WorldWideScience

Sample records for waste transportation

  1. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  2. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  3. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  4. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  5. Transport categories for radioactive waste

    International Nuclear Information System (INIS)

    Goldfinch, E.P.

    1993-01-01

    The paper makes proposals for materials which are intrinsically safe without packaging other than for administrative convenience, and for wastes to be transported to the same levels of safety as Type A packages. It is proposed that waste forms to be transported to the same level of safety as Type B packages cannot be prescribed in advance without the need for Competent Authority approval for each specific form or combination of waste form and packaging. Finally it is proposed to revert to simple packaging requirements, equivalent to the earlier industrial and strong industrial packaging. The former have no quantitative performance requirements and the latter have requirements identical to Type A packages. (author)

  6. TRU waste transportation package development

    International Nuclear Information System (INIS)

    Eakes, R.G.; Lamoreaux, G.H.; Romesberg, L.E.; Sutherland, S.H.; Duffey, T.A.

    1980-01-01

    Inventories of the transuranic wastes buried or stored at various US DOE sites are tabulated. The leading conceptual design of Type-B packaging for contact-handled transuranic waste is the Transuranic Package Transporter (TRUPACT), a large metal container comprising inner and outer tubular steel frameworks which are separated by rigid polyurethane foam and sheathed with steel plate. Testing of TRUPACT is reported. The schedule for its development is given. 6 figures

  7. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  8. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  9. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  10. Transport of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Keese, H.

    1976-01-01

    A transport system for spent fuel elements and radioactive waste is reported on. The construction of appropriate transport containers, safety regulations, as well as future developments in transport systems and transport containers are discussed in detail. The volume of the spent fuel elements to be moved and the number of transport containers needed is gone into, too. (HR/LN) [de

  11. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  12. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  13. Transportable Vitrification System Demonstration on Mixed Waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge's East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a 'field' scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs

  14. Predicting transportation routes for radioactive wastes

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Clarke, D.B.; McGuire, S.C.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) has been involved in transportation logistics of radioactive wastes as part of the overall waste transportation program. A Spent Fuel Logistics Model (SFLM), was developed to predict overall material balances representing the flow of spent fuel assemblies from reactors to away-from-reactor storage facilities and/or to federal repositories. The transportation requirements to make these shipments are also itemized. The next logical step in the overall transportation project was the development of a set of computer codes which would predict likely transportation routes for waste shipments. Two separate routing models are now operational at ORNL. Routes for truck transport can be estimated with the HIGHWAY program, and rail and barge routes can be predicted with the INTERLINE model. This paper discusses examples of the route estimates and applications of the routing models

  15. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  16. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  17. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  18. Radioactive waste and transport. Chapter 6

    International Nuclear Information System (INIS)

    1978-01-01

    A brief definition of the nature of radioactive waste is followed by a more detailed discussion of high level waste, its composition the amounts involved, storage in liquid and in solid form and the storage of non-reprocessed spent fuel. The final disposal of high level waste in deep geological structures is then described, based on the Swedish KBS study. The effectiveness of the artificial and natural barriers in preventing the radioactive substances from reaching the biosphere is discussed. American and Swedish risk analyses are briefly discussed, and practical experience presented. Low and medium level wastes are thereafter treated in a similar, though briefer manner. Transport of radioactive materials, fresh fuel, spent fuel and waste is then dealt with. Regulations for the containers and their tests are briefly presented and the risk of accidents, theft and sabotage during transport are discussed. (JIW)

  19. Contaminant transport at a waste residue deposit

    DEFF Research Database (Denmark)

    Engesgaard, Peter Knudegaard; Traberg, Rikke

    1996-01-01

    Contaminant transport in an aquifer at an incinerator waste residue deposit in Denmark is simulated. A two-dimensional, geochemical transport code is developed for this purpose and tested by comparison to results from another code, The code is applied to a column experiment and to the field site...

  20. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  1. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  2. WASTES: Waste System Transportation and Economic Simulation--Version 2:

    International Nuclear Information System (INIS)

    Sovers, R.A.; Shay, M.R.; Ouderkirk, S.J.; McNair, G.W.; Eagle, B.G.

    1988-02-01

    The Waste System Transportation and Economic Simulation (WASTES) Technical Reference Manual was written to describe and document the algorithms used within the WASTES model as implemented in Version 2.23. The manual will serve as a reference for users of the WASTES system. The intended audience for this manual are knowledgeable users of WASTES who have an interest in the underlying principles and algorithms used within the WASTES model. Each algorithm is described in nonprogrammers terminology, and the source and uncertainties of the constants in use by these algorithms are described. The manual also describes the general philosophy and rules used to: 1) determine the allocation and priority of spent fuel generation sources to facility destinations, 2) calculate transportation costs, and 3) estimate the cost of at-reactor ex-pool storage. A detailed description of the implementation of many of the algorithms is also included in the WASTES Programmers Reference Manual (Shay and Buxbaum 1986a). This manual is separated into sections based on the general usage of the algorithms being discussed. 8 refs., 14 figs., 2 tabs

  3. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  4. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  5. Rail transportation of Fernald remediation waste

    International Nuclear Information System (INIS)

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-01

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994

  6. Konrad transport study: Safety analysis of the transportation of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-05-01

    For the purpose of the study the anticipated waste transport volume and the waste properties were analysed in detail. This included information on the transport containers, waste product properties, activity inventories and local dose rates of the waste packages being transported. The envisaged practical implementation, i.e. the transport arrangements including shunting operations at the Braunschweig marshalling yard and the Beddingen interchange station, were also included. The two shipping scenarios 100% transportation by rail and 80% transportation by rail, 20% by road, which could be considered to bound the real conditions, were analysed. The relevant transport regulations contain the requirements to be met by the transport of shipping units carrying radioactive waste. In addition, the ''Konrad preliminary waste acceptance criteria'' contain activity limits for waste packages being disposed of in conjunction with further requirements relating to the properties of waste products and waste containers. (orig./DG)

  7. Optimization of municipal solid waste collection and transportation routes

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  8. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  9. Device for the transport of radioactive waste

    International Nuclear Information System (INIS)

    Nolte, K.H.; Simmich, K.; Verhoeven, J.; Sondermann, W.; Frotscher, H.; Schuchardt, M.; Engelmann, H.J.; Kolditz, H.; Schwaegermann, H.F.

    1978-01-01

    The containers are transported purely by machine inside the loading cell of a cavern system and can be used for further overload transport after emptying and locking out of the loading cell. After unloading from the transport vehicle, the container passes through a radiation protection gate into the loading cell, where it is transported via rollers to a crane, whose rotating arm is provided with a pneumatically driven spindle screwdriver, which undoes all the screws on the container lid. After removing the lid, the electrically operated grab of a second rotating crane lifts the drum with the radioactive waste from the container and deposits them on rollers, from which they pass to a transport vessel, which transports the waste to the final storage position. The lid is then screwed back on to the empty container, the container is placed on some scales and is only transported through a window out of the loading cell if its weight agrees with the given tare weight. (HP) [de

  10. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  11. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  12. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  13. Is radioactive mixed waste packaging and transportation really a problem

    International Nuclear Information System (INIS)

    McCall, D.L.; Calihan, T.W. III.

    1992-01-01

    Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations

  14. TRU waste transport economics: an overview

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    There are currently three predominant methods used to transport transuranium contaminated waste. These are: (1) ATMX Railcars--500 and 600 series, (2) Super Tigers, and (3) Poly Panthers. Both the ATMX-500 and 600 series railcars are massive doubly walled steel railcars which provide the equivalent protection of a Type B package. In ATMX-600 the rapid loading and unloading of the 9 x 9 x 50 feet cargo space is achieved by prepackaging the TRU waste into standard 20-foot steel cargo containers. The ATMX-500 railcars are divided into three inside bays, having dimensions of 16 (l) x 9.25 (w) x 6.25 (h) feet. A typical load consists of 128 55-gallon drums (however, space can accommodate 192 drums), 12 fiberglass boxes (4 x 4 x 7), or a combination of palletized drums and boxes. A Super Tiger is an overpack authorized for Type A, Type B, and large quantities of radioactive materials having outside dimensions of 8 x 8 x 20 feet. Maximum payload is approximately 28,700 lb with a gross weight of 45,000 lb. The primary factors influencing transport costs are examined including freight rates of transport mode, effective cargo (weight and volume) management, effective utilization of available space (package design), transport mileage, and rental fees or initial capital outlay. Miscellaneous factors are also examined

  15. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  16. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  17. Optimization of municipal solid waste collection and transportation routes.

    Science.gov (United States)

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. L. Transportation of fuel and wastes

    International Nuclear Information System (INIS)

    1976-01-01

    The principles applied to the transport of nuclear fuels and wastes have been founded on the more general provisions governing the transport of radioactive materials. Safe shipment of radioactive materials has historically been sought by specifying required characteristics in the shipping packages and establishing minimum acceptable levels of package integrity. The reason for this is that in the course of transport by road, rail, sea, or air, consignments of radioactive material are in close proximity to members of the public, and in many cases they are loaded or unloaded by transport workers who have had no special training or experience in the handling of such substances. The procedures adopted to ensure transport safety have worked satisfactorily. Both in the USA and the UK, the industry and regulatory authorities have established outstanding safety records in shipping radioactive materials over a period of thirty years. It is claimed that there have been no injuries due to the radioactive nature of the shipments, nor has there been a release of nuclear materials serious enough to be a threat of death or injury. Admittedly, about 95% of the 800,000 shipments estimated in the USA each year involve small quantities for use in industry, medicine, agriculture and education. However the principals underlying the safe packaging of these and reactor fuels are the same, and there is little reason to doubt that a similar safety record can be maintained

  19. Nuclear Waste Policy Act transportation planning

    International Nuclear Information System (INIS)

    Klein, K.A.

    1984-01-01

    The importance and magnitude of effort to put in place a safe, publicly acceptable transportation system for radioactive wastes are discussed. The importance of working openly, documenting efforts in a way that is objective and can be understood by the general public, and being particularly sensitive and responsive to public concerns is recognized. Key elements of current planning have been described, but numerous details remain to be worked out. These details will be worked out, proposed in programs plans, and made publicly available. The author looks forward to ideas and comments for improving these plans and their implementation

  20. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  1. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  2. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-08-01

    This document reports progress on a study of large transport packages for decommissioning waste and is the semi-annual report for the period 1 January - 30 June 1988. The main tasks performed during the period related to the assembly of package design criteria ie those aspects of manufacture, handling, storage, transport and disposal which impose constraints on design. This work was synthesised into a design specification for packages which formed the conclusion of that task and was the entry into the final task - the development of package design concepts. The design specifications, which concentrated on the Industrial Package category of the IAEA Transport Regulations, has been interpreted for the two main concepts (a) a self-shielded package disposed of in its entirety and (b) a package with returnable shielding. Preliminary information has been prepared on the cost of providing the package as well as transport to a repository and disposal. There is considerable uncertainty about the cost of disposal and variations of over a factor of 10 are possible. Under these circumstances there is merit in choosing a design concept which is relatively insensitive to disposal cost variations. The initial results indicate that on these grounds the package with returnable shielding is preferred. (author)

  3. Optimization of waste transportation route at waste transfers point in Lowokwaru District, Malang City

    Science.gov (United States)

    Hariyani, S.; Meidiana, C.

    2018-04-01

    Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.

  4. Transportation training: Focusing on movement of hazardous substances and wastes

    International Nuclear Information System (INIS)

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs

  5. Public acceptance of radioactive waste transportation systems

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1978-01-01

    As the thoughts of the country concentrate on the problems of transportation of waste through high traffic urban areas, the problem of how to deal directly and honestly with the public takes on greater significance in the nuclear industry. Non-technical aspects of the methods of transportation, especially by railroad and highway, enter into the total scheme of moving radioactive waste from both weapon and nuclear power plant sources to final processing and disposal. Factors such as shape, color, size, familiarity, and industrial designing are necessary ingredients that take on equal or more significance that the designing of containers to survive the hypothetical accident conditions of the present, or even of the future. Protective Packaging, Inc. has been a leader in the presentation of containers to the private and public sector of the nuclear industry. The products have undergone very open testing, in public, with both invited and uninvited witnesses. In those experiences, dating back to 1969, the problems of public acceptance will be related between the technical problems and the associated social and political problems that relate to container acceptance by the public in today's world. Proven experience data, relative to the safety of the present day systems will be discussed, as well as methods of improving the image in the future. Review will also be given to the effort by industry to discuss the proven record with parties outside the nuclear industry, i.e., individuals and pressure groups that are diametrically opposed to review the facts relative to safety as opposed to other, but more traditional industries

  6. Radioactive waste transportation systems analysis and program plan

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report

  7. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  8. Draft of regulations for road transport of radioactive wastes

    International Nuclear Information System (INIS)

    Gese, J.; Zizka, B.

    1979-06-01

    A draft regulation is presented for the transport of solid and solidified radioactive wastes from nuclear power plants. The draft takes into consideration dosimetric, safety and fire-fighting directives, transport organization, anticipated amounts of radioactive wastes, characteristics of containers, maintenance of vehicles, and equipment of vehicles and personnel. The draft is based on the provisional regulations governing the transport on public roads issued in 1973, valid directives, decrees, acts and standards, and complies with 1973 IAEA requirements. (J.P.)

  9. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  10. Radioactive waste transport to a Nirex deep repository

    International Nuclear Information System (INIS)

    Bennett, D.; Appleton, P.R.; Eastman, C.R.

    1989-01-01

    Nirex is addressing the transport of radioactive wastes, repository construction materials, personnel and spoil as part of their development of a deep repository. An integrated transport system will be developed for wastes which may involve, road, rail and sea transport. The possible application and the scale of operation of the transport system is described. Environmental impact assessments will be carried out, and the proposed approach to these is described. A methodology for the assessment of transport safety has been established and the results of a preliminary assessment are given. (author)

  11. Concept of Operations for Waste Transport, Emplacement, and Retrieval

    International Nuclear Information System (INIS)

    Raczka, Norman T.

    2001-01-01

    The preparation of this technical report has two objectives. The first objective is to discuss the base case concepts of waste transport, emplacement, and retrieval operations and evaluate these operations relative to a lower-temperature repository design. Aspects of the operations involved in waste transport, emplacement and retrieval may be affected by the lower-temperature operating schemes. This report evaluates the effects the lower-temperature alternatives may have on the operational concepts involved in emplacing and retrieving waste. The second objective is to provide backup material for the design description, in a traceable and defensible format, for Section 2 of the Waste Emplacement/Retrieval System Description Document

  12. Application of the transport system concept to the transport of LSA waste

    International Nuclear Information System (INIS)

    Lombard, J.; Appleton, P.; Libon, H.; Sannen, H.

    1994-01-01

    The aim of this presentation is to illustrate using two examples how a particular special arrangement can be envisaged for the transport of a well defined category of waste according to the ''Transport System Concept''. (authors)

  13. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  14. Transport of radioactive waste in Germany - a survey

    International Nuclear Information System (INIS)

    Alter, U.

    1995-01-01

    The transport of radioactive waste is centralised and coordinated by the German Railway Company (Deutsche Bahn AG, DB) in Germany. The conditioning of radioactive waste is now centralised and carried out by the Gesellschaft fuer Nucklear Service (GNS). The Germany Railway Company, DB, is totally and exclusively responsible for the transport, the GNS is totally and exclusively responsible for the conditioning of radioactive waste. The German Railway Company transports all radioactive waste from nuclear power plants, conditioning facilities and the existing intermediate storage facilities in Germany. In 1992 nearly 177 shipments of radioactive waste were carried out, in 1991 the total amount was 179 shipments. A brief description of the transport procedures, the use of different waste packages for radioactive waste with negligible heat generation and the transport routes within Germany will be given. For this purpose the inspection authorities in Germany have used a new documentation system, a special computer program for waste flow tracking and quality assurance and compliance assurance, developed by the electrical power companies in Germany. (Author)

  15. Transuranic waste transportation issues in the United States

    International Nuclear Information System (INIS)

    Channell, J.K.; Rodgers, J.C.; Neill, R.H.

    1988-01-01

    The United States Department of Energy (DOE) expects to begin disposal of defence transuranic wastes at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico before the end of 1988. Approximately 25,000 truck shipments involving 35 million vehicle kilometers will be required to transport about 175,000 m 3 of contact-handled transuranic waste. Up to 5,000 shipments of remote-handled transuranic waste (RH-TRU) will also be shipped to WIPP in shielded casks. This paper addresses the shipment of CH-TRU wastes

  16. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  17. Packaging and transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Streatfield, R.E.

    1987-02-01

    The paper presents an overview of Nirex proposals for the packaging and transport of low and intermediate-level radioactive waste, as well as the regulatory requirements which must be met in such operations. (author)

  18. Low-level radioactive waste involved in transportation events

    International Nuclear Information System (INIS)

    Cashwell, C.E.

    1990-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information about radioactive materials transportation accidents and incidents that have occurred in the United States from 1971 through 1989. Using data from RMIR, this paper will provide detailed information on transportation accidents and incidents that have occurred with low-level radioactive wastes. Additionally, overview data on the number of transport accidents and incidents that have occurred and by what transport mode will also be provided. 4 refs., 6 tabs

  19. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    OpenAIRE

    Sudipta De; Rafael Luque

    2014-01-01

    The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as wel...

  20. Update of Nuclear Waste Policy Act transportation activities

    International Nuclear Information System (INIS)

    Callaghan, E.F.

    1987-01-01

    As directed by the Nuclear Waste Policy Act of 1982 (NWPA), the Department of Energy (DOE) is developing a nationwide system for transporting spent nuclear fuel and high-level radioactive waste from commercial power plants to deep geologic repositories for disposal. Plans for the transportation system will consider the following factors: the President's 1985 decision to co-locate some defense high-level waste with commercial waste in a repository, the NWPA requirement that the private sector be used to the fullest extent possible in developing and operating the system, and the possible approval by Congress of the DOE's proposal for a Monitored Retrievable Storage (MRS) facility, submitted in March 1987. (The MRS, if approved, would provide for the consolidation, packaging, and perhaps the temporary storage of spent fuel from reactors.) The ''Transportation Business Plan'', published in January 1986, reflects these considerations. The transportation system, when operational, will consist of two elements: (1) the cask system, which includes the transportation casks, the vehicular conveyances, tie-downs, and associated equipment for handling the casks; and (2) the transportation support system which is comprised of facilities, equipment, and services to support waste transportation. Development of the transportation system incorporates the following work elements: operational planning, support systems development, cash system development, systems analysis, and institutional activities. This paper focusses on the technical aspects of the system

  1. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  2. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    International Nuclear Information System (INIS)

    Draper, K.D.

    2005-01-01

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a Development Plan. Non-standard components and

  3. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  4. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  5. Quantifying capital goods for collection and transport of waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2012-01-01

    he capital goods for collection and transport of waste were quantified for different types of containers (plastic containers, cubes and steel containers) and an 18-tonnes compacting collection truck. The data were collected from producers and vendors of the bins and the truck. The service lifetime...... tonne of waste handled. The impact of producing the capital goods for waste collection and transport cannot be neglected as the capital goods dominate (>85%) the categories human-toxicity (non-cancer and cancer), ecotoxicity, resource depletion and aquatic eutrophication, but also play a role (>13...

  6. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  7. Transport volume in regions of the Czech Republic in relation to the production of waste

    OpenAIRE

    Pojkarová, Kateřina; Hruška, Roman

    2010-01-01

    The article deals with the transport volume in regions of the Czech Republic in relation to the production of waste. On the basis of waste statistics and transport statistics is researched the greatness of the relation between the transport volume and the production of waste in regions of the Czech Republic. The relation is illustrated graphically too. We have many kinds of waste which we can monitor. The most important kinds of waste are municipal waste, industrial waste, construction ...

  8. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  9. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  10. M.S.Sigyn - Simbol of Sweden waste transport success

    International Nuclear Information System (INIS)

    Gustavson, B.; Dibek, P.

    1995-01-01

    The article is devoted to the presently existing system in Sweden of spent nuclear fuel and radioactive wastes maritime transportation from NPPs to places of permanent and intermediate storage. Transport casks and penals, their maintenance and control system are described. Explanatory work with public is partially also considered. 1 tab

  11. Safety analysis of sea transportation of solidified reactor wastes

    International Nuclear Information System (INIS)

    Devell, L.; Edlund, O.; Kjellbert, N.; Grundfelt, B.; Milchert, T.

    1980-06-01

    A central handling and storage facility (ALMA) for low- and medium-level reactor waste from Swedish nuclear power plants is being planned and the transportation to it will be by sea. A safety assessment devoted to the potential environmental impacts from the transportation is presented. (Auth.)

  12. Nuclear energy waste: space transportation and removal

    International Nuclear Information System (INIS)

    Burns, R.E.

    1975-12-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed

  13. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE's development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE's Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade

  14. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  15. Broad survey of radioactive waste transports and trends

    International Nuclear Information System (INIS)

    Blum, P.T.

    1986-01-01

    This survey reviews Radioactive Waste (RW) transports in different countries, giving the origins, amounts, distances and modes of transport for the different RW categories currently moved. It appears that: present transport experience concerns mainly Low and Medium level Wastes (LMW) and Spent nuclear Fuel (SF); RW transports are implemented in compliance with IAEA recommendations which proved particularly helpful to gain public acceptance; the bulk of LMW is transported as Low Specific Activity (LSA) materials (i.e. with packaging requirements just equivalent to those needed for their disposal) and SF as well as liquid RW are transported in 'type B' packagings which withstand severe accident conditions; records indicate that transport worker irradiation is kept much below allowable limits and that accidents during RW transports did not cause significant release of activity to environment; and the cost of RW transports including insurances, is small compared to that of RW processing and disposal. Therefore, one may comment that RW movements are by no means slowed down by transport problems and just follow the demand which in some countries may be delayed by reasons linked to RW disposal strategy or its public acceptance. This survey presents also an assessment of RW transports until the end of this century

  16. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  17. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Cashwell, J.W.; Jefferson, R.M.

    1983-01-01

    Transportation Technology Center has been conducting a wide range of technical research activities to assure the ability to transport radioactive materials in a safe, reliable manner. These activities include tasks in basic, analysis methodology and system research areas. Recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on the Department of Energy for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  18. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C.; Luna, R.E.; Jefferson, R.M.; Wowak, W.E.

    1983-01-01

    The Transportation Technology Center has been conducting a wide range of technical and non-technical research activities to assure the ability to transport radioactive materials in a safe, reliable, and publicly acceptable manner. These activities include tasks in Information and Intergovernmental issues, Safety Assessment and Environmental Analysis and Technology Development. Until recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on DOE for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  19. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  20. Transportable vitrification system demonstration on mixed waste. Revision 1

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits

  1. Transportable vitrification system demonstration on mixed waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.R.; Whitehouse, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Wilson, C.N. [Lockheed Martin Hanford Corp., Richland, WA (United States); Van Ryn, F.R. [Bechtel Jacobs Co., Oak Ridge, TN (United States)

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  2. Quantifying capital goods for collection and transport of waste.

    Science.gov (United States)

    Brogaard, Line K; Christensen, Thomas H

    2012-12-01

    The capital goods for collection and transport of waste were quantified for different types of containers (plastic containers, cubes and steel containers) and an 18-tonnes compacting collection truck. The data were collected from producers and vendors of the bins and the truck. The service lifetime and the capacity of the goods were also assessed. Environmental impact assessment of the production of the capital goods revealed that, per tonne of waste handled, the truck had the largest contribution followed by the steel container. Large high density polyethylene (HDPE) containers had the lowest impact per tonne of waste handled. The impact of producing the capital goods for waste collection and transport cannot be neglected as the capital goods dominate (>85%) the categories human-toxicity (non-cancer and cancer), ecotoxicity, resource depletion and aquatic eutrophication, but also play a role (>13%) within the other impact categories when compared with the impacts from combustion of fuels for the collection and transport of the waste, when a transport distance of 25 km was assumed.

  3. Transportation packagings for high-level wastes and unprocessed transuranic wastes

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Romesberg, L.E.

    1982-01-01

    Packagings used for nuclear waste transport are varied in size, shape, and weight because they must accommodate a wide variety of waste forms and types. However, this paper will discuss the common characteristics among the packagings in order to provide a broad understanding of packaging designs. The paper then discusses, in some detail, a design that has been under development recently at Sandia National Laboratories (SNL) for handling unprocessed, contact-handled transuranic (CHTRU) wastes as well as a cask design for defense high-level wastes (HLW). As presently conceived, the design of the transuranic package transporter (TRUPACT) calls for inner and outer boxes that are separated by a rigid polyurethane foam. The inner box has a steel frame with stainless steel surfaces; the outer box is similarly constructed except that carbon steel is used for the outside surfaces. The access to each box is through hinged doors that are sealed after loading. To meet another waste management need, a cask is being developed to transport defense HLW. The cask, which is at the preliminary design stage, is being developed by General Atomic under the direction of the TTC. The cask design relies heavily on state-of-the-art spent-fuel cask designs though it can be much simpler due to the characteristics of the HLW. A primary purpose of this paper is to show that CHTRU waste and defense HLW currently are and will be transported in packagings designed to meet the hazards of transportation that are present in general commerce

  4. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    Directory of Open Access Journals (Sweden)

    Sudipta De

    2014-12-01

    Full Text Available The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as well as the competitive role of those catalysts in hydrotreating and hydrocracking processes.

  5. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-01-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations. (authors). 2 figs., 6 refs

  6. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-03-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations

  7. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  8. Transportation of separate waste fractions in an underground waste transportation system

    OpenAIRE

    Shibutani, Satomi

    2010-01-01

    Today waste management has entered a new stage. Since wastes still contain natural materials and energy that can be extracted, it should be treated in effective ways, for example, for energy recovery or material recycling. Many countries and the municipalities have therefore made waste treatment strategies in accordance with for example, EU directives or governmental regulations. In such circumstances, Envac is one of waste management companies in Sweden, which collects different kinds of was...

  9. Preparing regulations for radioactive waste transport

    International Nuclear Information System (INIS)

    Robles, Fernando

    2002-01-01

    The article describes the diferent stages in preparing the regulation on safe transport of radioactive materials. The first stage was the support given by the International Atomic Energy Agency in to provide expertise in drafting the national regulation on this matter. The draft is based on the publication from IAEA Regulation on the safe transport of radioactive materials. Also a description of activities made by the Radiation Protection Department of the Energy Directorate of Guatemala is made by the Chief of the Department Dr. Fernando Robles

  10. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  11. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  12. Hydraulic Mineral Waste Transport and Storage

    Science.gov (United States)

    Pullum, Lionel; Boger, David V.; Sofra, Fiona

    2018-01-01

    Conventional mineral waste disposal involves pumping dilute concentration suspensions of tailings to large catchment areas, where the solids settle to form a consolidated base while the excess water is evaporated. Unfortunately, this often takes years, if ever, to occur, and the interim period poses a severe threat to the surrounding countryside and water table. A worldwide movement to increase the concentration of these tailings to pastes for disposal above and below ground, obviating some of these issues, has led to the development of new technologies. Increasing the solids concentrations invariably produces non-Newtonian effects that can mask the underlying nature of the suspension mechanics, resulting in the use of poor pipeline and disposal methods. Combining rheological characterization and analysis with non-Newtonian suspension fluid mechanics provides insight into these flows, both laminar and turbulent. These findings provide the necessary basis for successful engineering designs.

  13. A Scenario Proposal For A Radioactive Waste Transport Accident

    International Nuclear Information System (INIS)

    Salama, M.A.; Rashad, S.M.

    1999-01-01

    In spite of all precautions that being taken during radioactive materials transport accidents to ensure safe transportation of these materials; there is still a probability for accidents to occur which, may be accompanied by injury or death of persons and damage of property So, in response to the increasing possibilities of accidents in Egypt, the government had prepared an emergency response plan for radiological accidents to coordinate the response efforts of all the national agencies. Trends for use of the radioactive materials and sources inside the country for the purpose of medical diagnosis and treatment as well as in industrial applications, are increasing. The radioactive waste resulted from these activities are transported from the centres where these materials being used to the waste management facility where they are treated and finally disposed safely at disposal site. The aim of the emergency exercise scenario is to test not only the main components of the emergency plan but also the level of emergency preparedness; that is the effectiveness with which the actions or combined actions of the different organizations involved in an emergency can be put into practice. The motivation of the present paper was undertaken to give a scenario proposal for the radiological emergency actions taken in case of a transport accident for a radioactive waste material (type A- package ) transported by a vehicle from one of the medical centers to a disposal site, 40 km northeast of cairo

  14. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  15. Safety transport of radioactive waste in the nuclear power area

    Directory of Open Access Journals (Sweden)

    Tureková Ivana

    2017-01-01

    Full Text Available Radioactive wastes require strict rules for manipulation with them due to the hazards for the human health and environment, not excluding the hazards during their internal transport. The article deals with the transport of packing unit inside of the company and it proposes the possible alternatives so that meet the limit conditions and reduce the manipulation time with the radioactive material in the packing unit. The packing unite isolates fixated liquid waste from the environment while it also serves as protection. There are also important external radiation characteristics of package unit, which consist of measurable values of the scratch contamination surface and dose power on the surface of package unit. Thus, the paper is aimed to point out the necessity of the logistics during manipulation with the package unit in the process of internal transport so that the dose power of exposed employees would achieve the lowest possible level and meet the strict limits in a full extent.

