to enhance the ethanol production. The results show that hydrothermal treatment (120 °C, 15 min) could significantly reduce the use of cellulase (from 7 to 3.8 FPU g(-1)) and pectinase (from 20 to 10 U g(-1)). A multienzyme complex, which consists of cellulase, pectinase, β-glucosidase, and xylanase, was also proven to be effective to improve the hydrolysis of pretreated pomelo peel, leading to higher concentrations of fermentative sugars (36 vs 14 g L(-1)) and galacturonic acid (23 vs 9 g L(-1)) than those with the use of a single enzyme. Furthermore, to increase the final ethanol concentration, fed-batch operation by adding fresh substrate was employed in the SSF process. A final solid loading of 25% (w/v), which is achieved by adding 15% fresh substrate to the SSF system at an initial solid loading of 10%, produced 36 g L(-1) ethanol product in good yield (73.5%). The ethanol concentration is about 1.73-fold that at the maximum solid loading of 14% for batch operation, whereas both of them have a closed ethanol yield. The results indicate that the use of the fed-batch mode could alleviate the decrease in ethanol yield at high solid loading, which is caused by significant mass transfer limitation and increased inhibition of toxic compounds in the SSF process. The integrated strategy demonstrated in this work could open a new avenue for dealing with pectin-rich biomass wastes and utilization of the wastes to produce ethanol.

  17. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Financial plans for thermal waste treatment plants; Finanzierungsmodelle fuer thermische Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Soehndel, B. [Zweckverband Restmuellheizkraftwerk, Boeblingen (Germany); Faulstich, M. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    There are various financing and organisation models in use at German waste treatment plants. These models have an influence on capital costs as well as on operating costs. The great variety of existing models, which is not only found in theory but also in practice, is a sure indication that there is no universal solution at present but that models always have to be adapted to the current conditions governing the plant in question (e.g., tax law amendments). In view of the great complexity of this subject the following deliberations will be restricted to only the best-known types of financing model. [Deutsch] Fuer den Betrieb von Abfallbehandlungsanlagen gibt es bundesweit verschiedene Organisations- und Finanzierungsmodelle. Diese Modelle haben Auswirkungen auf die Kapitalkosten und die Betriebskosten. Die Vielfalt der nicht nur theoretisch moeglichen, sondern auch der in der Praxis existierenden Modelle ist mit Sicherheit ein Hinweis, dass derzeit keine universelle Loesung moeglich ist, sondern diese immer den aktuellen und spezifischen Verhaeltnissen (z.B. Steuerrechtsaenderung u.a.) angepasst werden muss. Auf Grund der Komplexibilitaet beschraenken sich die nachfolgenden Ausfuehrungen ausschliesslich auf die bekanntesten Formen der Finanzierungsmodelle. (orig./SR)

  19. Endoscopic treatment for complex biliary and pancreatic duct injuries

    Directory of Open Access Journals (Sweden)

    Simon Bouchard

    2014-01-01

    Full Text Available Severe injuries of biliary or pancreatic ducts are associated with significant morbidity and mortality. Severe bile duct injuries such as major biliary leaks, complete transection, or complete occlusion of bile ducts can be grouped under the term complex bile duct injuries (CBDI. In the spectrum of pancreatic duct injuries, disconnected pancreatic duct syndrome (DPDS represents the most severe form and most often occurs after a severe episode of acute pancreatitis. Treatment of these complex injuries is quite challenging and for many years surgical management has been considered the treatment of choice. However, in the past few years, some studies have reported the successful management of CBDI or DPDS using endoscopic procedures alone or in combination with a percutaneous approach. In this review, we detail the endoscopic or combined endoscopic/percutaneous treatment possibilities for CBDI and DPDS.