  16. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  17. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  18. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  19. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  20. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  1. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  2. Modeling unsteady-state VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG ampersand G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured

  3. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...

  4. Management and transport of radioactive wastes in Goiania, Brazil

    International Nuclear Information System (INIS)

    Xavier, A.M.; Mezrahi, A.

    1988-01-01

    The radiological accident occured in Goiania, which has led to the liberation to the environment of c.l.350 Ci of Cs-137, demanded the formulation of special procedures related to waste management and transport of radioactive materials to a provisory storage facility. The main objectives of the present article are to describe the work performed in the above mentioned fields and to point out the basic needs for Brazilian research and development in the areas of waste treatment and design and testing of packages. (author) [pt

  5. Low-level radioactive waste transportation safety history

    International Nuclear Information System (INIS)

    McClure, J.D.

    1997-01-01

    The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation's (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described

  6. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation

  7. Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste

    International Nuclear Information System (INIS)

    Homola, J.

    2003-01-01

    This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia

  8. Planning a transportation system for US Defense Transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-05-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans. 9 figures, 1 table

  9. Probabilistic safety analysis of waste transports to the Konrad repository

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Potential radiological consequences, such as radiation exposure of persons and ground contamination, are calculated by using the accident consequence code UFOMOD for a 100% rail transportation, and for a 80% rail plus 20% road transportation in the region of KONRAD radioactive waste disposal site with five exposure pathways: cloud shine, inhalation, ground shine, ingestion and resuspension. The chances that a traffic accident without counter measures would lead to an effective dose, in 250 m down wind distance, equivalent to or exceeding the natural radiation exposure of one year are about 1 to 70 for a 40 years period. (A.B.). 4 refs., 4 figs

  10. Planning a transportation system for US defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-01-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans

  11. Risk assessment of hazardous waste transport - perspectives of GIS application

    International Nuclear Information System (INIS)

    Lazar, R.E.; Dumitrescu, M.; Stefanescu, I.

    2001-01-01

    Due to the increasing public awareness of the potential risks associated with waste transport, the environmental impact assessment of this activity has become an issue of major importance. This paper presents a project proposal, which can establish a national action plan for waste transport evaluation. Such a programme is sustained by the necessity to obtain an adequate method for the rapid and efficient estimation of individual and social risks due to the transport of hazardous substances in Romania. The main objective is to develop regional strategies for risk assessment in comprising: establishing the areas that must be investigated and their particular characteristics; identifying the transport activities in the areas; determining hazards; establishing the analysis criteria and prioritizing the study areas; evaluating continuous emissions; studying major accidents; studying population health; classifying the risks; establishing regional strategies; implementing political and regulatory measures. The project expectation is to provide a decision tool for risk managers and authorities in order to control or limit transportation and the storage of hazardous substances.(author)

  12. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  13. TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z

    2007-02-21

    The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

  14. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  15. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  16. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  17. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  18. Developments in the transport of radioactive waste. Proceedings of a seminar held in Vienna, 21-25 February 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This document is proceeding of the seminar on development in the transport of low and intermediate level radioactive wastes. The papers presented in this seminar covered the following areas: IAEA activities in radioactive waste transport; Member State experience and recommendations for international transport regulations; Member State experience with national transport regulations; waste transport and handling; waste generation volumes, characteristics, and disposal requirements; risk assessment; and transport and waste packages. Refs, figs and tabs.

  19. Developments in the transport of radioactive waste. Proceedings of a seminar held in Vienna, 21-25 February 1994

    International Nuclear Information System (INIS)

    1995-06-01

    This document is proceeding of the seminar on development in the transport of low and intermediate level radioactive wastes. The papers presented in this seminar covered the following areas: IAEA activities in radioactive waste transport; Member State experience and recommendations for international transport regulations; Member State experience with national transport regulations; waste transport and handling; waste generation volumes, characteristics, and disposal requirements; risk assessment; and transport and waste packages. Refs, figs and tabs

  20. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  1. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  2. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  3. Konrad transport study: safety analysis of the transport of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-01-01

    A safety analysis has been conducted for the transport of non-heat-generating (low- to medium level) radioactive waste to the planned Konrad final repository in Germany. The results of the risk analysis show that it is unlikely that transport accidents with a release of radioactive substances will occur in the region of the final repository during the operating period of approximately 40 years. Because of the lower accident risk of transport by rail as compared with road, the envisaged high fraction of rail transport of the entire transport volume has a beneficial effect. In the case of an accident with a release of radioactive substances, the potential radiological consequences, in general, decrease rapidly with distance; starting from around 250 m by a factor of 10 up to about 1200 m and a further factor of 10 at a distance of about 6200 m. The releases associated with accidents are frequently so small that the potential radiation exposure, even without countermeasures, is below the natural radiation exposure for one year, at a distance of about 250 m from the accident location: this is true for 9 out of 10 accidents with goods trains and 19 out of 20 accidents with trucks. With the hypothetical assumption of continuous operation of the repository, a potential effective dose of 50 mSv without countermeasures would result, on average, once every 500,000 years at a distance of 250 m in the direction of atmospheric dispersion for the scenario 100% rail transport and once every 400,000 years for the scenario 80% rail/20% road. 50 mSv corresponds to the design guideline exposure of 28 Para. 3 of the German Radiological Protection Ordinance and the annual dose limit for persons occupationally exposed to radiation. The expected frequencies of corresponding accident consequences are considerably lower for the Braunschweig marshalling yard. It can thus be concluded that waste transport does not pose any major additional risk to the region of the repository. (author)

  4. Effect on localized waste-container failure on radionuclide transport from an underground nuclear waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-07-01

    In the geological disposal of nuclear fuel waste, one option is to emplace the waste container in a borehole drilled into the floor of the underground vault. In the borehole, the waste container is surrounded by a compacted soil material known as the buffer. A finite-element simulation has been performed to study the effect of localized partial failure of the waste container on the steady-state radionuclide transport by diffusion from the container through the buffer to the surrounding rock and/or backfill. In this study, the radionuclide concentration at the buffer-backfill interface is assumed to be zero. Two cases are considered at the interface between the buffer and the rock. In case 1, a no-flux boundary condition is used to simulate intact rock. In case 2, a constant radionuclide concentration condition is used to simulate fractured rock with groundwater flow. The results show that the effect of localized partial failure of the waste container on the total flux is dependent on the boundary condition at the buffer-rock interface. For the intact rock condition, the total flux is mainly dependent on the location of the failure. The total flux increases as the location changes from the bottom to the top of the emplaced waste container. For a given localized failure of the waste container, the total flux remains unaffected by the area of failed surface below the top of the failure. For fractured rock, the total flux is directly proportional to the failed surface area of the waste container regardless of the failure location

  5. WASTES II: Waste System Transportation and Economic Simulation. Version II. User's guide

    International Nuclear Information System (INIS)

    Shay, M.R.; Buxbaum, M.E.

    1986-02-01

    The WASTES II model was developed to provide detailed analyses beyond the capabilities of other available models. WASTES uses discrete event simulation techniques to model the generation of commercial spent nuclear fuel, the buildup of spent fuel inventories within the system, and the transportation requirements for the movement of radioactive waste throughout the system. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation language package. In addition to the pool storage and dry storage located at the reactors, the WASTES model provides a choice of up to ten other storage facilities of four different types. The simulation performed by WASTES may be controlled by a combination of source- and/or destination-controlled transfers that are requested by the code user. The user supplies shipping cask characteristics for truck or rail shipment casks. As part of the facility description, the user specifies which casks the facility can use. Shipments within the system can be user specified to occur optimally, or proximally. Optimized shipping can be used when exactly two destination facilities of the same facility type are open for receipt of fuel. Optimized shipping selects source/destination pairs so that the total shipping distance or total shipping costs in a given year are minimized when both facilities are fully utilized. Proximity shipping sequentially fills the closest facility to the source according to the shipment priorities without regard for the total annual shipments. This results in sub-optimal routing of waste material but can be used to approximate an optimal shipping strategy when more than two facilities of the same type are available to receive waste. WASTES is currently able to analyze each of the commercial spent fuel logistics scenarios specified in the 1985 DOE Mission Plan

  6. Radioactive Waste Transport: Managing Risk Perception and Communication

    International Nuclear Information System (INIS)

    Murray, Ch.

    2009-01-01

    The implementation of a national transportation system for spent nuclear fuel and high-level waste that merits public trust and confidence will require the delivery of consistent, accurate and timely transportation messages; stakeholder and public understanding of the need for, and safety of, shipments; and effective two-way communication to address stakeholder concerns in its decision-making processes. Building the trust and consent of stakeholders and the public is complex and challenging. In order to accomplish this goal, it is imperative to understand how and why members of society develop various perceptions of risks and assessments of benefits with regard to the nuclear energy cycle. Understanding the basis and reasons for the public's beliefs concerning the nuclear energy cycle will allow OCRWM to more effectively address concerns regarding the national transportation program. This paper will examine how a person's gender, sources of information, world-view, culture, emotion, cognition, and other factors affect their beliefs and perceptions of risk. It will also explore the reasons why nuclear energy and nuclear waste are viewed with such a distinctly different attitude than other hazardous materials that pose a comparable or greater hazard. Drawing on research from prominent experts in risk perception and communication methods, this study will conduct a unique investigation into the perspectives of a diverse set of key stakeholders and experts involved in the transportation process. This paper will present several hypotheses on why there are unique challenges involved in communicating about transportation of spent nuclear fuel and other nuclear fuel cycle activities, and also present recommendations for remediating such challenges. (authors)

  7. Effects of mixed waste simulants on transportation packaging plastic components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1994-01-01

    The purpose of hazardous and radioactive materials packaging is to, enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified. The design requirements for both hazardous and radioactive materials packaging specify packaging compatibility, i.e., that the materials of the packaging and any contents be chemically compatible with each other. Furthermore, Type A and Type B packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program, supported by the US Department of Energy's (DOE) Transportation Management Division, EM-261 provides the means to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, we describe the general elements of the testing program and the experimental results of the screening tests. The implications of the results of this testing are discussed in the general context of packaging development. Additionally, we present the results of the first phase of this experimental program. This phase involved the screening of five candidate liner and six seal materials against four simulant mixed wastes

  8. Radiological impact assessment of the domestic on-road transportation of radioactive isotope wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myung Hwan; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Technology Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

  9. Generation of transportation fuel from solid municipal waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin

    2010-09-15

    Transportation fuels derived from fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation and combustion of these fuels contribute to a range of environmental problems, causing poor air quality and emitting greenhouse gases that contribute to global warming. Alternative fuels created from domestic sources have been proposed as a solution to these problems, and many fuels are being developed based on biomass and other renewable sources. Natural State Research, Inc. developed different alternative hydrocarbon fuel which is produced from waste plastic materials.

  10. Human and social factors in the transportation of nuclear wastes

    International Nuclear Information System (INIS)

    Freudenburg, W.R.

    1991-01-01

    The main body of this report is a broad-based examination of human and social factors in the transportation of nuclear wastes. It deals with pair interested problems that, while familiar to the social science community, appear to have received little attention from the risk assessment community to data: The human and social attenuation of risk estimates, and the organizational amplification of risks. Second, given the special opportunities for learning that are presented by the recent Alaska oil spill, in particular, the Appendix to this report examines the issue of organizational foresight in the context of the Exxon oil spill

  11. Current issues in the transport of radioactive waste and spent fuel: work by the World Nuclear Transport Institute

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H-J.; Bonnardel-Azzarelli, B. [World Nuclear Transport Inst., London (United Kingdom)

    2014-07-01

    Various kinds of radioactive waste are generated from nuclear power and fuel cycle facilities. These materials have to be treated, stored and eventually sent to a repository site. Transport of wastes between these various stages is crucial for the sustainable utilization of nuclear energy. The IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6) have, for many decades, provided a safe and efficient framework for radioactive materials transport and continue to do so. However, some shippers have experienced that in the transport of certain specific radioactive wastes, difficulties can be encountered. For example, some materials produced in the decommissioning of nuclear facilities are unique in terms of composition or size and can be difficult to characterize as surface contaminated objects (SCO) or homogeneous. One way WNTI (World Nuclear Transport Institute) helps develop transport methodologies is through the use of Industry Working Groups, bringing together WNTI members with common interests, issues and experiences. The Back-End Transport Industry Working Group focuses on the following issues currently. - Characterization of Waste: techniques and methods to classify wastes - Large Objects: slightly contaminated large objects (ex. spent steam generators) transport - Dual Use Casks: transportable storage casks for spent nuclear fuels, including the very long term storage of spent fuel - Fissile Exceptions: new fissile exceptions provisions of revised TS-R-1 (SSR-6) The paper gives a broad overview of current issues for the packaging and transport of radioactive wastes and the associated work of the WNTI. (author)

  12. Russian Containers for Transportation of Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-01-01

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified

  13. Transportation of high-level waste and spent fuel

    International Nuclear Information System (INIS)

    Carlson, J.H.; Lake, W.H.; Thompson, J.H.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) transportation program is a multifaceted undertaking to transport spent nuclear fuel from commercial reactors to temporary and permanent storage facilities commencing in 1998. One of the significant ingredients necessary to achieving this goal is the development and acquisition of shipping casks. Efforts to design and acquire high capacity casks is ongoing, as are efforts to purchase casks that can be made available using current technology. By designing casks that are optimized to the specifications of the older cooler spent fuel that will be shipped, and by designing to current NRC requirements, OCRWM's new generation of spent fuel casks will be more efficient and at least as safe as current cask designs. (J.P.N.)

  14. Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1994-09-01

    This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste have been estimated previously, and a summary has been included in earlier WMFCI reports. In order to have a single source for obtaining transportation cost for all radioactive waste, the transportation costs for the contact- and remote-handled wastes are repeated in this report. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the US Department of Transportation (DOT), the US Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations. It should be noted that the trend is toward greater restrictions on transportation of radioactive waste (e.g., truck or rail car speed, shipping route, security escort, and personnel training requirements), which may have a significant impact on future costs

  15. Development of a safe TRU transportation system (STRUTS) for DOE's TRU waste

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    Transportation, the link between TRU waste generation and WIPP (Waste Isolation Pilot Project) and a vital link in the overall TRU waste management program, must be addressed. The program must have many facets: ensuring public and carrier acceptance, formation of a functional and current transportation data base, systems integration, maximum utilization of existing technology, and effective implementation and integration of the transport system into current and planned operational systems

  16. Current status and future considerations for a transportation system for spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Anderson, R.T.; Darr, D.G.; Godfrey, W.L.; Keely, R.B.; Lusk, E.C.; Peterson, R.W.; Ridihalgh, J.L.; Shallo, F.A.; Young, M.

    1978-02-01

    This report is part of the OWI Transportation/Logistics systems analysis of problems associated with shipping these wastes to waste terminal storage facilities. It covers governmental regulations and functional responsibilities, highway and rail transportation status and economic considerations, assessment of present industry capabilities and business-related considerations, important receiving facility considerations, necessary engineering and licensing-related aspects of packaging systems, and essential elements of reprocessing plant waste activities including packaging and transportation

  17. Perceived risks of radioactive waste transport through Oregon: Results of a statewide survey

    International Nuclear Information System (INIS)

    MacGregor, D.; Slovic, P.; Mason, R.G.; Detweiler, J.; Binney, S.E.; Dodd, B.

    1994-01-01

    Transportation of hazardous materials, and particularly radioactive wastes, on public highways has become an important risk management issue. The unfavorability of public attitudes regarding hazardous and nuclear waste signals the potential for strong public opposition to programs for transporting these materials. This paper presents the results of a survey conducted to assess public reactions to a long-term nuclear waste transport program planned to follow a route through a portion of rural Oregon. The survey assessed a number of key risk perception issues, including perceived health and safety risks of nuclear waste transport, relative risks of transport vs. storage at an existing site, trust in state officials, and satisfaction with life in communities along the transport route. The survey identified a number of attitudes and concerns that need to be understood and considered by those in charge of designing and implementing the waste-transportation program. 22 refs., 1 fig., 5 tabs

  18. Review of arrangements for the recent transportation of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Codd, M H

    1995-07-01

    The terms of reference of this review were: to examine the adequacy of the arrangements made for the transport of contaminated material from Lucas Heights and St Marys to Woomera, in terms of compliance with the Australian Code for the Safe Transport of Radioactive Substances 1990; to report to the Minister for Industry, Science and Technology on the quality of the planning and preparation for the move; the safety and effectiveness of the move itself; the adequacy of response to any `incidents` involved in the move, and of contingency arrangements; whether planning and transport arrangements might be improved for the future. Thus, the Review was focussed on movements of material in two specific cases - material owned by the CSIRO and stored at Lucas Heights and material owned by the Department of Defence and stored at St Marys. The report concludes that the movements of wastes were carried out consistent with the Transport Code, without any risk to public safety. Additional relevant information in support of the review is contained in 8 appendixes.

  19. Review of arrangements for the recent transportation of radioactive waste

    International Nuclear Information System (INIS)

    Codd, M.H.

    1995-07-01

    The terms of reference of this review were: to examine the adequacy of the arrangements made for the transport of contaminated material from Lucas Heights and St Marys to Woomera, in terms of compliance with the Australian Code for the Safe Transport of Radioactive Substances 1990; to report to the Minister for Industry, Science and Technology on the quality of the planning and preparation for the move; the safety and effectiveness of the move itself; the adequacy of response to any 'incidents' involved in the move, and of contingency arrangements; whether planning and transport arrangements might be improved for the future. Thus, the Review was focussed on movements of material in two specific cases - material owned by the CSIRO and stored at Lucas Heights and material owned by the Department of Defence and stored at St Marys. The report concludes that the movements of wastes were carried out consistent with the Transport Code, without any risk to public safety. Additional relevant information in support of the review is contained in 8 appendixes

  20. Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.M.; Moody, S.J.; Peterson, R. [and others

    1997-04-01

    Between 1952 and 1970, over two million cubic ft of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex. Commingled with this two million cubic ft of waste is up to 10 million cubic ft of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate a technology for transporting exhumed transuranic wastes at the Idaho National Engineering and Environmental Laboratory (INEEL) and at other hazardous or radioactive waste sites through the U.S. Department of Energy complex. The full-scale demonstration, conducted at the INEEL Robotics Center in the summer of 1995, evaluated equipment performance and techniques for remote transport of exhumed buried waste. The technology consisted of a Self-Guided Transport Vehicle designed to remotely convey retrieved waste from the retrieval digface and transport it to a receiving/processing area with minimal human intervention. Data were gathered and analyzed to evaluate performance parameters such as precision and accuracy of navigation and transportation rates.

  1. Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste

    International Nuclear Information System (INIS)

    Rice, P.M.; Moody, S.J.; Peterson, R.

    1997-04-01

    Between 1952 and 1970, over two million cubic ft of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex. Commingled with this two million cubic ft of waste is up to 10 million cubic ft of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate a technology for transporting exhumed transuranic wastes at the Idaho National Engineering and Environmental Laboratory (INEEL) and at other hazardous or radioactive waste sites through the U.S. Department of Energy complex. The full-scale demonstration, conducted at the INEEL Robotics Center in the summer of 1995, evaluated equipment performance and techniques for remote transport of exhumed buried waste. The technology consisted of a Self-Guided Transport Vehicle designed to remotely convey retrieved waste from the retrieval digface and transport it to a receiving/processing area with minimal human intervention. Data were gathered and analyzed to evaluate performance parameters such as precision and accuracy of navigation and transportation rates

  2. 25 CFR 170.900 - What is the purpose of the provisions relating to transportation of hazardous and nuclear waste?

    Science.gov (United States)

    2010-04-01

    ... transportation of hazardous and nuclear waste? 170.900 Section 170.900 Indians BUREAU OF INDIAN AFFAIRS... and Nuclear Waste Transportation § 170.900 What is the purpose of the provisions relating to transportation of hazardous and nuclear waste? Sections 170.900 through 170.907 on transportation of nuclear and...

  3. 78 FR 75672 - New Jersey Regulations on Transportation of Regulated Medical Waste

    Science.gov (United States)

    2013-12-12

    ... placing it in a packaging as required by the HMR; 3. N.J.A.C. 7:26-3A.14 that the words ``Medical Waste... Environmental Protection (NJDEP) solid waste transporter registration number; and 3) either the words ``Medical... material does not include a waste concentrated stock culture of an infectious substance. Sharps containers...

  4. 76 FR 70220 - New Jersey Regulations on Transportation of Regulated Medical Waste

    Science.gov (United States)

    2011-11-10

    ...., Director, Healthcare Waste Institute, 4301 Connecticut Avenue NW., Suite 300, Washington, DC 20008, and (2... Hazardous Waste Management Program, Mail Code 401-02C, P.O. Box 420, Trenton, NJ 08625-0420. A certification.... PHMSA-2011-0294 (PDA-35(R)] New Jersey Regulations on Transportation of Regulated Medical Waste AGENCY...

  5. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  6. Alternatives for packaging and transport of greater-than-class C low-level waste

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-06-01

    Viable methods for packaging greater-than-class C (GTCC) low-level wastes and for transporting those wastes from the waste generator sites or from an eastern interim storage site to the Yucca Mountain repository site have been identified and evaluated. Estimated costs for packaging and transporting the population of GTCC wastes expected to be accumulated through the year 2040 have been developed for three waste volume scenarios, for two preferred packaging methods for activated metals from reactor operations and from reactor decommissioning, and for two packaging density assumptions for the activated metals from reactor decommissioning. 7 refs. 7 tabs

  7. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    International Nuclear Information System (INIS)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs

  8. Performance of the IAEA transport regulations in controlling doses and risks from a large-scale radioactive waste transport system

    International Nuclear Information System (INIS)

    Hutchinson, D.; Miles, R.; White, I.

    2004-01-01

    The role of United Kingdom Nirex Limited is to provide the UK with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials generated by the UK's commercial, medical, research and defence activities. An important part of this role is to set standards and specifications for waste packaging. Waste producers in the UK are currently developing processes for packaging many different types of intermediatelevel waste (ILW), and also those forms of low-level waste that will require similar management to ILW. When packaging processes are at the proposal stage, the waste producers consult Nirex about the suitability of the resulting packages for all future aspects of waste management. The response that Nirex provides is based on detailed assessments of the proposed packages, their compliance with Nirex standards and specifications, and their predicted performance through the successive phases of waste management. One of those phases is transport through the public domain. This paper draws on experience gained from more than 200 separate transport safety assessments, which have cumulatively covered a wide range of waste types, waste packages and transport packages

  9. A decade of successful domestic sea transports of radioactive waste in Sweden 1982-1992

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1993-01-01

    Today the transports of radioactive waste in Sweden are done on routine basis without any negative publicity. An important contribution to this fact is probably the very good performance of the transport system and the receiving facilities. Since the start of operation of the transport system no accidents have occurred. Almost 1600 tonnes of spent fuel and 10,000 m 3 of radioactive waste have been transported. The capacity and availability of the ship and of the transport system as a whole is large enough to cover all needs for transports of radioactive material in Sweden, at least up to the turn of this century. (J.P.N.)

  10. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  11. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  12. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to assess the means of transportation of decommissioning wastes, costs of transport, radiological detriment attributable to transport and develops conceptual designs of large transport containers. The document ends with Conclusions and Recommendations

  13. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  14. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  15. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  16. Evaluation of alternatives for a second-generation transportation system for Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    1984-01-01

    Department of Energy (DOE) waste storage sites will ship their contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) beginning FY 1989. The CH-TRU waste will be shipped in the Transuranic Package Transported (TRUPACT-I), a new packaging being developed by Sandia National Laboratories, Albuquerque/Transportation Technology Center. Some of the DOE TRU waste, however, might be unsuitable for shipment in TRUPACT-I, and is designated special-shipped (SS) TRU waste. The purposes of this study were to: (1) identify the quantity and characteristics of SS-TRU waste stored and generated at DOE facilities; (2) identify alternatives for managing the SS-TRU waste; and (3) make overall recommendations for managing the SS-TRU waste. Data on quantity and characteristics were gathered through coordinating visits to the sites and extracting information from each site's records. Representatives of DOE organizations and contractors set objectives for managing the SS-TRU waste. Alternative shipping systems were then identified for CH SS-TRU waste and RH SS-TRU waste. Evaluations of these alternatives considered how well they would satisfy each objective, and associated potential problems. The study recommends delaying the decision on how best to transport the CH SS-TRU waste to WIPP until the amount of SS-TRU processed waste in heavy drums is known. These conditions and choices are presented: a relatively small number of processed, heavy drums could be shipped most economically via TRUPACT-I, mixed with lighter drums of unprocessed waste. If a large number of heavy drums is to be shipped, a shorter and narrower version of TRUPACT-I would be preferred alternative. The Defense High-Level Waste cask is the recommended alternative system for shipping RH SS-TRU waste. 12 references, 15 figures, 22 tables

  17. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  18. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  19. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  20. The ATB-8K packaging for transport of radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Michels, L.; Dybeck, P.

    1998-01-01

    The ATB-8K container has been developed on behalf of SKB, the Swedish nuclear fuel and waste management organization, to transport large volumes of radioactive waste conditioned in moulds and drums, or large size scrap components, from nuclear facilities to the Swedish Final Repository for radioactive waste (SFR). In most cases the waste is under LSA form, but when the dose rate at 3 meters from the unshielded object exceeds 10 mSv/h, the transport packaging must been the regulatory requirements applicable to type B(U) packages, with no fissile content. Considering the dose rate around the package, it will be transported under exclusive use. The ATB-8k packaging is therefore a type B(U) packaging, specially designed for the transportation of high activity conditioned waste. (authors)

  1. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    International Nuclear Information System (INIS)

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-01-01

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation's (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste

  2. Transportation systems to support the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Philpott, R.E.

    1985-01-01

    Late in 1982, the United States Congress enacted legislation for the disposal of spent nuclear fuel and high-level waste. The policy, embodied in Public Law 97-425 and referred to as the Nuclear Waste Policy Act of 1982 (NWPA), mandates that the Department of Energy (DOE) be responsible for the transport of commercial spent fuel and defense high-level waste from their points of origin to facilities constructed under provisions of the NWPA. It is the purpose of this paper to describe the preliminary transportation policies and plans developed by the Office of Civilian Radioactive Waste Management (OCRWM), within the DOE, to respond to the NWPA mandate

  3. Sampling and transport of paraffin waste form from CWDS of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J. M.; Hwang, J. H.; Kim, C. R.; Park, J. W.

    2000-01-01

    Sampling and transport of paraffin waste form from concentrated waste drying system (CWDS) of domestic nuclear power plant were performed to collect the leaching characteristic data for the disposal of radioactive waste. Transport was performed according to the national regulations and the internal rules of the nuclear power plant. The sample of paraffin waste form was classified as L type package according to the regulation and radiation exposure of operator was measured in the range of 6 to 12 mrem that was less than the estimated amount

  4. A methodology for assessing social considerations in transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Allsop, R.E.; Banister, D.J.; Holden, D.J.; Bird, J.; Downe, H.E.

    1986-05-01

    A methodology is proposed for taking into account non-radiological social aspects of the transport of low and intermediate level radioactive waste when considering the location of disposal facilities and the transport of waste to such facilities from the sites where it arises. As part of a data acquisition programme, an attitudinal survey of a sample of people unconnected with any suggested site or transport route is proposed in order to estimate levels of concern felt by people of different kinds about waste transport. Probabilities of accident occurrence during transport by road and rail are also discussed, and the limited extent of quantified information about consequences of accidents is reviewed. The scope for malicious interference with consignments of waste in transit is considered. (author)

  5. Integrated waste-to-energy conversion and waste transportation within island communities

    International Nuclear Information System (INIS)

    Zsigraiova, Zdena; Tavares, Gilberto; Semiao, Viriato; Carvalho, Maria de Graca

    2009-01-01

    Usually in islands both primary energy sources and drinking water are missing. Additionally, municipal solid waste (MSW) must be managed avoiding exclusive use of landfills, which limits sustainable development. Power generation from MSW incineration contributes significantly to replacing energy produced from fossil fuels and to reduce overall emissions. A solution based on thermodynamics, environmental and economic analyses and 3D-GIS modelling for the afore-mentioned problems for Cape Verde is proposed. This model integrates waste transportation optimisation and incineration with energy recovery combining production of heat and power (CHP), the heat being used for drinking water production. The results show that extraction condensing steam turbines are more suitable when power production is a priority (5.0 MW with 4000 m 3 /d of drinking water), whereas back-pressure turbines yield 5540-6650 m 3 /d of drinking water with an additional power production of 3.3-4.7 MW. The environmental and economic assessment performed shows the feasibility of the proposed CHP solution, which brings a considerable reduction in net air emissions (1.6 kt), including a significant decrease in the greenhouse gas emissions (131 ktCO 2 ), and that the revenue from energy sales ( Euro 15 million) has potential to balance the incineration cost. Moreover, when terrain relief is accounted for in the route optimisation for minimum fuel consumption, savings up to 11% are obtained.

  6. Waste isolation safety assessment program. Collection and generation of transport data

    International Nuclear Information System (INIS)

    Apps, J.A.

    1977-01-01

    A project devoted to evaluation of mechanisms and rates of radioactive waste transport in igneous, metamorphic and sedimentary rocks is described. The research effort includes/ (1) calculation of the range of concentration expected for different radionuclides in given geologic environments by computer simulation of the groundwater chemistry; (2) development of a comprehensive theory relating exchange constants (K/sub D/s) to significant variables; (3) fabrication of test equipment to measure waste radionuclide transport rates in rock samples; (4) identification of transport rate controlling mechanisms; (5) experiments to determine K/sub D/ values for important radioactive waste elements for a variety of rock types and environmental conditions

  7. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  8. Transport, handling, and interim storage of intermediate-level transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Metzger, J.C.; Snyder, A.M.

    1977-09-01

    The Idaho National Engineering Laboratory stores transuranic (TRU)-contaminated waste emitting significant amounts of beta-gamma radiation. This material is referred to as intermediate-level TRU waste. The Energy Research and Development Administration requires that this waste be stored retrievably during the interim before a Federal repository becomes operational. Waste form and packaging criteria for the eventual storage of this waste at a Federal repository, i.e., the Waste Isolation Pilot Plant (WIPP), have been tentatively established. The packaging and storage techniques now in use at the Idaho National Engineering Laboratory are compatible with these criteria and also meet the requirement that the waste containers remain in a readily-retrievable, contamination-free condition during the interim storage period. The Intermediate Level Transuranic Storage Facility (ILTSF) provides below-grade storage in steel pipe vaults for intermediate-level TRU waste prior to shipment to the WIPP. Designated waste generating facilities, operated for the Energy Research and Development Administration, use a variety of packaging and transportation methods to deliver this waste to the ILTSF. Transfer of the waste containers to the ILTSF storage vaults is accomplished using handling methods compatible with these waste packaging and transport methods

  9. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  10. Minimization of municipal solid waste transportation route in West Jakarta using Tabu Search method

    Science.gov (United States)

    Chaerul, M.; Mulananda, A. M.

    2018-04-01

    Indonesia still adopts the concept of collect-haul-dispose for municipal solid waste handling and it leads to the queue of the waste trucks at final disposal site (TPA). The study aims to minimize the total distance of waste transportation system by applying a Transshipment model. In this case, analogous of transshipment point is a compaction facility (SPA). Small capacity of trucks collects the waste from waste temporary collection points (TPS) to the compaction facility which located near the waste generator. After compacted, the waste is transported using big capacity of trucks to the final disposal site which is located far away from city. Problem related with the waste transportation can be solved using Vehicle Routing Problem (VRP). In this study, the shortest distance of route from truck pool to TPS, TPS to SPA, and SPA to TPA was determined by using meta-heuristic methods, namely Tabu Search 2 Phases. TPS studied is the container type with total 43 units throughout the West Jakarta City with 38 units of Armroll truck with capacity of 10 m3 each. The result determines the assignment of each truck from the pool to the selected TPS, SPA and TPA with the total minimum distance of 2,675.3 KM. The minimum distance causing the total cost for waste transportation to be spent by the government also becomes minimal.

  11. Logistics of Transport and Handling with the Waste in the Upper Gemer region

    Directory of Open Access Journals (Sweden)

    Ján Spišák

    2005-11-01

    Full Text Available In the future, not any society (even the most advanced society can exists without waste formed by production processes or by any human activity. Increasing of the waste volume as well as its structure influences the living space of the mankind in a negative way. Therefore, the production, disposal or the exploitation of the waste is not only ecological but also the economical problem for the whole society. New methods of handling and disposal of the waste are preferred. This contribution is oriented on the application of micrologistics proceedings in order to reach a more effective system of transporting and handling with the waste.

  12. Improvement of the material and transport component of the system of construction waste management

    Science.gov (United States)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  13. Transportation of liquid mixed waste in the US: Is it really a problem?

    International Nuclear Information System (INIS)

    Chakraborti, S.; DeBiase, T.

    1993-01-01

    The transportation of liquid radioactive wastes has often been perceived to be a problem because of the potential consequences from hypothetical accident scenarios and the difficulties that may be encountered in the handling and containment of liquids. This paper focuses specifically to determine if the transportation of these wastes are severely restricted by the regulations. The paper also compares current practices for the transportation of liquid mixed waste in the US with that of France to provide an international perspective on the issue. The review of the regulations and current practices shows that the transportation of liquid mixed waste is by no means prohibited, and also that the majority of the regulations do not impose any additional restrictions because of the physical form of the waste. Rather, the selection of an authorized package primarily depends on the quantity of radioactivity and the specific radionuclides involved. Although the selection process for an authorized package for liquid mixed wastes is fairly straightforward, it seems that the difficulties in transporting liquid mixed waste can be attributed to the lack of readily available Type A packages designed for transporting liquids

  14. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    Science.gov (United States)

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-05-03

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  16. The planning and management system of the low level radioactive waste transportation

    International Nuclear Information System (INIS)

    Tanaka, K.; Yoshida, K.; Miyamoto, J.; Sanui, T.; Noura, T.; Kitanishi, K.; Nara, S.

    1993-01-01

    Nuclear Fuel Transport Co, Ltd. (hereafter called NFT) was the first in Japan to transport low-level radioactive waste (LLW). It is now engaged in preparatory operations with the slogan 'Improved Safety and Reliability' and is introducing advanced mechanization systems to provide safety and reliability in software management such as transportation planning and transportation information management. The following is an introduction of these systems, which provide overall support in transportation planning determination and transportation management operations related to the LLW transportation cycle. (J.P.N.)

  17. Interfaces between transport and geological disposal systems for high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    1994-09-01

    This document is an IAEA publication which identifies and discusses the interfaces and the interface requirements between high level waste, the waste transport system used for carriage of the waste to the disposal facility, and the high level waste disposal facility. The development of this document was prompted in part by the initiatives in various Member States to select, characterize and design the facilities for potential high level waste geological repositories. These initiatives have progressed to the point where an international document would be useful in calling attention to the need for establishing, in a systematic way, interfaces and interface requirements between the transport systems to be used and the waste disposal packages and geological repository. Refs, figs and tabs

  18. Capabilities of U.S. domestic transportation systems for the shipment of radioactive wastes

    International Nuclear Information System (INIS)

    Best, R.E.; Allen, J.H.; Aucoin, P.A.; Ball, G.D.; Hoffman, C.C.; Mason, M.E.; Propes, W.A.; Vizzini, T.A.

    1977-09-01

    This document is a compilation of data and reports that provide an overview of the capabilities of U.S. domestic transportation systems for the shipment of materials that are or may be classified as radioactive wastes

  19. FY 1987 program summary document: Office of Defense Waste and Transportation Management

    International Nuclear Information System (INIS)

    1987-04-01

    This document describes the Office of Defense Waste and Transportation Management (DWTM) Program as supported by the President's Fiscal Year (FY) 1987 Budget Request to Congress. It specifically addresses the program's organization, objectives, strategies, and plans for FY 1987

  20. The approach of risk and safety evaluation in radioactive waste transport

    International Nuclear Information System (INIS)

    Vieru, G.

    1996-01-01

    Within Institute for Nuclear Research (INR) Pitesti, qualification tests were performed on packages, designed for transport and storage of low activity radioactive waste. Risk assessment activities aiming the evaluation of risk categories that many arise either during accident free transport or during accident conditions of waste transportation to the disposal center, in Romania, have been approached. The accident rates calculation, the distribution within accident scenarios and overall effective collective dose (man.Sv/year),for routine road transportation and the accidental Risk (man.Sv/Year) were determined

  1. Transportation and disposal of low-and medium level waste using fiber reinforced concrete overpacks

    International Nuclear Information System (INIS)

    Pech, R.; Verdier, A.

    1993-01-01

    A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete overpacks reinforced with metal fibers. The fiber concrete overpacks satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. This presentation will cover the use of the fiber-reinforced concrete overpack for disposal and transportation, and will discuss their fabrication. (J.P.N.)

  2. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  3. Pre-disposal storage, transport and handling of vitrified high level waste

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.

    1981-05-01

    The objectives of the study were to review non site-specific engineering features of the storage, transport and handling of vitrified high level radioactive waste prior to its transfer into an underground repository, and to identify those features which require validation or development. Section headings are: introduction (historical and technical background); characteristics and arisings of vitrified high level waste; overpacks (additional containment barrier, corrosion resistant); interim storage of HLW; transport of HLW; handling; conclusions and recommendations. (U.K.)

  4. The effect of proposed changes to the IAEA transport regulations on decommissioning and other low level waste transportation

    International Nuclear Information System (INIS)

    Shetler, A.P.; Jayawardene, N.

    1986-01-01

    Ontario Hydro has studied the proposed changes to the IAEA Transport Regulations contained in the 1985 4th draft edition. The study shows that these proposed changes will have significant strategic and economic effects on the transportation of radioactive decommissioning and other low-level wastes. Under the 1985 4th draft edition, the definition of Low Specific Activity (LSA) material is revised and a new regulation is proposed which restricts the quantity of LSA material or Surface Contaminated Object (SCO) in a single package to that which would have an unshielded dose rate of 10 mSv/h (1 rem/h) at 3 m. The objective of this paper is to highlight the implications of the proposed regulatory changes. An example of the impact of these changes is presented by considering the transportation of typical CANDU decommissioning wastes which arise through piece-by-piece removal of a reactor assembly. The potential effect of the changes is that less decommissioning waste can be shipped in a single low-level waste package. This results in the requirement for so many small, low-level waste packages that Type B shipments are strategically and economically more attractive. However, use of Type B shipments would also result in higher dose uptake and waste management costs than under the 1973 Regulations

  5. Safety analysis of the transportation of radioactive waste to the Konrad final repository

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Bruecher, W.

    2010-01-01

    A transport risk assessment study has been conducted for transport of radioactive waste with negligible heat-generation to the German final repository Konrad. This study is a revision of the former Konrad Transport Study performed by GRS in 1991 implementing updated waste data among other improved methods and assumptions for the purpose of a more realistic approach to risk assessment. The first part of the transport risk assessment study concerns the radiological consequences from normal (accident-free) transportation of radioactive material, i.e. the radiation exposure of transport personnel and the public. Based on the assessed detailed information on transport arrangements and on the average number and radiological characteristics of waste packages the maximum annual effective doses for the representative persons were estimated. The risk associated with transport incidents and accidents has been quantified for the area within a radius of 25 km around the repository site. The probabilistic method adopted in this study considers parameters as the frequency and severity of railway or road accidents, characteristics of radioactive waste and transport packagings and the frequency of atmospheric dispersion conditions. From a large set of parameter combinations the spectrum of potential radiological consequences and of the associated probability of occurrence was assessed. (orig.)

  6. Study of Radiation Shielding Analysis for Low-Intermediate Level Waste Transport Ship

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyung; Lee, Unjang; Song, Yangsoo; Kim, Sukhoon; Ko, Jaehoon [Korea Nuclear Engineering and Service Corporation, Seoul (Korea, Republic of)

    2007-07-01

    In Korea, it is planed to transport Low-Intermediate Level Radioactive Waste (LILW) from each nuclear power plant site to Kyongju LILW repository after 2009. Transport through the sea using ship is one of the most prospective ways of LILW transport for current situation in Korea. There are domestic and international regulations for radiation dose limit for radioactive material transport. In this article, radiation shielding analysis for LILW transport ship is performed using 3-D computer simulation code, MCNP. As a result, the thickness and materials for radiation shielding walls next to cargo in the LILW transport ship are determined.

  7. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  8. Quantifying the transport impacts of domestic waste collection strategies.

    Science.gov (United States)

    McLeod, Fraser; Cherrett, Tom

    2008-11-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream.

  9. Quantifying the transport impacts of domestic waste collection strategies

    International Nuclear Information System (INIS)

    McLeod, Fraser; Cherrett, Tom

    2008-01-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream

  10. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  11. City of New York v. United States Dep't of Transportation: urban radioactive waste transportation gets another green light

    International Nuclear Information System (INIS)

    Rainey, K.C.

    1986-01-01

    The author examines the background of this suit, which invalidated a municipal law prohibiting the transportation of large quantities of radioactive waste through city streets. The analysis focuses on two major issues: (1) whether the Hazardous Materials Transportation Act gives the Department of Transportation (DOT) the rulemaking power to preempt local law, and (2) whether DOT should have prepared an environmental impact statement before rulemaking. It concludes that DOT's action was arbitrary, and suggests some intermediate actions that would aid DOT in making a more informed decision. This could include a verification of DOT environmental assessment data and a more complete analysis of human error. The case illustrates the need for a lesser degree of judicial deference to federal agency action with respect to the volatile and unpredictable area of hazardous waste transportation

  12. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  13. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  14. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  15. Waste management practices to control biological transport of radioactivity at the Hanford Site

    International Nuclear Information System (INIS)

    Conklin, A.W.

    1985-01-01

    One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed

  16. The TN-GEMINI: experience on a versatile alpha waste transport container

    International Nuclear Information System (INIS)

    Roland, V.; Chanzy, Y.

    2001-01-01

    The present paper discusses experience gained in moving alpha wastes and its teachings regarding transport aspects of D and D. Alpha wastes are generated in fuel cycle facilities such as those involved in reprocessing, in manufacture of mixed oxide fuel, and by research laboratories. If a significant amount of wastes has to be transported, then a Type B packaging is required. Developed by Transnucleaire and COGEMA, the TN GEMINI container enables nuclear facilities operators to optimise their alpha waste transport management, and more generally contribute to their D and D projects. After describing succinctly the design of the TN GEMINI, the paper will explain how the packaging is being operated. Teachings from experience will be shared. (orig.)

  17. Low-level radioactive waste transportation plan for the State of Maryland

    International Nuclear Information System (INIS)

    Chaparala, P.N.

    1985-01-01

    The purpose of this document is to prepare a recommended transportation plan that will outline specific procedures for monitoring and regulating low-level radioactive waste transport in Maryland and which is consistent with federal law and party-state requirements under the Appalachian Compact

  18. A service network design model for multimodal municipal solid waste transport

    NARCIS (Netherlands)

    Inghels, D.A.M.; Dullaert, W.E.H.; Vigo, D.

    2016-01-01

    A modal shift from road transport towards inland water or rail transport could reduce the total Green House Gas emissions and societal impact associated with Municipal Solid Waste management. However, this shift will take place only if demonstrated to be at least cost-neutral for the decision

  19. Nuclear energy waste-space transportation and removal

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  20. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  1. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  2. Transport system for low level radioactive wastes in Japan

    International Nuclear Information System (INIS)

    Tanaka, K.; Yoshida, K.; Sanui, T.

    1993-01-01

    Nuclear Fuel Transport Co. (NFT) is to take charge of LLW transportation from each nuclear power plants to the final repository consigned by 10 electric power companies in Japan. In order to transport LLW safely and efficiently, NFT has developed and prepared various hardware, such as special packaging, an exclusive use vessel, automatic cranes and so forth together with software to use them. The procedure of transport is also described. (J.P.N.)

  3. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

  4. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  5. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign

  6. The potential application of military fleet scheduling tools to the Federal Waste Management System Transportation System

    International Nuclear Information System (INIS)

    Harrison, I.G.; Pope, R.B.; Kraemer, R.D.; Hilliard, M.R.

    1991-01-01

    This paper discusses the feasibility of adapting concepts and tools that were developed for the US military's transportation management systems to the management of the Federal Waste Management System's (FWMS) Transportation System. Many of the lessons in the development of the planning and scheduling software for the US military are applicable to the development of similar software for the FWMS Transportation System. The resulting system would be invaluable to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM), both initially, for long-range planning, and later, in day-to-day scheduling and management activities

  7. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  8. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  9. 10 CFR 51.52 - Environmental effects of transportation of fuel and waste-Table S-4.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental effects of transportation of fuel and waste... Environmental effects of transportation of fuel and waste—Table S-4. Under § 51.50, every environmental report... detailed analysis of the environmental effects of transportation of fuel and wastes to and from the reactor...

  10. Safety aspects of radioactive waste transportation and storage in the Republic of Moldova

    International Nuclear Information System (INIS)

    Gasca, Iu.

    2009-01-01

    A special attention continues to be given to the management of radioactive wastes. The National Department of Radioactive Waste Management is a unique institute in Moldova that deals with reception, transportation and storage of radioactive wastes. It collaborates with International Atomic Energy Agency. The management of low- and intermediate-level waste has remained permanently focused at the IAEA work. In 2003 IAEA supported the construction and technique of low-level and intermediate-level radioactive waste repository in Moldova. During 2003-2005 the US Department of Energy supported financing of planning and building of the underground storage for keeping the installations with high-level radioactive sources with all safety systems (signalization, video-monitoring). In 2008 the construction of radioactive wastes conditioning station was initiated with support of the US Embassy's Bureau for military cooperation

  11. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  12. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  13. Development of safety-relevant components for the transport and handling of final storage casks for waste from decommissioning

    International Nuclear Information System (INIS)

    Bruening, D.; Geiser, H.; Kloeckner, F.; Rittscher, D.; Schlesinger, H.J.

    1992-10-01

    The aim of the study was the development, construction and testing of a transportation system that is able to transport cylindrical waste containers as well as containers from the deliverer to the 'KONRAD' final repository. A transport palette has been developed that can carry two cylindrical waste containers with type B requirement or classification II. An Open-All-Container for the transport of palettes and 'KONRAD' containers has been developed. A storage of cylindrical waste containers and containers in the final repository is possible with the newly developed transportation system. Safety specifications of the transportation system have been passed successfully. (orig.). 30 refs., 8 tabs., 74 figs [de

  14. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    International Nuclear Information System (INIS)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-01-01

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude

  15. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  16. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  17. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  18. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  19. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  20. Relative contributions of natural and waste-derived organics to the subsurface transport of radionuclides

    International Nuclear Information System (INIS)

    Toste, A.P.; Myers, R.B.

    1985-06-01

    Our laboratory is studying the role of organic compounds in the subsurface transport of radionuclides at shallow-land burial sites of low-level nuclear waste, including a commercial site at Maxey Flats, Kentucky, and an aqueous waste disposal site. At the Maxey Flats site, several radionuclides, notably Pu and 60 Co, appear to exist as anionic, organic complexes. Waste-derived organics, particularly chelating agents such as EDTA, HEDTA and associated degradation products (e.g., ED3A), are abundant in aqueous waste leachates and appear to account for the complexation. EDTA, and probably other waste-derived chelating agents as well, are chelated to the Pu and 60 Co in the leachates, potentially mobilizing these radionuclides. In contrast, at the low-level aqueous waste disposal site, naturally-occurring organics, ranging from low molecular weight (MW) acids to high MW humic acids, account for the bulk of the groundwater's organic content. Certain radionuclides, notably 60 Co, 103 Ru and 125 Sb, are mobile as anionic complexes. These radionuclides are clearly associated with higher MW organics, presumably humic and fulvic acids with nominal MW's > 1000. It is clear, therefore, that naturally-occurring organics may play an important role in radionuclide transport, particularly at nuclear waste burial sites containing little in the way of waste-derived organics

  1. The possibility of GIS application for the needs of planning transport of hazardous waste

    Directory of Open Access Journals (Sweden)

    Panić Milena

    2010-01-01

    Full Text Available Hazardous waste management system as a separate segment includes the transportation of hazardous waste, which specifically includes transportation from the place of its origin to the place of storage, treatment or final disposal. This function includes all forms of transport, but experience has shown that the most used one is a road traffic, which also carries an extremely high risk of possible occurrence of accident and endangering the local community, material resources and environment. Therefore, it is necessary to establish control over transport option, and the risk too, which is achieved by conducting risk assessments and then selecting the optimal transport routes. In each of these phases GIS has found its major application, enabling operation with different types of data, a simplified procedure of multi-criteria analysis and a clear visual representation of the received results. .

  2. Statement of work for the immobilized high-level waste transportation system, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Mouette, P.

    1998-06-24

    The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

  3. Regulatory aspects of the transport of high radiation level and alpha waste in France

    International Nuclear Information System (INIS)

    Devillers, C.; Grenier, M.; Lombard, J.; Mathieu, F.

    1993-01-01

    The introduction of the 10 mSv.h -1 at 3 m limit for LSA unshielded material makes it impossible to transport, as LSA material, the highest radiation level wastes from EdF PWR's operations. At present, the EdF's waste blocks can be transported as LSA III material by special arrangement. A new package design, equivalent to a Type B package, will be available for their transport before the end of the year 1995. It consists of a re-usable steel cylinder over-packing each block. Compliance of this package model with transport safety requirements will be demonstrated by taking into account the non-dispersability, as LSA III material, of the irradiating waste. A two-step approach has been accepted by the French Competent Authority for the transport of these wastes: (1) a specific ISO 20 container, thermally insulated, can be used by special arrangement for the transport of LSA combustible material having a total activity per conveyance higher than 100 A2. Furthermore, additional safety measures have to be implemented for these consignments. (2) After the end of 1995, a Type B package must be used for activity contents per conveyance higher than 100 A2. A specific 20' ISO container, complying with Type B requirements, is being developed for that purpose. (author)

  4. Cost optimization of a real-time GIS-based management system for hazardous waste transportation.

    Science.gov (United States)

    Zhu, Yun; Lin, Che-Jen; Zhong, Yilong; Zhou, Qing; Lin, Che-Jen; Chen, Chunyi

    2010-08-01

    In this paper, the design and cost analysis of a real-time, geographical information system (GIS) based management system for hazardous waste transportation are described. The implementation of such a system can effectively prevent illegal dumping and perform emergency responses during the transportation of hazardous wastes. A case study was conducted in Guangzhou, China to build a small-scale, real-time management system for waste transportation. Two alternatives were evaluated in terms of system capability and cost structure. Alternative I was the building of a complete real-time monitoring and management system in a governing agency; whereas alternative II was the combination of the existing management framework with a commercial Telematics service to achieve the desired level of monitoring and management. The technological framework under consideration included locating transportation vehicles using a global positioning system (GPS), exchanging vehicle location data via the Internet and Intranet, managing hazardous waste transportation using a government management system and responding to emergencies during transportation. Analysis of the cost structure showed that alternative II lowered the capital and operation cost by 38 and 56% in comparison with alternative I. It is demonstrated that efficient management can be achieved through integration of the existing technological components with additional cost benefits being achieved by streamlined software interfacing.

  5. Replacement of the cross-site transfer system liquid waste transport alternatives evaluation, Project W-058

    International Nuclear Information System (INIS)

    Vo, D.V.; Epperson, E.M.

    1995-05-01

    This document examines high-/low-level radioactive liquid waste transport alternatives. Radioactive liquid waste will be transported from the 200 West Area to the 200 East Area and within the 200 East Areas for safe storage and disposal. The radioactive waste transport alternatives are the Aboveground Transport System (French LR-56 Cask System [3,800 L (1,000 gal)]), 19,000-L (5,000-gal) trailer tanker system, 75,700-L (20,000-gal) rail tanker system and Underground Transport System (buried pipe [unlimited transfer volume capability]). The evaluation focused on the following areas: initial project cost, operational cost, secondary waste generation, radiation exposure, and final decommissioning. The evaluation was based on the near term (1995 to 2005) estimated volume of 49.509 million L (13.063 million gal) and long term (1995 to 2028) estimated volume of 757.1 million L (200 million gal). The conclusion showed that the buried pipe (Underground Transport System) resulted in the lowest overall total cost for near and long term, the trailer container resulted in the highest total cost for near and long term, and the French truck was operationally impractical and cost prohibitive

  6. Dumping and Illegal Transport of Hazardous Waste, Danger of Modern Society

    OpenAIRE

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovičić, Nives

    2014-01-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of​ permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement ...

  7. The issue resolution process in the Civilian Radioactive Waste Transportation Program

    International Nuclear Information System (INIS)

    Holm, J.A.; Denny, S.

    1987-01-01

    The Civilian Radioactive Waste Management (OCRWM) Program consists of various technical and institutional program activities which engender concern from the general public and from policymakers at federal, state, and local levels. Most familiar are the concerns centered around selection of a site for a repository; however, the transportation portion of the OCRWM program also engenders similar concerns for safety, efficiency and effectiveness. The major Transportation institutional issues were detailed in the Institutional Plan, issued in 1986, and include topics such as liability, defense waste, routing, emergency response, risk identification and mitigation, cash integrity, inspection and enforcement of high-level waste shipments and use of overweight trucks as part of the modal mix. This paper will define the process being used to identify and resolve institutional issues, show how the technical and institutional issues interface and are addressed, and briefly describe four specific activities which illustrate the process of resolving institutional issues in the Transportation program

  8. OCRWM [Office of Civilian Radioactive Waste Management] transportation program reference: Glossary, acronym list, bibliography

    International Nuclear Information System (INIS)

    1988-07-01

    A successful transportation system for nuclear waste must be safe, efficient, and widely acceptable. To achieve the necessary public understanding, there must be an exchange of information and an identification of issues. This booklet has been developed to assist in that exchange of information and help in the communication of issues. It will provide a glossary of commonly used terms, a list of acronyms, a bibliography selected from the public information developed by the OCRWM Program, and contacts for additional information. Transportation is an integral and essential part of the projected waste management system. The United States has a long history of transporting radioactive material. Commercial spent fuel has been shipped for over 20 years and high-level waste from defense activities for an even longer period. These shipments have been conducted without any accidents causing death or environmental damage because of the radiological nature of the cargo. DOE is taking measures to ensure that this safety record continues. 24 refs

  9. The development of a type B(U) transport container design in cast and forged stainless steel for the transport of immobilised intermediate level waste

    International Nuclear Information System (INIS)

    Sievwright, B.; Dixon, P.; Tso, C.F.

    2004-01-01

    United Kingdom Nirex Limited (Nirex) is responsible for providing the United Kingdom with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. This includes intermediate level (ILW) and some low level (LLW) wastes. As part of its role Nirex has defined standards and specifications for the conditioning and packaging of these wastes, and carries out assessments of packaging proposals to ensure compatibility with the requirements for future phases of waste management. In order to facilitate this process and to provide a basis for the production of waste package specifications, Nirex has developed the Phased Disposal Concept, and produced a suite of underpinning safety and performance assessments. It has also undertaken work to assess the compatibility of its waste packaging specifications with other waste management options. The Phased Disposal Concept continues to be developed and updated to incorporate issues arising from dialogue with stakeholders, including members of the public; future changes arising from Government policy, legislation and regulations; information from waste producers, and the results from on-going research and development. One of the documents describing the Phased Disposal Concept is the Generic Transport System Design (GTSD). The GTSD outlines the range of waste packages to be transported and disposed of, and describes the design of the transport system needed to transport wastes from their sites of production or storage to a centralised phased disposal facility site. It also describes a range of re-usable transport containers which could be used to transport those waste packages, which require Type B standards for transport, through the public domain. This paper describes the development to date of such a design of reusable transport container, known as the SWTC-285, the Standard Waste Transport Container (SWTC) with 285 mm of shielding

  10. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1979-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and groundwater. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However, the input parameters used in these models are highly variable; and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  11. Pareto frontier analyses based decision making tool for transportation of hazardous waste

    International Nuclear Information System (INIS)

    Das, Arup; Mazumder, T.N.; Gupta, A.K.

    2012-01-01

    Highlights: ► Posteriori method using multi-objective approach to solve bi-objective routing problem. ► System optimization (with multiple source–destination pairs) in a capacity constrained network using non-dominated sorting. ► Tools like cost elasticity and angle based focus used to analyze Pareto frontier to aid stakeholders make informed decisions. ► A real life case study of Kolkata Metropolitan Area to explain the workability of the model. - Abstract: Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology.

  12. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and ground water. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However,the input parameters used in these models are highly variable, and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  13. Transport of Spent Nuclear Fuels, High and Intermediate Level Wastes: A Continuous Challenge

    International Nuclear Information System (INIS)

    Otton, C.; Blachet, L.