  20. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  1. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  2. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    Directory of Open Access Journals (Sweden)

    Midor Katarzyna

    2017-01-01

    Full Text Available The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  3. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    Science.gov (United States)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  4. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  5. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  6. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong; Peng, Shuming, E-mail: yy567@sina.com; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-12-15

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al{sub 2}O{sub 3}. • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al{sub 2}O{sub 3}. • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H{sub 2} in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h{sup −1}) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s{sup −1} at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  7. Independent review of inappropriate identification, storage and treatment methods of polychlorinated biphenyl waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the review was to evaluate incidents involving the inappropriate identification, storage, and treatment methods associated with polychlorinated biphenyl (PCB) waste streams originating from the V-tank system at the Test Area North (TAN). The team was instructed to perform a comprehensive review of Lockheed Martin Idaho Technologies Company (LMITCO`s) compliance programs related to these incidents to assess the adequacy and effectiveness of the management program in all respects including: adequacy of the waste management program in meeting all LMITCO requirements and regulations; adequacy of policies, plans, and procedures in addressing and implementing all federal and state requirements and regulations; and compliance status of LMITCO, LMITCO contract team members, and LMITCO contract/team member subcontractor personnel with established PCB management policies, plans, and procedures. The V-Tanks are part of an intermediate waste disposal system and are located at the Technical Support Facility (TSF) at TAN at the Idaho National Engineering and Environmental Laboratory (INEEL). The IRT evaluated how a waste was characterized, managed, and information was documented; however, they did not take control of wastes or ensure followup was performed on all waste streams that may have been generated from the V-Tanks. The team has also subsequently learned that the Environmental Restoration (ER) program is revising the plans for the decontamination and decommissioning of the intermediate waste disposal system based on new information listed and PCB wastes. The team has not reviewed those in-process changes. The source of PCB in the V-Tank is suspected to be a spill of hydraulic fluid in 1968.

  8. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  9. INDUSTRIAL WASTED WATER TREATMENT WITH ALUMINIUM SULPHATE COAGULANT

    Directory of Open Access Journals (Sweden)

    Khromysheva О.О.

    2011-10-01

    Full Text Available Physical and chemical regularities of coagulant treatment of sewage of Open Joint-Stock Company «GidrosylaMZTG» from heavy metals, chlorides and sulfates by with aluminum sulphate are studied.

  10. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  11. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    Energy Technology Data Exchange (ETDEWEB)

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.

  12. Performance of mechanical biological treatment of residual municipal waste in Poland

    Science.gov (United States)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  13. Combining mechanical-biological residual waste treatment plants with grate firing; Kombination MBA mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, E. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1998-09-01

    The promulgation of the Technical Code on Household Waste obliges the local authorities responsible for waste disposal to review existing and prepare new waste management plans. Given the present state of the art the Code`s limit value for loss due to burning of 5% makes thermal treatment of the residual waste practically compulsory. In preparation of these developments and in order to lower costs in general and be able respond flexibly to customer demands ABB is currently undertaking great efforts to provide thermal residual waste treatment plants with a modular design. [Deutsch] Mit Veroeffentlichung der TASi wurden die entsorgungspflichtigen Gebietskoerperschaften gezwungen, bereits vorhandene Abfall-Wirtschaftsplaene zu ueberarbeiten bzw. neue zu erstellen. Technisch laeuft nach derzeitigem Wissensstand der in der TASi vorgegebene maximale Gluehverlust von 5% darauf hinaus, dass eine thermische Behandlung des Restabfalls zwingend vorgegeben ist. Um hierfuer geruestet zu sein, aber auch um generell Kosten zu senken unf flexibel auf Kundenwuensche eingehen zu koennen, unternimmt ABB grosse Abstrengungen, den Aufbau von Anlagen zur thermischen Restabfallbehandlung modular zu gestalten. (orig./SR)

  14. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    Science.gov (United States)

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l-1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  15. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  16. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  17. Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production

    NARCIS (Netherlands)

    Marathe, Nachiket P.; Shetty, Sudarshan A.; Shouche, Yogesh S.; Larsson, D.G.J.

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted

  18. New Methodology in Life Cycle Impact Assessment (LCIA) of waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Wenzel, Henrik; Hauschild, Michael

    chose among different waste water treatments? Which ones are most beneficial in a holistic perspective? Here, the life cycle assessment (LCA) approach as a decision supporting tool may help because its goal is to allow quantification and direct comparison of characteristics as diverse as energy...

  19. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE.