    2009-01-01

    For more than 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the used nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks for the spent fuel, high level waste and intermediate level waste transportation. Answering to the constant evolution of the nuclear industry transport needs is a challenge that TN International faces routinely. Concerning the spent nuclear fuel transportation, TN International has developed in the early 80's a fleet of TN12 type casks fitted with several types of baskets able to safely transport all the spent fuel from the nuclear power plant or the research laboratories to AREVA La Hague plant. The current challenge is the design of a new transport cask generation taking into account the needs of the industry for the next 30 years. The replacement of the TN12 cask generation is to be scheduled as the regulations have changed and the fuel characteristics have evolved. The new generation of casks will take into account all the technical evolutions made during the TN12 thirty years of use. MOX spent fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. Concerning the high level waste such as the La Hague vitrified residues a whole fleet of casks has been developed such as the TN 28 VT dedicated to transport, the TN81 and TN85 dedicated to transport and storage. These casks have permitted the

  14. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  15. Tank Waste Transport Stability: Summary of Slurry and Salt-Solution Studies for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-06-07

    Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  16. Hydrologic factors and 90Sr transport at a low-level waste disposal site

    International Nuclear Information System (INIS)

    Huff, D.D.

    1982-01-01

    There are several hydrologic factors that can affect contaminant migration at a waste disposal site. Many studies recognize surface water and groundwater controls as major factors. But what are the specific hydrologic processes most often associated with contaminant transport. Studies of solid waste storage areas (SWSAs) for low-level radioactive wastes at Oak Ridge National Laboratory, which is located in the humid environment of east Tennessee, have identified several mechanisms. Most of the processes are associated with groundwater movement, but in at least one case, surface runoff has played a dominant role. In all cases, consideration of localized hydrologic conditions has been the key to understanding the factors responsible for radionuclide migration

  17. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  18. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: Julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  19. Analysis and model testing of a Super Tiger Type B waste transport system in accident environments

    International Nuclear Information System (INIS)

    May, R.A.; Yoshimura, H.R.; Romesberg, L.E.; Joseph, B.J.

    1980-01-01

    Sandia National Laboratories is investigating the response of a Type B packaging containing drums of contact-handled transuranic waste (CH-TRU) as a part of a program to evaluate the adequacy of experimental and analytical methods for assessing the safety of waste transport systems in accident environments. A US NRC certified Type B package known as the Super Tiger was selected for the study. This overpack consists of inner and outer steel shells separated by rigid polyurethane foam and can be used for either highway or rail transportation. Tests using scale models of the vehicular system are being conducted in conjunction with computer analyses

  20. A preliminary analysis of the risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Madsen, M.M.

    1984-01-01

    In accordance with the provisions of the Nuclear Waste Policy Act of 1982, environmental assessments for potential candidate sites are required to provide a basis for selection of the first site for disposal of commercial radioactive waste in deep geologic repositories. A preliminary analysis of the impacts of transportation for each of the five potential sites will be described. Transportation was assumed to be entirely by truck or entirely by rail in order to obtain bounding impacts. This paper presents both radiological and nonradiological risks for the once-through fuel cycle

  1. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    Science.gov (United States)

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  2. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.; Chang, Y.S.

    1996-12-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II) and presents the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  3. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.

    1995-04-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II), as well as providing the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  4. Radionuclide transport through perforations in nuclear waste containers

    International Nuclear Information System (INIS)

    Aidun, C.K.; Bloom, S.G.; Raines, G.E.

    1987-11-01

    Previous analytical models for the steady-state radionuclide release rate through perforations in nuclear waste containers into the surrounding medium are based on a zero wall thickness assumption. In this paper we investigate the effect of the wall thickness on the mass transfer rate through isolated cylindrical holes. We solve the steady-state diffusion equation for the concentration field and derive a model based on the analytical solution. By direct comparison, we show that the zero wall thickness model overpredicts the mass transfer rate by about 1300 percent for a circular hole with 1-cm radius and a wall thickness of 10 cm. As expected, the zero-thickness model becomes even less accurate as the hole radius decreases; it predicts a greater release rate from a large number of small holes than the mass transfer rate from an uncontained waste form cylinder. In contrast, the results predicted by our model remain bounded for isolated holes and never exceed the mass transfer from an uncontained waste form. 6 refs., 9 figs., 3 tabs

  5. Transporting transuranic waste to the Waste Isolation Pilot Plant: Risk and cost perspectives

    International Nuclear Information System (INIS)

    Biwer, B. M.; Gilette, J. L.; Poch, L. A.; Suermann, J. F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is an authorized US Department of Energy (DOE) research and development facility constructed near the city of Carlsbad in southeastern New Mexico. The facility is intended to demonstrate the safe disposal of transuranic (TRU) radioactive waste resulting from US defense activities. Under the WIPP Land Withdrawal Act of 1992 (LWA), federal lands surrounding the WIPP facility were withdrawn from all public use and the title of those lands was transferred to the Secretary of Energy. The DOE's TRU waste is stored, and in some cases is still being generated, at 10 large-quantity and 13 small-quantity sites across the US. After applicable certification requirements have been met, the TRU waste at these sites will be sent to the WIPP to initiate the disposal phase of the facility, which according to current planning is projected to last for approximately 35 years

  6. WASTES: Wastes system transportation and economic simulation: Version 2, Programmer's reference manual

    International Nuclear Information System (INIS)

    Buxbaum, M.E.; Shay, M.R.

    1986-11-01

    The WASTES Version II (WASTES II) Programmer's Reference Manual was written to document code development activities performed under the Monitored Retrievable Storage (MRS) Program at Pacific Northwest Laboratory (PNL). The manual will also serve as a valuable tool for programmers involved in maintenance of and updates to the WASTES II code. The intended audience for this manual are experienced FORTRAN programmers who have only a limited knowledge of nuclear reactor operation, the nuclear fuel cycle, or nuclear waste management practices. It is assumed that the readers of this manual have previously reviewed the WASTES II Users Guide published as PNL Report 5714. The WASTES II code is written in FORTRAN 77 as an extension to the SLAM commercial simulation package. The model is predominately a FORTRAN based model that makes extensive use of the SLAM file maintenance and time management routines. This manual documents the general manner in which the code is constructed and the interactions between SLAM and the WASTES subroutines. The functionality of each of the major WASTES subroutines is illustrated with ''block flow'' diagrams. The basic function of each of these subroutines, the algorithms used in them, and a discussion of items of particular note in the subroutine are reviewed in this manual. The items of note may include an assumption, a coding practice that particularly applies to a subroutine, or sections of the code that are particularly intricate or whose mastery may be difficult. The appendices to the manual provide extensive detail on the use of arrays, subroutines, included common blocks, parameters, variables, and files

  7. A GIS based transportation model for solid waste disposal - A case study on Asansol municipality

    International Nuclear Information System (INIS)

    Ghose, M.K.; Dikshit, A.K.; Sharma, S.K.

    2006-01-01

    Uncontrolled growth of the urban population in developing countries in recent years has made solid waste management an important issue. Very often, a substantial amount of total expenditures is spent on the collection of solid waste by city authorities. Optimization of the routing system for collection and transport of solid waste thus constitutes an important component of an effective solid waste management system. This paper describes an attempt to design and develop an appropriate storage, collection and disposal plan for the Asansol Municipality Corporation (AMC) of West Bengal State (India). A GIS optimal routing model is proposed to determine the minimum cost/distance efficient collection paths for transporting the solid wastes to the landfill. The model uses information on population density, waste generation capacity, road network and the types of road, storage bins and collection vehicles, etc. The proposed model can be used as a decision support tool by municipal authorities for efficient management of the daily operations for transporting solid wastes, load balancing within vehicles, managing fuel consumption and generating work schedules for the workers and vehicles. The total cost of the proposed collection systems is estimated to be around 80 million rupees for the fixed cost of storage bins, collection vehicles and a sanitary landfill and around 8.4 million rupees for the annual operating cost of crews, vehicles and landfill maintenance. A substantial amount (25 million rupees/yr) is currently being spent by AMC on waste collection alone without any proper storage/collection system and sanitary landfill. Over a projected period of 15 yr, the overall savings is thus very significant

  8. Transportation ALARA analysis for a nuclear waste management system

    International Nuclear Information System (INIS)

    McNair, G. W.; Schneider, K.; Smith, R.I.; Ross, W.; Faletti, D.

    1988-01-01

    In planning for implementation of a safe and cost-effective transportation system, the Department of Energy (DOE) commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the radiation doses, both public and occupational, that would result from operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in relatively high doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. This study contains an analysis of routine operations and estimates of the public and worker radiation doses that would occur in a postulated generic reference spent fuel transportation system using both truck and rail modes. Total risks are not estimated (i.e., consideration of nonradiological or accident risks that will be the subject of future studies in the transportation systems study plan 9TSSP) are not included). The system encompasses spent fuel loading at the reactor, transportation of the fuel to and from a receiving and handling facility and unloading of the fuel at a repository. The analysis provides cost/dose trade-offs of the postulated reference system as well as selected potential alternatives to the transportation system

  9. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2012-06-11

    ... Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear... fuel and certain nuclear wastes for any shipment that passes within or across their reservations. The... irradiated reactor fuel and certain nuclear waste passing through or across the boundary of their States...

  10. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  11. Regulatory authority of the Rocky Mountain states for low-level radioactive waste packaging and transportation

    International Nuclear Information System (INIS)

    Whitman, M.; Tate, P.

    1983-07-01

    The newly-formed Rocky Mountain Low-Level Radioactive Waste Compact is an interstate agreement for the management of low-level radioactive waste (LLW). Eligible members of the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Each state must ratify the compact within its legislature for the compact to become effective in that state and to make that state a full-fledged member of the compact. By so adopting the compact, each state agrees to the terms and conditions specified therein. Among those terms and conditions are provisions requiring each member state to adopt and enforce procedures requiring low-level waste shipments originating within its borders and destined for a regional facility to conform to packaging and transportation requirements and regulations. These procedures are to include periodic inspections of packaging and shipping practices, periodic inspections of waste containers while in the custody of carriers and appropriate enforcement actions for violations. To carry out this responsibility, each state must have an adequate statutory and regulatory inspection and enforcement authority to ensure the safe transportation of low-level radioactive waste. Three states in the compact region, Arizona, Utah and Wyoming, have incorporated the Department of Transportation regulations in their entirety, and have no published rules and regulations of their own. The other states in the compact, Colorado, Nevada and New Mexico all have separate rules and regulations that incorporate the DOT regulations. A brief description of the regulatory requirements of each state is presented

  12. Building waste management core indicators through Spatial Material Flow Analysis: net recovery and transport intensity indexes.

    Science.gov (United States)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-01

    In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Safety assessment for the transportation of NECSA's LILW to the Vaalputs waste disposal facility

    International Nuclear Information System (INIS)

    Maphoto, K.P.; Raubenheimer, E.; Swart, H.

    2008-01-01

    The transport safety assessment was carried out with a view to assess the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the radioactive materials. It provides estimates of radiological risks associated with the envisaged transport scenarios for the road transport mode. This is done by calculating the human health impact and radiological risk from transportation of LILW along the R563 route, N14 and eventually to the Vaalputs National Waste Disposal Facility. Various parameters are needed by the RADTRAN code in calculating the human health impact and risk. These include: numbers of population densities following the routes undertaken, number of stops made, and the speed at which the transport will be traversing at towards the final destination. The human health impact with regard to the dose to the public, LCF and risk associated with transportation of Necsa's LILW to the Vaalputs Waste Disposal Facility by road have been calculated using RADTRAN 5 code. The results for both accident and incident free scenarios have shown that the overall risks are insignificant and can be associated with any non-radiological transportation. (authors)

  14. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study

    International Nuclear Information System (INIS)

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively

  15. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner

  16. Transport of Escherichia Coli and solutes during waste water infiltration in an urban alluvial aquifer

    NARCIS (Netherlands)

    Foppen, J.W.A.; van Herwerden, M.; Kebtie, M.; Noman, A.; Schrijven, J.F.; Stuijfzand, P.J.; Uhlenbrook, S.

    2008-01-01

    Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing

  17. Establishment and application of performance evaluation model for collection and transportation system of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    彭绪亚; 林晓东; 贾传兴; 王渝昆; 黄媛媛

    2009-01-01

    On the basis of analyzing the typical waste collection and transportation mode,the evaluation index system for performance of the waste collection and transportation system was proposed with three grades,which related to six factors,such as economic evaluation,high efficient evaluation,environmental impact assessment,resource evaluation,evaluation of security and emergency,evaluation of management and society. With the performance evaluation theory,the performance evaluation model of waste collection and transportation system was constructed,which quantified the grading standard of index and determined the index weight in analytic hierarchy process (AHP). After evaluating the waste collection and transportation system of the main districts of Chongqing city,the results show that the it has an excellent performance evaluation grade with very high performance level of three indices involving evaluation of management and society,environmental impact assessment,evaluation of security and emergency and quite low performance level of two indices that include high efficient evaluation and economic evaluation.

  18. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    ) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection...

  19. Hydrologic factors and 90Sr transport at a low-level waste disposal site

    International Nuclear Information System (INIS)

    Huff, D.D.

    1982-01-01

    A case study of a solid waste storage area at Oak Ridge National Laboratory is presented. The purpose of the study is to devise effective remedial actions based upon understanding of the underlying processes governing radionuclide migration. Discussion is presented under the following headings: site history; radionuclide transport studies; analysis of field results; and recommended remedial action

  20. Trasax '90: An integrated transportation emergency response exercise program involving transuranic waste shipments

    International Nuclear Information System (INIS)

    Kouba, S.; Everitt, J.

    1991-01-01

    Over the last five years, the US Department of Energy (DOE), and several states and numerous local governments have been preparing for the transportation of transuranic (TRU) waste to be shipped to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, near Carlsbad. Seven western states, represented by the Western Governors' Association (WGA), submitted a report to the US Congress that discussed the concerns of their constituents related to the transportation of TRU waste through their communities. One of the three major concerns identified was emergency preparedness. Initial funding to resolve concerns identified in the WGA report to Congress was provided by the US Department of Transportation. Upon receiving funding, lead states were assigned responsibilities to devise programs aimed at increasing public confidence in the areas of most concern. The responsibility for emergency response readiness, as demonstrated through a program of training and responding to simulated accident scenarios, was accepted by the state of Colorado. The state of Colorado laid out an exercise program which expanded upon the DOE training programs already offered to emergency responders along Colorado's designated TRU-waste transportation corridor. The ongoing program included a full-scale field exercise staged in Colorado Springs and dubbed, ''TRANSAX '90.''

  1. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  2. Subsurface migration of radioactive waste materials by particulate transport

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Craft, T.F.; Powell, G.F.; Wahlig, B.G.

    1982-01-01

    The role of suspended particles as carriers of dissolved nuclides from high-level radioactive waste repositories has been investigated. Depending on the concentrations of suspended particles and the nature of the invading water, it has been found that cationic nuclides may be competitively adsorbed on suspended clay particles, the partitioning being largely determined by pH, temperature, and comparative surface areas of particulates and surrounding rocks. Column tests with activated particles have been conducted and showed that the clay particles pass readily through porous mineral columns and are increasingly retained if salinity is increased. Retention in basalt columns is stronger in the presence of high concentrations of sodium and calcium ions and has been explained in terms of van der Waals forces. The range of particulate migration then depends on the condition of the rock surfaces, the persistence of a clay coating, and the total dissolved ion concentration. For adsorbable waste ions, this may represent a pathway comparable in significance to ion-exchange-controlled migration. For some bed materials, the particulate movement displayed a prompt and a delayed component; the nature of the delay mechanism is not fully understood at present

  3. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    Energy Technology Data Exchange (ETDEWEB)

    Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  4. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    International Nuclear Information System (INIS)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-01-01

    Highlights: ► Sustainability and proximity principles have a key role in waste management. ► Core indicators are needed in order to quantify and evaluate them. ► A systematic, step-by-step approach is developed in this study for their development. ► Transport may play a significant role in terms of environmental and economic costs. ► Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of

  5. Multi-objective model of waste transportation management for crude palm oil industry

    Science.gov (United States)

    Silalahi, Meslin; Mawengkang, Herman; Irsa Syahputri, Nenna

    2018-02-01

    The crude palm oil industry is an agro-industrial commodity. The global market of this industry has experienced rapid growth in recent years, such that it has a strategic value to be developed for Indonesian economy. Despite these economic benefits there are a number of environmental problems at the factories, such as high water consumption, the generation of a large amount of wastewater with a high organic content, and the generation of a large quantity of solid wastes and air pollution. In terms of waste transportation, we propose a multiobjective programming model for managing business environmental risk in a crude palm oil manufacture which gives the best possible configuration of waste management facilities and allocates wastes to these facilities. Then we develop an interactive approach for tackling logistics and environmental risk production planning problem for the crude palm oil industry.

  6. Potential role of biotic transport models in low-level-waste management

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Soldat, J.K.; Cadwell, L.L.; McKenzie, D.H.

    1982-01-01

    This paper is a summary of the initial results of a study being conducted for the US Nuclear Regulatory Commission (NRC) to determine the relevance of biotic pathways to the regulation of nuclear waste disposal. Biotic transport is defined as the actions of plants and animals that result in the transport of radioactive materials from a LLW burial ground to a location where they can enter exposure pathways to man. A critical review of the role of modeling in evaluating biotic transport is given. Both current applications and the need for future modeling development are discussed

  7. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1995-04-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the U.S. Department of Energy (DOE) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, Hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  8. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1996-12-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  9. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    International Nuclear Information System (INIS)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs

  10. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

  11. Renewable liquid transport fuels from microbes and waste resources

    OpenAIRE

    Jenkins, Rhodri

    2014-01-01

    In order to satisfy the global requirement for transport fuel sustainably, renewable liquid biofuels must be developed. Currently, two biofuels dominate the market; bioethanol for spark ignition and biodiesel for compression ignition engines. However, both fuels exhibit technical issues such as low energy density, poor low temperature performance and poor stability. In addition, bioethanol and biodiesel sourced from first generation feedstocks use arable land in competition with food producti...

  12. PRESTO low-level waste transport and risk assessment code

    International Nuclear Information System (INIS)

    Little, C.A.; Fields, D.E.; McDowell-Boyer, L.M.; Emerson, C.J.

    1981-01-01

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under US Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial trenches. The model is intended to be generic and to assess radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000-y period following the end of burial operations. Human exposure scenarios considered by the model include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population inlude: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the thousand-year period using a life-table approach. Data bases are being developed for three extant shallow land burial sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York

  13. Specific transport and storage solutions: Waste management facing current and future stakes of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deniau, Helene; Gagner, Laurent; Gendreau, Francoise; Presta, Anne

    2006-01-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge: protection of people and environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, COGEMA LOGISTICS has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear producers through their operational choices. We will focus on the COGEMA LOGISTICS technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfill both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (COGEMA LOGISTICS, TRANSNUCLEAR, MAINCO, and LEMARECHAL CELESTIN) in order to manage transportation of liquid and solid waste towards interim or final storage sites. The paper has the following contents: About radioactive waste; - Radioactive waste classification; - High level activity waste and long-lived intermediate level waste; - Long-lived low level waste; - Short-lived low- and intermediate level waste; - Very low level waste; - The radioactive waste in nuclear fuel cycle; - Packaging design and

  14. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    International Nuclear Information System (INIS)

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO's proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO's cleanup mission. FERMCO's goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo

  15. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  16. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-01-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of liner materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress

  17. Hanford groundwater transport estimates for hypothetical radioactive waste incidents

    International Nuclear Information System (INIS)

    Arnett, R.C.; Brown, D.J.; Baca, R.G.

    1977-06-01

    This report presents an analysis of the impact of subsurface contamination resulting from a series of hypothetical leaks or accidents involving Hanford high-level radioactive defense waste. Estimates of the amounts and concentrations of radionuclides reaching the Columbia River through the Hanford unconfined aquifer flow path were obtained by means of predictive models. The results of the study showed that the spatially averaged concentrations of 99 Tc, 3 H, and 106 Ru in the ground water as it discharges into the Columbia River are at all times far below the respective ERDA Manual Chapter 0524 Concentration Guides for uncontrolled areas. Upon entering the Columbia River, additional large dilutions of the water containing trace quantities of contaminants will occur

  18. Development of emergency arrangements for the transport of radioactive waste to a deep repository

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Hutchinson, D.L.; Burgess, M.H.; Higson, J.; Randall, M.A.

    1993-01-01

    This paper summarises the results of the studies and discussions which have led to the recommendation that Nirex should adopt NIREP as the Emergency Plan for the proposed transport arrangements of radioactive waste to the proposed UK deep repository for the disposal of low level and intermediate level waste. Although NIREP is currently specific to the road transport of radioactive materials, it is in the process of being extended to cover their transport by rail. An extended version of NIREP, covering both road and rail transport, could be operational by the end of 1992. NIREP is an established plan which meets all the current legal requirements and is flexible enough to accommodate any likely changes in legislation in the future. It is compatible with the Planning Basis and meets the requirements of the Emergency Plan Specification. The extended version of NIREP will be subject to an annual full-scale exercise and the Plan should be well-proven by the time that transport of waste packages to the repository commences. (J.P.N.)

  19. Institutional interactions in developing a transportation system under the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Denny, S.H.

    1986-01-01

    The Department of Energy (DOE) recognizes that the success of its efforts to develop and operate a system for transporting nuclear waste under the provisions of the Nuclear Waste Policy Act of 1982 (NWPA) depends in large measure on the effectiveness of Departmental interactions with the affected parties. To ensure the necessary network of communication, the DOE is establishing lines of contact with those who are potential participants in the task of developing the policies and procedures for the NWPA transportation system. In addition, a number of measures have been initiated to reinforce broad-based involvement in program development. The Transportation Institutional Plan provides a preliminary road map of DOE's projected interactions over the next decade and is discussed in this paper

  20. Hazardous waste transportation risk assessment for the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement -- human health endpoints

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Policastro, A.J.; Lazaro, M.A.

    1994-01-01

    In this presentation, a quantitative methodology for assessing the risk associated with the transportation of hazardous waste (HW) is proposed. The focus is on identifying air concentrations of HW that correspond to specific human health endpoints

  1. Transport of nitrate from a large cement based waste form

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-01-01

    A finite-element model is used to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith with and without a clay cap. Model predictions agree well with data from two lysimeter field experiments begun in 1984. The clay cap effectively reduces the flux of nitrate from the monolith. Predictions for a landfill monolith design show a peak concentration occurring within 25 years; however, the drinking water guideline is exceeded for 1200 years. Alternate designs and various restrictive liners are being considered

  2. SWIFT: INTERA simulator for waste injection, flow and transport

    International Nuclear Information System (INIS)

    Hossain, S.; Arens, G.; Fein, E.

    1990-06-01

    The latest SWIFT model (SWIFT-GSF2) as available in GSF Braunschweig is described. The theoretical background has been elaborated using the SWIFT II documentation and other available internal notes of various enhancements. Thus the boundary condition implementations and source/sink considerations are now comprehensive. The computer implementation has also been extented to include the description of the matrix solution algorithms. Finally, the data input guide has been updated and when necessary illustrated with figures. The presentation begins with the basic transport equations. (orig.)

  3. Environmental effects of transporting radioactive materials in nuclear waste management systems

    International Nuclear Information System (INIS)

    Pope, R.B.; Yoshimura, H.R.; McClure, J.D.; Huerta, M.

    1978-01-01

    This paper discusses the environmental effects of radioactive materials transportation. The systems used or being designed for use in spent fuel and waste transportation are described. Accident rate and severity data are used to quantify risk. A test program in which subscale and full scale transportation systems were exposed to accident environments far in excess of those used in package design is used to relate package damage to accident severity levels. Analytical results and subscale and full scale test results are correlated to demonstrate that computational methods or scale modeling, or both, can be used to predict accident behavior of transportation systems. This work is used to show that the risks to the public from radioactive material transportation are low relative to other risks commonly accepted by the public

  4. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  5. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  6. Evaluation of doses during the handling and transport of radioactive wastes containers

    International Nuclear Information System (INIS)

    Kubik, I.; Kusovska, Z.; Hanusik, V.; Mrskova, A.; Kapisovsky, V.

    2000-01-01

    Radioactive waste products from the nuclear power plants (NPPs) must be isolated from contact with people for very long period of time. Low and intermediate-level waste will be disposed of in Slovakia in specially licensed Regional disposal facility which is located near the NPP Mochovce site. Radioactive waste accumulated in the Jaslovsk. Bohunice site, during the decommissioning process of the NPP A-1 and arising from the NPP V-1 and NPP V-2 operation, will be processed and shipped in standard concrete containers to the Mochovce Regional disposal facility. The treatment centre was build at the NPP Jaslovsk? Bohunice site which is in the trial operation now. It is supposed that radioactive waste containers will be transported by train from the treatment centre Jaslovsk? Bohunice to the site of Radioactive Waste Repository at Mochovce and by truck in the area of repository. To estimate the occupational radiation exposure during the transport the calculations of dose rates from the containers are necessary. The national regulations allow low level of radiation to emanate from the casks and containers. The maximum permissible volume radioactivity of wastes inside the container is limited in such a way that irradiation level should not exceed 2 mGy/h for the contact irradiation level and 0,1 mGy/h at 2-meter distance. MicroShield code was used to analyse shielding and assessing exposure from gamma radiation of containers to people. A radioactive source was conservatively modelled by homogenous mixture of radionuclides with concrete. Standard rectangular volume source and shield geometry is used in model calculations. The activities of the personnel during the transport and storage of containers are analysed and results of the evaluation of external dose rates and effective doses are described. (author)

  7. Impacts of transportation on a test and evaluation facility for nuclear waste disposal: a systems analysis

    International Nuclear Information System (INIS)

    Varadarajan, R.V.; Peterson, R.W.; Joy, D.S.; Gibson, S.M.

    1983-01-01

    An essential element of the Test and Evaluation Facility (TEF) is a waste packaging facility capable of producing a small number Test and Evaluation Facility of packages consisting of several different waste forms. The study envisions three scenarios for such a packaging facility: (1) modify an existing hot cell facility such as the Engine Maintenance Assembly and Disassembly (EMAD) facility at the Nevada Test Site so that it can serve as a packaging facility for the TEF. This scenario is referred to as the EMAD Option. (2) Build a new generic packaging facility (GPF) at the site of the TEF. In other words, colocate the GPF and the TEF. This scenario is referred to as the GPF Option, and (3) utilize the EMAD facility in conjunction with a colocated GPF (of minimal size and scope) at the TEF. This scenario is referred to as the Split Option. The results of the system study clearly bring out the fact that transportation has a significant impact on the selection and siting of the waste packaging facility. Preliminary conclusions, subject to the assumptions of the study, include the following: (1) regardless of the waste form, the GPF option is preferable to the other two in minimizing both transportation costs and logistical problems, (2) for any given scenario and choice of waste forms, there exists a candidate TEF location for which the transportation costs are at a minimum compared to the other locations, (3) in spite of the increased transportation costs and logistical complexity, the study shows that the overall system costs favor modification of an existing hot cell facility for the particular case considered

  8. EFFICIENCY IN ORGANIZING TRANSPORT ROUTES AS PART OF THE CITY WASTE MANAGEMENT: PROPOSAL FOR INNOVATIVE WAY OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Boris Novarlić

    2017-09-01

    Full Text Available Research presented in this paper is primarily focused on the theoretical model of transportation routes' optimization, by means of using an innovative approach, projected to countries in transition. This paper presents part of the research, whose main parameters are directly related to basic research hypothesis, and are result of author's stay in vocational training in the Japanese city of Osaka, in the period 12.01. - 07.03.2015. Based on the transport routes' calculations, we came to an answer set in the research problem of this paper, as well as to the optimization of costs and avoiding a "downtime" during the collection of waste conducted by utility companies, who will be the beneficiaries of this model. The primary goal of the work is to, on the base of knowledge and experience acquired in Japan, create an Optimization Model of Transport Routes adjusted to countries in transition (Bosnia and Herzegovina and others, which will, in the long run, be of benefit to these countries, in terms of a sustainable waste management.

  9. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  10. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  11. The application of dangerous goods regulations to the transport of radioactive wastes

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Darby, W.P.; Heywood, J.D.; Wikinson, H.L.; Carrington, C.K.; Murray, M.A.

    1998-01-01

    Some radioactive materials to be transported, including certain radioactive wastes, contain materials that qualify as dangerous goods as defined by the United Nations Recommendations on the Transport of Dangerous Goods (United Nations 1997). The regulations governing the transport of radioactive and dangerous goods in the UK are largely based on the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA 1990) and the UN Recommendations (United Nations 1993). Additional legislation will also apply including the Carriage of Dangerous Goods by Road (Driver Training) Regulations 1996 (UK 1996). The IAEA Transport Regulations are clear that where radioactive materials have other dangerous properties the requirements of other relevant transport regulations for dangerous goods must also be met. They require that consignments are appropriately segregated from other dangerous goods, in accordance with relevant legislation, and that dangerous properties such as explosiveness, flammability etc. are taken into account in packing, labelling, marking, placarding, storage and transport. In practice, however, it requires a clear understanding of the relationship between the IAEA Transport Regulations and other dangerous goods legislation in order to avoid a number of problems in the approval of package design. This paper discusses the regulations applying to the transport of dangerous goods and explores practical problems associated with implementing them. It highlights a number of opportunities for developing the regulations, to make them easier to apply to radioactive materials that also have other potentially dangerous properties. (authors)

  12. Transport properties of nuclear wastes in geologic media

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.; Fried, S.; Friedman, A.M.; Steindler, M.

    1977-01-01

    Laboratory experiments were performed with Cs, Pu, Np, and Am to examine the migratory characteristics of long-lived radionuclides that could be mobilized by groundwaters infiltrating a nuclear waste repository and the surrounding geologic body. In column infiltration experiments, the positions of peak concentrations of Cs in chalk or shale columns, Pu and Am in limestone, sandstone, or tuff and neptunium in a limestone column did not move when the columns were infiltrated with water. However, fractions of all of the nuclides were seen downstream from the peaks, indicating a large dispersion in the relative migration rates of the trace elements in the lithic materials studied. Static absorption experiments showed that plutonium and americium are strongly absorbed from solution by common rocks and that their migration relative to groundwater flow is thereby retarded. Reaction rates of these dissolved elements with rocks were found to vary considerably in different rock-element systems. Following a sorption step in batch experiments with granulated basalt and Am bearing water, Pu and Am were desorbed from rock and repartitioned between rock and solution to an extent comparable to their distribution during absorption. In contrast, when tablets of various rocks were allowed to dry between absorption and desorption tests, Pu and Am were not generally desorbed from the tablets.In batch experiments with Pu and Am-bearing water and granulated basalt of several different particle sizes, the partitioning of Am and Pu did not correlate with the calculated area of the fracture surfaces nor did the partitioning remain constant (as did the measured surface area). Partitioning is concluded to be a bulk phenomenon with complete penetration of 30 to 40 mesh and smaller particles. 9 tables, 4 figs

  13. Mathematical modelling of transport phenomena in radioactive waste-cement-bentonite matrix

    International Nuclear Information System (INIS)

    Plecas, Ilija; Dimovic, Slavko

    2010-01-01

    Document available in extended abstract form only. The leaching rate of 137 Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a first-order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center. Radioactive waste is waste material containing radioactive chemical elements which does not have a practical purpose. It is often the product of a nuclear process, such as nuclear fission. Waste can also be generated from the processing of fuel for nuclear reactors or nuclear weapons. The main objective in managing and disposing of radioactive (or other) waste is to protect people and the environment. This means isolating or diluting the waste so that the rate or concentration of any radionuclides returned to the biosphere is harmless. Storage as the placement of waste in a nuclear facility where isolation, environmental protection and human control are provided with the intent that the waste will be retrieved at a later time. Disposal as the emplacement of waste in an approved, specified facility (e.g. near surface or geological repository) without the intention of retrieval. The processing of radioactive wastes may be done for economic reasons (e.g. to reduce the volume for storage or disposal, or to recover a 'resource' from the waste), or safety reasons (e.g. converting the waste to a more 'stable' form, such as one that will contain the radionuclide inventory for a long time). Typically processing involves reducing

  14. Intermodal transportation of low-level radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1998-09-01

    The Nevada Test Site (NTS) presently serves as a disposal site for low-level radioactive waste (LLW) generated by DOE-approved generators. The environmental impacts resulting from the disposal of LLW at the NTS are discussed in the Final Environmental Impact Statement (EIS) for the Nevada Test Site Off-Site Locations in the State of Nevada (NTS EIS). During the formal NTS EIS scoping period, it became clear that transportation of LLW was an issue that required attention. Therefore, the Nevada Transportation Protocol Working Group (TPWG) was formed in 1995 to identify, prioritize, and understand local issues and concerns associated with the transportation of LLW to the NTS. Currently, generators of LLW ship their waste to the NTS by legal-weight truck. In 1995, the TPWG suggested the DOE could reduce transportation costs and enhance public safety by using rail transportation. The DOE announced, in October 1996, that they would study the potential for intermodal transportation of LLW to the NTS, by transferring the LLW containers from rail cars to trucks for movements to the NTS. The TPWG and DOE/NV prepared the NTS Intermodal Transportation Facility Site and Routing Evaluation Study to present basic data and analyses on alternative rail-to-truck transfer sites and related truck routes for LLW shipments to the NTS. This Environmental Assessment (EA) identifies the potential environmental impacts and transportation risks of using new intermodal transfer sites and truck routes or continuing current operations to accomplish the objectives of minimizing radiological risk, enhancing safety, and reducing cost. DOE/NV will use the results of the assessment to decide whether or not to encourage the LLW generators and their transportation contractors to change their current operations to accomplish these objectives

  15. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...... to steady state versus transient flow conditions and to the amount of hydraulic and solute data used is investigated. The flow parameters, transmissivity and leakage factor, are estimated simultaneously with the transport parameters: source strength, porosity, and longitudinal dispersivity. This paper...

  16. Thermal testing of packages for transport of radioactive wastes

    International Nuclear Information System (INIS)

    Koski, J.A.

    1994-01-01

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives

  17. Aspiration requirements for the transportation of retrievably stored waste in the TRUPACT-2 package

    International Nuclear Information System (INIS)

    Djordjevic, S.; Drez, P.; Murthy, D.; Temus, C.

    1990-01-01

    The Transuranic Package Transporter-II (TRUPACT-II) is the shipping package to be used for the transportation of contact-handled transuranic (CH TRU) waste between the various US Department of Energy (DOE) sites, and to the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. Waste (payload) containers to be transported in the TRUPACT-II package are required to be vented prior to being shipped. ''Venting'' refers to the installation of one or more carbon composite filters in the lid of the container, and the puncturing of a rigid liner (if present). This ensures that there is no buildup of pressure or potentially flammable gas concentrations in the container prior to transport. Payload containers in retrievable storage that have been stored in an unvented condition at the DOE sites, may have generated and accumulated potentially flammable concentrations of gases (primarily due to generation of hydrogen by radiolysis) during the unvented storage period. Such payload containers need to be aspirated for a sufficient period of time until safe pre-transport conditions (acceptably low hydrogen concentrations) are achieved. The period of time for which a payload container needs to be in a vented condition before qualifying for transport in a TRUPACT-II package is defined as the ''aspiration time.'' This paper presents the basis for evaluating the minimum aspiration time for a payload container that has been in unvented storage. Three different options available to the DOE sites for meeting the aspiration requirements are described in this paper. 4 refs., 2 figs

  18. Modeling for Colloid and Chelator Facilitated Nuclide Transport in Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) program template, by which assessment of safety and performance for a radioactive waste repository with normal and/or abnormal nuclide release cases can be made has been developed. Colloid and chelator facilitated transport that is believed to result for faster nuclide transport in various mediabothinthegeosphereandbiospherehas been evaluated deterministically and probabilistically to demonstrate the capability of the template developed through this study. To this end colloid and chelator facilitated nuclide transport has been modeled rather strainghtforwardly with assumed data through this study by utilizing some powerful function offered by GoldSim. An evaluation in view of apparent influence of colloid and chelator on the nuclide transport in the various media in and around a repository system with data assumed are illustrated

  19. Bounding Values for Low-Level-Waste Transport Exemptions and Disposal

    International Nuclear Information System (INIS)

    Elam, K.R.; Hopper, C.M.; Lichtenwalter, J.J.; Parks, C.V.

    1999-01-01

    Characterizations and bounding computational results determined by the Oak Ridge National Laboratory have been offered to the U.S. Nuclear Regulatory Commission as supporting technical bases for regulatory considerations in the packaging, transport, retrievable emplacement and disposal of radioactive low-level waste contaminated with fissile materials. The fissile materials included 100 wt % U, 10 wt % U in uranium, 100 wt % U, 100 wt % Pu, or plutonium as less than 235 235 233 239 76 wt % Pu, more than 12 wt % Pu, and less than 12 wt % Pu. The considered waste matrixes 239 240 241 included silicon dioxide, carbon, light water and polyethylene, heavy water, or beryllium with summary examinations of other potential matrixes. The limiting concentrations and geometries for these bounding conjectured low-level-waste matrixes are presented in this paper

  20. A reaction-transport model and its application to performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Chen, Y.; McGrail, B.P.; Engel, D.W.

    1996-01-01

    One important issue in assessing the performance of a geological repository for nuclear waste disposal is to project the migration behaviour of radionuclides in subsurface environments over long time scales of 10,000 years or even longer. Obviously such projections cannot be achieved by laboratory measurements alone. Instead, scientists must rely on sophisticated predictive models that are built on a sound physico-chemical basis. The most important processes affecting the migration of radionuclides are usually classified into two types: 1) transport processes, including advection, diffusion and dispersion and 2) chemical reactions, including corrosion of waste forms and waste packages, precipitation of secondary phases, adsorption of radionuclides on the surface of solids, aqueous complexation etc. Typically the migration behaviour of radionuclides in geologic environments has been simulated by two types of models, hydrogeological and geochemical

  1. Importance of biota in radionuclide transport at the SL-1 radioactive waste disposal area

    International Nuclear Information System (INIS)

    Arthur, W.J.; Grant, J.C.; Markham, O.D.

    1983-01-01

    During summer 1981 and 1982, radioecological research was conducted at the Stationary Low Power Reactor-1 radioactive waste disposal area to: (1) identify vegetation, wildlife, and invertebrate species occurring at or using the area; (2) determine radionuclide concentrations in these various ecosystem components; and (3) to evaluate their respective roles in radionuclide uptake and transport through the surrounding environment. Cesium-137 concentrations detected in surface soils, small mammal excavated soils and small mammal tissues collected at the waste disposal site were significantly (P less than or equal to 0.05) greater than control area samples. Strontium-90 and 235 U analyses of SL-1 and control area samples and projections of total mass of ecosystem components in SL-1 area will be completed in summer of 1983 at which time estimates will be made on the total quantity of fission and activation radionuclides occurring in ecological media at the SL-1 waste disposal area

  2. Transport of radioactive wastes arising from the decontamination work performed in Goiania-Brazil

    International Nuclear Information System (INIS)

    Mezrahi, A.; Heilbron, P.F.L.; Xavier, A.M.

    1989-01-01

    The present article describes the major aspects related to the packaging and transport operations performed in Goiania, Brazil, following the violation of a Cs-137 teletherapy source, in September 1987, which led to the generation of about 3,500 m 3 of radioactive wastes. The violation of a teletherapy source in the city of Goiania, State of Goias, Brazil, in the month of September 1987, and the subsequent spread of most of its radioactive contents over a large urban area, brought about the need for the establishment of specific provisions to ensure an adequate packaging and transportation of the radioactive wastes to an interim storage. The purpose of this article is to describe the main aspects related to the above mentioned operations, which were performed, as far as possible, according to the IAEA requirements, as well as to discuss the difficulties that were faced by the technical staff of CNEN

  3. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  4. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards

  6. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  7. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  8. Water transport mechanisms across inorganic membranes in rad waste treatment by electro dialysis

    International Nuclear Information System (INIS)

    Andalaft, E.; Labayru, R.

    1992-01-01

    The work described in this paper deals with effects and mechanisms of water transport across an inorganic membrane, as related to some studied on the concentration of caesium, strontium, plutonium and other cations of interest to radioactive waste treatment. Several different water transport mechanisms are analysed and assessed as to their individual contribution towards the total transference of water during electro-dialysis using inorganic membranes. Water transfer assisted by proton jump mechanism, water of hydration transferred along with the ions, water related to thermo-osmotic effect, water transferred by concentration gradient and water transferred electrolytically under zeta potential surface charge drive are some of the different mechanism discussed. (author)

  9. Ecological vectors of radionuclide transport at a solid radioactive waste disposal facility in southeastern Idaho

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1983-01-01

    Radioecological research conducted at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA) has estimated the quantity of radionuclides transported by various ecosystem components and evaluated the impact of subsurface disposal of radioactive waste on biotic species inhabiting the area. Radiation dose rates received by small mammals ranged from 0.4 to 41790 mrad/day. Small mammal soil burrowing was an upward transport mechanism for transuranic radionuclides. Seventy-seven uCi of radioactivity occurred in SDA vegetation annually. None of these ecological vectors contributed appreciable quantities of radioactive contamination to the environment surrounding the SDA

  10. Evaluating biological transport of radionuclides at low-level waste burial sites

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Kennedy, W.E.; McKenzie, D.H.

    1983-08-01

    The purpose of the work reported here is to develop and demonstrate methods for evaluating the long-term impact of biological processes at low-level waste (LLW) disposal sites. As part of this effort, we developed order-of-magnitude estimates of dose-to-man resulting from animal burrowing activity and plant translocation of radionuclides. Reference low-level waste sites in both arid and humid areas of the United States were examined. The results of our evaluation for generalized arid LLW burial site are presented here. Dose-to-man estimates resulting from biotic transport are compared with doses calculated from human intrusion exposure scenarios. Dose-to-man estimates, as a result of biotic transport, are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. These results indicate that biotic transport has the long-term potential to mobilize radionuclides. Therefore, biotic transport should be carefully evaluated during burial site assessment

  11. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    International Nuclear Information System (INIS)

    Calmus, D.B.

    1994-01-01

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length

  12. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    International Nuclear Information System (INIS)

    Woodman, N.D.; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-01-01

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study

  13. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills

    OpenAIRE

    Bente, Sonja

    2010-01-01

    In this thesis a model for the complex interactions between deformation, degradation and transport processe in municipal solid waste landfills is presented. Key aspects of the model are a joint continuum mechanical framework and a monolithic solution of the governing equations within the Theory of Porous Media. Interactions are considered by coupling the governing physical fields over the domain of a representative elementary volume via selected state variables. A simplified two-stage degrada...

  14. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  15. Transport in biosphere of radionuclides released from finally disposed nuclear waste - background information for transport and dose model

    International Nuclear Information System (INIS)

    Hulmi, R.; Savolainen, I.

    1981-07-01

    An outline is made about the biosphere transport and dose models employed in the estimation of doses due to releases from finally disposed nuclear waste. The models often divide into two parts; the first one describes the transport of radionuclides in those parts of biosphere where the time scale is large (e.g. soil, sea and sea sediment), the second part of the model describes the transport of nuclides in the systems where the time scale is small (e.g. food chains, plants and animals). The description of biosphere conditions includes remarkable uncertainty due to the complexity of the biosphere and its ecosystems. Therefore studies of scenario type are recommended: some values of parametres describing the conditions are assumed, and the consequences are estimated by using these values. The effect of uncertainty in various factors on the uncertainty of final results should be investigated with the employment of alternative scenarios and parametric sensitivity studies. In addition to the ordinary results, intermediate results should be presented. A proposal for the structure of a transport and dose program based on dynamic linear compartment model is presented and mathematical solution alternatives are studied also

  16. Safety analysis of the transportation of high-level radioactive waste

    International Nuclear Information System (INIS)

    Murphy, E.S.; Winegardner, W.K.

    1975-01-01

    An analysis of the risk from transportation of solidified high-level waste is being performed at Battelle-Northwest as part of a comprehensive study of the management of high-level waste. The risk analysis study makes use of fault trees to identify failure events and to specify combinations of events which could result in breach of containment and a release of radioactive material to the environment. Contributions to risk analysis methodology which have been made in connection with this study include procedures for identification of dominant failure sequences, methods for quantifying the effects of probabilistic failure events, and computer code development. Preliminary analysis based on evaluation of the rail transportation fault tree indicates that the dominant failure sequences for transportation of solidified high-level waste will be those related to railroad accidents. Detailed evaluation of rail accident failure sequences is proceeding and is making use of the limited frequency-severity data which is available in the literature. (U.S.)

  17. Methods and results of a probabilistic risk assessment for radioactive waste transports

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1993-01-01

    The radiological risk from accidents has been analyzed for the expected annual transport volume (3400 shipping units) of low and partially intermediate level radioactive wastes to be shipped to a final repository. In order to take account of these variable quantities and conditions a computer code was developed to simulate a wide spectrum of waste transport and accident configurations using Monte Carlo sampling techniques. Typically some 10.000 source terms were generated to represent possible releases of radionuclides from transport accidents. Accident events in which the integrity of waste packagings is retained and consequently no releases occur are included. Potential radiological consequences are then calculated for each of the release categories by using an accident consequence code which takes into account atmospheric dispersion statistics. Finally cumulative complementary frequency distributions of radiological consequences are generated by superposing the results for all release categories. Radiological consequences are primarily expressed as potential effective individual doses resulting from airborne and deposited radionuclides. The results of the risk analysis show that expected frequencies of effective doses comparable to the natural radiation exposure of one year are quite low and very low for potential radiation exposures in the range of 50 mSv. (J.P.N.)

  18. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 4, August 2014

    International Nuclear Information System (INIS)

    2014-08-01

    IAEA’s Division of Radiation, Transport and Waste Safety is assisting Member States to develop national strategies for education and training in radiation, transport and waste safety via the regional projects on “Strengthening Education and Training Infrastructure, and Building Competence in Radiation Safety” (RAF/9/04, RAS/9/066, RER/9/109 and RLA/9/070). The regional workshops conducted in 2012 in this area and the results achieved were presented in the previous issues of this newsletter focussing specifically on each region of the Technical Cooperation Programme (Africa, Asia and the Pacific, Europe and Latin America). In the course of 2013, a new cycle of Regional Workshops was conducted. The workshops held in the regions of Africa, Asia and the Pacific, and Europe mainly focussed on Sharing Experience and Progress made in establishing a National Strategy for Education and Training in Radiation, Transport and Waste Safety (pages 2-5). The workshop held in the region of Latin America mainly focussed on Developing and Implementing Education and Training programmes. An overview on the results achieved by participating Member States for the period 2012-2013 is provided

  19. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    International Nuclear Information System (INIS)

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and 137 Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of 137 Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations

  20. Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wheeler, T.

    1994-12-01

    The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program

  1. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  2. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    2007-03-30

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously

  3. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    International Nuclear Information System (INIS)

    VAIL, T.S.

    2007-01-01

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously un

  4. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  5. Exergy-based assessment for waste gas emissions from Chinese transportation

    International Nuclear Information System (INIS)

    Ji Xi; Chen, G.Q.; Chen, B.; Jiang, M.M.

    2009-01-01

    As an effective measure for environmental impact associated with the waste emissions, exergy is used to unify the assessment of the waste gases of CO, NO x , and SO 2 emitted from fossil fuel consumption by the transportation system in China. An index of emission exergy intensity defined as the ratio of the total chemical exergy of the emissions and the total converted turnover of the transportation is proposed to quantify the environmental impact per unit of traffic service. Time series analyses are presented for the emission exergy and emission exergy intensity of the whole Chinese transportation as well as for its four sectors of highways, railways, waterways and civil aviation from 1978 to 2004. For the increasing emission exergy with CO taking the largest share, the highways sector was the major contributor, while the railways sector initially standing as the second main contributor developed into the least after 1995. The temporal and structural variations of the emissions are illustrated against the transition of the transportation system in a socio-economic perspective, with emphasis on policy-making implications.

  6. DEVELOPMENT OF THE TRU WASTE TRANSPORTATION FLEET--A SUCCESS STORY

    International Nuclear Information System (INIS)

    Devarakonda, Murthy; Morrison, Cindy; Brown, Mike

    2003-01-01

    Since March 1999, the Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been operated by the U.S. Department of Energy (DOE), Carlsbad Field Office (CBFO), as a repository for the permanent disposal of defense-related transuranic (TRU) waste. More than 1,450 shipments of TRU waste for WIPP disposal have been completed, and the WIPP is currently receiving 12 to 16 shipments per week from five DOE sites around the nation. One of the largest fleets of Type B packagings supports the transportation of TRU waste to WIPP. This paper discusses the development of this fleet since the original Certificate of Compliance (C of C) for the Transuranic Package Transporter-II (TRUPACT-II) was issued by the U.S. Nuclear Regulatory Commission (NRC) in 1989. Evolving site programs, closure schedules of major sites, and the TRU waste inventory at the various DOE sites have directed the sizing and packaging mix of this fleet. This paper discusses the key issues that guided this fleet development, including the following: While the average weight of a 55-gallon drum packaging debris could be less than 300 pounds (lbs.), drums containing sludge waste or compacted waste could approach the maximum allowable weight of 1,000 lbs. A TRUPACT-II shipment may consist of three TRUPACT-II packages, each of which is limited to a total weight of 19,250 lbs. Payload assembly weights dictated by ''as-built'' TRUPACT-II weights limit each drum to an average weight of 312 lbs when three TRUPACT-IIs are shipped. To optimize the shipment of heavier drums, the HalfPACT packaging was designed as a shorter and lighter version of the TRUPACT-II to accommodate a heavier load. Additional packaging concepts are currently under development, including the ''TRUPACT-III'' packaging being designed to address ''oversized'' boxes that are currently not shippable in the TRUPACT-II or HalfPACT due to size constraints. Shipment optimization is applicable not only to the addition of new

  7. FEMWASTE: a Finite-Element Model of Waste transport through porous saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1981-04-01

    A two-dimensional transient model for the transport of dissolved constituents through porous media originally developed at Oak Ridge National Laboratory (ORNL) has been expanded and modified. Transport mechanisms include: convection, hydrodynamic dispersion, chemical sorption, and first-order decay. Implementation of quadrilateral iso-parametric finite elements, bilinear spatial interpolation, asymmetric weighting functions, several time-marching techniques, and Gaussian elimination are employed in the numerical formulation. A comparative example is included to demonstrate the difference between the new and original models. Results from 12 alternative numerical schemes of the new model are compared. The waste transport model is compatible with the water flow model developed at ORNL for predicting convective Darcy velocities in porous media which may be partially saturated

  8. Waste transport and storage: Packaging refused due to failure in fulfilling QC/QA requirements

    International Nuclear Information System (INIS)

    Bruno, N.C.; Brandao, R.O.; Cavalcante, V.L.

    2001-01-01

    final disposal of radioactive wastes, Brazilian Competent Authority specifies minimum performance requirements for operations that give wastes a suitable form for storage, transport and disposal. Taking into account the difficulties to demonstrate that the packagings were in compliance with such requirements, the packagings were refused. (author)

  9. Transport of nuclear waste flows - a modelling and simulation approach - 59136

    International Nuclear Information System (INIS)

    Adams, Jonathan F.W.; Biggs, Simon R.; Fairweather, Michael; Yao, Jun; Young, James

    2012-01-01

    The task of implementing safer and more efficient processing and transport techniques in the handling of nuclear wastes made up of liquid-solid mixtures provides a challenging and interesting area of research. The radioactive nature of nuclear waste means that it is difficult to perform experimental studies of its transport. In contrast, the use of modelling and simulation techniques can help to elucidate the physics that underpin such flows and provide valuable insights into common problems associated with their transport, as well as assisting in the focusing of experimental research. Two phase solid-liquid waste-forms are commonplace within the nuclear reprocessing industry. Currently, there is waste, e.g., in the form of a solid-liquid slurry in cooling ponds and liquid flows containing suspensions of solid particles feature heavily in the treatment and disposal of this waste. With nuclear waste in the form of solid-liquid sludges it is important to understand the nature of the flow, with particular interest in the settling characteristics of the particulate waste material. Knowledge of the propensity of pipe flows to form solid beds is important in avoiding unwanted blockages in pipelines and pumping systems. In cases where the formation of a solid bed is unavoidable, it is similarly important to know how the modified cross-sectional area of the pipe, due to the presence of a bed, will affect particle behaviour through the creation of secondary flows effects that are also common to square duct flows. A greater understanding of particle deposition in square ducts and pipes of circular cross-section is also of significant and broad industrial relevance, with flows containing particulates prevalent throughout the nuclear, pharmaceutical, chemical, mining and agricultural industries. A greater understanding of particle behaviour in square ducts and circular pipes with variable bed height is the focus of this current work. The more computationally expensive but

  10. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    International Nuclear Information System (INIS)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives

  11. Dumping and illegal transport of hazardous waste, danger of modern society.

    Science.gov (United States)

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovicić, Nives

    2014-06-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement to prevent these activities may vary from region to region, country to country, but together affect the ability of law enforcement authorities to ensure that international shipments of hazardous waste comply with national laws and maritime regulations. This paper will overview the legislation governing these issues, and to analyze the barriers to their implementation, but also try to answer the question of why and how this type of waste traded. Paper is an overview of how Croatia is prepared to join the European Union in this area and indicates the importance and necessity of the cooperation of all of society, and international organizations in the fight with the new trend of environmental crime.

  12. Calculation of external exposure during transport and disposal of radioactive waste arisen from dismantling of steam generator

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.

    2014-01-01

    The dismantling of large components (reactor pressure vessel, reactor internals, steam generator) represents complex of processes involving preparation, dismantling, waste treatment and conditioning, transport and final disposal. To optimise all of these activities in accordance with the ALARA principle the prediction of the exposure of workers is an essential prerequisite. The paper deals with the calculation of external exposure of workers during transport and final disposal of heat exchange tubes of steam generator used in Slovak nuclear power plant V1 in Jaslovske Bohunice. The type of waste packages, the calculation models of truck and National Radioactive Waste Repository in Mochovce are presented. The detailed methodology of radioactive waste disposal is showed and the degree of influence of time decay (0, 5 and 10 years) on the radiological conditions during transport and disposal is studied. All of the results do not exceed the limits given in Slovak and international regulatory documents. (authors)

  13. Preliminary analysis of the cost and risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Madsen, M.M.; Cashwell, J.W.; Joy, D.S.

    1983-06-01

    This report documents preliminary cost and risk analyses that were performed in support of the Nuclear Waste Terminal Storage (NWTS) program. The analyses compare the costs and hazards of transporting wastes to each of five regions that contain potential candidate nuclear waste repository sites being considered by the NWTS program. These regions are: the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain, and Hanford. Two fuel-cycle scenarios were analyzed: once-through and reprocessing. Transportation was assumed to be either entirely by truck or entirely by rail for each of the scenarios. The results from the risk analyses include those attributable to nonradiological causes and those attributable to the radioactive character of the wastes being transported. 17 references

  14. Analysis of transport logistics and routing requirements for radioactive waste management systems with respect to a minimum power scenario

    International Nuclear Information System (INIS)

    James, I.A.

    1984-10-01

    This report assesses the transport logistics associated with disposal of intermediate-level radioactive waste, as generated by CEGB, SSEB, UKAEA and BNFL, in accordance with a 'Minimum Power Scenario'. Transport by road and rail is analysed, as in previous reports; use of coastal shipping however has not been included but has been replaced with a combined road/rail option. (author)

  15. Assessment of management alternatives for LWR wastes. Volume 6. Cost determination of the LWR waste management routes (treatment/conditioning/packaging/transport operations)

    International Nuclear Information System (INIS)

    Thiels, G.M.; Kowa, S.

    1993-01-01

    This report deals with the cost determination of a number of schemes for the treatment, conditioning, packaging, interim storage and transport operations of LWR wastes drawn up on the basis of Belgian, French and German practices in this particular area. In addition to the general procedure elaborated for determining, actualizing and scaling of plant and transport costs associated with the various schemes, in-depth calculations of each intermediate management stage are included in this report. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  16. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    Science.gov (United States)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  17. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  18. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  19. Thermal test and analysis for transporting vitrified high-level radioactive wastes

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kato, O.; Tamaki, H.

    1993-01-01

    As a part of the safety demonstration tests for transport casks of high level radioactive vitrified wastes, the thermal tests of the cask (left unattended at an ambient temperature of 38degC for a period of one week) were executed before and after the side free drop test (from height of 30 cm). This condition was set according to the prospect of the damage of contents (baskets, etc.) by the impact force at the drop test. It was shown that the cask temperatures at the representative parts, such as the vitrified wastes, the containment system, and the protection wire net, were lower than allowable values. From the result of measured temperatures it was considered that no damages and no large deformations could happen to the contents in this drop test. Thermal analysis was also done to establish the analysis model. (J.P.N.)