    Science.gov (United States)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders; Bhander, Gurbakhash S; Møller, Jacob; Christensen, Thomas H

    2011-04-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating the environmental performance of alternative biological treatment technologies in relation to their mass flows, energy consumption, gaseous emissions, biogas recovery and compost/digestate utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment

    NARCIS (Netherlands)

    Hermann, B.G.|info:eu-repo/dai/nl/304837415; DeBeer, L.; De Wilde, B.; Blok, K.|info:eu-repo/dai/nl/07170275X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2011-01-01

    Many life cycle assessments of bio-based and biodegradable materials neglect the post-consumer waste treatment phase because of a lack of consistent data, even though this stage of the life cycle may strongly influence the conclusions. The aim of this paper is to approximate carbon and energy

  1. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  2. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Science.gov (United States)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  3. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  4. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  5. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P., E-mail: tpvalsala@gmail.com [Nuclear Recycle Board, Bhabha Atomic Research Centre, Tarapur 401 502 (India); Sonavane, M.S.; Kore, S.G.; Sonar, N.L.; De, Vaishali; Raghavendra, Y.; Chattopadyaya, S.; Dani, U.; Kulkarni, Y.; Changrani, R.D. [Nuclear Recycle Board, Bhabha Atomic Research Centre, Tarapur 401 502 (India)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Low Level radioactive liquid waste is decontaminated by chemical co-precipitation before discharge to the environment. Black-Right-Pointing-Pointer Separation of TBP degraded products from the waste by acidification provided very good DF with respect to different radionuclides. Black-Right-Pointing-Pointer The reductive co-precipitation of {sup 106}Ru and {sup 99}Tc effectively removed these radio nuclides from the waste stream. Black-Right-Pointing-Pointer Treatment of the separated organic mass is of concern due to its organic nature. Black-Right-Pointing-Pointer Fixation of organic mass in cement matrix can be adopted for its conditioning and shallow land disposal. - Abstract: The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like {sup 106}Ru and {sup 99}Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 {mu}Ci/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m{sup 3} of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived {sup 90}Y isotope

  6. Vitamins in the complex treatment of patients with gastrointestinal diseases

    Directory of Open Access Journals (Sweden)

    L.M. Shendrik

    2017-05-01

    Full Text Available The article presents current data on the complex treatment of gastrointestinal diseases with B vitamins as they play an important biological role, not only as a restorative factor, but also as therapeutic agents with diverse pharmacodynamic effect. Vitamins are recommended to include in the complex therapy of psychosomatic disorders especially such as functional gastrointestinal disorders, chronic liver disease of viral and toxic etiology and intestinal diseases (chronic colitis, irritated bowel syndrome. The usage of vitamins B are suggested to be able to significantly improve the quality of pharmacotherapy of many gastrointestinal diseases.

  7. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  8. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2017-07-01

      This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 mins is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  9. Chemical Waste and Allied Products.

    Science.gov (United States)

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  10. Assessment of impacts of combined treatment of solid urban waste landfill leachate and sewage on aquatic biota

    National Research Council Canada - National Science Library

    Camille Ferreira Mannarino; Josino Costa Moreira; João Alberto Ferreira; Ana Rosa Linde Arias

    2013-01-01

      The impact on tilapia fish of combined treatment of landfill leachate and domestic sewage was monitored in a waste treatment plant that operated on a pilot scale using the activated sludge process...

  11. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  12. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  13. Review on Chemical treatment of Industrial Waste Water * OPSAHU

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: Industrialization played an important role for scio-economy of the country. Generally, a lot of water is used and lot of wastewater generated from industries due their processes and washing purpose. A large number of chemicals are used for the production of potable water and in the treatment of wastewater ...

  14. Review on Chemical treatment of Industrial Waste Water | Sahu ...

    African Journals Online (AJOL)

    In potable water treatment chemicals such as inorganic salts and polymeric organic coagulants are used for primary coagulation, as coagulant aids and for sludge dewatering; lime and soda ash allowed for pH correction and water stabilization; caustic soda is used for pH adjustment, powdered activated carbon (PAC) can ...

  15. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  16. The thermal waste treatment: A technology for the environment; Termodistruzione dei rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, P. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-09-01

    The present report is divided into three parts: the first describes the combustion technology and energy recovery process, analyses the most efficient devices to reduce exhaust emissions, examines the environmental effects of emissions and reports economical considerations on the technology. The second part describes the commercial, pre commercial and experimental devices and their appliance sectors. The third part analyses the Italian situation taking into account separately industrial and municipal solid wastes. The aim of the distinction is to define for each stream the problems connected to the diffusion of the thermal waste treatment and the obstacles encountered to obtain information about the existent plant.

  17. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    OpenAIRE

    Wantawin, C.; Chobthiangtham, P.

    2004-01-01

    The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to m...