  20. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  1. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    International Nuclear Information System (INIS)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-01-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  2. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C. [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Vanderbilt University, Nashville, TN (United States); Meeussen, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Nuclear Research and Consultancy Group, Petten (Netherlands); Van der Sloot, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Hans Van der Sloot Consultancy (Netherlands)

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  3. [Study of institutional issues relating to transportation of high level waste

    International Nuclear Information System (INIS)

    1993-01-01

    This is the ''seventh'' and final Quarterly Report under the scope of work for cooperative agreement between the Western Interstate Energy Board and the US Department of Energy. The report covers the period January--March 1993. The cooperative agreement was to expire in June 1992, but DOE granted an extension through March 24, 1993. Since this is the last Quarterly Report under the expired cooperative agreement, most tasks are noted as being completed. Two final items, however, will soon be sent to DOE -- final minutes from the March 9--11 High- Level Radioactive Waste Committee meeting, and the Year-End Technical Report. Some highlights from the quarter: The Committee decided on a preferred format for the revised Spent Fuel and High-Level Radioactive Waste Transportation Primer. The document would be 100- 200 pages, accompanied by a series of white papers on key transportation elements. A 25--30 page handbook for educating western state elected officials would also be prepared. On March 24, the Committee sent a letter to DOE commenting on the Near-Site Transportation Infrastructure report findings. The Committee is concerned that infrastructure limitations may limit the rail shipping option in many instances, even after upgrades have been implemented. The NSTI findings may also have significant relevance to the decision to develop multi-purpose canisters. On April 1, the Committee sent DOE the white paper, Transportation Implications of Various NWPA Program Options, which determined that DOE cannot develop a national transportation system by 1998 for shipments to an MRS or other federal storage facility

  4. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 1, August 2012

    International Nuclear Information System (INIS)

    2012-08-01

    The IAEA has a statutory function to establish standards for the protection of health, life and property against ionizing radiation and to provide for the application of these standards to peaceful nuclear activities. Education and training (E and T) is one of the main mechanisms to provide support to Member States in the application of the standards. In 2000, an internal evaluation of the overall education and training programme was undertaken. The conclusions were that the provision of and support for E and T in Member States tended to be on a reactive rather than proactive basis, contributing to a culture of dependency rather than sustainability. On the basis of this evaluation, a strategic approach to education and training in radiation and waste safety was developed that outlined the objectives and outcomes to be achieved over a ten year period (2001-2010). General Conference Resolutions have underlined or emphasized the importance of sustainable programmes for education and training in radiation, transport and waste safety, and have also welcomed the ongoing commitment of the Secretariat and Member States to the implementation of the strategy. A Steering Committee for Education and Training in Radiation Protection and Waste Safety was established in 2002, with the mission of advising the IAEA on the implementation of the strategy and making recommendations as appropriate. In 2010, the Steering Committee analysed the overall achievement of the strategic approach 2011-2010, refined the vision of the original strategy and redefined the related objectives. The Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) was submitted to the IAEA's policy-making organs and was noted by its Board of Governors in September 2010.

  5. Comparison of transports expected under different waste management concepts: determination of basic data for application in risk analyses

    International Nuclear Information System (INIS)

    Alter, U.; Mielke, H.G.; Wehner, G.

    1983-01-01

    According to the Atomic Act, article 9a, paragraph 1, the licensees of nuclear power plants in the Federal Republic of Germany are obliged to provide for the management of radioactive wastes resulting from the operation of these plants. Concerning the provisions to be made for the management of such wastes, two concepts are discussed: nuclear reprocessing and final waste disposal center (Nukleares Entsorgungszentrum, NEZ); and the integrated spent fuel and waste management concept (Integriertes Entsorgungskonzept, IEK). Unlike the NEZ, the IEK-concept may have different sites for the following fuel cycle facilities: intermediate spent fuel storage, reprocessing, waste conditioning and final disposal, and uranium and plutonium fuel element fabrication facilities. The fundamental differences of the pertinent transports are presented. Transport scenarios expected under the two alternatives NEZ and IEK have been elaborated for the purpose of a data collection covering the following aspects: materials to be shipped, number of packages shipped, number of packages shipped per transport, transport by rail or by road, transport routes and distances, and duration of transports

  6. Loading and transport of high-active waste (HAW) with the TN85 flask in 2008

    International Nuclear Information System (INIS)

    Rys, Michael; Horn, Thomas; Graf, Wilhelm; Bonface, Jean-Michael

    2009-01-01

    As a part of the operation of nuclear power plants, it is essential to safely manage the radioactive waste. With new developments in science and technology, it is a dynamic process to adapt procedures, equipment and flasks to be used in the future. This is a task for specialists - a task for GNS Gesellschaft fuer Nuklear-Service mbH and for TN International. Until 1994 reprocessing of spent fuel from German nuclear power plants was mandatory for the Utilities (EVU) in Germany. Basis for the reprocessing was the German Atomic Act. The German Utilities concluded contracts on reprocessing with Compagnie Generale des Matieres Nucleaires (COGEMA, now AREVA NC) in France and British Nuclear Fuels plc (BNFL, now INS) in England. The total amount to be reprocessed comes to 5309 t HM contracted to AREVA NC and 768 t HM contracted to INS. The waste generated from reprocessing - or an equivalent amount of radioactive material - has to be returned to the country of origin. In 1979 already an exchange of notes took place between the German and the French government with the obligation of both sides to enable and support the return of reprocessing residues or equivalents. The return of high-active waste (HAW) from France has started in 1996 with the first attribution of 28 glass canisters (one flask) to German Utilities by AREVA NC. Until 2007, 75 flasks loaded with vitrified residue (VR) canisters have been transported to Gorleben. For these transports CASTOR registered HAW 20/28 CG flasks have been used. This presentation will give some background information about the last HAW transport in 2008 with the new flask generation of the type TN85. It will also describe the assembly of the new flask, the preparation of the flask for the loading campaign as well as the loading procedure. (orig.)

  7. Loading and transport of high-active waste (HAW) with the TN85 flask in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rys, Michael; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany); Bonface, Jean-Michael [TN International, Montigny-le-Bretonneux (France)

    2009-07-01

    As a part of the operation of nuclear power plants, it is essential to safely manage the radioactive waste. With new developments in science and technology, it is a dynamic process to adapt procedures, equipment and flasks to be used in the future. This is a task for specialists - a task for GNS Gesellschaft fuer Nuklear-Service mbH and for TN International. Until 1994 reprocessing of spent fuel from German nuclear power plants was mandatory for the Utilities (EVU) in Germany. Basis for the reprocessing was the German Atomic Act. The German Utilities concluded contracts on reprocessing with Compagnie Generale des Matieres Nucleaires (COGEMA, now AREVA NC) in France and British Nuclear Fuels plc (BNFL, now INS) in England. The total amount to be reprocessed comes to 5309 t HM contracted to AREVA NC and 768 t HM contracted to INS. The waste generated from reprocessing - or an equivalent amount of radioactive material - has to be returned to the country of origin. In 1979 already an exchange of notes took place between the German and the French government with the obligation of both sides to enable and support the return of reprocessing residues or equivalents. The return of high-active waste (HAW) from France has started in 1996 with the first attribution of 28 glass canisters (one flask) to German Utilities by AREVA NC. Until 2007, 75 flasks loaded with vitrified residue (VR) canisters have been transported to Gorleben. For these transports CASTOR {sup registered} HAW 20/28 CG flasks have been used. This presentation will give some background information about the last HAW transport in 2008 with the new flask generation of the type TN85. It will also describe the assembly of the new flask, the preparation of the flask for the loading campaign as well as the loading procedure. (orig.)

  8. BLT [Breach, Leach, and Transport]: A source term computer code for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Suen, C.J.; Sullivan, T.M.

    1990-01-01

    This paper discusses the development of a source term model for low-level waste shallow land burial facilities and separates the problem into four individual compartments. These are water flow, corrosion and subsequent breaching of containers, leaching of the waste forms, and solute transport. For the first and the last compartments, we adopted the existing codes, FEMWATER and FEMWASTE, respectively. We wrote two new modules for the other two compartments in the form of two separate Fortran subroutines -- BREACH and LEACH. They were incorporated into a modified version of the transport code FEMWASTE. The resultant code, which contains all three modules of container breaching, waste form leaching, and solute transport, was renamed BLT (for Breach, Leach, and Transport). This paper summarizes the overall program structure and logistics, and presents two examples from the results of verification and sensitivity tests. 6 refs., 7 figs., 1 tab

  9. Hazardous materials transportation. Part 2. Radioactive materials and wastes (citations from the NTIS Data Base). Final report for 1964--March 1978

    International Nuclear Information System (INIS)

    Reimherr, G.W.

    1978-06-01

    The bibliography cites studies on the hazards, risks, and uncertainty of transporting radioactive wastes and materials. The design of shipping containers and special labels for identification purposes for transporting fuels and wastes are also cited. Studies are included on legislation dealing with the safety and health of the population and the environmental problems associated with transporting radioactive materials

  10. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  11. Modeling contaminant transport in porous media in relation to nuclear-waste disposal: a review

    International Nuclear Information System (INIS)

    Grove, D.B.; Kipp, K.L.

    1980-01-01

    The modeling of solute transport in saturated porous media is reviewed as it is applied to the movement of radioactive waste in the subsurface. Those processes, both physical and chemical, that affect radionuclide movement are discussed and the references that best illustrate these processes listed. Movement is separated into convection, convection-dispersion, and convection-dispersion and chemical reactions. Solutions of equations describing such movement are divided into one-, two-, and three-dimensional analytical and numerical examples. Discussions of recent work in the area of stochastic modeling are followed by discussions of applications of the models to selected field sites

  12. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  13. Flow velocity analysis for avoidance of solids deposition during transport of Hanford tank waste slurries

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    1999-01-01

    This engineering analysis calculates minimum slurry transport velocities intended to maintain suspensions of solid particulate in slurries. This transport velocity is also known as the slurry flow critical velocity. It is not universally recognized that a transfer line flow velocity in excess of the slurry critical velocity is a requirement to prevent solids deposition and possible line plugging. However, slurry critical velocity seems to be the most prevalent objective measure to prevent solids deposition in transfer lines. The following critical velocity correlations from the literature are investigated: Durand (1953), Spells (1955), Sinclair (1962), Zandi and Gavatos (1967), Babcock (1968), Shook (1969), and Oroskar and Turian (1980). The advantage of these critical velocity correlations is that their use is not reliant upon any measure of bulk slurry viscosity. The input parameters are limited to slurry phase densities and mass fractions, pipe diameter, particle diameter, and viscosity of the pure liquid phase of the slurry. Consequently, the critical velocity calculation does not require determination of system pressure drops. Generalized slurry properties can, therefore, be recommended if the slurry can be adequately described by these variables and if the liquid phase viscosity is known. Analysis of these correlations are presented, indicating that the Oroskar and Turian (1980) models appear to be more conservative for smaller particulate sizes, typically those less than 100 microns diameter. This analysis suggests that the current Tank Farms waste compatibility program criteria may be insufficient to prevent particulate solids settling within slurry composition ranges currently allowed by the waste compatibility program. However, in order to relate a critical velocity associated with a certain slurry composition to a system limit, a means of relating the system capabilities to the slurry composition must be found. Generally, this means expressing the bulk

  14. An environmental impact assessment for sea transport of high level radioactive waste

    International Nuclear Information System (INIS)

    Watabe, N.; Kohno, Y.; Tsumune, D.; Saegusa, T.; Ohnuma, H.

    1996-01-01

    This work was carried out to study the safety evaluation in a hypothetical submergence accident onto the seabed, prior to the international maritime transport between Europe and Japan in 1995. In this study, inadmissibly conservative assumptions were omitted in order to construct adequate accident scenarios from the engineering aspect. Input data of source terms of high level vitrified wastes, various flow coefficients in the sea, and other factors were thoroughly examined and, finally a new concept of a solution method for radioactive nuclides concentration was proposed with regard to oceanography. (Author)

  15. Investigating the effect of compression on solute transport through degrading municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to the presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.

  16. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1986-09-01

    This report deals with the operational, radiological and economic aspects of transport as well as conceptual designs of large containers for the transport of radioactive decommissioning wastes from nuclear power plants within the member states of the European Economic Community. The means of transport, the costs and radiological detriment are considered, and conceptual designs of containers are described. Recommendations are made for further studies. (U.K.)

  17. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  18. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    International Nuclear Information System (INIS)

    2011-05-01

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  19. Improvement and modification of the routing system for the health-care waste collection and transportation in Istanbul

    International Nuclear Information System (INIS)

    Alagoez, Aylin Zeren; Kocasoy, Guenay

    2008-01-01

    Handling of health-care wastes is among the most important environmental problems in Turkey as it is in the whole world. Approximately 25-30 tons of health-care wastes, in addition to the domestic and recyclable wastes, are generated from hospitals, clinics and other small health-care institutions daily on the European and the Asian sides of Istanbul [Kocasoy, G., Topkaya, B., Zeren, B.A., Kilic, M., et al., 2004. Integrated Health-care Waste Management in Istanbul, Final Report of the LIFE00 TCY/TR/054 Project, Turkish National Committee on Solid Wastes, Istanbul, Turkey; Zeren, B.A., 2004. The Health-care Waste Management of the Hospitals in the European Side of Istanbul, M.S. Thesis, Bogazici University, Istanbul, Turkey; Kilic, M., 2004. Determination of the Health-care Waste Handling and Final Disposal of the Infected Waste of Hospital-Medical Centers in the Anatolian Side of Istanbul. M.S. Thesis, Bogazici University, Istanbul, Turkey]. Unfortunately, these wastes are not handled, collected or temporarily stored at the institutions properly according to the published Turkish Medical Waste Control Regulation [Ministry of Environment and Forestry, 2005. Medical Waste Control Regulation. Official Gazette No. 25883, Ankara, Turkey]. Besides the inappropriate handling at the institutions, there is no systematic program for the transportation of the health-care wastes to the final disposal sites. The transportation of these wastes is realized by the vehicles of the municipalities in an uncontrolled, very primitive way. As a consequence, these improperly managed health-care wastes cause many risks to the public health and people who handle them. This study has been conducted to develop a health-care waste collection and transportation system for the city of Istanbul, Turkey. Within the scope of the study, the collection of health-care wastes from the temporary storage rooms of the health-care institutions, transportation of these wastes to the final disposal areas

  20. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Evans, D.D.; Rasmussen, T.C.

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  1. The transport implications of regional policies for the disposal of intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1985-09-01

    This report aims to evaluate transport parameters and logistics associated with the disposal of intermediate-level radioactive wastes, as generated by CEGB, SSEB, UKAEA and BNFL. The assumed power scenario is DoE Scheme 3, which approximates to a moderate power generation scenario, with a 15 GWe PWR programme commissioned between 1991 and 2010, existing Magnox and AGR stations are assumed to have a 30 year lifespan. Three transport options are again assumed, namely; road, rail and a hybrid system, as is consistent with previous studies. These three options will be used in investigating regional policies of disposal, initially at the national level and then progressively disaggregating to a system of three regional depositories serving their respective catchment areas. (author)

  2. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  3. Systems engineering approach to U.S. Department of Energy's commercial nuclear waste transportation program

    International Nuclear Information System (INIS)

    Pardue, W.M.

    1987-01-01

    The U.S Department of Energy (DOE) has been given the responsibility of developing a program to transport commercially produced spent nuclear fuel and high-level radioactive wastes to disposal sites or storage facilities safely and cost-effectively. To accomplish this task it is desirable to plan, perform, and document all technical activities based on systems engineering principles. This paper presents an overview of the systems engineering approach being developed by Battelle for consideration by DOE, specifically the early identification of the required technical activities and approaches to technical management and decision making. The program should support the development of an integrated, well-documented transportation system acceptable to regulatory agencies and the public

  4. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  5. Sensitivity analysis of a low-level waste environmental transport code

    International Nuclear Information System (INIS)

    Hiromoto, G.

    1989-01-01

    Results are presented from a sensivity analysis of a computer code designed to simulate the environmental transport of radionuclides buried at shallow land waste repositories. A sensitivity analysis methodology, based on the surface response replacement and statistic sensitivity estimators, was developed to address the relative importance of the input parameters on the model output. Response surface replacement for the model was constructed by stepwise regression, after sampling input vectors from range and distribution of the input variables, and running the code to generate the associated output data. Sensitivity estimators were compute using the partial rank correlation coefficients and the standardized rank regression coefficients. The results showed that the tecniques employed in this work provides a feasible means to perform a sensitivity analysis of a general not-linear environmental radionuclides transport models. (author) [pt

  6. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. PRESTO-II, Low Level Radioactive Waste Transport and Risk Assessment

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: PRESTO-II evaluates possible health effects from shallow-land and waste-disposal trenches. The model is intended to serve as a non- site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population fora 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach developed by EPA (CCC-422/RADRISK). The DARTAB model is used in modified form to generate human health risk estimates from radionuclide concentrations and intake values. 2 - Method of solution: PRESTO-II tracks radionuclide transport through surface and subsurface pathways and human exposures through external exposure, inhalation, and ingestion with a resolution of 1 y. The methodology is mechanistic, and physical transport processes are modeled separately and in detail. PRESTO-II computes infiltration through the trench cap from experimentally determined permeability and hourly precipitation values. Watershed infiltration is determined using a parametric evapotranspiration equation requiring input values for several site variables. A finite element approach is used to compute trench water balance. 3 - Restrictions on the complexity of the problem: The PRESTO-II model is most appropriately used as a

  8. Transport logistics for the transport of radioactive waste form public authorities to the final repository Konrad. Presentation of a simulation model

    International Nuclear Information System (INIS)

    Graffunder, Iris; Karbstein, Lutz

    2012-01-01

    The final repository Konrad will start operation in 2019. The licensed disposal amount of 303.000 m 3 is planned with 10.000 m 3 per year. The waste delivery can be performed by road or rail transport. The infrastructure boundary conditions have to be considered with the transport planning. The transport logistics concept is presented using the examples of the interim storage facilities Lubmin and Karlsruhe. The planned disposal regime for low- and intermediate-level wastes requires a comprehensive logistics concept that provides a delivery according to the schedule. The experience values from transport simulation experiments will be considered in the frame of the planning software EPALKO development as control function and optimization parameters.

  9. Municipal solid waste transportation optimisation with vehicle routing approach: case study of Pontianak City, West Kalimantan

    Science.gov (United States)

    Kamal, M. A.; Youlla, D.

    2018-03-01

    Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.

  10. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  11. Impact of colloids on uranium transport in groundwater applied to the Aube radioactive waste disposal

    International Nuclear Information System (INIS)

    Le Cointe, Pierre

    2011-01-01

    The presence of colloids, known vectors of radionuclides and chemical contaminants in groundwater, has been identified in groundwater at the Aube radioactive waste disposal in 2004. This thesis aims to characterize these colloids, and to determine their potential impact in the transport of Uranium, chosen as the element of interest for this study. The identified 60 nm in diameter clay colloids and the fulvic and humic acids can move in Aptian groundwater, as indirectly evidenced by column experiments. A feasibility study of a in situ test has been done through a transport modeling to confirm the colloid mobility at the field scale. Using the conditions of the study, the clay colloids do not influence Uranium transport. Even with the greatest concentration assumed on site, they have a very limited impact on the mobilization of Uranium, in the pH range measured on site. On the contrary, the organic colloids, despite their low concentration, can facilitate Uranium transport, the uranyl - organic acid chemical bond being exceptionally strong. Therefore their low concentration in groundwater makes their impact on uranium mobility equally insignificant. (author)

  12. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    Science.gov (United States)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  13. Report on the emergency response training and equipment activities through 1991 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-04-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of December 31, 1991, regarding emergency response training and equipment funding provided to local, state, and tribal governments for waste shipments to the WIPP. Because of a growing public awareness of transportation activities involving nuclear materials, this report has been prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  14. Waste Preparation and Transport Chemistry: Results of the FY 2001 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.

    2002-03-25

    of researchers from AEA Technology, Florida International University (FIU), Fluor Hanford, Mississippi State University (MSU), Oak Ridge National Laboratory (ORNL), and Savannah River Technology Center (SRTC) to evaluate various aspects of the waste preparation and transport chemistry. The majority of this effort was focused on saltcake dissolution and saltwell pumping. The results of the AEA Technology, FIU, and MSU studies of saltcake dissolution and slurry transfers for Hanford are discussed in detail in a companion report prepared by T. D. Welch in 2001 (ORNIJTM-2001097). Staff members at Fluor Hanford have continued to conduct saltcake dissolution tests on actual tank waste (documented in reports prepared by D. L. Herting in 2000 and 2001). It should be noted that full-scale saltcake dissolution at Hanford is scheduled to begin in FY 2002. While the Hanford effort is focused on the transfer of waste from one tank to another, the objective of the SRTC study is the formation of aluminosilicates at elevated temperatures, which are present in the waste evaporator.

  15. Use of simple transport equations to estimate waste package performance requirements

    International Nuclear Information System (INIS)

    Wood, B.J.

    1982-01-01

    A method of developing waste package performance requirements for specific nuclides is described. The method is based on: Federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment; a simple and conservative transport model; baseline and potential worst-case release scenarios. Use of the transport model enables calculation of maximum permissible release rates within a repository in basalt for each of the scenarios. The maximum permissible release rates correspond to performance requirements for the engineered barrier system. The repository was assumed to be constructed in a basalt layer. For the cases considered, including a well drilled into an aquifer 1750 m from the repository center, little significant advantage is obtained from a 1000-yr as opposed to a 100-yr waste package. A 1000-yr waste package is of importance only for nuclides with half-lives much less than 100 yr which travel to the accessible environment in much less than 1000 yr. Such short travel times are extremely unlikely for a mined repository. Among the actinides, the most stringent maximum permissible release rates are for 236 U and 234 U. A simple solubility calculation suggests, however, that these performance requirements can be readily met by the engineered barrier system. Under the reducing conditions likely to occur in a repository located in basalt, uranium would be sufficiently insoluble that no solution could contain more than about 0.01% of the maximum permissible concentration at saturation. The performance requirements derived from the one-dimensional modeling approach are conservative by at least one to two orders of magnitude. More quantitative three-dimensional modeling at specific sites should enable relaxation of the performance criteria derived in this study. 12 references, 8 figures, 8 tables

  16. Nuclear waste transportation package testing: A review of selected programs in the United States and abroad

    International Nuclear Information System (INIS)

    Snedeker, D.F.

    1990-12-01

    This report provides an overview of some recent nuclear waste transportation package development programs. This information is intended to aid the State of Nevada in its review of US Department of Energy (DOE) nuclear waste transportation programs. This report addresses cask testing programs in the United Kingdom and selected 1/4 and full scale testing in the US. Facilities that can provide cask testing services, both in the US and to a limited extent abroad, are identified. The costs for different type test programs are identified as a means to estimate costs for future test programs. Not addressed is the public impact such testing might have in providing an increased sense of safety or confidence. The British test program was apparently quite successful in demonstrating safety to the public at the time. There is no US test effort that is similar in scope for direct comparison. Also addressed are lessons learned from testing programs and areas that may merit possible future integrated examination. Areas that may require further examination are both technical and institutional. This report provides information which, when combined with other sources of information will enable the State of Nevada to assess the following areas: feasibility of full scale testing; costs of full scale tests; potential benefits of testing; limits that full scale testing impose; and disadvantages of emphasis on testing vs analytical solutions. This assessment will then allow the state to comment on DOE Office of Civilian Radioactive Waste Management (OCRWM) plans for the development and licensing of new shipping cask designs. These plans currently expect contractors to perform engineering testing for materials development, quarter scale model testing to validate analytical assessments and full scale prototype testing of operational features. DOE currently plans no full scale or extra-regulatory destructive testing to aid in cask licensing. 1 tab

  17. High capacity cask (TN28V) and International Transport System for the return shipment of vitrified high activity wastes

    International Nuclear Information System (INIS)

    Sert, G.; Savornin, B.; Rouquette, Y.

    1989-01-01

    The reprocessing of spent fuel generates different kinds of wastes. Among them fission products and non fissile actinides represent 98% of the radioactivity; these wastes are separated, concentrated, mixed with molten glass and poured into stainless steel containers. For political reasons, it is necessary to return these vitrified high activity wastes to the foreign countries which have decided to have their spent fuel reprocessed in France. So the transport of vitrified waste is vital for both the reprocessor and the utilities that have trusted the reprocessor and this operation has to be securely performed to give satisfaction to all concerned particles. For that reason Cogema will control the whole transport activity from La Hague plants to the receiving facilities of the customers. Therefore cogema will be responsible of the transport whatever the cask type (transport or storage) and will subcontract the transport operation to experienced companies such as Transnucleaire, PNTL or NTL, who will act on behalf of Cogema. Cogema will be the owner of the transport casks while the storage casks will normally be owned by the customers. Both cask types will of course have to comply with the requirements of La Hague, as published by Cogema

  18. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    International Nuclear Information System (INIS)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Highlights: ► We model the environmental impact of recycling and incineration of household waste. ► Recycling of paper, glass, steel and aluminium is better than incineration. ► Recycling and incineration of cardboard and plastic can be equally good alternatives. ► Recyclables can be transported long distances and still have environmental benefits. ► Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  19. Preliminary assessment of nuclear waste transportation cost and risk for operation of the first repository at candidate sites

    International Nuclear Information System (INIS)

    Peterson, R.W.; McSweeney, T.I.; Varadarajan, R.V.; Wilmot, E.L.; Cashwell, J.W.; Joy, D.S.

    1983-01-01

    To support the selection of the first commercial nuclear waste repository site in 1987, environmental analyses of five candidate site locations are currently being performed. The five locations are in the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain and the Hanford reservation. Costs and operational risks associated with the transportation of nuclear wastes to a single repository located in these regions have been calculated for a life-cycle of 26 years

  20. Risk assessment for the off-site transportation of high-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y.

    1996-12-01

    This report describes the human health risk assessment conducted for the transportation of high-level waste (HLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers risks to collective populations and individuals under both routine and accident transportation conditions for truck and rail shipment modes. The report discusses the scope of the HLW transportation assessment, describes the analytical methods used for the assessment, defines the alternatives considered in the WM PEIS, and details important assessment assumptions. Results are reported for five alternatives. In addition, to aid in the understanding and interpretation of the results, specific areas of uncertainty are described, with an emphasis on how the uncertainties may affect comparisons of the alternatives

  1. Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal

    International Nuclear Information System (INIS)

    Alam, R.; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R.

    2008-01-01

    Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m 3 /d (245 tons/day) and 1155 m 3 /d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water

  2. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  3. Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India.

    Science.gov (United States)

    Sanjeevi, V; Shahabudeen, P

    2016-01-01

    Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.

  4. Fate and Transport of 17β-estradiol Beneath Animal Waste Holding Ponds

    Science.gov (United States)

    Gibson, L. A.; Tyner, J. S.; Hawkins, S. A.; Lee, J.; Buchanan, J. R.

    2011-12-01

    Steroidal hormones, such as 17β-estradiol (E2), are prevalent in animal waste and are a common subject of study due to potential stream and groundwater contamination. These particular hormones are labeled as Endocrine Disrupting Chemicals (EDCs) because of their developmental effects in reptiles and amphibians. Dairy waste at concentrated animal feeding operations is typically stored in a pond that is regulated by law to include an underlying soil liner with a minimal hydraulic conductivity to limit leaching beneath the pond, yet some studies have traced stream and groundwater contamination to these ponds. Previous studies have shown that the soil underlying earthen ponds are always unsaturated. This increases the pore water velocity relative to a given flux, which itself is dictated almost entirely by an organic seal that forms at the bottom of a waste pond. This increased velocity results in more rapid transport and less retention time within the vadose zone where E2 could biodegrade into its daughter product, estrone (E1). And since the soil is unsaturated and therefore has a negative pressure, preferential flow should not serve as a method of transport. On the contrary, E2 and E1 may sorb to mobile colloids increasing their mobility. This study will evaluate the use of biochar, an increasingly common activated carbon source, as a soil liner amendment. Biochar has a specific surface area that can exceed 1,500 m2/g and is high in organic matter, which E2 sorbs to strongly. The biochar amendment should be most effective and enduring as a layer located at the bottom of the soil liner so that the leachate has been treated by the soil prior to contact. Another proposed amendment technique is to uniformly mix the biochar within the soil liner to increase the leachate contact time with the biochar, but realistically could prove to be too costly and energy-intensive. Field and laboratory studies were conducted to analyze hormone persistence and transport processes and

  5. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  6. Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford site

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1992-01-01

    All hazardous material and waste transported over roadways open to the public must be in compliance with the U.S. Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any U.S. Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOT regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOT requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOT regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations. (author)

  7. Federal, state, and local regulation of radioactive-waste transportation: Progress toward a definition of regulatory authority

    International Nuclear Information System (INIS)

    Livingston-Behan, E.A.

    1986-01-01

    The supremacy clause, the commerce clause, and the equal-protection guarantees of the U.S. Constitution establish the basic framework for defining the authority of Federal, State, and local governments to regulate the transportation of radioactive waste. Court decisions and advisory rulings of the U.S. Department of Transportation (DOT) suggest that State and local regulation of the transportation of spent nuclear fuel and high-level radioactive waste is precluded under supremacy-clause principles to the extent that such regulation addresses nuclear safety or aspects of transportation that are already specifically regulated by the Federal government. Even where State and local requirements are found to be valid under the supremacy clause, they must still satisfy constitutional requirements under the commerce and equal-protection clauses. Despite stringent standards of review, State and local transportation requirements have been upheld where directly related to the traditional exercise of police powers in the area of transportation. Legitimate State and local police-power activities identified to date by the DOT and the courts include inspection and enforcement, immediate accident reporting, local regulation of traffic, and certain time-of-day curfews. The extent to which State and local permitting requirements and license fees may be determined valid by the DOT and the courts remains unclear. Continued clarification by the DOT and the courts as to the validity of permits and fees will serve to further define the appropriate balance for Federal, State, and local regulation of radioactive-waste transportation

  8. Estimation of the heat generation in vitrified waste product and shield thickness of the cask for the transportation of vitrified waste product using Monte Carlo technique

    International Nuclear Information System (INIS)

    Deepa, A.K.; Jakhete, A.P.; Mehta, D.; Kaushik, C.P.