  18. Innovative hazardous waste treatment technologies: A developer's guide to support services

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    In the most recent amendments to the hazardous waste site remediation statute (the Superfund Amendments and Reauthorization Act - SARA), Congress expressed a preference for permanent remedies that reduce the toxicity, mobility, and/or volume of contaminants. Achievements of this goal requires the development and application of innovative approaches to hazardous waste treatment. The booklet provides information on sources of assistance and support in bringing technologies from the proof of concept stage to the commercialization stage. It includes information on sources of grant funding and technical assistance, and identifies incubators, test and evaluation facilities, and university-affiliated research centers that can provide a range of technology development and evaluation services.

  19. Assessment of the efficacy of Aspergillus sp. EL-2 in textile waste water treatment.

    Science.gov (United States)

    Gomaa, Ola M; Kareem, Hussein Abd El; Fatahy, Reham

    2012-04-01

    Fungal biomass has the ability to decolorize a wide variety of dyes successfully through a number of mechanisms. A brown rot isolate, previously identified as Aspergillus sp. EL-2, was used in the aerobic treatment of textile waste water efficiently. In the current work, the treated waste water was tested chemically using more than one combined treatment. Microbial toxicity, phytotoxicity, genotoxicity and cytotoxicity were also studied to assess the toxicity level for each treatment. The obtained data suggest that the contribution of more than one mode of treatment is essential to ensure complete destruction of the by-products. The use of gamma irradiation (25 kGy) after the bioremediation step led to the decrease of the by-products of biodegradation as observed by visible spectrum and Fourier transfer infra red spectroscopy (FT-IR). The toxicity assessment presented variable results indicating the need for more than one toxicity test to confirm the presence or absence of hazardous compounds. Brown rot fungus could be used efficiently in the treatment of textile waste water without the risk of obtaining high carcinogenic or genotoxic compounds, especially if combined treatment is employed.

  20. Conflicts concerning sites for waste treatment and waste disposal plants. Konflikte um Standorte fuer Abfallbehandlungs- und -beseitigungsanlagen; Ursachen und Loesungsansaetze aus oekonomischer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH)

  1. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  2. Stratigraphy of the unsaturated zone at the radioactive waste management complex, Idaho National Engineering Laboratory, Idaho

    Science.gov (United States)

    Anderson, S.R.; Lewis, B.D.

    1989-01-01

    A complex sequence of layered basalt flows, cinders, and sediment underlies the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory in southeastern Idaho. Wells drilled to 700 ft penetrate a sequence of 10 basalt-flow groups and 7 major sedimentary interbeds that range in age from about 100,000 to 600,000 years old. The 10 flow groups consist of 22 separate lava flows and flow-units. Each flow group is made up of from one to five petrographically similar flows that erupted from common source areas during periods of less than 200 years. Sedimentary interbeds consist of fluvial, lacustrine, and wind-blown deposits of clay, silt, sand, and gravel that accumulated during periods of volcanic inactivity ranging from thousands to hundreds of thousands of years. Flows and sediment are unsaturated to a depth of about 600 ft. Flows and sediment below a depth of 600 ft are saturated and make up the uppermost part of the Snake River Plain aquifer. The areal extent of flow groups and interbeds was determined from well cuttings, cores, geophysical logs, potassium-argon ages, and geomagnetic properties. Stratigraphical control was provided by four sequential basalt flows near the base of the unsaturated zone that have reversed geomagnetic polarity and high emission of natural gamma radiation compared to other flows. Natural gamma logs were used as a primary correlation tool. Natural-gamma emissions, which are generally uniform in related, petrographically similar flows, increase or decrease between petrographically dissimilar flows of different age and source. (USGS)

  3. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1993-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  4. Assessment of the state of food waste treatment in the United States and Canada.

    Science.gov (United States)

    Levis, J W; Barlaz, M A; Themelis, N J; Ulloa, P

    2010-01-01

    Currently in the US, over 97% of food waste is estimated to be buried in landfills. There is nonetheless interest in strategies to divert this waste from landfills as evidenced by a number of programs and policies at the local and state levels, including collection programs for source separated organic wastes (SSO). The objective of this study was to characterize the state-of-the-practice of food waste treatment alternatives in the US and Canada. Site visits were conducted to aerobic composting and two anaerobic digestion facilities, in addition to meetings with officials that are responsible for program implementation and financing. The technology to produce useful products from either aerobic or anaerobic treatment of SSO is in place. However, there are a number of implementation issues that must be addressed, principally project economics and feedstock purity. Project economics varied by region based on landfill disposal fees. Feedstock purity can be obtained by enforcement of contaminant standards and/or manual or mechanical sorting of the feedstock prior to and after treatment. Future SSO diversion will be governed by economics and policy incentives, including landfill organics bans and climate change mitigation policies. 2010 Elsevier Ltd. All rights reserved.

  5. Development of advanced treatment technologies of radio-aqueous waste by an environmental friendly decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Wook; Lee, E. H.; Moon, J. K. and others

    2006-01-15

    This project was aimed at the technology developments of electrode fabrication, electrolytic reactor design and fabrication, electrolytic processes and the analyses of electroytic reaction mechanisms, which were essential elements for the development of electrolytic systems to decompose or teat environmentally- friendly the several salts contained in waste solutions which are to be generated in the fields of nuclear/non-nuclear industries. Major research items carried our in this project were as follows; - Development of technologies to choose and fabricate the anodes and cathodes for the treatments of waste solutions containing nitrogen compounds and organics. - Development of a membrane electrolyzer stacked by mono-polar unit cells with independent series flow path of electrolytes - Development of an electrolyzer with a self-pH adjustment and an electrolytic process for ammonia decomposition by using the electrolyzer - Analysis of electrolytic reaction mechanism of ammonia - Development of an ion exchange membrane electrolyzer with only one discharge of pH-controlled electrolyte solution - Development of electrolytic dechlorination technology for the treatment of chloride molten salt waste salt from pyroprocess. - Development of technologies for treatment of high concentration nitric acid and recovery of waste organic solvent.

  6. Assessment of chars from black coal carbonization for adsorption treatment of waste water from coking plants

    Energy Technology Data Exchange (ETDEWEB)

    Wolany, B.; Szkuta-Pochopien, T.; Malczyk, R.; Sekula, M.

    1985-06-01

    The Institute for Chemical Coal Processing investigated efficiency of carbon adsorption in treatment of waste water from a coking plant in Poland. Four types of adsorption media were used: a coarse-grained non-activated char, a fine-grained non-activated char, a coarse-grained activated char and Carbopol Z-4 activated carbon produced on a commercial scale. The chars were produced by carbonization of black coal from Poland in a rotary chamber using semicoke as heat carrier. Sorptive properties of 4 types of chars were compared. All the tested chars were characterized by sorptive properties in relation to chemical compounds from waste water. The coarse-grained activated char was superior to other chars. The working sorptive capacity of the coarse-grained activated char amounted to 86% of the capacity of Carbopol Z-4 activated carbon (when 2 chars were used for reducing chemical oxygen demand of waste water to about 35% of the initial level, treatment efficiency amounted to 65%). Use of the coarse-grained activated char for waste water treatment in coking plants on a commercial scale is recommended. 13 references.

  7. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants.

    Science.gov (United States)

    Pittmann, Timo; Steinmetz, Heidrun

    2017-06-06

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants.

  8. Waste and resources management. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities (Landfill Ordinance - AbfAblV) - one year on; Abfall- und Ressourcenwirtschaft. 1 Jahr Abfallablagerungsverordnung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R.; Bidlingmaier, W. (eds.)

    2006-07-01

    As early as the beginning of 2005 there were signs of trouble ahead resulting from the new Landfill Ordinance - it was only the extent of the trouble that was somewhat underestimated. Suddenly and unexpected to everyone, the industrial wastes that were supposed to have been avoided or reutilised were there again. These ''returned wastes'', in most cases arisings that were not taken into account during plant design, are currently causing serious capacity problems both in waste incineration and in mechanical biological waste treatment plants. In not a few cases the originally planned supply rates are being exceeded by up to 35%, with dramatic consequences. Another source of problems is the lack of utilisation capacities for high-caloric waste fractions, especially for those from mechanical biological waste treatment. The underlying causes are manifold, ranging from market misjudgment, insufficient fuel processing capacities to supposed or factual quality problems with the generated secondary fuel. The only remedial option available at present - at least from the legal viewpoint - is interim storage. The changed framework conditions for biowaste and green waste utilisation brought about by the Renewable Energy Law offers new interesting perspectives. Numerous unresolved questions and quite as many solution proposals provide reason enough for making residual waste treatment and biowaste utilisation one of the focal topics of the congress. Many EU countries, but also developing and threshold countries, are on the verge of making decisions on waste utilisation and treatment. The experiences, positive and negative, that have been gained to date in Germany with the full-area implementation of residual waste treatment can serve these countries as a valuable guide. Another focal topic of the congress is climate and resource protection.

  9. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  10. Complex corrective procedure in surgical treatment of asymmetrical pectus excavatum.

    Science.gov (United States)

    Pawlak, Krystian; Gąsiorowski, Łuksasz; Dyszkiewicz, Wojciech

    2017-06-01

    In this study we analysed the early and late results of surgical treatment of asymmetrical pectus excavatum using complex surgery combining the Ravitch procedure and the Nuss procedure in the same general anaesthesia. Eighty out of 938 patients with pectus excavatum operated on between 2002 and 2013, 67 males and 13 females aged 11 to 49 years (mean: 19.2), underwent a complex surgical procedure. During surgery the Nuss procedure was usually performed first (one corrective bar was implanted in 35 patients and two bars were inserted in 45 patients). Because of the unsatisfactory cosmetic effect, additionally the Ravitch procedure was started. The bars were electively removed 3 years after the primary operation. No mortality was observed in the early postoperative period. Non-life-threatening and transient postoperative complications occurred in 44 (55%) patients. The most common was pleural effusion (21%), which in 50% of patients required pleural drainage. A satisfactory and stable correction effect was achieved in 88% of cases. Six of those patients required repeat surgery due to recurrence of deformity. A complex corrective procedure is a successful method of surgical treatment in patients with asymmetrical pectus excavatum and is characterized by satisfactory postoperative results. The use of corrective bars enhances the cosmetic effect. The frequency of early, mostly non-life-threatening postoperative complications after a complex procedure is insignificantly higher than that after the Nuss procedure.

  11. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    Science.gov (United States)

    Aleluia, João; Ferrão, Paulo

    2017-11-01

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD 2015 /ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD 2015 /ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  12. Treatment of waste lubricating oil using BERC/ERDA solvent

    Energy Technology Data Exchange (ETDEWEB)

    Corlew, J.S.; Sluski, R.J.

    1976-06-25

    From data generated in the laboratory and pilot plant studies a quality rerefined oil can be produced via BERC/ERDA solvent extraction and clay treatment. Some of the important processing variables that determine the quality of the finished product are temperature of solvent extraction, type of clay used, temperature and time of clay treatment, and the atmosphere under which the oil is treated with clay. Yields of 75 percent based on water-distillate-free oil can be expected at the conditions used in pilot plant operations. The oils obtained could be compounded to produce a large number of high quality lubricating products. Unlike an acid-clay process where the acid sludges pose an environmental problem, the BERC/ERDA system produces a marketable sludge.

  13. Life Cycle Assessment of Waste Water Treatment Plants in Ireland

    Directory of Open Access Journals (Sweden)

    Greg Mcnamara

    2016-09-01

      The Urban Wastewater Treatment Directive 91/271/EEC introduced a series of measures for the purpose of protecting the environment from the adverse effects of effluent discharge from wastewater treatment plants.  There are environmental costs associated with attaining the required level of water quality set out in the directive such as greenhouse gas emissions due to energy production, and ecotoxicity from sludge application to land.  The goal of this study is to assess the environmental costs in an Irish context, focusing specifically on the effects of variation in scale and discharge limitation. Life cycle assessment is the analytical tool used to evaluate the environmental impact.  The life cycle impact assessment methodology developed by the Centre of Environmental Science, Leiden University (2010 has been adopted and implemented using GaBi 6.0 life cycle assessment software.  Two plants of varying size and location were chosen for the study. The study found that energy consumption and sludge application to land are the largest contributors to the overall environmental impact associated with the treatment process at both plants.  Economies of scale were observed in energy usage during secondary aeration.   

  14. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  15. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

    2002-02-01

    Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

  17. Valorisation of fish by-products against waste management treatments--Comparison of environmental impacts.

    Science.gov (United States)

    Lopes, Carla; Antelo, Luis T; Franco-Uría, Amaya; Alonso, Antonio A; Pérez-Martín, Ricardo

    2015-12-01

    Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing compan