    2011-01-01

    High Level Liquid waste (HLW) generated during reprocessing of spent fuel contains most of the radioactivity present in the spent fuel resulting in the need for isolation and surveillance for extended period of time. Major components in HLW are the corrosion products, fission products such as 137 Cs, 90 Sr, 106 Ru, 144 Ce, 125 Sb etc, actinides and various chemicals used during reprocessing of spent fuel. Fresh HLW having an activity concentration of around 100Ci/l is to be vitrified into borosilicate glass and packed in canisters which are placed in S.S overpacks for better confinement. These overpacks contain around 0.7 Million Curies of activity. Characterisation of activity in HLW and activity profile of radionuclides for various cooling periods sets the base for the study. For transporting the vitrified waste product (VWP), two most important parameters is the shield thickness of the transportation cask and the heat generation in the waste product. This paper describes the methodology used in the estimation of lead thickness for the transportation cask using the Monte Carlo Technique. Heat generation due to decay of fission products results in the increase in temperature of the vitrified waste product during interim storage and disposal. Glass being the material, not having very high thermal conductivity, temperature difference between the canister and surrounding bears significance in view of the possibility of temperature based devitrification of VWP. The heat generation in the canister and the overpack containing vitrified glass is also estimated using MCNP. (author)

  9. PRESTO-II: a low-level waste environmental transport and risk assessment code

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.; Little, C.A.; Hiromoto, G.

    1986-04-01

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.

  10. A review of some geocolloid transport studies in the Farfield relevant to radioactive waste disposal

    International Nuclear Information System (INIS)

    Longworth, G.; Ivanovich, M.

    1990-01-01

    The major pathway for the spread of radionuclides within the geosphere surrounding a radioactive waste repository is the groundwater. Since ground waters contain colloidal particles which can sorb radionuclides and may be mobile, it is important to assess whether the presence of colloids will significantly change the radionuclide burden carried by the groundwater. Groundwater colloids from a variety of aquifers have been characterized in terms of their physical, chemical, and actinide compositions. The partition of natural series actinides has been measured using isotope dilution alpha spectrometry, between the particulate, colloid and solution phases. When the colloids are inorganic in character the fraction of total actinide activities on the colloid phase is less than one per cent for uranium and <10% for thorium. In the case of organic colloids/complexes, however, 80-90% of the uranium or thorium load is carried by the colloid phase. In addition, measurements of daughter/parent isotopic activity ratio demonstrate that the uranium associated with the colloid phase is not in chemical equilibrium with that in the groundwater. The transport of colloids is being studied using labelled synthetic colloids in a shallow glacial sand aquifer in which a set of ordered boreholes over a scale of several meters has been established by the British Geological Survey. The stability and transport behavior of these colloids has been established in laboratory column experiments before their use in a field tracer experiment. The implications of this work for modeling radionuclide transport in the geosphere is discussed. 8 refs., 3 tabs

  11. PRESTO-II: a low-level waste environmental transport and risk assessment code

    International Nuclear Information System (INIS)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.; Little, C.A.; Hiromoto, G.

    1986-04-01

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report

  12. The assessment of the safety and the radiological risks associated with the transport of radioactive wastes in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2000-01-01

    Problems related to the handling, treatment, packaging, storage, transportation, and disposal of radioactive wastes (radwastes) are very important and the responsibility for the safe management of radioactive wastes for the protection of human health and the environment has long been recognized. Safety and public welfare are to be considered within the radioactive waste management, particularly in the field of transportation because of the potential risk that it could pose to the public and to the environment. The IAEA regulations ensure safety in the transport of Radioactive Materials (RAM) by laying down detailed requirements, appropriate to the degree of hazard represented by the respective material, taking into account its form and quantity. Risk assessment provides a basis for routing radwastes and developing mitigation plans, prioritizing initiatives and enacting legislation to protect human beings and the environment. Factors such as shipment cost, distance, population exposed, environmental impacts or sensitivity, time in transit and infrastructure related issues, could be included in the terms of safety and risk. The paper presents risk assessment activities aimed to evaluate risk categories and the radiological consequences that may arise during normal (accident free) transport and those resulting from transport accidents involving waste shipments in Romania. (author)

  13. Transportation over long distance and thermal energy storage, coupling with energetic valuation processes from waste. State of art. Extended abstract

    International Nuclear Information System (INIS)

    Megret, O.; Bequet, L.; Manificat, A.; Weber, C.

    2011-12-01

    This study aims, on one hand, to realize a state of art about over long distance transport and heat energy storage and, on the other hand, to examine their coupling with waste valuation systems. After reminding the adequate context of development with those solutions and too showing the importance of the stake linked to the current work, we first expose the introductive elements in terms of storage and heat energy transport. The second chapter deals with the description of some materials, equipment and systems concerning heat storage energy. Afterward, the over long distance heat transport systems are detailed in the third chapter. In the fourth chapter, it is about waste valuation techniques and heat energy potentials users. The fifth chapter sums up the different techniques of storage and heat transport that are applicable to waste field according to the appropriate sector. Finally, the sixth chapter goes about 3 case-works in 3 fields: housing/commercial, industrial laundry and high temperature industry (steel industry). The purpose is to determine the implementation feasibility of the different techniques of storage and waste heat transport. (authors)

  14. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  15. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  16. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Best, Ralph; Winnard, T.; Ross, S.; Best, R.

    2001-01-01

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  17. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  18. Generation, transport and conduct of radioactive wastes of low and intermediate level; Generacion, transporte y gestion de desechos radiactivos de nivel bajo e intermedio

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Jimenez, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlc@nuclear.inin.mx

    2005-07-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  19. Status of standardization efforts for packaging and transportation of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Eggers, P.E.; Dawson, D.M.

    1986-01-01

    This paper provides a current review of the status of efforts to develop standards and guidelines related to the packaging and transportation of spent fuel and high-level waste. An overview of each of the organizations and agencies developing standards and guidelines is discussed and includes the efforts of the N14 Division of the American National Standards Institute (ANSI), NUPACK Committee of Section III of the American Society of Mechanical Engineers, Nuclear Regulatory Commission and Department of Energy. This comparative overview identifies the scope and areas of application of each standard and guideline. In addition, the current or proposed standards and guidelines are considered collectively with commentary on areas of apparent or potential complimentary fit, overlap and incompatability. Finally, the paper reviews initiatives now being taken within the N14 division of ANSI to identify where new standards development activities are required

  20. Software to support planning for future waste treatment, storage, transport, and disposal requirements

    International Nuclear Information System (INIS)

    Holter, G.M.; Shay, M.R.; Stiles, D.L.

    1990-04-01

    Planning for adequate and appropriate treatment, storage, transport and disposal of wastes to be generated or received in the future is a complex but critical task that can be significantly enhanced by the development and use of appropriate software. This paper describes a software system that has been developed at Pacific Northwest Laboratory to aid in such planning. The basic needs for such a system are outlined, and the approach adopted in developing the software is described. The individual components of the system, and their integration into a unified system, are discussed. Typical analytical applications of this type of software are summarized. Conclusions concerning the development of such software systems and the necessary supporting data are then presented. 2 figs

  1. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  2. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  3. Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99 Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided

  4. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.

    1993-01-01

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  5. Safety assessment for the transportation of NECSA's LILW to the Vaalputs waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Maphoto, K.P.; Raubenheimer, E.; Swart, H. [Nuclear Liabilities Management, NECSA, P O Box 582, Pretoria, 0001 (South Africa)

    2008-07-01

    The transport safety assessment was carried out with a view to assess the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the radioactive materials. It provides estimates of radiological risks associated with the envisaged transport scenarios for the road transport mode. This is done by calculating the human health impact and radiological risk from transportation of LILW along the R563 route, N14 and eventually to the Vaalputs National Waste Disposal Facility. Various parameters are needed by the RADTRAN code in calculating the human health impact and risk. These include: numbers of population densities following the routes undertaken, number of stops made, and the speed at which the transport will be traversing at towards the final destination. The human health impact with regard to the dose to the public, LCF and risk associated with transportation of Necsa's LILW to the Vaalputs Waste Disposal Facility by road have been calculated using RADTRAN 5 code. The results for both accident and incident free scenarios have shown that the overall risks are insignificant and can be associated with any non-radiological transportation. (authors)

  6. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  7. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  8. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 1

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to introduce the main types of nuclear reactor in the European Community (EC), select reference plants for further study, estimate the waste streams from the reference reactors, survey the transport regulations and assess existing containers

  9. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  10. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 1

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1986-09-01

    General descriptions of the main types of reactors in the European Economic Community are given, a series of reference plants selected for further study. Estimates are made of the radioactive decommissioning wastes for each, including neutron-activated and contaminated materials. Regulations governing the transport of radioactive materials, both international and national, are reviewed. (U.K.)

  11. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  12. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006

  13. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2013-01-01

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  14. Risk analysis of transporting vitrified high-level radioactive waste by train

    International Nuclear Information System (INIS)

    Schneider, K.A.; Merz, E.

    1983-01-01

    Reprocessing plants (RPPs) and final disposal sites for vitrified high level radioactive waste (HLW) will be at distant locations in the Federal Republic of Germany (FRG). HLW will also have to be shipped from RPPs located in foreign countries to a final disposal site in the FRG. Thus transportation of HLW on public routes will become necessary. A model of an HLW shipping system is presented which meets the needs of an established nuclear industry. Reference ages of the HLW were assumed to range between about 5 years and about 50 years. Thus HLW shipping systems covering this period are analyzed. The safety of nuclear installations is ensured by means of a design according to the design based accident. The same applies to shipping casks for radioactive materials (RAM) according to the IAEA Regulations. The aim of this work was to make as complete as reasonably possible an estimate of the risk of shipping HLW. The safety of the system was therefore analyzed by means of probabilistic risk assessment. Release of radioactive material due to transportation accidents is considered. 5 references, 5 figures, 6 tables

  15. Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

    Directory of Open Access Journals (Sweden)

    Claudia Siqueira da Silveira

    2013-01-01

    Full Text Available Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.

  16. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  17. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This report aims at developing a systematic theory of the role of fractures in the transport of radionuclides by groundwater, through fractured rocks from a deep-lying nuclear waste repository to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and the physical characteristics which influence radionuclide transport are expressed in mathematical terms. The question of radioactivity retention is then studied for various fracture types, using idealized geometries to model natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein. (author)

  18. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  19. Development of the NIREX generic transport safety assessment to assist in the provision of waste packaging advice

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Marrison, A.R.; Sievwright, R.W.T.

    2002-01-01

    The current Nirex Mission is to provide the United Kingdom with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. As part of this role, Nirex has developed a phased deep geological disposal concept which is defined by six 'generic documents' that describe systems, processes and safety assessments that are not specific to any one location or geology. These generic documents give access to detailed information about the ideas and approaches that underpin the phased disposal concept, and have been published with an invitation to enter into dialogue with Nirex regarding these issues. The generic documents identify the requirements for an integrated transport system that would be necessary for the management of the intermediate-level (ILW) and low-level (LLW) wastes within Nirex's remit - the so-called reference case volume. This has involved Nirex in the development of transport hardware and associated safety reports and modelling and assessment tools for transport system logistics and system safety. Although the phased disposal concept is only one option for the long-term management of waste, the integrated transport system and associated modelling tools, is likely to be of equal relevance to other options. The safety assessment of the generic transport operation for the movement of ILW and LLW waste from waste producers' sites to a future radioactive waste disposal facility is described in one of the generic documents - the generic transport safety assessment (GTSA). The GTSA demonstrates that the transport operation is compliant with Nirex safety principles, and that the nuclear and non-nuclear risks to the public and workers from routine transport and from accidents are acceptable. This paper describes the types of risk that are calculated, and discusses the data requirements and calculation methodology. The verification and validation methodology is outlined, together with a discussion of the results

  20. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  1. Report on the emergency response training and equipment activities through fiscal year 1992 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-11-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement, and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of September 30, 1992, regarding emergency response training provided to local, state, and tribal governments for waste shipments to the WIPP, as required by section 16(c)(1)(A) of the Waste Isolation Pilot Plant Land Withdrawal Act (Public Law 102-579). This is an update to the April 1992 report (DOE/WIPP 92003) which provided status through 1991. This report will be updated and issued annually. Because of a growing public awareness of transportation-activities involving nuclear materials, this report was prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  2. Railroad perspective on transportation of spent fuel and high level waste and recent ICC decisions

    International Nuclear Information System (INIS)

    Paschall, J.R.

    1978-01-01

    This paper attempts to summarize some railroad viewpoints on issues concerning transportation of spent fuel and high-level waste and to outline Interstate Commerce Commission decisions arising over differing opinions about the manner of such transportation. Although the railroad position includes a number of legal arguments, it also involves operating expertise and a number of well-based questions concerning the safety of casks under actual operating conditions in regular trains. The commonly-used estimates of accident frequency and severity in regular trains are severe underestimates based on a mistake in the annual number of railroad car-miles, inadequacies in and misunderstanding of accident reporting, and invalid assumptions, especially concerning fires, which some actual data suggest are far more frequent than assumed. Thus, railroads estimate casks could be involved in at least 12 accidents involving severe fires by 1990. A number of unanswered questions about casks and perceived inadequacies in testing lead to a conservative railroad position. These include the possibility of escape routes of materials other than by breach such as weld and pressure relief valve failures and direct radiation hazards through loss of shielding. These doubts are fostered through experience with accidents more severe than those used in testing or certification as well as these questions. Also, there is doubt concerning the integrity of fuel rod cladding (used as a second level of containment) in credible accident situations. Moreover, the damage estimates of $1,000 per man rem have been shown to have no relationship to damages in a transportation accident.Added safety is expected in special trains for at least 17 reasons involving speed, transit time, routing, train consist, crew alertness, reduced slack and other reduced hazards and accident opportunities

  3. C-14 release and transport from a nuclear waste repository in an unsaturated medium

    International Nuclear Information System (INIS)

    Light, W.B.; Zwahlen, E.D.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1990-06-01

    The release of 14 C as 14 CO 2 from partly failed spent fuel containers has been analyzed by the flow of gases into and out of the containers. This flow of gases is driven by pressure differences, which are in turn caused by heating by the spent fuel. In this analysis, the timing and size of holes in the containers are assumed to be given. A better means of predicting the time distribution and sizes of penetrations in nuclear waste containers is needed. For the purposes of far-field transport calculations, we have adopted release rates that are shown to be bonding for the large range of hole sizes studied. The transport of released 14 CO 2 has been analyzed by transport in equivalent porous medium. The peak 14 CO 2 concentration in pore gas at 350 m above the repository does not depend on the time of hole occurrence, although the time of penetration obviously affects the arrival and duration of exposure to 14 C. Nor does water saturation have much effect on peak concentration. In this analysis we have used a constant gas Darcy velocity. We performed limited sensitivity analysis on gas Darcy velocity by using values one order of magnitude above and below the published value. This probably gives us bounds on the likely gas Darcy velocity. Our calculations show that essentially all the released 14 C will reach the ground surface in less than one half-life of 14 C. However, the quantities of 14 C reaching the ground surface are so small that even if all containers fail at emplacement and conservative dose factors are used, the resultant inhalation dose to the maximally exposed individual is about 0.1% of natural background radiation. 14 refs., 18 figs., 3 tabs

  4. A review of the radiation exposure of transport personnel during the radioactive waste sea disposal operations from 1977-1982

    International Nuclear Information System (INIS)

    Mairs, J.H.

    1985-06-01

    The period of the review was chosen to give an account of the recent radiation exposures of transport personnel, which may serve as an indicator of possible future exposures associated with sea disposal operations. The annual radiation exposure of transport personnel has shown a significant reduction during the period of the review. These dose savings have been achieved despite a general increase in the quantities of wastes dumped. This is probably due to the improved shielding of packages and radiologically improved working procedures. If ocean disposal of solid or solidified radioactive waste was to be resumed the exposure of transport personnel might be expected to be comparable to the low doses received in the early 1980s. However, changes in packaging, handling procedures and frequency of movements would have major effects on radiation exposure. (author)

  5. Decree of the Czechoslovak Atomic Energy Commission No. 8 as of 25 June 1981 on the testing of equipment for radioactive waste transport, storage and disposal

    International Nuclear Information System (INIS)

    1995-01-01

    The Decree stipulates that manufacturers and users of equipment for radioactive waste transportation, storage and disposal are obliged to have the equipment tested. This duty concerns radioactive waste transport casks, shielding containers, etc., except for nuclear fuel transporting facilities. Authorization to act as the national testing body was granted to the Institute for Research, Production and Application of Radioisotopes. The Decree entered into force on 1 July 1981. (J.B.)

  6. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  7. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment's capability to control contamination spread

  8. Risk assessment associated with the transport of low specific activity waste to the Centre de l'Aube disposal facility, France

    International Nuclear Information System (INIS)

    Raffestin, D.; Tort, V.; Manen, P.; Schneider, T.; Lombard, J.

    1994-01-01

    Since 1991, French Low Specific Activity wastes have been stored in the near-surface waste disposal site in the Aube region (CSA). In 1995, the CSA plans to receive approximately 23,000 m 3 of waste from the three major producers, EDF (Electricite de France), COGEMA (COmpagnie GEnerale des MAtieres nucleaires), and the CEA (Commissariat a l'Energie Atomique). Four different kinds of package are broadly represented: the 200 l drums to be compacted, the 200 l drums filled with fixed wastes, concrete shells and metallic boxes. As the radiological exposures resulting from waste transport could stem from both incident-free transport and accident situations, two separate studies have been conducted. Using the INTERTRAN code (IAEA software) for accident-free transport, the overall effective collective doses related to the whole transport activity have been calculated and a risk of 0.48 man.Sv per year has been deduced. (author)

  9. Influence of fracture networks on radionuclide transport from solidified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, S.C., E-mail: suresh.seetharam@sckcen.be [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Perko, J.; Jacques, D. [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Mallants, D. [CSIRO Land and Water, Waite Road – Gate 4, Glen Osmond, SA 5064 (Australia)

    2014-04-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  10. Influence of fracture networks on radionuclide transport from solidified waste forms

    International Nuclear Information System (INIS)

    Seetharam, S.C.; Perko, J.; Jacques, D.; Mallants, D.

    2014-01-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  11. Preliminary radiological analysis of the transportation of contact-handled transuranic waste within the state of New Mexico. Revision 1

    International Nuclear Information System (INIS)

    Tappen, J.; Fredrickson, C.; Daer, G.

    1985-06-01

    This analysis assesses the potential radiological impacts on the citizens of New Mexico from the transport of CH-TRU waste to WIPP by rail or by truck. Assuming exclusive use of the truck transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 3.3 person-rem/year. It is estimated that a theoretical member of the public receiving maximum exposure to the combined truck shipments of CH-TRU waste to WIPP would receive an annual whole body dose equivalent of 0.000016 rem. Such an exposure is insignificant in comparison to the average annual whole body dose equivalent to an individual living in the Colorado Plateau area of between 0.075 and 0.140 rem from natural occurring radiation. The combined annual radiological risk to the public living along the new Mexico truck routes to WIPP from potential accidents is projected as 0.031 person-rem/year. Assuming exclusive use of the rail transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 1.2 person-rem/year. A theoretical member of the public receiving combined maximum exposure to rail shipments of CH-TRU waste to WIPP would receive an annual whole body dose equivalent of 0.000012 rem. The combined annual radiological risk to the public living along the New Mexico rail routes to WIPP from potential accidents is projected as 0.0022 person-rem/year. An estimate of the radiological impacts in a year of maximum waste receipt can be made by multiplying the above results for rail or truck by 2. This estimate is based upon the WIPP design waste throughput rate of 500,000 ft 3 per year. An estimate of the radiological impacts of CH-TRU waste transport to WIPP over the facility life can be made by multiplying the above results by 25

  12. Status of Closure Welding Technology of Canister for Transportation and Storage of High Level Radioactive Material and Waste

    International Nuclear Information System (INIS)

    Lee, H. J.; Bang, K. S.; Seo, K. S.; Seo, C. S.

    2010-10-01

    Closure seal welding is one of the key technologies in fabricating and handling the canister which is used for transportation and storage of high radioactive material and waste. Simple industrial fabrication processes are used before filling the radioactive waste into the canister. But, automatic and remote processes should be used after filling the radioactive material because the thickness of canister is not sufficient to shield the high radiation from filled material or waste. In order to simplify the welding process the closure structure of canister and the sealing method are investigated and developed properly. Two types of radioactive materials such as vitrified waste and compacted solid waste are produced in nuclear industry. Because the filling method of two types of waste is different, the shapes of closure and opening of canister and welding method is also different. The canister shape and sealing method should be standardized to standardize the handling facilities and inspection process such as leak test after closure welding. In order to improve the productivity of disposal and compatibility of the canister, the structure and shape of canister should be standardized considering the type of waste. Two kind of welding process such as arc welding and resistance welding are reported and used in the field. In the arc welding process GTAW and PAW are considered proper processes for closure welding. The closure seal welding process can be selected by considering material of canister, thickness of body, productivity, and applicable codes and rules. Because the storage time of nuclear waste in canister is very long, at least 20 years, the long-time corrosion at the weld should be estimated including mechanical integrity. Recently, the mitigation of residual stress around weld region, which causes stress corrosion cracking, is also interesting research issue

  13. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  14. Risk methodology for geologic disposal of radioactive waste: asymptotic properties of the environmental transport model

    International Nuclear Information System (INIS)

    Helton, J.C.; Brown, J.B.; Iman, R.L.

    1981-02-01

    The Environmental Transport Model is a compartmental model developed to represent the surface movement of radionuclides. The purpose of the present study is to investigate the asymptotic behavior of the model and to acquire insight with respect to such behavior and the variables which influence it. For four variations of a hypothetical river receiving a radionuclide discharge, the following properties are considered: predicted asymptotic values for environmental radionuclide concentrations and time required for environmental radionuclide concentrations to reach 90% of their predicted asymptotic values. Independent variables of two types are used to define each variation of the river: variables which define physical properties of the river system (e.g., soil depth, river discharge and sediment resuspension) and variables which summarize radionuclide properties (i.e., distribution coefficients). Sensitivity analysis techniques based on stepwise regression are used to determine the dominant variables influencing the behavior of the model. This work constitutes part of a project at Sandia National Laboratories funded by the Nuclear Regulatory Commission to develop a methodology to assess the risk associated with geologic disposal of radioactive waste

  15. Ekor - unique material for transportation, containment and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Belyaev, S.T.; Shvetsov, I.K.; Perevozchikov, S.A.; Kalinichenko, B.S.; Polivanov, A.N.; Makarenko, I.A.; Minasyan, R.A.; Semenkova, N.Y.; Kozodaeva, M.M.; Kozodaeva, N.M.; Gulko, P.

    1998-01-01

    EKOR - a unique radiation-resistant silicon-organic foam-type elastomer is presented as a new material for transportation, containment, isolation and disposal of radioactive wastes. EKOR has been developed and full-scale tested by a group of Russian scientists from the Kurchatov Institute, in collaboration with specialists from Euro-Asian Physical Society (EAPS) (President - Prof. S.P. Kapitza) and other organisations. EAPS is a patent holder for EKOR. The sole and exclusive licensee of the patents is Eurotech, Ltd. a U.S. company, with rights to sub-license the patents world-wide. EKOR maintains structural stability - does not disintegrate and preserves its structured properties under radiation, including α, β and γ rays, with the absorbed dose 10 Grad, transforming finally into foam-ceramics with mechanical compression strength within interval 5-10 kg/cm 2 . Material does not inflame and does not burn in the open flame, keeping its initial form and dimensions. It is not toxic under the impact of flame. EKOR has excellent adhesion to concrete, metal, glass without the primer. EKOR has resistance to corrosion caused by acids, alkalis and organic solvents. (authors)

  16. System engineering workstations - critical tool in addressing waste storage, transportation, or disposal

    International Nuclear Information System (INIS)

    Mar, B.W.

    1987-01-01

    The ability to create, evaluate, operate, and manage waste storage, transportation, and disposal systems (WSTDSs) is greatly enhanced when automated tools are available to support the generation of the voluminous mass of documents and data associated with the system engineering of the program. A system engineering workstation is an optimized set of hardware and software that provides such automated tools to those performing system engineering functions. This paper explores the functions that need to be performed by a WSTDS system engineering workstation. While the latter stages of a major WSTDS may require a mainframe computer and specialized software systems, most of the required system engineering functions can be supported by a system engineering workstation consisting of a personnel computer and commercial software. These findings suggest system engineering workstations for WSTDS applications will cost less than $5000 per unit, and the payback on the investment can be realized in a few months. In most cases the major cost element is not the capital costs of hardware or software, but the cost to train or retrain the system engineers in the use of the workstation and to ensure that the system engineering functions are properly conducted

  17. Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the united states

    International Nuclear Information System (INIS)

    Lemeshewsky, W.; Macaluso, C.; Smith, P.; Teer, B.

    1998-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) in the United States Department of Energy (DOE) has the responsibility under the Nuclear Waste Policy Act of 1982 (the Act) for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. The Act requires the use of private industry to the 'fullest extent possible' in the transportation of spent fuels. An OCRWM goal is to develop a safe, efficient and effective transportation system while meeting the mandate of the Act. OCRWM has then develop a strategy for a market driven approach for the acquisition of transportation services and equipment. To implement this strategy, OCRWM is planning to issue a Request for Proposal (RPF) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. Two draft RPFs have been issued with the second draft incorporating comments on the first draft from potential contractors and other interested parties. The overall strategy as outlined in the draft RPF relies on private industry to use the innovative powers of the marketplace to help DOE accomplish its mission objectives. DOE intends to pursue this procurement strategy whether or not the OCRWM program includes interim storage. The concept described in the draft RPF provides for DOE to purchase services and equipment from a contractor-operated waste acceptance and transportation organization. The contractor is expected to provide initial financing for the project including that necessary for initial acquisition of operational equipment, establish the necessary management organization, and mobilize the necessary resources and capabilities to provide the SNF delivery services at a fixed rate. DOE will retain final approval on all routes and maintain primary responsibility to the States, tribes, and local units of government for assuring appropriate interaction and consideration of their input on

  18. [Outsourcing: theory and practice at a clinical hospital in Szczecin exemplified by medical waste transport and treatment service].

    Science.gov (United States)

    Kotlega, Dariusz; Nowacki, Przemysław; Lewiński, Dariusz; Chmurowicz, Ryszard; Ciećwiez, Sylwester

    2011-01-01

    Outsourcing proves to be a useful tool in the difficult process of improving the financial result of hospitals. Outsourcing means separation of some functions and services in one entity and their transfer to another. The aim of this study was to analyze the use of outsourcing at the Second Independent Public University Hospital of the Pomeranian Medical University (SPSK 2 PUM) in Szczecin. We studied the transport and treatment of medical waste. Outsourcing of waste treatment services led to financial savings. The cost of treatment of one kilogram of waste by an external company was PLN 2.53. The same service provided by the hospital would cost approximately PLN 7 per kilogram. Appropriate attention should be paid to the quality of services. It seems useful to have appropriate tools for quality control and monitoring. SPSK 2 PUM can serve as a good example of effective use of outsourcing.

  19. Preliminary radiological analysis of the transportation of remote-handled transuranic waste within the state of New Mexico

    International Nuclear Information System (INIS)

    Daer, G.; Harvill, J.

    1985-07-01

    This analysis assesses the potential radiological impacts on the citizens of New Mexico from the transport of RH-TRU waste to the WIPP by rail or by truck. Assuming exclusive use of the truck transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 11.5 person-rem/year. It is estimated that a theoretical member of the public receiving maximum exposure to the combined truck shipments of RH-TRU waste to the WIPP would receive an annual whole body dose equivalent of 0.00072 rem. Such an exposure is insignificant in comparison to the average annual whole body dose equivalent to an individual living in the Colorado Plateau area of between 0.075 and 0.140 rem from naturally occurring radiation. The highest average annual dose commitment to any organ from potential accidents along all New Mexico truck routes to the WIPP is projected as 0.012 person-rem/year to bone surfaces. Assuming sole use of the rail transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 1.3 person-rem/year. A theoretical member of the public receiving combined maximum exposure to rail shipments of RH-TRU waste to the WIPP would receive an annual whole body dose equivalent of 0.000014 rem. The highest average annual dose commitment to any organ from potential accidents along the New Mexico rail routes to the WIPP is projected as 0.0004 person-rem/year to bone surfaces

  20. Real-time gamma imaging of technetium transport through natural and engineered porous materials for radioactive waste disposal.

    Science.gov (United States)

    Corkhill, Claire L; Bridge, Jonathan W; Chen, Xiaohui C; Hillel, Phil; Thornton, Steve F; Romero-Gonzalez, Maria E; Banwart, Steven A; Hyatt, Neil C

    2013-12-03

    We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in (99m)Tc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ~20 MBq (99m)Tc were introduced into short (disposal of nuclear waste and potentially to a wide variety of other subsurface environments.

  1. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  2. Economic analysis of the expected environmental impact of the Single European Market through the transport, waste and energy sectors

    International Nuclear Information System (INIS)

    Brutscher, S.

    1993-01-01

    Similarly to other studies the present dissertation presupposes that the Single European Market will lead to an increase in transport waste quantities, and energy consumption and consequently to greater environmental pollution. Of central importance here is the concept of ''expletive costs'' introduced in this paper which describes that damage to the natural and human environment which is not compensated. It forms out that the sectors of transport, waste, and energy alone will most probably send the expletive costs of the Single European Market into astronomic dimensions. In view of the interdependencies of these three sectors it seems doubtful whether the economic benefit to be expected from the establishment of the Single European Market can justify the additional environmental damage thus caused. (HP) [de

  3. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    International Nuclear Information System (INIS)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment

  4. Long-term Effects of Organic Waste Fertilizers on Soil Structure, Tracer Transport, and Leaching of Colloids.

    Science.gov (United States)

    Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob

    2017-07-01

    Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores 30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Use of natural analogues to support radionuclide transport models for deep geological repositories for long lived radioactive wastes

    International Nuclear Information System (INIS)

    1999-10-01

    Plans to dispose high level and long lived radioactive wastes in deep geological repositories have raised a number of unique problems, mainly due to the very long time-scales which have to be considered. An important way to help to evaluate performance and provide confidence in the assessment of safety in the long term is to carry out natural analogue studies. Natural analogues can be regarded as long term natural experiments the results or outcome of which can be observed, but which, by definition, are uncontrolled by humans. Studies of natural analogues have been carried out for more than two decades, although the application of information from them is only relatively recently becoming scientifically well ordered. This report is part of a the IAEA's programme on radioactive waste management dealing with disposal system technology for high level and long lived radioactive waste. It presents the current status of natural analogue information in evaluating models for radionuclide transport by groundwater. In particular, emphasis is given to the most useful aspects of quantitative applications for model development and testing (geochemistry and coupled transport models). The report provides an overview of various natural analogues as reference for those planning to develop a research programme in this field. Recommendations are given on the use of natural analogues to engender confidence in the safety of disposal systems. This report is a follow up of Technical Reports Series No. 304 on Natural Analogues in Performance Assessments for the Disposal of Long Lived Radioactive Waste (1989)

  6. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  7. Proceedings of workshop 5: Flow and transport through unsaturated fractured rock -- related to high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Evans, D.D.; Nicholson, T.J.

    1993-06-01

    The ''Workshop on Flow and Transport Through Unsaturated Fractured Rock Related to High-Level Radioactive Waste Disposal'' was cosponsored by the NRC, the Center for Nuclear Waste Regulatory Analyses, and the University of Arizona (UAZ) and was held in Tucson, Arizona, on January 7--10, 1991. The focus of this workshop, similar to the earlier four (the first being in 1982), related to hydrogeologic technical issues associated with possible disposal of commercial high-level nuclear waste (HLW) in a geologic repository within an unsaturated fractured rock system which coincides with the UAZ field studies on HLW disposal. The presentations and discussions centered on flow and transport processes and conditions, relevant parameters, as well as state-of-the-art measurement techniques, and modeling capabilities. The workshop consisted of: four half-day technical meetings, a one day field visit to the Apache Leap test site to review ongoing field studies that are examining site characterization techniques and developing data sets for model validation studies, and a final half-day session devoted to examining research needs related to modeling groundwater flow and radionuclide transport in unsaturated, fractured rock. These proceedings provide extended abstracts of the technical presentations and short summaries of the research group reports

  8. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  10. Development of a high integrity container for storage, transportation, and disposal of radioactive wastes from Three Mile Island unit II

    International Nuclear Information System (INIS)

    Holzworth, R.E.; Chapman, R.L.; Burton, H.M.; Bixby, W.W.

    1981-01-01

    The EPICOR II ion exchange system used to decontaminate approximately 1900 m 3 of contaminated water in the Auxiliary and Fuel Handling Building (AFHB) generated 50 highly loaded and 22 lesser loaded organic resin liners. The 22 lesser loaded resins were shipped to a commercial disposal site, but the highly loaded liners have been stored on the island since their generation. One highly loaded liner, or prefilter, was shipped to Battelle Columbus Laboratories (BCL) in May, 1981 as part of the United States Department of Energy (DOE) Three Mile Island Information and Examination Program. The prefilter is being characterized to determine the behavior of the waste form with respect to time and the internal environment and to provide an information base for use in management and regulatory decisions relative to the storage, processing, and disposal of these wastes. Due to the unique characteristics of these wastes, the US DOE is sponsoring programs, such as the BCL Sorbent Experiments Program, to evaluate their characteristics and to provide a High Integrity Container (HIC) Development Program which would improve waste suitability for disposal at a land burial facility. This paper addresses regulatory considerations, establishment of design criteria, proposed design concepts, system demonstration, and status of the HIC Development Program for storage, transportation, and disposal of high specific activity, low level radioactive wastes from Three Mile Island Unit II as typified by EPICOR II ion exchange media and liners

  11. A preliminary assessment of the assignment of Intermediate Level Waste streams to designs of transport containers

    International Nuclear Information System (INIS)

    Mairs, J.H.

    1984-08-01

    This paper considers the assignment of ILW to designs of transport container. Estimates are made of the radiation levels penetrating the transport containers and assesses the duration of any storage required prior to transportation. (author)

  12. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  13. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  14. 15 years return transport of vitrified high-level waste from France. The long way from La Hague to Gorleben

    International Nuclear Information System (INIS)

    Horn, Thomas

    2012-01-01

    The operators of German nuclear power plants have contracts since 1977 with the French company AREVA NC (former COGEMA) and since 1980 with the British company NDA (former BNFL) for reprocessing of spent nuclear fuel. Since July 2005 the delivery of irradiated fuel element into a reprocessing plant is prohibited. Until 2005 fuel elements with about 6.080 tSM were shipped abroad, about 5.309 tSM to France. The contribution deals with the history of the transports from La Hague to Gorleben, including the contamination problems in 1988 that caused restrictions by the German authorities. A catalogue of safety requirements had to be fulfilled for the allowance of further return transports. The development of appropriate transport casks to cope with changing heat generation of the high-level waste is described. During the complete transport cycle extensive radiological measurements were performed. By the end of 2011 the HAW (high-level waste) glass coquilles were completely returned to Gorleben.

  15. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This paper aims at developing a systematic theory of the role of fractures in the transport of radionuclides in the fractured rocks by groundwater, from the nuclear waste repository to be built in the deep geological formations, to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and their physical characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention is then carefully studied for various fracture types, using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  17. Quantifying and Predicting Reactive Transport of Uranium in Waste Plumes: Are Colloids and Nanoparticles Important?

    International Nuclear Information System (INIS)

    Jiamin Wan; Tetsu Tokunaga; Carl Steefel; Peter Burns

    2006-01-01

    The Hanford Site is the DOE's largest legacy waste site, with uranium (U) from plutonium processing being a major contaminant in its subsurface. Accidental release of highly concentrated high-level wastes left large quantities of U in the vadose zone under tank farms. The U contamination has been found in groundwater beneath the tank farms, indicating U is mobile

  18. Handling, assessment, transport and disposal of tritiated waste materials at JET

    International Nuclear Information System (INIS)

    Newbert, G.; Haigh, A.; Atkins, G.

    1995-01-01

    All types of JET radioactive wastes are received for disposal at the Waste Handling Facility (WHF) which features a waste sorting and sampling station, a glove box, a compactor, and packaging and transfer systems. The WHF is operated as a contamination control area with monitored tritium discharges. Two main types of tritium monitors used are liquid scintillation counters and ionization chambers, and samples of various components and materials have now been assessed for tritium. The results so far indicate a widespread of tritium levels from 2Bq/g for cold gas transfer lines to 200kBq/g for in-vessel tiles. General soft housekeeping waste is assessed by a sniffing technique which has a limit of detection corresponding to 120Bq/g. Investigation of improved methods of tritium measurement and of component detritiation was made to facilitate future waste disposal. 8 refs., 6 figs., 2 tabs

  19. Transportation of radioactive, hazardous, and mixed wastes: Material identification is the key

    International Nuclear Information System (INIS)

    Stancell, D.F.; Willaford, D.M.

    1992-01-01

    This paper will discuss how material identification and classification will result in an accurate determination of regulatory requirements, and will assure safe and compliant shipment of radioactive, hazardous, and mixed wastes. The primary focus of the paper is a discussion of lessons learned by the Department of Energy in making waste shipments, and how this can be applied to future mixed waste shipments. There will be a brief discussion of the Department's regulatory compliance program, including a presentation of compliance audit results, and how regulatory issues are addressed through effective information exchange, technical assistance, and compliance training. A detailed discussion will follow, which describes cases involving material identification and classification problems. Examples will include both RCRA waste and uranium mill tailings shipments. The paper will conclude with a discussion concerning the application of these lessons to future mixed waste shipments proposed by the Department. (author)

  20. Supplemental information related to risk assessment for the off-site transportation of low-level mixed waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Antonopoulos, A.A.; Hartmann, H.M.; Policastro, A.J.; Chen, S.Y.

    1996-12-01

    This report provides supplemental information to support the human health risk assessment conducted for the transportation of low-level mixed waste (LLMW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers both the radioactive and chemical hazards associated with LLMW transportation. Detailed descriptions of the transportation health risk assessment methods and results of the assessment are presented in Appendix E of the WM PEIS. This report presents additional information that is not included in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLMW. Included are definitions of the LLMW alternatives considered in the WM PEIS; data related to the inventory and to the physical, chemical, and radiological characteristics of WM LLMW; an overview of the risk assessment methods; and detailed results of the assessment for each WM LLMW case considered

  1. Supplemental information related to risk assessment for the off-site transportation of low-level mixed waste for the U.S. Department of Energy Waste Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.

    1995-04-01

    This report provides supplemental information to support the human health risk assessment conducted for the transportation of low-level mixed waste (LLMW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers both the radioactive and chemical hazards associated with LLMW transportation. Detailed descriptions of the transportation health risk assessment methods and results of the assessment are presented in Appendix E of the WM PEIS. This report presents additional information that is not included in Appendix E but is necessary to conduct the transportation risk assessment for Waste Management (WM) LLMW. Included are definitions of the LLMW alternatives considered in the WM PEIS; data related to the inventory and to the physical, chemical, and radiological characteristics of WM LLMW; an overview of the risk assessment methods; and detailed results of the assessment for each WM LLMW case considered

  2. Development, implementation, and experiences of the Swedish spent fuel and waste sea transportation system

    International Nuclear Information System (INIS)

    Gustafsson, B.; Dybeck, P.; Pettersson, S.

    1989-01-01

    In Sweden, electrical production from the first commercial nuclear plant commenced in 1972, i.e. 17 years ago. There are now 12 nuclear reactors in operation, the last two were connected to the grid in fall 1985. These 12 reactors produced about 50% of the present electrical demand in Sweden. The remaining 50% are mainly covered by hydro power stations. The operating record for the Swedish reactors has generally been very good. Nevertheles, the Swedish parliament has taken a decision, that nuclear power shall be phased out from the Swedish system not later than the year 2010. Many of them - to use a mild expression-question the wisdom of this decision. The efforts in the waste management area will, however, be given a continued high priority. The primary responsibility for the management of nuclear waste lies with the waste producer. In order to achieve a good coordination and an effective management the four Swedish nuclear power utilities have delegated these responsibilities to the jointly owned Swedish Nuclear Fuel and Waste Management Co., SKB. This means that SKB is responsible for measures required for the implementation of the national nuclear waste management program such as planning, design, construction and operation of waste facilities including the necessary R and D work. The responsibility of the nuclear power utilities also includes the financing of the waste management program. A special funding system, controlled by the authorities, has been established for this purpose

  3. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  4. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  5. The utility industry's perspective on OCRWM's plans for developing the system for transporting spent fuel under the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Brodnick, D.A.

    1988-01-01

    The electric utility industry has a vital interest in the transport program to be developed by the Department of Energy's Office of Civilian Radioactive Waste Management under the Nuclear Waste Policy Act. The industry's interest stems in part from the fact that the DOE's transportation program is financed by the Nuclear Waste Fund which is made up of ratepayer funds. However, the industry is also vitally interested in the DOE's transportation program because it could impact the ongoing transportation operations of all nuclear utilities, and, perhaps most importantly, without the utility industry's input, DOE is not able to develop an optimal transportation program. The NWPA contemplates that the DOE conducts its transportation program in accordance with the existing federal and state regulatory structure. DOE has significant discretion, however, in creating and implementing the business, operational and institutional aspects of its NWPA transportation program. The utility industry intends to ensure that the DOE meets the challenge to develop a safe, efficient and economically sound program to transport spent fuel and high-level waste to the appropriate federal facilities

  6. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  7. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    International Nuclear Information System (INIS)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.; Ryan, Joseph V.

    2015-01-01

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  8. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States); Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  9. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  10. Relative costs of transporting low-level waste according to four postulated regional-management cases

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Shirley, C.G.

    1982-01-01

    Results presented in this paper show that almost any compact binding states into cooperating regions for disposal of LLW will reduce nationwide transportation costs markedly. As a corollary, the reduction of costs may reflect a two- to four-fold reduction of transportation distances with consequent reduction of risk to the public since risk generally decreases directly as transport distances decrease

  11. Federal and state regulatory schemes affecting liability for high-level waste transportation incidents: opportunities for clarification and amendment

    International Nuclear Information System (INIS)

    Friel, L.E.; Livingston-Behan, E.A.

    1985-01-01

    The Price-Anderson Act of 1957 provides extensive public liability coverage in the event of a serious accident involving the transportation of nuclear materials to or from certain federally-licensed, or federal contractor-operated facilities. While actual liability for a nuclear incident and the extent of damages are usually determined by state law, the Act establishes a comprehensive system for the payment of such damages. Despite the federally-mandated scheme for liability coverage several aspects of the Act's application to transportation to a permanent repository have not yet been settled and are open to various interpretations. Some areas of uncertainty apply not only to future waste transport to a repository, but also to current transportation activities, and include: coverage for emergency response and clean-up costs; coverage for precautionary evacuations; and the federal government's financial liability. The need to address liability issues is also increasingly recognized at the state level. The state laws which are used to determine liability and the extent of damages in the event of a transportation accident vary widely among states and significantly affect the compensation that an injured person will receive under the provisions of the Price-Anderson Act. Areas of state law deserving special attention include: standards for determining liability; statutes of limitations; standards for proof of causation; state sovereign immunity statutes; and recovery of unique emergency response costs

  12. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  13. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Economopoulou, M.A. [Hellenic Statistical Authority, Pireos 46 and Eponiton, Pireus 185 10 (Greece); Economopoulou, A.A. [Ministry of Environment, Energy and Climatic Change, 15 Amaliados Street, Athens 11523 (Greece); Economopoulos, A.P., E-mail: eco@otenet.gr [Environmental Engineering Dept., Technical University of Crete, Chania 73100 (Greece)

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  14. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    International Nuclear Information System (INIS)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P.

    2013-01-01

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  15. The conversion of waste plastics/petroleum residue mixtures to transportation fuels

    International Nuclear Information System (INIS)

    Ali, M.F.; Siddiqui, M.N.

    2005-01-01

    Plastics have become the material of choice in the modern world and its applications in the industrial field are continually increasing. Presently the plastics are manufactured for various uses such as: consumer packaging, wires, pipes, containers, bottles, appliances, electrical/electronic parts, computers and automotive parts. Most of he post consumer, plastic products are discarded and end up as mixed plastic municipal waste. The disposal of his waste has become a major social concern. Mixed plastic waste (MPW) recycling is still very much in its infancy. Approximately 20 million tons of plastic waste is generated in the United States of America, while about 15 million tons is generated throughout the Europe. With existing recycle efforts, only 7% of the MPW are recycled to produce low-grade plastic products such as plastic sacks, pipes, plastic fencing, and garden furniture. The current plastic reclamation technology options are generally grouped into the following four types: (i) Primary: The processing of plastic for use comparable to the original application. (ii) Secondary: The processing of plastics waste into new products with a lower quality level. (iii) Tertiary: The chemical or thermal processing of plastic waste to their basic hydrocarbon feedstock. The resulting raw materials are then reprocessed into plastic material or other products of the oil refining process. (iv) Quaternary: The incineration of plastics waste to recover energy. This paper deals exclusively with tertiary recycling by pyrolysis and catalytic cracking of plastics waste alone and by coprocessing with petroleum residue or heavy oils to fuels and petrochemical feedstock for further processing in existing refinery and petrochemical units. (author)

  16. Safety assessment and geosphere transport methodology for the geologic isolation of nuclear waste materials

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Stottlemyre, J.A.; Raymond, J.R.

    1977-01-01

    As part of the National Waste Terminal Storage Program in the United States, the Waste Isolation Safety Assessment Program (WISAP) is underway to develop and demonstrate the methods and obtain the data necessary to assess the safety of geologic isolation repositories and to communicate the assessment results to the public. This paper reviews past analysis efforts, discusses the WISAP technical approach to the problem, and points out areas where work is needed

  17. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    International Nuclear Information System (INIS)

    2010-01-01

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products. The Area 5 PA model assumes activity disposed in trenches is well mixed within the native alluvium of the trench at the time the facility is closed. Waste containers and waste forms are assumed not to limit the release of radionuclides for transport. In the Area 5 RWMS PA model, the pathways that are considered to bring radioactivity in the waste zone to the surface soils of the closure covers are (1) plant uptake, (2) burrowing animal activity, and (3) advection/dispersion/diffusion in the pore water. Water-phase transport is a minor component of the transport, which is dominated by plant uptake and burrowing animal activity. Because the soil column is mostly dry, upward water flux rates are extremely small, resulting in small advective/dispersive transport of radioactive isotopes in pore water of the unsaturated zone. Reactive transport of radioactive elements in the Area 5 soil pore water are modeled using element-specific partition coefficients (Kds) that partition radioactivity between pore water and soil of the disposal cell, and solubility limits that control the solubility of elements in pore water. Geochemical modeling is not performed in the Area 5 RWMS GoldSim PA model; however, Kds and solubility limits were derived from previous geochemical modeling performed using Area 5 geochemical data. Kds for uranium were developed based on geochemical modeling using the mineral characteristics of soil (alluvium) and the chemical characteristics of water at the site (Carle et al., 2002). In the GoldSim model, uranium Kd is represented with a lognormal distribution with a mean value of 0.8 milliliter per gram (taken from Figure 4.11, Page 4-19 of Carle et al

  18. Comments on a paper tilted 'The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues'

    International Nuclear Information System (INIS)

    Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J.

    1997-05-01

    The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed

  19. The international intraval project to study validation of geosphere transport models for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    INTRAVAL is an international project concerned with the use of mathematical models for predicting the potential transport of radioactive substances in the geosphere. Such models are used to help assess the longterm safety of radioactive waste disposal systems. The INTRAVAL project was established to evaluate the validity of these models. Results from a set of selected laboratory and field experiments as well as studies of occurrences of radioactive substances in nature (natural analogues) are compared in a systematic way with model predictions. Discrepancies between observations and predictions are discussed and analyzed

  20. Approaches to overall architecture of transport systems for spent fuel and high level waste: examples from Europe and Canada

    International Nuclear Information System (INIS)

    Roland, V.; Neider, T.

    2006-01-01

    As over the years, the nuclear industry worldwide was developing and building a clean, efficient and safe energy supply, it also built along the essential link for any global industry, transportation. The early approach at IAEA of creating international recommendations that then would be integrated into national laws came as a blessing to the structuration of transport This enabled a clear, recognized safety regime that has a proven world track record of outstanding safety. It also gave us a common language, and one may say that within the nuclear community, there is indeed a nuclear transport community. Because of steady and large flows of material for the nuclear cycles, countries where reprocessing of spent fuel takes place had to implement early on large transport structures and organizations. In most countries where reprocessing is not yet the main path for spent fuel management, like in the USA and in Canada, large scale transport for the back-end is still at the inception stage. Today the industry must demonstrate that waste is properly managed and that the peaceful use of nuclear energy delivers indeed the best economic and environmental value. Transport has to answer a part of this challenge if the industry is to grow further. The paper will illustrate how the current continental Europe systems of transport progressively evolved so as to make daily deliveries of spent nuclear fuel to the COGEMA La Hague reprocessing plant a strong, dependable and effective system. It also shows that this experience is in the background of a major study ordered by Ontario Power Generation from COGEMA Logistics, as a contribution to the work of the trust now examining approaches to long-term management of spent fuel in Canada. (author)

  1. Solid Waste Transportation through Ocean Currents: Marine Debris Sightings and their Waste Quantification at Port Dickson Beaches, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Chong Jing Yi

    2016-07-01

    Full Text Available Four beaches at Port Dickson, Peninsular Malaysia, namely Saujana Beach, Nelayan Beach, Bagan Pinang Beach and Cermin beach have been sampled for marine debris from 7th June 2014 until 26th July 2014, on every Saturday. These beaches face the Strait of Malacca with a coastline stretching 18 km each. Our observations revealed a total debris items of 13193 in those beaches. The top three items of highest frequency were cigarette butts, foamed fragments and food wrappers. Plastic debris scaled high upto 41% of the total debris. Compared to the ocean conservancy�s 2013 report of marine debris in Malaysian beaches, which was 27,005 items with in 6.44 km, the current count is slightly low. However, Malaysia was ranked 14th place among the top 20 countries in International Marine Debris Watch program. Nelayan Beach is the dirtiest beach in Port Dickson. Around 50% of the total plastic items collected are found on those beaches. The marine debris items indicated that they arrived there by land-based and ocean-based activities. High energy conditions such as wind and waves in the beaches correlated well with less debris deposition on the beaches. With debris equivalent of 4193 items/km, Malaysia harvests less solid wastes compared to Croatia, USA, Singapore and Turkey. However, a nation wide survey is needed to assess the seriousness of marine debris problem in Malaysia.

  2. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  3. Waste Preparation and Transport Chemistry: Results of the FY 2002 Studies

    International Nuclear Information System (INIS)

    Hunt, R.D.

    2003-01-01

    The initial step in the remediation of nuclear waste stored at Hanford and the Savannah River Site (SRS) involves the retrieval and transfer of the waste to another tank or to a treatment facility. The retrieved waste can range from a filtered supernatant to a slurry. Nearly all of the recent solid formation problems encountered during waste transfers and subsequent treatment steps have involved decanted or filtered supernatants. Problems with slurry transfers have not yet surfaced, because tank farm operations at Hanford and the SRS have focused primarily on supernatant transfers and treatment. For example, the interim stabilization program at Hanford continues to reduce the level of supernatants and interstitial liquids in its single-shell tanks through saltwell pumping of filtered liquid. In addition, at present, the cross-site transfer lines at Hanford can be used only to transfer liquids. Another reason for fewer problems with slurry transfers involves the additions of large quantities of dilution water prior to the transfer. When the waste is transferred, a drop in temperature is expected because most transfer lines are not heated. However, the dilution water reduces or eliminates solid formation caused by this temperature drop. In sharp contrast, decanted or filtered supernatants are near or at saturation for certain compounds. In such cases, tank farm operators must continue to evaporate their liquid waste since available tank space is quite limited. Solid formation can occur when the temperature of saturated solutions drops even slightly. The evaporation step can also lead to the formation of problematic solids. At the SRS, the evaporation of a relatively dilute waste stream was suspended due to the formation of deposits in the evaporator system. Therefore, small drops in temperature or evaporation can lead to problematic solid formations

  4. Waste Preparation and Transport Chemistry: Results of the FY 2002 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.

    2003-07-10

    The initial step in the remediation of nuclear waste stored at Hanford and the Savannah River Site (SRS) involves the retrieval and transfer of the waste to another tank or to a treatment facility. The retrieved waste can range from a filtered supernatant to a slurry. Nearly all of the recent solid formation problems encountered during waste transfers and subsequent treatment steps have involved decanted or filtered supernatants. Problems with slurry transfers have not yet surfaced, because tank farm operations at Hanford and the SRS have focused primarily on supernatant transfers and treatment. For example, the interim stabilization program at Hanford continues to reduce the level of supernatants and interstitial liquids in its single-shell tanks through saltwell pumping of filtered liquid. In addition, at present, the cross-site transfer lines at Hanford can be used only to transfer liquids. Another reason for fewer problems with slurry transfers involves the additions of large quantities of dilution water prior to the transfer. When the waste is transferred, a drop in temperature is expected because most transfer lines are not heated. However, the dilution water reduces or eliminates solid formation caused by this temperature drop. In sharp contrast, decanted or filtered supernatants are near or at saturation for certain compounds. In such cases, tank farm operators must continue to evaporate their liquid waste since available tank space is quite limited. Solid formation can occur when the temperature of saturated solutions drops even slightly. The evaporation step can also lead to the formation of problematic solids. At the SRS, the evaporation of a relatively dilute waste stream was suspended due to the formation of deposits in the evaporator system. Therefore, small drops in temperature or evaporation can lead to problematic solid formations.

  5. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  6. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred C. [Black Mountain Research, Henderson, NV 81012 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)

    2013-07-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  7. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    International Nuclear Information System (INIS)

    Dilger, Fred C.; Ballard, James D.; Halstead, Robert J.

    2013-01-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  8. Organizing a complex transport while guaranteeing safety and transparency: the example of vitrified wastes sent back to Germany

    International Nuclear Information System (INIS)

    Krochmaluk, Julie; Lebrun, Marc; Delmestre, Alain; Barbey, Pierre; Bonvalot, Vanessa; Belleville, Didier; Rollinger, Patrice; Alter, Ulrich

    2012-01-01

    This chapter is made of several small articles entitled: - 'Les controles avant le depart du convoi franco-allemand' (Controls before the departure of the French-German convoy); - 'La supervision des transports de matieres radioactives: une approche extensive de la surete des operations' (The supervision of radioactive material transports: an extended approach of operation safety); - 'Le dispositif d'information du public sur le transport des substances radioactives mis en place par l'ASN' (The plan implemented by the ASN for public information on nuclear materials transport); - 'Le recours de l'ASN a l'expertise de l'ACRO sur le convoi de colis de dechets vitrifies vers l'Allemagne' (The appeal of the ASN to the ACRO's expertise on the vitrified parcel convoy to Germany); - 'La participation du collectif STOP-EPR a l'inspection de l'ASN du convoi de colis de dechets vitrifies vers l'Allemagne' (The participation of the STOP-EPR collective to the control by the ASN of the vitrified parcel convoy to Germany); - 'La securite et la surete: des valeurs que le Groupe SNCF partage' (Security and safety: values which are shared by the SNCF Group); - 'Le transport de matieres nucleaires entre la France et l'Allemagne au cours des 40 dernieres annees' (Transport of nuclear materials between France and Germany during the last 40 years). Addressing the case of vitrified wastes transported back to Germany, the articles indicate the controls performed in France before convoy departure, discuss the approach adopted for the safety of radioactive material transport, comment the management of public information by the ASN for such transports, comment the intervention of the ACRO (Association for the control of radioactivity in western France) on the request of the ASN and the participation of a collective group (STOP-EPR) to the inspection of a convoy, outline the commitment of the French Railways (SNCF) in terms of security and safety, and give a qualitative and quantitative

  9. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  10. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Science.gov (United States)

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The role of colloids and suspended particles in radionuclide transport in the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Vilks, P.

    1994-02-01

    AECL Research is developing a concept for the permanent disposal of nuclear fuel waste in a deep engineered vault in plutonic rock of the Canadian Shield and is preparing an Environmental Impact Statement (EIS) to document its case for the acceptability of the disposal concept. This report, one in a series of supporting documents for the EIS, addresses the role of particles in radionuclide transport. It summarizes our studies of natural particles in groundwater and presents the arguments used to justify the omission of particle-facilitated transport in the geosphere model that is based on the Whiteshell Research Area (WRA) and used in the postclosure assessment study case. Because radiocolloids formed in the vault will not be able to migrate through the clay buffer, radiocolloid formation in the geosphere will be determined by the sorption of radionuclides onto particles in groundwater. These particles consist of typical fracture-lining minerals, such as clays, micas and quartz; precipitated particles, such as colloidal silica and Fe-Si oxyhydroxides; and organic particles. In groundwater from the WRA, the average concentrations of colloids and suspended particles are 0.34 and 1.4 mg/L respectively. Particle-facilitated transport is not included in the geosphere model because the concentrations of particles in groundwater from the WRA are too low to have a significant impact on radionuclide transport. (author). 92 refs., 11 tabs., 13 figs

  12. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    International Nuclear Information System (INIS)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-01

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  13. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  14. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments