WorldWideScience

Sample records for waste transfer station

  1. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  2. Research on Layout Optimization of Urban Circle Solid Waste Transfer and Disposal Stations

    OpenAIRE

    Xuhui Li; Gangyan Li; Guowen Sun; Huiping Shi; Bao’an Yang

    2013-01-01

    Based on the Systematic Layout Planning theory and the analysis of transfer stations’ technological processes, a layout optimization model for solid waste transfer and disposal stations was made. The operating units’ layout of the solid waste transfer and disposal stations was simulated and optimized using the genetic algorithm, which could achieve reasonable technological processes, the smallest floor space and the lowest construction cost. The simulation result can also direct t...

  3. The Solid Waste Transfer Pit an FFTF [Fast Flux Test Facility] station for fuel and reflector transfer

    International Nuclear Information System (INIS)

    Milewski, A.J.; Thomson, J.D.

    1985-01-01

    This paper describes the design aspects of a proposed FFTF facility called the Solid Waste Transfer Pit (SWTP). This new facility will be used as a transfer station for reflectors and/or low decay heat fuel assemblies when movement from the Fuel Storage Facility for sodium removal and subsequent reprocessing is to be accomplished. The SWTP utilizes a shielded cell cover with an integral manually-operated gate valve for top loading of a transfer vessel. The cost-effective design discussed herein provides a practical approach using state-of-the-art concepts while assuring safe and reliable operation

  4. Station Transfers

    Data.gov (United States)

    Department of Homeland Security — ixed rail transit external system transfers for systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of...

  5. Intervention assessments in the control of PM10 emissions from an urban waste transfer station.

    Science.gov (United States)

    Barratt, B M; Fuller, G W

    2014-05-01

    While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.

  6. Transfer Stations for urban solid wastes. Design; Transferencia ferroviaria de residuos solidos domiciliarios. Alternativas para el diseno

    Energy Technology Data Exchange (ETDEWEB)

    Dussuel Jurado, E.

    2004-07-01

    On the basis of experience in the design of projects promoted by Spanish companies for Transfer Stations for Solid Domestic Waste (RSD) using the railway, aspects regarding location, technological alternatives, restrictions and dimensions are considered. The equipment necessary for the different options is described. The paper is concerned with the Metropolitan Area of Santiago (Chile) and comments on and discusses the regulatory restrictions laid down by the PRMS (Metropolitan Regulatory Plan for Santiago) affecting decisions on location, dimensions and design. Last of all, the costs of Transfer Stations are analysed depending on the distance from the sanitary landfill nd in comparison with the alternative by road, laying down convenience kerbs. Also analysed are the environmental advantages of the railway option as opposed to roads. (Author)

  7. A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations

    Directory of Open Access Journals (Sweden)

    Hossein Asefi

    2015-09-01

    Full Text Available Municipal solid waste management is one of the challenging issues in mega cities due to various interrelated factors such as operational costs and environmental concerns. Cost as one of the most significant constraints of municipal solid waste management can be effectively economized by efficient planning approaches. Considering diverse waste types in an integrated municipal solid waste system, a mathematical model of the location-routing problem is formulated and solved in this study in order to minimize the total cost of transportation and facility establishment.

  8. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  9. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  10. Pumped energy transfer stations (STEP)

    International Nuclear Information System (INIS)

    Tournery, Jean-Francois

    2015-12-01

    As objectives of development are high for renewable energies (they are supposed to cover 50 per cent of new energy needs by 2035), pumped energy transfer stations are to play an important role in this respect. The author first discusses the consequences of the development of renewable energies on the exploitation of electric grids: issue of intermittency for some of them, envisaged solutions. Then, he addresses one of the solutions: the storage of electric power. He notices that increasing the potential energy of a volume of water is presently the most mature solution to face massive needs of the power system. Dams and pumped energy transfer stations represent now almost the whole installed storage power in the world. The author then presents these pumped energy transfer stations: principle, brief history (the first appeared in Italy and Switzerland at the end of the 1890's). He indicates the various parameters of assessment of such stations: maximum stored energy, installed power in pumping mode and turbine mode, time constant, efficiency, level of flexibility. He discusses economic issues. He describes and comments the operation of turbine-pump groups: ternary groups, reversible binary groups. He discusses barriers to be overcome and technical advances to be made for varying speed groups and for marine stations. He finally gives an overview (table with number of stations belonging to different power ranges, remarkable installations) of existing stations in China, USA, Japan, Germany, Austria, Spain, Portugal, Italy, Switzerland, France and UK, and indicate predictions regarding storage needs at the world level. Some data are finally indicated for the six existing French installations

  11. Waste management for Shippingport Station Decommissioning Project: Extended summary

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP

  12. BATCH ANAEROBIC TREATMENT OF FRESH LEACHATE FROM TRANSFER STATION

    Directory of Open Access Journals (Sweden)

    SEYED MOHAMMAD DARA GHASIMI

    2008-12-01

    Full Text Available Leachate from transfer station requires treatment before being discharged into the environment to avoid surface and underground water contamination. Various factors such as waste composition, availability of oxygen and moisture, designing and controlling of transfer station operations have been shown to affect the composition of the leachate. The high COD, BOD, ammonia nitrogen (NH3-N and heavy metals contents of fresh leachate are the main problems faced by leachate treatment operators. The result of the present study indicated that this process reduced the COD content by 43%.The average removal efficiencies of BOD5, TS, TSS, and VSS were 80, 49, 37 and 39 %, respectively.

  13. Analysis of the effects of explosion of a hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power stations

    International Nuclear Information System (INIS)

    Lopes, Karina B.; Melo, Paulo Fernando F.F. e

    2011-01-01

    This work presents a study of explosion effects of a stored hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power plants. The peak overpressure is calculated, as well as the strength of resulting fragments, thus confirming the main harmful effect of an explosion of flammable vapor cloud, based on the TNT equivalent method. The scenarios identified are calculated and compared with the overpressure ranges of 1%, 50% and 99% of structural damages, which were determined by the Eisenberg's vulnerability model. The results show that the overpressure and the resulting fragments from the explosion of a hydrogen gas cylinder are not able to cause the overturning of the tanker under study, and also show that a minimum distance of 30 meters between the hydrogen cylinder and the tanker can be considered a safe distance to the passage of this tanker during the transfer of radioactive liquid waste, in which the likelihood of occurrence of structural damages is less than 1%. (author)

  14. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  15. Dealing with operational power station wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, R B [Central Electricity Generating Board, London (UK). Nuclear Health and Safety Dept.

    1981-08-01

    The disposal of wastes from nuclear power stations is discussed. Liquid and gaseous wastes, from magnox stations, which are of low level activity, are dispersed to the sea or estuaries on coastal sites or for the case of Trawfynyeld, to the nearby lake. Low activity solid wastes are either disposed of on local authority tips or in shallow land burial sites. Intermediate level wastes, consisting mainly of wet materials such as filter sludges and resins from cooling ponds, are at present stored in shielded storage tanks either dry or under water. Only one disposal route for intermediate waste is used by Britain, namely, sea-dumping. Materials for sea dumping have to be encapsulated in a durable material for example, concrete.

  16. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  17. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  18. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  19. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  20. Hanford Waste Transfer Planning and Control - 13465

    Energy Technology Data Exchange (ETDEWEB)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  1. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation.

    Science.gov (United States)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-04-15

    Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32-306.03 μg m(-3)) were much higher than those as compressor off (0-13.31 μg m(-3)). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m(-3) as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter-photocatalytic (BTF-PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF-PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Estimating Pedestrian flows at train stations using the Station Transfer Model

    NARCIS (Netherlands)

    Van den Heuvel, J.P.A.; Dekkers, K.; De Vos, S.

    2012-01-01

    Train stations play a vital role in the door to door travel experience of train passengers. From the passengers’ value of time perspective, the station is the weakest link in total time value of the journey. Within the station the transfer function – moving between the various transport modes and

  3. Radioactive waste treatment system for Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Takashi; Takeshima, Masaki; Saito, Toru; Kikkawa, Ryozo

    1978-01-01

    The augmentation of the radioactive waste treatment system in the Tsuruga Nuclear Power Station was planned in 1973, and this enlarged facility was completed in June, 1977. The object of this augmentation is to increase the storage capacity for wastes and to enlarge the treating capacity utilizing the newly installed facility. The operating experience in the facility having been already constructed was fed back for the engineering of this new facility. This new facility contains the newly developed vacuum forced circulation type concentrator, the exclusive storage pool for solid wastes, etc. At the design stage of this new system, the pilot plant test of slurry transportation and the corrosion test of long hours were carried out as the research and developmental works for the confirmation of correct design condition. The measures for augmenting this radioactive waste treatment system are the installation of a long time storage tank with the capacity of 350 m 3 , the sit bunker facility and the drum storage as the storage facility, and the vacuum forced circulation type concentrator with the circulating flow rate more than 200 times as much as the treating flow rate and vacuum level of 0.255 ata. The augmented system is shown with the flow sheet of whole waste disposal system. The flow sheet of the concentrator is separately shown, and the relating research and developmental works, for example, the test of the cause of corrosion, the surface finishing test, the material test, the blockage test for heat transfer tubes and the inhibiter test, are explained with the test results. The ion exchange resin is transported by air and water as the slurry state, and the long distance transport of about 250 m is required in this new system. As clogging has to be avoided in this transportation, the experimental work was conducted to obtain the flow characteristics of slurry, and the test result is outlined. (Nakai, Y.)

  4. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  5. PLUGGING AND UNPLUGGING OF WASTE TRANSFER PIPELINES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This project, which began in FY97, involves both the flow loop research on plugging and unplugging of waste transfer pipelines, and the large-scale industrial equipment test of plugging locating and unplugging technologies. In FY98, the related work was performed under the project name ''Mixing, Settling, and Pipe Unplugging of Waste Transfer Lines.'' The mixing, settling, and pipeline plugging and unplugging are critical to the design and maintenance of a waste transfer pipeline system, especially for the High-Level Waste (HLW) pipeline transfer. The major objective of this work is to recreate pipeline plugging conditions for equipment testing of plug locating and removal and to provide systematic operating data for modification of equipment design and enhancement of performance of waste transfer lines used at DOE sites. As the waste tank clean-out and decommissioning program becomes active at the DOE sites, there is an increasing potential that the waste slurry transfer lines will become plugged and unable to transport waste slurry from one tank to another or from the mixing tank to processing facilities. Transfer systems may potentially become plugged if the solids concentration of the material being transferred increases beyond the capability of the prime mover or if upstream mixing is inadequately performed. Plugging can occur due to the solids' settling in either the mixing tank, the pumping system, or the transfer lines. In order to enhance and optimize the slurry's removal and transfer, refined and reliable data on the mixing, sampling, and pipe unplugging systems must be obtained based on both laboratory-scale and simulated in-situ operating conditions

  6. 结合重心法和层次分析法研究垃圾转运站选址%Location Selection of Waste Transfer Station Based on Combining Gravity Method and AHP Model

    Institute of Scientific and Technical Information of China (English)

    曹勇锋; 荣宏伟; 张可方; 张朝升

    2012-01-01

    Gravity method was combined with AHP model to study the location selection of rural waste transfer station. Based on analysis of rural household yield and distribution, gravity method was used for initial selection of primary locations, then using AHP model to screen out standby locations to obtain the optimal location. Compared with traditional methods of location selection, the method not only takes costs into account, but also the impact location of environmental benefits, basic conditions as well as laws and regulations. The result is closer to reality. The method is used and verified in a southern rural area, with satisfactory location selection plan.%将重心法和层次分析法结合起来研究农村生活垃圾转运站选址问题,首先分析农村生活垃圾产生量及分布,采用重心法对转运站进行初始选址,得出备选地址,然后运用层次分析法对备选地址进行筛选,得到最佳选址方案.与传统选址方法相比,该方法不仅考虑了费用,还综合考虑了影响选址的环境效益、基础条件、法律法规等因素,因此得到的结果更贴近实际.将该方法应用于南方某农村,得到了满意的选址方案.

  7. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilot-scale investigation

    International Nuclear Information System (INIS)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-01-01

    Highlights: ► VOCs and biohazards emitted during garbage compressing process were monitored. ► BTF–PC integrated reactor was employed for VOCs and biohazards removal. ► Health risk of target VOCs and biohazards were assessed before and after treatment. -- Abstract: Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32–306.03 μg m −3 ) were much higher than those as compressor off (0–13.31 μg m −3 ). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m −3 as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter–photocatalytic (BTF–PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF–PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale

  8. Material Flow and Stakeholder Analysis for a Transfer & Recycling Station in Gaborone, Botswana

    OpenAIRE

    Andersson, Emil

    2014-01-01

    Landfilling waste material is still one of the most common methods to take care of waste in a big part of the world. Gaborone, the capital of Botswana located in the southern part of Africa is no different in this way. The major part of all waste is landfilled in Gaborone and there is only a minor part of all collected material that is recycled. One solution that earlier studies suggest is to build a transfer and recycling station in the city of Gaborone that can contribute to a more sustaina...

  9. Shippingport station decommissioning project irradiated components transfer: Topical report

    International Nuclear Information System (INIS)

    1988-01-01

    This topical report is a synopsis of the transfer of irradiated components into the Shippingport Reactor Pressure Vessel (RPV) performed at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities for the decommissioning of a nuclear power reactor to be removed in one piece

  10. Soluble pig for radioactive waste transfer lines

    International Nuclear Information System (INIS)

    Ohl, P.C.; Pezeshki, C.

    1997-01-01

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) material research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs

  11. Waste Transfer Leaks Control Decision Record

    International Nuclear Information System (INIS)

    RYAN, G.W.

    2000-01-01

    Control decision meetings for Waste Transfer Leaks were held on April 24,25,26, and 27, 2000. The agenda for the control decision meetings is included in Appendix A, and attendee lists are included in Appendix B. The purpose of the control decision meetings was to review and revise previously selected controls for the prevention or mitigation of waste transfer leak accidents. Re-evaluation of the controls is warranted due to revisions in the hazard and accident analysis for these Tank Farm events. In particular, calculated radiological consequences are significantly reduced from those currently reported in the Final Safety Analysis Report (FSAR). Revised hazard and accident analysis and a revised control recommendation will be reflected in an Authorization Basis Amendment to be submitted at the Department of Energy, Office of River Protection's (ORP's) request by June 30, 2000 to satisfy ORP Performance Incentive (PI) 2.1.1, Revision 1, ''Authorization Basis Management Process Efficiency Improvement''. The scope of the control decision meetings was to address all waste transfer leak-related hazardous conditions identified in the Tank Farm hazard analysis database, excluding those associated with the use of the Replacement Cross-Site Transfer System (RCSTS) slurry line and sluicing of Tank 241-C-106, which is addressed in FSAR Addendum 1. The scope of this control decision process does include future waste feed delivery waste transfer operations

  12. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  13. Waste management for the Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station Decommissioning Project (SSDP) is being performed by the US Department of Energy (DOE) with the objectives of placing the station in a radiologically safe condition, demonstrating safe and cost effective dismantlement and providing useful data for future decommissioning projects. This paper describes the development of the Waste Management Plan which is being used for the accomplishment of the SSDP. Significant aspects of the Plan are described, such as the use of a process control and inventory system. The current status of waste management activities is reported. It is concluded that SSDP has some unique aspects which will provide useful information for future decommissioning projects

  14. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  15. Mixed Wastes Vitrification by Transferred Plasma

    International Nuclear Information System (INIS)

    Tapia-Fabela, J.; Pacheco-Pacheco, M.; Pacheco-Sotelo, J.; Torres-Reyes, C.; Valdivia-Barrientos, R.; Benitez-Read, J.; Lopez-Callejas, R.; Ramos-Flores, F.; Boshle, S.; Zissis, G.

    2007-01-01

    Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. To characterize the plasma discharge, a temperature diagnostic is realized by means of optical emission spectroscopy (OES). To typify the morphological structure of the wastes samples, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were applied before and after the plasma treatment

  16. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  17. Railcar waste transfer system hydrostatic test

    International Nuclear Information System (INIS)

    Ellingson, S.D.

    1997-01-01

    Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test

  18. Railcar waste transfer system hydrostatic test report

    International Nuclear Information System (INIS)

    Ellingson, S.D.

    1997-01-01

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per HNF-SD-W417-ATP-001, ''Rail car Waste Transfer System Hydrostatic Test''. The test was completed and approved without any problems or exceptions

  19. Radioactive waste management at nuclear electric power stations

    International Nuclear Information System (INIS)

    Gordelier, S.C.

    1993-01-01

    After suitable treatment, gaseous and liquid wastes are routinely discharged from Nuclear Electric's stations and are diluted and dispersed in the environment. The discharges are controlled and authorized under UK legislation and the environmental impact is minimal. Most solid wastes were originally accumulated at the site of origin, but since 1978 low level wastes (LLW) have been send to the UK's main disposal site at Drigg. Recent changes at Drigg have resulted in changed arrangements for the transport and disposal of low-level wastes, including volume reduction by supercompaction. Small amounts of intermediate-level waste (ILW) have been conditioned and disposed of in the sea but this route is now effectively closed and there is currently no disposal route for ILW in the UK. Spent ion exchange resins at one power station have been conditioned and are stored pending the availability of a disposal route. Most ILW will continue to be stored in retrievable form on the site of origin until a mobile waste treatment plant can be brought into use. The timing of this will be subject to agreement with the regulators. In the case of Magnox fuel element debris, a demonstration dissolution plant has been constructed and this will significantly reduce the volume of waste being stored while retaining the bulk of the activity on site for later treatment. A further development has been the construction of a new facility which will hold Magnox fuel element debris in 500 liter drums

  20. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  1. Radioactive waste management at Narora atomic power station in India

    International Nuclear Information System (INIS)

    Prasad, P.N.; Gupta, J.P.; Mittal, S.

    2001-01-01

    Modern society creates waste material, which have to be disposed of in nature without disturbing the ecological equilibrium. Hence effective waste management in all industries is a major concern today. Narora Atomic Power Station (NAPS) generates low and intermediate level liquid, solid and gaseous wastes during its operation and maintenance. The generation of wastes is controlled at the source itself. The wastes are managed by adequate and appropriate treatment before being released into the environment. Different types of liquid wastes are treated by chemical co-precipitation, ion exchange, evaporation, filtration, and dilution techniques. For handling and conditioning of solid wastes, volume reduction techniques such as incineration and baling are employed. The treated wastes are immobilised by incorporation into cement and polymer matrices. Gaseous waste is cleaned by passing through pre-filters and high efficiency particulate (HEPA) filters and diluted with inactive air prior to release to the atmosphere through a 145 m high stack to get further atmospheric dilution. Regular monitoring up to 30 km radius is carried out by fully equipped Environmental Survey and Micrometeorological Laboratory which functions independently under the Directorate of Health and Safety, Bhabha Atomic Research Centre (BARC), Mumbai. So far, the annual maximum dose to the public around NAPS is reported to be 0.2 to 0.3% of limit of 1 mSv/year recommended by the International Commission on Radiological Protection (ICRP). A decade of experience has proved that present practices of nuclear waste management at Narora Atomic Power Station are quite safe and effective with respect to ecological equilibrium. (author)

  2. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2012-11-21

    ...] Solid Waste Rail Transfer Facilities AGENCY: Surface Transportation Board, DOT. ACTION: Final rules. SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... Transportation Board over solid waste rail transfer facilities. The Act also added three new statutory provisions...

  3. Waste minimization successes at McGuire Nuclear Station

    International Nuclear Information System (INIS)

    Correll, J.C.; Johnson, G.T.

    1995-01-01

    McGuire Nuclear Station is a two unit, 1125 MWe PWR located 25 miles north of Charlotte, North Carolina. It is a Westinghouse Ice Condenser plant that is owned and operated by Duke Power Company. At Duke Power, open-quotes Culture Changeclose quotes is a common term that we have used to describe the incredible transformation that we are making to become a cost conscious, customer driven, highly competitive business. Nowhere has this change been more evident then in the way we process and disposed of our solid radioactive waste. With top-down management support, we have used team-based, formalized, problem solving methods and have implemented many successful waste minimization programs. Through these programs, we have dramatically increased employees close-quote awareness of the importance of waste minimization. As a result, we have been able to reduce both our burial volumes and our waste processing and disposal costs

  4. 75 FR 26268 - Agency Information Collection Activities: Permit To Transfer Containers to a Container Station

    Science.gov (United States)

    2010-05-11

    ... Activities: Permit To Transfer Containers to a Container Station AGENCY: U.S. Customs and Border Protection... information collection requirement concerning the: Permit to Transfer Containers to a Container Station. This... information collection: Title: Permit to Transfer Containers to a Container Station. OMB Number: 1651-0049...

  5. International Space Station USOS Waste and Hygiene Compartment Development

    Science.gov (United States)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  6. What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea

    Directory of Open Access Journals (Sweden)

    Changhee Kim

    2017-11-01

    Full Text Available Subway stations have been proliferating underneath cosmopolitan metropolises with subway lines forming complex webs connected in strategic transfer stations. The efficiency of the subway system thus heavily weighs on the efficiency at these transfer stations. However, few studies have been conducted on transfer efficiency at transfer stations due to the complexities involved. As the first study of its kind in the subway context, we analyze the transfer efficiency of the subway transfer stations in Seoul, one of the megacities in the world, and demonstrate how transfer efficiency can be analyzed using bootstrap-based DEA technique. Based on the results, we discuss the reasons behind the inefficiency of subway transfer stations and possible ways to improve them into efficient decision-making units.

  7. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  8. Biological reduction of dust nuisance on power station waste dumps

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J

    1978-01-01

    The results of pot trials and succeeding field trials carried out in 1966-72 to find out the best method of reclamationand stabilishing the fly ash and cinder waste dump at the Melnik power station are summarised. The material consists mainly of fine particles with a size range of less than 1 micron to 0.16 mm in diam., and creates a source of blown dust in dry weather. Treatment of the waste material before sowing grass and legume species, the species tested, sowing rates, applied fertilizers, irrigation and treatment of the resulting swards are discussed. The most suitable species were Festuca rubra, F. ovina, perennial ryegrass and Italian ryegrass; the cost of stabilising the dump was lowest with Italian ryegrass. (In English)

  9. 75 FR 43536 - Agency Information Collection Activities: Permit To Transfer Containers to a Container Station

    Science.gov (United States)

    2010-07-26

    ... Activities: Permit To Transfer Containers to a Container Station AGENCY: U.S. Customs and Border Protection... Transfer Containers to a Container Station. This is a proposed extension of an information collection that... other technological techniques or other forms of information. Title: Permit to Transfer Containers to a...

  10. Status of the International Space Station Waste and Hygiene Compartment

    Science.gov (United States)

    Walker, Stephanie; Zahner, Christopher

    2010-01-01

    The Waste and Hygiene Compartment (WHC) serves as the primary system for removal and containment of metabolic waste and hygiene activities on board the United States segment of the International Space Station (ISS). The WHC was launched on ULF 2 and is currently in the U.S. Laboratory and is integrated into the Water Recovery System (WRS) where pretreated urine is processed by the Urine Processor Assembly (UPA). The waste collection part of the WHC system is derived from the Service Module system and was provided by RSC-Energia along with additional hardware to allow for urine delivery to the UPA. The System has been integrated in an ISS standard equipment rack structure for use on the U.S. segment of the ISS. The system has experienced several events of interest during the deployment, checkout, and operation of the system during its first year of use and these will be covered in this paper. Design and on-orbit performance will also be discussed.

  11. Corrosion control for the Hanford site waste transfer system

    International Nuclear Information System (INIS)

    Haberman, J.H.

    1995-01-01

    Processing large volumes of spent reactor fuel and other related waste management activities produced radioactive wastes which have been stored in underground high-level waste storage tanks since the 1940s. The effluent waste streams from the processing facilities were stored underground in high-level waste storage tanks. The waste was transferred between storage tanks and from the tanks to waste processing facilities in a complex network of underground piping. The underground waste transfer system consists of process piping, catch tanks, lift tanks, diversion boxes, pump pits, valves, and jumpers. Corrosion of the process piping from contact with the soil is a primary concern. The other transfer system components are made of corrosion-resistant alloys or they are isolated from the underground environment and experience little degradation. Corrosion control of the underground transfer system is necessary to ensure that transfer routes will be available for future waste retrieval, processing,a nd disposal. Today, most waste transfer lines are protected by an active impressed-current cathodic protection (CP) system. The original system has been updated. Energization surveys and a recent base-line survey demonstrate that system operational goals are met

  12. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  13. Solid radioactive waste management in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Huang Laixi; He Wenxin; Chen Degan

    2004-01-01

    This paper introduces the solid radwaste management system, treatment methods and its continuous improvement during the past 9 years in Guangdong Daya Bay Nuclear Power Station (GNPS). GNPS has paid great attention and made a lot of efforts to implement the principle of waste minimization with source control, improvement of treatment process and strict management, so the output of solid radwastes has annually decreased since 1994. In 2002, the output of solid radwastes in GNPS was 63.5 m 3 , only 50% of 1995 (127 m 3 ), reached the advanced level as the same type NPPs in France. During the period 1994-2002, the accumulated production of solid radwaste Packages in GNPS is 1563.51 m 3 only 18% of the design value; all the packages meet the standard and requirement for safe disposal. Besides, this paper analyzes some new technical processes and presents some proposals for further decreasing the solid radwaste production

  14. High level waste (HLW) steam reducing station evaluation

    International Nuclear Information System (INIS)

    Gannon, R.E.

    1993-01-01

    Existing pressure equipment in High Level Waste does not have a documented technical baseline. Based on preliminary reviews, the existing equipment seems to be based on system required capacity instead of system capability. A planned approach to establish a technical baseline began September 1992 and used the Works Management System preventive maintenance schedule. Several issues with relief valves being undersized on steam reducing stations created a need to determine the risk of maintaining the steam in service. An Action Plan was developed to evaluate relief valves that did not have technical baselines and provided a path forward for continued operation. Based on Action Plan WER-HLE-931042, the steam systems will remain in service while the designs are being developed and implemented

  15. Waste sludge resuspension and transfer: development program

    International Nuclear Information System (INIS)

    Weeren, H.O.; Mackey, T.S.

    1980-02-01

    The six Gunite waste tanks at Oak Ridge National Laboratory (ORNL) contain about 400,000 gal of sludge that has precipitated from solution and settled during the 35 years these tanks have been in service. Eventual decommissioning of the tanks has been proposed. The first part of this program is to resuspend the accumulated sludge, to transfer it to new storage tanks in Melton Valley, and to dispose of it by the shale-fracturing process. On the basis of preliminary information, a tentative operational concept was adopted. The sludge in each tank would be resuspended by hydraulic sluicing and pumped from the tank. This resuspended sludge would be treated as necessary to keep the particles in suspension and would be pumped to the new waste-storage tanks. Subsequently the sludge would be pumped from the tanks, combined with a cement-base mix, and disposed of by the shale-fracturing facility. Verification of the feasibility of this concept required development effort on characterization of the sludge and development of techniques for resuspending the sludge and for keeping it in suspension. These development efforts are described in this report. Sections of the report describe both the known properties of the sludge and the tests of grinding methods investigated, discuss tests of various suspenders, describe tests with cement-base mixes, summarize hot-cell tests on actual sludge samples, and describe tests that were made at a mockup of a Gunite tank installation. On the basis of the tests made, it was concluded that reslurrying and resuspension of the sludge is quite feasible and that the suspensions can be made compatible with cement mixes

  16. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  17. 77 FR 21579 - Agency Information Collection Activities: Transfer of Cargo to a Container Station

    Science.gov (United States)

    2012-04-10

    ... Activities: Transfer of Cargo to a Container Station AGENCY: U.S. Customs and Border Protection, Department... a Container Station. This is a proposed extension of an information collection that was previously... Container Station. OMB Number: 1651-0096. Form Number: None. Abstract: Before the filing of an entry of...

  18. Discussion about the application of treatment process for dehydrated wet waste at nuclear power station

    International Nuclear Information System (INIS)

    Li Guanghua; Wu Qiang

    2009-01-01

    In nuclear power station, the most popular treatment about low level radioactive wet waste generated during the unit operating and maintenance is embedded by cement. For radioactive waste minimization, this article introduces a new treatment process to dehydrate and compress wet waste. According to the development and application of the treatment process for the wet waste, and comparing with the formerly treatment-the cement embedding, prove that the new treatment can meet the purpose for volume reduction of wet waste. (authors)

  19. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  20. Toxicity regulation of radioactive liquid waste effluent from CANDU stations - lessons from Ontario's MISA program

    International Nuclear Information System (INIS)

    Rodgers, D.W.

    2009-01-01

    Toxicity testing became an issue for Ontario's CANDU stations, when it was required under Ontario's MISA regulations for the Electricity Generation Sector. In initial tests, radioactive liquid waste (RLW) effluent was intermittently toxic to both rainbow trout and Daphnia. Significant differences in RLW toxicity were apparent among stations and contributing streams. Specific treatment systems were designed for three stations, with the fourth electing to use existing treatment systems. Stations now use a combination of chemical analysis and treatment to regulate RLW toxicity. Studies of Ontario CANDU stations provide a basis for minimizing costs and environmental effects of new nuclear stations. (author)

  1. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    Science.gov (United States)

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  2. Tank Farm Waste Transfer Compatibility Program

    International Nuclear Information System (INIS)

    FOWLER, K.D.

    2001-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  3. Tank Farm Waste Transfer Compatibility Program

    International Nuclear Information System (INIS)

    FOWLER, K.D.

    2000-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  4. Optimization of waste transportation route at waste transfers point in Lowokwaru District, Malang City

    Science.gov (United States)

    Hariyani, S.; Meidiana, C.

    2018-04-01

    Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.

  5. Evaluation of tank waste transfers at 241-AW tank farm

    International Nuclear Information System (INIS)

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  6. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  7. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  8. Radioactive waste from nuclear power stations and other nuclear facilities

    International Nuclear Information System (INIS)

    Jelinek-Fink, P.

    1976-01-01

    After estimating the amounts of liquid and solid radioactive wastes that will be produced in nuclear power plants, reprocessing plants, by the fuel cycle industry, and in the nuclear research centers in the FRG until 1990, it is reported on the state of technology and on the tendencies in the development of processing radioactive waste. The paper also describes, how waste disposal is managed by those producing radioactive waste (see above), and discusses the future development of the complex of waste disposal from the industry's point of view. (HR/LN) [de

  9. Heat transfer in vitrified radioactive waste

    International Nuclear Information System (INIS)

    Palancar, M.C.; Luis, M.A.; Luis, P.; Aragon, J.M.; Montero, M.A.

    1987-01-01

    An experimental method for measuring the thermal conductivity and convection coefficient of borosilicate glass cylinders, containing a simulated high level radioactive waste, is described. A simulation of the thermal behaviour of matrices of solidified waste during the cooling in air, water and a geological repository has been done. The experimental values of the thermal conductivity are ranging from 0.267 to 0.591 w/m K, for matrices with simulated waste contents of 10 to 40% (the waste is simulated by no radioactive isotopes). The convection coefficient for air/cylinders under the operating conditions used is 116 w/m 2 K. The simulated operation of cooling in air shows that about 1-2 days are enough to cool a solidified waste cylinder 0.6m diameter from 900 to 400 0 C. The cooling under water from 400 to near 80 0 C is faster than in air, but sharp temperature gradients within the matrices could be expected. The simulation of geological repositories lead to some criteria of arranging the matrices for avoiding undesirable high temperature points. (author) 1 fig

  10. Development of bagless transfer system for standard waste boxes

    International Nuclear Information System (INIS)

    Presgrove, S.B.; Patel, K.

    1991-01-01

    At several DOE site, substantial volumes of Transuranic (TRU) waste has been handled on a daily basis. Usually, the waste has been transferred from the facilities to the Waste Isolation Pilot Plant (WIPP) or to an on site storage facility using the ''bag-out'' technique. This process begins in the most contaminated area by placing the waste in a strong plastic bag, twisting closed the neck of the bag, then taping the closed neck. This reduces the exposed TRU waste and the resulting contamination. However, even though that the contamination is reduced, it remains high enough to prevent direct transfer into the environment. In order to reduce the contamination to acceptable levels, the ''bag-out'' process is repeated until the outside contamination on the plastic bag is acceptable. This procedure has been affective, however, it also generates organic waste in the process. During the design of the Transuranic Waste Facility (TWF) at the Savannah River Site, a conceptual alternative was developed using the Standard Waste Box (SWB)

  11. Mass transfer from penetrations in waste containers

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1987-01-01

    Recent studies have indicated that localized corrosion of a relatively small area of a waste container may impair the containment function to such an extent that larger releases may be possible than from the bare waste form. This would take place when a large number of holes coexist on the container while their concentration fields do not interact significantly with each other. After performing a steady state analysis of the release from a hole, it is shown that much fewer independent holes can coexist on a container surface than previously estimated. The calculated radionuclide release from multiple independent holes must be changed accordingly. Previous analyses did not proceed to a correct application of the linear superposition principle. This resulted in unacceptable physical conclusions and undue strain on the performance assessment necessary for a container licensing procedure. The paper also analyzes the steady state release from penetrations of finite length and whose concentration fields interact with one another. The predicted release from these penetrations is lower than the previously calculated release from holes of zero thickness. It is concluded here that the steady-state release from multiple holes on a waste container can not exceed the release from the bare waste form and that multiple perforations need not be a serious liability to container performance. 8 refs., 3 figs., 1 tab

  12. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  13. Waste management procedures for fusion-based central power stations

    International Nuclear Information System (INIS)

    Botts, T.E.; Powell, J.R.

    1977-08-01

    Several early conceptual designs of fusion demonstration and commercial reactors are used in a discussion of radioactive waste streams, methods of handling these wastes, and their possible environmental effects. Comparisons are made between these waste streams and the fuel cycles of the light water reactor and the liquid metal fast breeder reactor. Most radioactive waste in fusion reactors is generated through replacement of the inner blanket region. Because there is a high degree of uncertainty with regard to blanket lifetimes, there is some uncertainty concerning the activity levels that must be handled. However, in general, fusion reactors are expected to create larger physical amounts of radioactive waste with lower and shorter-lived activity than do fission plants. Material recycling of fusion blanket waste, for nuclear applications, seems feasible after a 100-yr holding time

  14. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  15. Buried waste integrated demonstration human engineered control station. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  16. Buried waste integrated demonstration human engineered control station. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system

  17. State of nuclear waste management of German nuclear power stations

    International Nuclear Information System (INIS)

    1983-01-01

    The waste management of nuclear power plants in the Federal Republic of Germany is today prevailing in the public discussion. Objections raised in this connection, e.g. that the nuclear waste management has been omitted from the development of peaceful utilization of nuclear energy or remained insolved, are frequently accepted without examination, and partly spread as facts. This is, however, not the truth: From the outset in 1955 the development of nuclear technology in the Federal Republic of Germany has included investigations of the problems of reprocessing and non-detrimental disposal of radioactive products, and the results have been compiled in a national nuclear waste management concept. (orig.) [de

  18. Heat transfer studies in waste repository design

    International Nuclear Information System (INIS)

    Boehm, R.F.; Chen, Y.T.; Izzeldin, A.; Kuharic, W.; Sudan, N.

    1994-01-01

    The main task of this project is the development of visualization methods in heat transfer through porous media. Experiments have been performed related to the determination of the wavelength that gives equality of the refractive indices of the porous material and the liquid. The work has been accomplished using the calibration setup consisting of a 2-in. long test cell filled with 2-mm diameter soda-lime glass beads. A supplemental task is an unsaturated flow experiment with heat transfer in porous media. For this work the medium of interest in quartz beads. Essentially two-dimensional flows of admitted water are able to be examined. During this quarter, the setup and calibration of the experimental instrumentation was done. Also the modification of the main experimental tank and the inflow system was carried out. Initial testing was done

  19. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2011-03-24

    ... leaving in place the rules issued in 2009, which were drafted without any input from industry and other... discarded by residential dwellings, hotels, motels, and other similar permanent or temporary housing... notice concerning the acquisition shall include a statement that a solid waste rail transfer facility...

  20. Treatment and disposal of radioactive waste from nuclear power stations

    International Nuclear Information System (INIS)

    Baehr, W.

    1981-01-01

    The Federal Republic of Germany and many other European countries, having very high population densities, must make the most efficient use of their soil, their ground and surface waters. In Germany, no method of waste disposal could be used which included direct storage or seepage into the upper strata of the soil or a discharge into rivers or lakes. It has been shown after more than 20 years experience of treatment of low and intermediate level liquid and solid wastes and disposal of solidified residues in a salt mine, that a number of techniques and procedures are available for manageing this kind of waste with a high degree of safety. A complete system of waste collection, treatment methods and controlled disposal of low and intermediate radioactive residues in accordance with legally established rules and regulations offers the best guarantee for environmental protection. (orig./RW)

  1. Recycling by coverting organic waste to fertilize at Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Kubota, T.; Matsuoka, H.

    2008-01-01

    In order to cope with global- warming and Dioxin issue, we started the Project in which all kinds of organic wastes originated on site are fermented to organic fertilizer with the help of YM bacteria in 2001. And in 2006 our product was officially approved as fertilizer by regulatory body, and then we started to sell these fertilizers to farmers near-by. Among many power stations in Japan, Ikata Nuclear Power Station may be the first plant where organic wastes are totally reused as commercial-based fertilizer. (author)

  2. Removing radio-active wastes from nuclear power stations by the STEAG system

    International Nuclear Information System (INIS)

    Baatz, H.

    1978-01-01

    The mobile STEAG System for conditioning radio-active wastes from nuclear power stations represents a particularly safe and economic method of removing them in present day conditions. Cementation by the FAFNIR System is used for the greater part of the waste, the liquid concentrate (evaporator concentrate and filter slurry). For the special case of the medium active resin balls from the primary circuits, embedding in plastic by the FAMA process has proved to be the only available successful process so far. The highly active solid waste from the reactor core is decomposed by the MOSAIK System, is packed in transportable and storable containers and is removed from the fuel element storage pond. The systems are so safe that faults or interruptions of power station operation due to faults in removing radio-active wastes can be excluded. (orig.) [de

  3. Ways of solving the problems of radiation safety and environmental protection in handling radioactive waste at atomic power stations in the USSR

    International Nuclear Information System (INIS)

    Gusev, D.I.; Belitskij, A.S.; Turkin, A.D.; Kozlov, V.M.

    1977-01-01

    Requirements of the State Sanitary Supervision on radiation safety of the personnel and population and on protection of the environment in handling radioactive wastes from nuclear power stations in the USSR are regulated by the Standards of Radiation Safety, the Main Sanitary Rules for Handling Radioactive Materials and by the Sanitary Rules for Designing Nuclear Power Stations. The regulations contained in these documents are obligatory for all the establishments at the stages of design, building and operation of nuclear power stations. The main requirement for handling radioactive wastes from nuclear power stations in the USSR is to dispose of them near the place of their production. In nuclear power station siting and designing the special territory is provided for liquid and solid radioactive wastes storage taking into account the whole period of nuclear power station operation. These storage sites are located within the controlled area. They are built as required, usually for five years. The report contains hygienic and hydrological requirements to the radiation waste burial sites and data on the accepted system of controlling leak-proof qualities of the disposal cavities and radioactivity of the ground water in this region. The results of long-term studies on radionuclide leaching from the bituminic blocks are given and it is shown that the bituminizing method used for solidification of intermediate activity wastes is very promising. In the USSR much attention is given to the problem of sanitary protection of the cooling ponds at nuclear power stations. No limits to the national-economic use of these ponds outside the nuclear power station site are established. Therefore in determining the requirements to the discharge of effluents into the cooling ponds of nuclear power stations the possibility of radionuclide transfer to the population through the aquaeous and terrestrial biological chains is taken into account. The possibility of human diet contamination

  4. Mass Transfer Model for a Breached Waste Package

    International Nuclear Information System (INIS)

    Hsu, C.; McClure, J.

    2004-01-01

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss

  5. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-01-01

    The study aimed at development and demonstration of volume reduction and solidification of CANDU reactor wastes has been underway at Chalk River Nuclear Laboratories in the Province of Ontario, Canada. The study comprises membrane separation processes, evaporator appraisal and immobilization of concentrated wastes in bitumen. This paper discusses the development work with a wiped-film evaporator and the successful completion of demonstration tests at Douglas Point Nuclear Generating Station. Heavy water from the moderator system was purified and wastes arising from pump bowl decontamination were immobilized in bitumen with the wiped-film evaporator that was used in the development tests at Chalk River

  6. Loviisa Power Station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Vaajasaari, Marja

    1987-01-01

    This report is based on the earlier published results of research into the properties and function of the candidate backfill materials. The results of the backfill material research, and the sealing concepts presented in the literature have been evaluatedand applied to sealing the Loviisa Reactor Waste Repository taking into consideration the local rock and groundwater conditions. It is emphasised that the applicability of the presented backfill materials and plugs to repository sealing must still be carefully evaluated on the basis of detailed studies and the local environment. 24 refs

  7. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    International Nuclear Information System (INIS)

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-01-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes

  8. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  9. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E; Hartley, Stacey A; Enderlin, Carl W

    2001-01-01

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102

  10. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  11. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  12. Study on Evaluation Indicators System of Crowd Management for Transfer Stations Based on Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Guanghou Zhang

    2011-12-01

    Full Text Available Improving safety and convenience of transfer is one of the most vital tasks in subway system planning, design and operation management. Because of complicated space layout and crowded pedestrian, crowd control is a big challenge for management of transfer stations. Thus, a quantitative evaluation should be done before improvement measures are carried out. Literature review showed that present evaluation indicators about crowd management in subway system were all based on fixed value or experience. Dynamic effect caused by pedestrian congestion and various facility combination cannot be represented based on these indicators. Thus, in this paper, based on the pedestrian simulation tool, dynamic evaluation indicators system of crowd management was established from the point of safety, cost-effectiveness and comfort. In order to aid decision makers to identify the most appropriate scenario to improve the effectiveness of crowd management, Matter-Element Analysis (MEA was used to rate different scenarios. A pedestrian simulation model of a designing intermodal transfer station was built and four different scenarios were tested to demonstrate how to use this indicators system. Simulation results were evaluated based on the dynamic indicators system and MEA. The application results show that the dynamic evaluation indicators system is operational and can reflect level of the crowd management in transfer station comprehensively and precisely.

  13. Mass transfer resistance in ASFF reactors for waste water treatment.

    Science.gov (United States)

    Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M

    1996-01-01

    Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.

  14. Loviisa power station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Kankainen, Tuovi

    1986-10-01

    This study forms a part of the research done to assess the suitability of the rapakivi granitic bedrock of the island of Haestholmen, southern Finland, for the management of reactor waste. The aim is to assess the residence time and the origin of the groundwater. In addition, microfossil analyses and conservative ion data were used in deciphering the origin of the groundwater. Fracture mineral studies were limeted to 13 C determinations on two fracture calcites. Groundwater was sampled at several levels of four drill holes, reaching to a depth of some 200 m. The isotopic results were compared with those of water from a percussion drill hole, shallow dug wells, and the Gulf of Finland. The main conclusions are based on 3 H bundances in groundwater, mean residence time of groundwater deduced from 14 C analyses, and stabile isotope content of groundwater, combined with conservative ion data. Additional information was gained from activity ratios of uranium, and sulphur isotope ratios of sulphate. The groundwater of Haestholmen consists of a surface layer of fresh water, and deeper down, of saline water. The fresh water flows and changes rapidly; most of it has precipitated and infiltrated less than 30 years ago. It intermixes with saline water only at the fresh-saline groundwater interface. The saline water underneath the intermediate zone is relatively stagnant. It mainly consists of sea water from the Litorina Sea stage, intermixed with less than 20% glacial melt water. The evolution of the Haestholmen groundwater towards its present stage began during the melting phase of the Weichselian glaciation. Then the groundwater conditions chanced, and infiltration of melt water along open fractures in the bedrock occured. During the Litorian Sea stage heavy saline Litorina sea water slowly infiltrated in the bedrock and displaced the fresh water almost totally. The Haestholmen island rose above the sea level more than 4000 years ago. Then formation of the surficial layer

  15. An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: Application to a Greek region.

    Science.gov (United States)

    Mantzaras, Gerasimos; Voudrias, Evangelos A

    2017-11-01

    The objective of this work was to develop an optimization model to minimize the cost of a collection, haul, transfer, treatment and disposal system for infectious medical waste (IMW). The model calculates the optimum locations of the treatment facilities and transfer stations, their design capacities (t/d), the number and capacities of all waste collection, transport and transfer vehicles and their optimum transport path and the minimum IMW management system cost. Waste production nodes (hospitals, healthcare centers, peripheral health offices, private clinics and physicians in private practice) and their IMW production rates were specified and used as model inputs. The candidate locations of the treatment facilities, transfer stations and sanitary landfills were designated, using a GIS-based methodology. Specifically, Mapinfo software with exclusion criteria for non-appropriate areas was used for siting candidate locations for the construction of the treatment plant and calculating the distance and travel time of all possible vehicle routes. The objective function was a non-linear equation, which minimized the total collection, transport, treatment and disposal cost. Total cost comprised capital and operation costs for: (1) treatment plant, (2) waste transfer stations, (3) waste transport and transfer vehicles and (4) waste collection bins and hospital boxes. Binary variables were used to decide whether a treatment plant and/or a transfer station should be constructed and whether a collection route between two or more nodes should be followed. Microsoft excel software was used as installation platform of the optimization model. For the execution of the optimization routine, two completely different software were used and the results were compared, thus, resulting in higher reliability and validity of the results. The first software was Evolver, which is based on the use of genetic algorithms. The second one was Crystal Ball, which is based on Monte Carlo

  16. Waste conditioning for tank heel transfer. Preliminary data and results

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tank waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the

  17. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  18. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  19. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    International Nuclear Information System (INIS)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-01-01

    Highlights: ► We outline the differences of Chinese MSW characteristics from Western MSW. ► We model the requirements of four clusters of plant owner/operators in China. ► We examine the best technology fit for these requirements via a matrix. ► Variance in waste input affects result more than training and costs. ► For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don’t sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no ‘best’ plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four

  20. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  1. Technology, safety and costs of decommissioning a reference pressurized water reactor power station. Classification of decommissioning wastes. Addendum 3

    International Nuclear Information System (INIS)

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference pressurized water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 17,885 cubic meters of waste from DECON are classified as follows: Class A, 98.0%; Class B, 1.2%; Class C, 0.1%. About 0.7% (133 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods

  2. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  3. Solar-assisted MED treatment of Eskom power station waste water

    Science.gov (United States)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  4. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  5. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  6. 25 years of monitoring the Waste Management Center of the Almirante Alvaro Alberto Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, O.C; Barboza, E.; Cardoso, S.N.M., E-mail: landocf@eletronuclear.gov.br, E-mail: barboza@eletronuclear.gov.br, E-mail: sergion@eletronuclear.gov.br [Eletrobras Eletronuclear S.A (ELETONUCLEAR), Paraty, RJ (Brazil). Lab. de Monitoracao Ambiental

    2013-07-01

    The goal of this paper is to present an assessment of 25 years of monitoring of the environment around the Waste Management Center (WMC) of the Almirante Alvaro Alberto Nuclear Power Station (AAANPS) since 1986 until 2011. The Environmental Monitoring Laboratory (EML) has, for purposes, to monitor the environment around the station to verify if there's a potential impact caused by the operation of the two units and to verify the dose rate levels around the waste deposits. The WMC is located in an area belonging to the AAANPS and receive solid waste of low and medium activities from Angra 1 NPP. The waste generated from Angra 2 NPP is stored inside the unit. The EML monitors the environment around the WMC to determine the environmental dose rate. The monitoring is made by direct measurement of the radiation using thermoluminescent dosimeters (TLD). Nowadays, the TLD are installed, at this time, in 6 points at the boundaries of WMC and are changed monthly. The locations of these points were already changed several times to allow the construction of new buildings. The constitution of the TLD are 4 crystals, being 3 crystals of Calcium Sulphate doped with Thulium (CaSO{sub 4}:Tm) with 3 shields and 1 crystal of Lithium Borate doped with Copper (Li{sub 2}B{sub 4}O{sub 7}:Cu) without shield. The results of the TLD measurements are normalized to a period of 30 days to compensate accidental statistical variations of the dose rates. The results, in these 25 years, show that the external area of the WMC is a supervised area, following the Norm CNEN-NN-3.01 - 'Diretrizes Basicas de Protecao Radiologica' - with access permitted only for authorized people. (author)

  7. 25 years of monitoring the Waste Management Center of the Almirante Alvaro Alberto Nuclear Power Station

    International Nuclear Information System (INIS)

    Ferreira, O.C; Barboza, E.; Cardoso, S.N.M.

    2013-01-01

    The goal of this paper is to present an assessment of 25 years of monitoring of the environment around the Waste Management Center (WMC) of the Almirante Alvaro Alberto Nuclear Power Station (AAANPS) since 1986 until 2011. The Environmental Monitoring Laboratory (EML) has, for purposes, to monitor the environment around the station to verify if there's a potential impact caused by the operation of the two units and to verify the dose rate levels around the waste deposits. The WMC is located in an area belonging to the AAANPS and receive solid waste of low and medium activities from Angra 1 NPP. The waste generated from Angra 2 NPP is stored inside the unit. The EML monitors the environment around the WMC to determine the environmental dose rate. The monitoring is made by direct measurement of the radiation using thermoluminescent dosimeters (TLD). Nowadays, the TLD are installed, at this time, in 6 points at the boundaries of WMC and are changed monthly. The locations of these points were already changed several times to allow the construction of new buildings. The constitution of the TLD are 4 crystals, being 3 crystals of Calcium Sulphate doped with Thulium (CaSO 4 :Tm) with 3 shields and 1 crystal of Lithium Borate doped with Copper (Li 2 B 4 O 7 :Cu) without shield. The results of the TLD measurements are normalized to a period of 30 days to compensate accidental statistical variations of the dose rates. The results, in these 25 years, show that the external area of the WMC is a supervised area, following the Norm CNEN-NN-3.01 - 'Diretrizes Basicas de Protecao Radiologica' - with access permitted only for authorized people. (author)

  8. The development and implementation of a dry active waste (DAW) sorting program at Catawba Nuclear Station

    International Nuclear Information System (INIS)

    Schulte, J.H.; McNamara, P.N.

    1988-01-01

    Duke Power Company, like other nuclear utilities, bears a burdensome radwaste disposal cost that has rapidly escalated during recent years. Dry active waste (DAW) represents approximately 85% of the total radioactive waste volume shipped to low-level disposal facilities. Sorting waste with less than detectable radioactivity from waste with detectable radioactivity provides a volume reduction (VR) technique that can save significant radwaste disposal costs and conserve dwindling burial space. This paper presents the development and results of a project that was conducted at Catawba Nuclear Station to determine the volume reduction potential from sorting DAW. Guidelines are given so that other utilities can perform a VR potential study on a low cost basis. Based on the results of the DAW VR study, an overall DAW volume radiation program was initiated at Duke Power Company. This program includes personnel training, drumming techniques, bag tracking and equipment purchases for sorting. This program has been fully implemented at Duke Power Company since January 1, 1988 and preliminary results and savings are given

  9. Order of 13 December 1985 on the transfer to ENRESA of the Radioactive Waste Management Facility at Sierra Albarrana

    International Nuclear Information System (INIS)

    1984-01-01

    This Order provides for the transfer of the Radioactive Waste Management Facility at Sierra Albarrana from the Junta de Energia Nuclear to ENRESA, the National Enterprise for Radioactive Waste; it also organises all stages of the transfer. (NEA) [fr

  10. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the decontamination of plant components and structures at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities in support of the shipment of radioactive wastes and the unconditional release of the site and structural materials. 1 ref., 16 figs., 4 tabs

  11. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro's Bruce Nuclear Generating Station 'A'

    International Nuclear Information System (INIS)

    Day, J.E.; Baker, R.L.

    1995-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station 'A' has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  12. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  13. Solid Waste Land Applications with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  14. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  15. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  16. A concept for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal

    International Nuclear Information System (INIS)

    Anon

    1984-09-01

    The report presents a concept and plans for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal. The process steps, the layout of the station, the main components of equipment and the sequence of operations under normal conditions are described. The station is designed for vitrified waste from reprocessing. The volume of the waste packages is 150 l, and each package contains the equivalent of 1.33 tonne HM of fuel. The radionuclide activity of the waste corresponds to spent fuel with a decay time of 40 years from discharge from the reactor. It is assumed that after transport under normal conditions the steel shell enclosing the waste is gastight and its surface is free of contamination. The containers for final disposal are made of cast steel and have the form of hollow cylinders with hemispherical ends; their overall length is 2 m and their overall diameter 0.94 m. The station is so designed that the whole procedure, from supply of the transport containers containing the waste to the delivery of the full final disposal containers, is carried out by remote control behind radiation screens in an area isolated from the environment. Containers that do not fulfill the quality control requirements can be improved or repaired in a special rework cell without interfering with the further normal operation of the plant. (author)

  17. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  18. Tianwan nuclear power station radioactive waste treatment and automatic conveying and temporary store system

    International Nuclear Information System (INIS)

    Long Chengyi; Tang Yifeng; Yang Zhida

    2012-01-01

    The treatment method of middle, low radioactive waste and the system of convey and temporal store in Tianwan nuclear power station were introduced. The primary system has some shortcoming, for example, the orientation precision isn't high, the work intensity is large, the operator is under superfluous nuclear radiation, and the capacity of storehouse isn't large, so the system need rebuild. In the premise of holding present house and facility, frequency conversion system was installed in the crane. In virtue of two laser telemeters and one revolving coder, three-dimensional coordinate parameter of crane can be measured. The application of IPC and PLC make the convey progress automatization, and the progress can be monitored by monitor system. After rebuild, the radioactivity to operator was reduced. Because of function of velocity regulating, the startup, running and braking of the crane is smooth, and the shake range of waste barrel was reduced. The crane orientation precision reach 1 mm, that reduce single waste barrel space, so the capacity of storehouse is evidently improved. (authors)

  19. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    Science.gov (United States)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  20. Hinkley Point 'C' power station public inquiry: proof of evidence on on-site radioactive waste management and decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The CEGB evidence to the Inquiry presented here provides information on the on-site management of solid, liquid and gaseous radioactive wastes both during station operation and during decommissioning. Estimates are given of current and projected future discharges of liquid and gaseous wastes from the site and packaging and transport arrangements for solid radioactive wastes are described. The framework of waste management policy, disposal strategy and legislation in the United Kingdom which will determine procedure at Hinkley Point ''C'' is given. (UK)

  1. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  2. Design of modified annulus air sampling system for the detection of leakage in waste transfer line

    International Nuclear Information System (INIS)

    Deokar, U.V; Khot, A.R.; Mathew, P.; Ganesh, G.; Tripathi, R.M.; Srivastava, Srishti

    2018-01-01

    Various liquid waste streams are generated during the operation of reprocessing plant. The High Level (HL), Intermediate Level (IL) and Low Level (LL) liquid wastes generated, are transferred from reprocessing plant to Waste Management Facility. These respective waste streams are transferred through pipe-in-pipe lines along the shielded concrete trench. For detection of radioactive leakage from primary waste transfer line into secondary line, sampling of the annulus air between the two pipes is carried out. The currently installed pressurized annulus air sampling system did not have online leakage detection provision. Hence, there are chances of personal exposure and airborne activity in the working area. To overcome these design flaws, free air flow modified online annulus air sampling system with more safety features is designed

  3. High Level Waste Feed Delivery AZ-101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    2000-01-01

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC

  4. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...

  5. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  6. Emerging catalytic technologies related to the denoxing of waste gases from thermal power stations

    International Nuclear Information System (INIS)

    Busca, G.

    2002-01-01

    The emerging catalytic technologies related to the DeNOxing of waste gases from thermal power stations are briefly discussed. In the case of the Selective Catalytic Reduction of NO x with hydrocarbons new zeolite-based or metal oxide catalytic systems are under development, whose stability and performances approach more and more those needed for a commercial process. The processes for the low temperature Selective Catalytic Reduction of NO x with ammonia are apparently promising allowing a possible application in a tail-end process configuration, at least after a total abatement of SO x . The processes of combined abatement of NO x and dioxins are already applied industrially. Also the Selective Oxidation of ammonia slip to nitrogen is already proposed as commercial process. In both last cases, however, few information is available in the open literature [it

  7. Toxicity limitation on radioactive liquid waste discharge at OPG Nuclear Stations

    International Nuclear Information System (INIS)

    Dobson, T.; Lovasic, Z.; Nicolaides, G.

    2000-01-01

    This paper describes the Municipal and Industrial Strategy for Abatement (MISA) regulation, which came into effect in 1995 in Ontario (Ontario Regulation 215/95 under the Environmental Protection Act). This imposed additional limitations on liquid discharges from power generating stations. The MISA regulation has divided discharges into non-event and event streams, which have to be monitored for the prescribed parameters and for toxicity. Radioactive Waste Management Systems fall into the category of non-event streams. Standard toxicity testing involves monitoring lethality of Daphnia Magna and Rainbow trout in the effluent. The new legislation has imposed a need to address several issues: acute toxicity, complying with the specific limits prescribed by the regulation and, in the long run chronic toxicity

  8. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  9. An automated rendezvous and capture system design concept for the cargo transfer vehicle and Space Station Freedom

    Science.gov (United States)

    Fuchs, Ron; Marsh, Steven

    1991-01-01

    A rendezvous sensor system concept was developed for the cargo transfer vehicle (CTV) to autonomously rendezvous with and be captured by Space Station Freedom (SSF). The development of requirements, the design of a unique Lockheed developed sensor concept to meet these requirements, and the system design to place this sensor on the CTV and rendezvous with the SSF are described .

  10. MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2011-08-01

    Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.

  11. Autonomous rendezvous and docking operations of unmanned expendable cargo transfer vehicles (e.g. Centaur) with Space Station Freedom

    Science.gov (United States)

    Emmet, Brian R.

    1991-01-01

    This paper describes the results of the feasibility study using Centaur or other CTV's to deliver payloads to the Space Station Freedom (SSF). During this study was examined the requirements upon unmanned cargo transfer stages (including Centaur) for phasing, rendezvous, proximity operations and docking/berthing (capture).

  12. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  13. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  14. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  15. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  16. W-314, waste transfer alternative piping system description

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation

  17. W-314, waste transfer alternative piping system description

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.G.

    1998-04-30

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation.

  18. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  19. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  20. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  1. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    Energy Technology Data Exchange (ETDEWEB)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  2. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    Science.gov (United States)

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  4. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  5. Solid waste disposed in the surrounding of Caetés Ecological Station - PE: opportunity of environmental education

    Directory of Open Access Journals (Sweden)

    Adriana Aparecida Megumi Nishiwaki

    2017-07-01

    Full Text Available Several human activities have affected the integrity and balance of conservation unit, compromising the efficiency of the preservation of biodiversity, natural resources and cultural. This work aims to study the solid waste irregular disposition in the surrounding of Caetés Ecological Station (PE and the impacts on site, as well as presenting a proposal of environmental education program involving the local community. The problem has been identified through visiting areas, resulting in primary data, which were crossed with secondary data about solid waste and its negative effects, as well as on environmental education in communities. The environmental education program developed consists in lectures, dynamics, workshops, partnerships with local schools and training. The community mobilization expected in the program will rescue of the history of the Caetés Ecological Station.

  6. Monitoring the Performance of the Pedestrian Transfer Function of Train Stations Using Automatic Fare Collection Data

    NARCIS (Netherlands)

    Van den Heuvel, J.P.A.; Hoogenraad, J.H.

    2014-01-01

    Over the last years all train stations in The Netherlands have been equipped with automatic fare collection gates and/or validators. All public transport passengers use a smart card to pay their fare. In this paper we present a monitor for the performance of the pedestrian function of train stations

  7. Experience in industrial operation of the plant for immobilizing radioactive wastes in thermosetting resins at the Ardennes Nuclear Power Station

    International Nuclear Information System (INIS)

    Haller, P.; Romestain, P.; Bruant, J.P.

    1983-01-01

    The French Atomic Energy Commission (CEA) has developed, at the Grenoble Centre for Nuclear Studies, a procedure for immobilizing low- and intermediate-level wastes in thermosetting resins of the polyester or epoxy types. To demonstrate feasibility on an industrial scale, a pilot plant has been set up at the effluent treatment station of the Ardennes Franco-Belgium Nuclear Power Station (SENA), which is a 305 MW(e) PWR type. Assembly work began in January 1979. After a period devoted to final adjustments and operation with inactive products, conditioning of active products began in January 1981. In the paper, the methods of conditioning the three types of waste (evaporation concentrates, ion exchange resins and filter cartridges) are described, experience of the start-up and operation of the plant is reported and the principal results of coating characterization tests are given. The results of tests on active and inactive products show that the characteristics of the materials obtained on an industrial scale match those of laboratory products and confirm their high quality with regard to mechanical behaviour, fire resistance, homogeneity and low-leachability. Industrial experience and economic comparisons show that the process of immobilizing waste from nuclear power stations in thermosetting resins offers an extremely interesting alternative to classical methods of conditioning. (author)

  8. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1994-01-01

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms

  9. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    Science.gov (United States)

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  10. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  11. Transfer of suspended particles from liquid effluents of nuclear generating stations through the environment

    International Nuclear Information System (INIS)

    Devereaux, F.J.

    1989-07-01

    Due to the complexity of the environmental transfer of suspended particles in aquatic systems, the available literature usually deals with specific pathways and mechanisms of the transfer process. This paper attempts to give a brief overview of the entire transfer process. Potential routes of transfer in both the marine and freshwater environments are examined, and tentative conclusions presented. This work was performed while the author was employed by Atomic Energy Control Board under the McMaster University cooperative program

  12. Estimation of mean time to failure of a near surface radioactive waste repository for PWR power stations

    International Nuclear Information System (INIS)

    Aguiar, Lais A. de; Frutuoso e Melo, P.F.; Alvim, Antonio C.M.

    2007-01-01

    This work aims at estimating the mean time to failure (MTTF) of each barrier of a near surface radioactive waste repository. It is assumed that surface water infiltrates through the barriers, reaching the matrix where radionuclides are contained, releasing them to the environment. Radioactive wastes considered in this work are low and medium level wastes (produced during operation of a PWR nuclear power station) fixed on cement. The repository consists of 6 saturated porous media barriers (top cover, upper layer, packages, basis, repository walls and geosphere). It has been verified that the mean time to failure (MTTF) of each barrier increases for radionuclides having higher retardation factor (Fr) and also that the MTTF for concrete is larger for Nickel , while for the geosphere, Plutonium gives the largest MTTF. (author)

  13. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    International Nuclear Information System (INIS)

    Myers, N.K.

    1997-01-01

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  14. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley low-level waste collection and transfer system upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low-Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. This document will be reissued at a future date and will then include the assessment of the installation of the replacement tank system. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements

  15. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    International Nuclear Information System (INIS)

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines

  16. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    International Nuclear Information System (INIS)

    Shultz, M.V.

    1999-01-01

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  17. Joint Coordinating Committee on environmental restoration and waste management (JCCEM) support, technology transfer, and special projects

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1993-01-01

    Argonne National Laboratory (ANL) assisted in identifying and evaluating foreign technologies to meet EM needs; supported the evaluation, removal, and/or revision of barriers to international technology and information transfer/exchange; facilitated the integration and coordination of U.S. government international environmental restoration and waste management activities; and enhanced U.S. industry's competitiveness in the international environmental technology market

  18. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    ) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection...

  19. Effects of stabilizers on the heat transfer characteristics of a nuclear waste canister

    International Nuclear Information System (INIS)

    Vafai, K.; Ettefagh, J.

    1986-07-01

    This report summarizes the feasibility and the effectiveness of using stabilizers (internal metal structural components) to augment the heat transfer characteristics of a nuclear waste canister. The problem was modeled as a transient two-dimensional heat transfer in two physical domains - the stabilizer and the wedge (a 30-degree-angle canister segment), which includes the heat-producing spent-fuel rods. This problem is solved by a simultaneous and interrelated numerical investigation of the two domains in cartesian and polar coordinate systems. The numerical investigations were performed for three cases. In the first case, conduction was assumed to be the dominant mechanism for heat transfer. The second case assumed that radiation was the dominant mechanism, and in the third case both radiation and conduction were considered as mechanisms of heat transfer. The results show that for typical conditions in a waste package design, the stabilizers are quite effective in reducing the overall temperature in a waste canister. Furthermore, the results show that increasing the stabilizer thickness over the thickness specified in the present design has a negligible effect on the temperature distribution in the canister. Finally, the presence of the stabilizers was found to shift the location of the peak temperature areas in the waste canister

  20. DOUBLE-SHELL TANK WASTE TRANSFER LINE ENCASEMENT INTEGRITY ASSESSMENT TECHNOLOGY STUDY

    International Nuclear Information System (INIS)

    BOWER, R.R.

    2006-01-01

    The report provides various alternative methods of performing integrity assessment inspections of buried Hanford Double Shell Tank waste transfer line encasements, and provides method recommendations as an alternative to costly encasement pneumatic leak testing. A schedule for future encasement integrity assessments is also included

  1. Apparatus and method for treating waste material

    International Nuclear Information System (INIS)

    Allison, W.

    1981-01-01

    Apparatus is described for the packaging of waste material in a vessel, comprising: a vessel entry station having inlet and outlet doors; a filling station downstream of the vessel entry station and having a filling position to which vessels are transferred from the entry station through the outlet door, the filling station having filling means for introducing radioactive waste into the vessel; a mixing station having a mixing position to which a vessel is transferred from the filling position; a capping station having a capping position to which a vessel is transferred from the mixing position; and means for effecting transfer of a vessel through the apparatus. Radiation shielding is provided. (U.K.)

  2. Design assessment for Melton Valley liquid low-level waste collection and transfer system upgrade project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-10-01

    This project is designed for collecting liquid low level waste (LLLW) from generating points inside the Radioisotope Engineering and Development Center (Buildings 7920 and 7930) facility and transferring this waste to the Collection Tank (F-1800) in the new Monitoring and Control Station (MCS) facility. The LLLW is transferred to the MCS in a new, underground, jacketed, stainless steel piping system. The LLLW will then be transferred from Tank F-1800 through a new, underground, jacketed, stainless steel piping system that connects the existing Bethel Valley LLLW Collection System and the Evaporator Facility Service Tanks. The interface for the two systems will be at the existing Interconnecting Pipe Line (ICPL) Valve Box adjacent to the Nonradiological Wastewater Treatment Plant. The project scope consists of the following systems: (1) Building 7920 LLLW Collection System; (2) Building 7930 LLLW Collection System; (3) LLLW Underground Transfer System to MCS; (4) MCS Building (including all equipment contained therein); (5) LLLW Underground Transfer System to ICPL Valve Box; and (6) Leak detection system for jacketed piping systems (3) and (5)

  3. Radiological risk curves for the liquid radioactive waste transfer from Angra 1 to Angra 2 nuclear power plants by a container tank

    International Nuclear Information System (INIS)

    Alves, A.S.M.; Passos, E.M. dos; Duarte, J.P.

    2013-01-01

    Eletrobras Termonuclear has a radiowaste management program focused on reducing the produced volumes, for which it has considered to transfer Angra 1 liquid radioactive waste by a container tank to be processed and packed in Angra 2. This paper presents a radiological risk study for providing the necessary technical foundations to obtain the license from the regulatory agency for implementing this transfer operation. Out of the 92 accident scenarios identified with the help of a preliminary hazard analysis, the greatest risk of fatal cancer for members of the public was equal to 6.9 x 10 -13 fatalities/yr, which refers to the accident scenario involving intrinsic failures of valves, hoses, flanges, seals, gaskets and instrumentation lines, while filling the container tank at Angra 1 filling station. This risk figure is about ten million times less than the one adopted by Eletronuclear for such a waste transfer. The highest frequency was also associated with this type of scenario, and its value was equal to 1.4 x 10 -6 yr -1 . This paper also presents and discusses the radiological risk curves for the three possible in-plant transfer routes, the Angra 1 filling station and Angra 2 discharging station and the overall risk curve in order to allow for a broader perspective of the results obtained. These risk curves display the accident scenarios frequencies against radiation doses by considering relevant in-plant and surroundings release paths. In these curves, the extreme scenarios mentioned earlier can be clearly identified in terms of occurrence frequencies and radiation doses. (author)

  4. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions

  5. Transfer Effect Ratio of Loosely Coupled Coils for Wireless Power through CB Wall under Station Blackout(SBO)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Hong, Seong Wan; Song, Jin Ho; Baek, Won Pil [KAERI, Daejeon (Korea, Republic of); Cheon, Sang Hoon [ETRI, Daejeon (Korea, Republic of)

    2016-05-15

    Instrumentations have had the bad situation like a station blackout(SBO) as the severe accident in nuclear power plants. In recent years, there has been an increasing interest in wireless power transfer technology, In particular, significant processing has been charted for inductively coupled systems. In this paper, we introduce some new method as transfer effect ratio of loosely coupled coils for wireless power through the CB(Container Building) wall as an alternative method under a station blackout of severe accident conditions in nuclear power plants. As an equivalent circuit model that can describe wireless energy transfer systems via coupled magnetic resonances for the CB thickness wall. The solution shows that the transmission efficiency can be decreased simply by adjusting the spacing between the power and the sending coils or between the receiving and the load coils. The system design can be calculated the frequency characteristics, and then an equivalent circuit model was developed from the node equation and established in an electric design automation tool.

  6. Transfer Effect Ratio of Loosely Coupled Coils for Wireless Power through CB Wall under Station Blackout(SBO)

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Hong, Seong Wan; Song, Jin Ho; Baek, Won Pil; Cheon, Sang Hoon

    2016-01-01

    Instrumentations have had the bad situation like a station blackout(SBO) as the severe accident in nuclear power plants. In recent years, there has been an increasing interest in wireless power transfer technology, In particular, significant processing has been charted for inductively coupled systems. In this paper, we introduce some new method as transfer effect ratio of loosely coupled coils for wireless power through the CB(Container Building) wall as an alternative method under a station blackout of severe accident conditions in nuclear power plants. As an equivalent circuit model that can describe wireless energy transfer systems via coupled magnetic resonances for the CB thickness wall. The solution shows that the transmission efficiency can be decreased simply by adjusting the spacing between the power and the sending coils or between the receiving and the load coils. The system design can be calculated the frequency characteristics, and then an equivalent circuit model was developed from the node equation and established in an electric design automation tool

  7. Improvement on control of waste disposal system at Genkai Nuclear Power Station No.1 and No.2 unit

    International Nuclear Information System (INIS)

    Morooka, Masatoshi; Tsutsumi, Akria

    1989-01-01

    At Genkai Nuclear Power Station, the operational and control systems of the boric acid evaporator, waste liquid evaporator and gaseous waste disposal system were converted from general purpose analong systems to computer instrumentation and control systems in order to improve their operability and controllability. The equipments were operated by batch processing system, so plant operators were required to operate them manually. By introducing the computer instrumentation and control systems, the automatic operation of the equipments has become possible. Furthermore, it has become possible to monitor the relevant parameters intensively with a CRT in the operating room, and it contributes to the improvement of reliability and labor saving. The operation of No.1 plant was begun in October, 1975, and No.2 plant in March, 1981. Both are the PWR plants of 625 MVA capacity. The outline of the power station facilities, the background of the reconstruction, the problems and the plan of reconstruction for the boric acid recovery facility, waste liquid evaporator and gas compressor, the peculiarity of the reconstruction works, and the effect of introducing the new systems are reported. (Kako, I.)

  8. “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise and its surface waste water purification

    Science.gov (United States)

    Strelkov, Alexander; Teplykh, Svetlana; Gorshkalev, Pavel; Bystranova, Anastasia

    2017-10-01

    Surface water disposal is one of the most relevant problems for Nizhniy Novgorod railway service enterprises. Waste water must be quickly removed with special drainage devices and water drainage facilities (culverts, slope drains, pipes, ditches, etc.). During “Sapsan”-carriages defrosting watse water is aggregated on railroad tracks. It leads to track bed structure sagging, roadbed washaway and damages to point switches. In this paper the authors describe a concrete system of waste water disposal from railway service enterprises. This system is realized through culverts readjusted at the foot of ballast section. Thereafter, the collected water is pumped into a water collector and to local sewage waste-disposal plants. For railway stations with three or more tracks surface runoff diversion scheme depends on topography, railway tracks types, flow discharge and is compiled individually for each object. This paper examines “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise. It presents a technology scheme and equipment consisting of Sand catcher LOS-P, Oil catcher LOS-N, pressure-tight flotation unit; drain feed pump; solution-consuming tank of the coagulant, the solution-consuming tank of flocculant. The proposed technology has been introduced into the project practice.

  9. A treatment station for solid radio-active waste at the Saclay nuclear research centre (1962)

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Lebrun, P.

    1962-01-01

    The waste from an atomic centre is very varied in nature, in form, and in activity, going from weakly contaminated laboratory waste to objects actuated in a pile and strongly radioactive. After one year's working of a pilot plant, a factory has been built, in which solide waste is treated and then conditioned in concrete blocks. The present communication describes the treatment and conditioning techniques in this factory which uses to a maximum remotely controlled operation. (authors) [fr

  10. Implementation of the waste management transfer act. Requirements from a regulatory point of view

    International Nuclear Information System (INIS)

    Mueller-Dehn, Christian

    2017-01-01

    In future in Germany, the state will be responsible for financing and handling the interim and final storage of radioactive waste from nuclear power plants. With regard to interim storage, this objective is achieved with the provisions of the Waste Management Transfer Act. Regulatory implementation is based on these regulations. BGZ Gesellschaft fuer Zwischenlager mbH is responsible for interim storage on behalf of the Federal Government. Simultaneously with the transfer of interim storage facilities to BGZ a legal transfer of approval is carried out. Insofar as there is a technical, organisational or personnel conjunction with the nuclear power plant operation, which continues to exist beyond this deadline and is relevant for regulatory purposes, a regulation is made via a service contract with the BGZ. This ensures compliance with the licensing regulations. Irradiated fuel assemblies and the waste from reprocessing can be handed over to BGZ from 1 January 2019 onwards and waste with negligible heat generation can be disposed of as of the determination of their proper packaging.

  11. 77 FR 3487 - Agency Information Collection Activities: Transfer of Cargo to a Container Station

    Science.gov (United States)

    2012-01-24

    ... International Trade, 799 9th Street NW., 5th Floor, Washington, DC 20229-1177. FOR FURTHER INFORMATION CONTACT... Protection, Regulations and Rulings, Office of International Trade, 799 9th Street NW., 5th Floor, Washington... may be moved from the place of unlading or may be received directly at the container station from a...

  12. Development of on-site accident criteria for waste transfer casks

    International Nuclear Information System (INIS)

    Uldrich, E.D.

    1989-01-01

    Removal of radioactive waste must withstand the scrutiny of the public and various regulatory offices. Currently, there is no standard accident criteria or methodology for intra-site shipments at the Idaho National Engineering Laboratory (INEL). Since the radioactive waste transfer casks only carry material within the INEL site boundaries and are not used for normal over-the-road transport, the requirements of 10 CFR 71 Packaging and Transportation of Radioactive Material, do not provide suitable requirements for cask design or safety analyses. The objective is to develop realistically conservative accident scenarios consistent with the limited uses at the INEL for which the cask is approved

  13. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  14. Solidification of low and medium level wastes in bitumen at Barsebaeck nuclear power station

    International Nuclear Information System (INIS)

    Harfors, C.

    1979-01-01

    Operating experience is presented from 4 years of bitumen solidification of wastes coming from two boiling water reactors. Methods used to sample, analyse and document the wastes are described. Transport and storage methods without remote handling have been adopted. The risk of fire is discussed and a description is given of the measures taken for fire protection. (author)

  15. Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Antoniak, Z.I.; Barton, W.B.; Conner, J.M.; Kirch, N.W.; Stewart, C.W.; Wells, B.E.

    2000-01-01

    This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed

  16. A STRUCTURAL INTEGRITY EVALUATION OF THE TANK FARM WASTE TRANSFER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2006-03-09

    Radioactive supernate, salt, and/or sludge wastes (i.e., high level wastes) are confined in 49 underground storage tanks at the Savannah River Site (SRS). The waste is transported between tanks within and between the F and H area tank farms and other facilities on site via underground and a limited number of aboveground transfer lines. The Department of Energy - Savannah River Operations Office (DOE-SR) performed a comprehensive assessment of the structural integrity program for the Tank Farm waste transfer system at the SRS. This document addresses the following issues raised during the DOE assessment: (1) Inspections of failed or replaced transfer lines indicated that the wall thickness of some core and jacket piping is less than nominal; (2) No corrosion allowance is utilized in the transfer line structural qualification calculations. No basis for neglecting corrosion was provided in the calculations; (3) Wall loss due to erosion is not addressed in the transfer line structural qualification calculations; and (4) No basis is provided for neglecting intergranular stress corrosion cracking in the transfer line structural qualification calculations. The common theme in most of these issues is the need to assess the potential for occurrence of material degradation of the transfer line piping. The approach used to resolve these issues involved: (1) Review the design and specifications utilized to construct and fabricate the piping system; (2) Review degradation mechanisms for stainless steel and carbon steel and determine their relevance to the transfer line piping; (3) Review the transfer piping inspection data; (4) Life estimation calculations for the transfer lines; and (5) A Fitness-For-Service evaluation for one of the transfer line jackets. The evaluation concluded that the transfer line system piping has performed well for over fifty years. Although there have been instances of failures of the stainless steel core pipe during off-normal service, no significant

  17. Development of radioactive waste treatment system for nuclear power stations by Toshiba (III)

    International Nuclear Information System (INIS)

    Irie, H.; Takahara, T.; Matsuda, T.; Matsuura, H.; Yasumura, K.; Nakayama, Y.

    1989-01-01

    This paper describes a solidification process with thermosetting resin to satisfy both requirements of volume reduction and quality of solidified products. Volumes of solidified products in drums generated from spent resins and concentrated wastes were reduced respectively to 1/4 and less than 1/6 of those in the conventional cement solidification process. In plants using a simple demineralizing system for condensate polishing, a large amount of waste water with regenerant chemicals is generated from the condensate demineralizer. In general, radioactivity concentration of wastes from this type of nuclear power plant is comparatively high, so the dose rate at the surface of drums containing solidified wastes exceeds 200mR/h. A pelletizing system for radioactive wastes was developed to reduce their volumes and allow their interim storage until the radioactivity decays down to a level at which they can be handled easily

  18. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  19. Waste package transfer, emplacement and retrievability in the French deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Alain; Delort, Daniel; Herve, Jean Francois; Bosgiraud, Jean Michel; Guenin, Jean Jacques [Technical Department ANDRA (France)

    2009-06-15

    Safe, reliable and reversible handling of waste is a significant issue related to the design and safety assessment of deep geological repository in France. The first step taken was to study various waste handling solutions. ANDRA also decided to fabricate and demonstrate industrial scale handling equipment for HLW (since 2003) and for ILW-LL wastes (since 2008). We will review the main equipment developed for the transfer process in the repository, for both types of waste, and underline the benefits of developing industrial demonstrators within the framework of international cooperation agreements. Waste retrieval capability will be simultaneously examined. Two types of waste have to be handled underground in Andra's repository. The HLW disposal package for vitrified waste is a 2 ton carbon steel cylindrical canister with a diameter of 600 mm. The weight of ILW-LL concrete disposal packages range from a minimum of 6 tonnes to over 20 tonnes, and their volume from approximately 5 to 10 m3. The underground transfer to the disposal drift requires moving the disposal package within a shielded transfer cask placed on a trailer. Transfer cask design has evolved since 2005, due to optimisation studies and as a result of industrial feedback from SKB. For HLW handling equipment two design options have been studied. In the first solution (Andra's Dossier 2005), the waste package are emplaced, one at a time, in the disposal drift by a pushing robot. Successive steps in design and proto-typing have lead to improve the design of the equipment and to gain confidence. Recently a fully integrated process has been successfully demonstrated, at full scale, (in a 100 m long mock up drift) as part of the EC funded ESDRED Project. This demonstrator is now on display in Andra's Technology Centre at Saudron, near the Bure Underground Laboratory. The second disposal option which has been investigated is based on a concept of utilising an external apparatus to push a row of

  20. Technology transfer in the field of small hydroelectric power stations; Technologietransfer im Bereich Kleinwasserkraft

    Energy Technology Data Exchange (ETDEWEB)

    Meier, U. [SKAT-entec, St Gallen (Switzerland)

    1997-12-31

    The rate at which full-scale technology transfer takes place depends on the quality of the supply companies, i.e. training, organisational development and product infrastructure. These parameters are discussed for the example of a water mill, and a flow diagram is presented. [Deutsch] Wie rasch ein umfassender Transfer in Frage kommt, entscheidet sich mit der Qualitaet und dem Niveau der zuliefernden Betriebe. Hierbei sind Ausbildung, Organisationsentwicklung und Produktionsinfrastruktur besonders angesprochen. Fuer eine Wassermuehle werden diese Parameter konkret eroertert und an Durchlaufdiagrammen erlaeutert. (GL)

  1. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro's Bruce nuclear generating station open-quotes Aclose quotes

    International Nuclear Information System (INIS)

    Day, J.E.; Baker, R.L.

    1994-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station open-quotes Aclose quotes has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  2. W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1997-01-01

    The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 241-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen buildup in the transfer lines and to provide ALARA conditions for maintenance personnel

  3. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in a cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rock. These waste containers are vertically emplaced in the borehole 300 meters just below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3-4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions. The borehole wall temperature history has been found in the previous study, and was estimated to reach a maximum temperature of about 218 degrees C after 18 years from the emplacement. The temperature history of the rock surface is then used for the air-gap simulation. The problem includes convection and radiation heat transfer in a vertical enclosure. This paper will present the results of the convection in the air-gap over one thousand years after the containers' emplacement. During this long simulation period it was also observed that a multi-cellular air flow pattern can be generated in the air gap

  4. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    Mele, I.; Mathieson, J.

    2007-01-01

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  5. BY tank farm waste inventory and transfer data for ITS-2 operation during January To December 1971

    Energy Technology Data Exchange (ETDEWEB)

    Reich, F.R., Westinghouse Hanford

    1996-08-02

    Data record inventory of pumping activities and liquid level changes including occasional operations comments for the BY Tank Farm. Waste inventory and transfer data for ITS-2 operation during January to December 1971.

  6. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    Science.gov (United States)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  7. DOE Low-Level Waste Management Program perspective on technology transfer: opportunities and challenges

    International Nuclear Information System (INIS)

    Large, D.E.

    1982-01-01

    The Department of Energy's Low-Level Waste Management Program (DOE LLWMP) perspective in regard to transfer of LLWMP technology to current and potential users in both the commercial and defense sectors is discussed. Past, present, and future opportunities and challenges for the whole nuclear waste management are indicated. Elements considered include: historical and evolutionary events and activities; the purpose of the Program and its inherent opportunities and challenges; achievements and expected accomplishments; supporters and interactors; packaging and delivering technology; implementing and serving potential users; determining and meeting users' needs; and identifying and responding to opportunities and challenges. The low-level waste management effort to improve shallow land burial technology began in FY 1977 and has expanded to include waste treatment and alternative disposal methods. Milestones have been established and are used as principal management control items. This technology, the Program Product, is described and is made available. This year, the Program has drafted criteria for inclusion in a DOE order for radioactive waste management operations at DOE sites

  8. The Handling of Liquid Waste at the Research Station of Studsvik, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, Soeren; Linder, Per

    1965-03-15

    The following quantities of radioactive waste are allowed to be released into a strait between the islands of Stora Bergoe and Studsviksholme: Total {alpha}-activity 0,2 curie/month. Total {beta}-activity 36 curie/month of which cerium, yttrium, rare earth 15 curie/month, strontium 2,4 curie/month. Before the release the radioactive waste has to be collected and controlled. Quantities approaching or exceeding the disposal limits have to be removed and concentrated by evaporation. The liquid waste is classified in several categories depending upon the level of activity: high active and medium active waste, low active waste, process water, sanitary water, surface water and reactor cooling water. The technical dimensioning of each category was based upon expected specific production figures (volume/man - month and activity/ man - month). These figures are based upon information obtained from Harwell. Actual production figures obtained during 1963 and the first half of 1964 are shown and compared with the expected ones. As a conclusion is stated that the actual production follows the predictions fairly well.

  9. The Handling of Liquid Waste at the Research Station of Studsvik, Sweden

    International Nuclear Information System (INIS)

    Lindhe, Soeren; Linder, Per

    1965-03-01

    The following quantities of radioactive waste are allowed to be released into a strait between the islands of Stora Bergoe and Studsviksholme: Total α-activity 0,2 curie/month. Total β-activity 36 curie/month of which cerium, yttrium, rare earth 15 curie/month, strontium 2,4 curie/month. Before the release the radioactive waste has to be collected and controlled. Quantities approaching or exceeding the disposal limits have to be removed and concentrated by evaporation. The liquid waste is classified in several categories depending upon the level of activity: high active and medium active waste, low active waste, process water, sanitary water, surface water and reactor cooling water. The technical dimensioning of each category was based upon expected specific production figures (volume/man - month and activity/ man - month). These figures are based upon information obtained from Harwell. Actual production figures obtained during 1963 and the first half of 1964 are shown and compared with the expected ones. As a conclusion is stated that the actual production follows the predictions fairly well

  10. Robots provide valuable tools for waste processing at Millstone Nuclear Power Station

    International Nuclear Information System (INIS)

    Miles, K.; Volpe, K.

    1997-01-01

    The Millstone nuclear power station has begun an aggressive program to use robotics, which when properly used minimizes operating costs and exposure to personnel. This article describes several new ways of using existing robotic equipment to speed up work processes and provide solutions to difficult problems. The moisture separator pit and liquid radwaste are discussed

  11. Material streams in the fuel supply to and disposal of waste from nuclear power stations

    International Nuclear Information System (INIS)

    Merz, E.

    1990-01-01

    The nuclear fuel cycle is characterized by specifically small, but complex material streams. The fresh fuel derived from natural uranium is fed into the cycle at the stage of fuel element fabrication, while at the end stage, waste from spent fuel element reprocessing, or non-reprocessible fuel elements, are taken out of the cycle and prepared for ultimate disposal. The alternative methods of waste management, reprocessing or direct ultimate disposal, are an issue of controversial debate with regard to their differences in terms of supply policy, economic and ecological aspects. (orig.) [de

  12. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2012-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  13. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A NUCLEAR POWERED ELECTRICAL GENERATING STATION.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  14. The main methods of solving the problem of radioactive waste management from nuclear power stations and spent fuel reprocessing plants in the USSR

    International Nuclear Information System (INIS)

    1978-09-01

    The main directions of solving the problem of radioactive waste management from nuclear power stations and radiochemical plants, the aspects of gaseous waste management, liquid HLW storage in vessels and the problems of heat removal during storage of vitrified HLW in surface storages are considered. The main problems arising during fine decontamination of gaseous discharges from nuclear power stations and reprocessing plants are discussed. The migration of fission products in the environment and technical aspects of their capture from gaseous discharges are also considered

  15. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    1999-01-01

    Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  16. Cross-Site Transfer System at Hanford: long-term strategy for waste acceptance

    International Nuclear Information System (INIS)

    Shekarriz, A.; Onishi, Y.; Smith, P.A.; Sterner, M.; Rector, D.R.; Virden, J.

    1997-02-01

    This report summarizes results of a technical panel review of the current methodology for accepting waste for transport through the Hanford Replacement Cross-Site Transfer System (RCSTS), which was constructed to replace the existing pipelines that hydraulically connect the 200 West and 200 East areas. This report is a complement to an existing document (Hudson 1996); the methodology proposed in that document was refined based on panel recommendations. The refinements were focused around predicting and preventing the 3 main modes suspected of plugging the existing CSTS: precipitation, gelation, particle dropout/settling. The proposed analysis will require integration of computer modeling and laboratory experiments to build a defensible case for transportability of a proposed slurry composition for a given tank. This will be validated by recirculating actual tank waste, in-tank and in-farm, prior to transport. The panel's recommendation was that the probability of success of waste transfer would be greatly improved by integrating the predictive analysis with real-time control during RCSTS operation. The methodology will be optimized

  17. Effect of waste mica on transfer factors of 134Cs to spinach and lettuce

    International Nuclear Information System (INIS)

    Sreenivasa Chari, M.; Manjaiah, K.M.; Sachdev, P.; Sachdev, M.S.

    2011-01-01

    A greenhouse pot culture experiment was conducted to study the effect of graded levels of waste mica (0, 10, 20 and 40 g kg -1 ) on reducing the radiocesium uptake by spinach (Spinacia olerecea L) and lettuce (Lactuca sativa L.) grown in 134 Cs-contaminated (at 37 k Bq kg -1 soil) Inceptisols, Vertisols and Ultisols. The biomass yield, and potassium content and its uptake by crops have been significantly improved by waste mica application. The crops grown in Vertisols recorded higher biomass yield, and K content and its uptake as compared with Inceptisols and Ultisols. The average 134 Cs transfer factor values recorded were: 0.21, 0.17 and 0.26 at the first cutting, 0.15, 0.12 and 0.28 at the second cutting and 0.07, 0.05 and 0.23 at the third cutting from Inceptisols, Vertisols and Ultisols, respectively. Waste mica significantly suppressed radiocesium uptake, the effect being more pronounced at 40 g mica kg -1 soil. There exists an inverse relationship between the 134 Cs transfer factors with plant potassium content and also the K uptake by the crops. (authors)

  18. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  19. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, P.

    2011-01-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  20. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, P.

    2011-07-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  1. Replacement of the cross-site transfer system liquid waste transport alternatives evaluation, Project W-058

    International Nuclear Information System (INIS)

    Vo, D.V.; Epperson, E.M.

    1995-05-01

    This document examines high-/low-level radioactive liquid waste transport alternatives. Radioactive liquid waste will be transported from the 200 West Area to the 200 East Area and within the 200 East Areas for safe storage and disposal. The radioactive waste transport alternatives are the Aboveground Transport System (French LR-56 Cask System [3,800 L (1,000 gal)]), 19,000-L (5,000-gal) trailer tanker system, 75,700-L (20,000-gal) rail tanker system and Underground Transport System (buried pipe [unlimited transfer volume capability]). The evaluation focused on the following areas: initial project cost, operational cost, secondary waste generation, radiation exposure, and final decommissioning. The evaluation was based on the near term (1995 to 2005) estimated volume of 49.509 million L (13.063 million gal) and long term (1995 to 2028) estimated volume of 757.1 million L (200 million gal). The conclusion showed that the buried pipe (Underground Transport System) resulted in the lowest overall total cost for near and long term, the trailer container resulted in the highest total cost for near and long term, and the French truck was operationally impractical and cost prohibitive

  2. Technology transfer and radioactive waste management at TMI-2 [Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Saunders, J.R.

    1988-01-01

    The accident that occurred on March 28, 1979, at the Three Mile Island Unit 2 (TMI-2) nuclear generating station caused extensive damage to the reactor core and created high radiation contamination levels throughout the facility. The electric power industry, regulators, and government agencies were faced with one of the most technically challenging recovery situations ever encountered in this country. But it was also realized that this adversity presented opportunities for the advancement of state-of-the-art technologies as well as the potential to produce information that could enhance nuclear power plant safety and reliability. Perhaps one of the more significant aspects of the TMI-2 recovery has been the advancement of radioactive waste management technology. The high levels and unusual nature of the TMI-2 radioactive waste necessitated the development of innovative techniques for processing, packaging, shipping, and disposal. The investment in research was rewarded with large volume reductions and associated cost savings. It is anticipated that the TMI-2 radioactive waste management technology will make major contributions to the design of new systems to meet this growing need. The following areas appear particularly suited for this purpose: volume reduction, high-integrity containers, and selective isotope removal

  3. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  4. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  5. Transfer of radioactive waste management expertise from Switzerland to other countries with small nuclear power programmes

    International Nuclear Information System (INIS)

    McKinley, I.; Birkhaeuser, Ph.; Kickmaier, W.; Vomvoris, S.; Zuidema, P.

    2000-01-01

    A legal requirement which coupled demonstration of the feasibility of nuclear waste disposal to the extension of reactor operational licenses beyond 1985 acted to force rapid development of the Swiss radioactive waste management programme. Over a period of almost 30 years and at a cost of approximately 800 M CHF Nagra has become established as a centre of excellence in this field. Resources include highly experienced manpower, literature and databases supporting development of national repositories for L/ILW and HLW/TRU and state-of-the-art R and D infrastructure (including 2 underground laboratories, hot-laboratory facilities at PSI (Paul Scherrer Institute), modelling groups at universities etc.). This paper reviews Nagra's experience and considers various ways in which expertise can be transferred to other small countries to minimise duplication of effort and optimise development of their own national programmes. (author)

  6. Transferring knowledge about high-level waste repositories: An ethical consideration

    International Nuclear Information System (INIS)

    Berndes, S.; Kornwachs, K.

    1996-01-01

    The purpose of this paper is to present requirements to Information and Documentation Systems for high-level waste repositories from an ethical point of view. A structured synopsis of ethical arguments used by experts from Europe and America is presented. On the one hand the review suggests to reinforce the obligation to transfer knowledge about high level waste repositories. This obligation is reduced on the other hand by the objection that ethical obligations are dependent on the difference between our and future civilizations. This reflection results in proposing a list of well-balanced ethical arguments. Then a method is presented which shows how scenarios of possible future civilizations for different time horizons and related ethical arguments are used to justify requirements to the Information and Documentation System

  7. Description of station waste water treatment and study of reclaiming industry ceramic red

    International Nuclear Information System (INIS)

    Yadava, Y.P.; Rego, S.A.B.C.; Junior, B.S.; Bezerra, L.P.; Ferreira, R.A.S.

    2012-01-01

    So that the water meets potability standards required by the laws it passes through various treatment processes which generate waste called WTS (Water Treatment Sludge). This sludge is disposed of without any processing, however, environmental agencies and the public are demanding alternatives to this situation. Knowing this, this study aims to characterize the sludge from the Water Treatment Plant Botafogo and analyze its viability as a feedstock in the manufacture of red bricks. (author)

  8. [Industrial waste as indicator of population size: possible utilization in mountain resort tourist stations?].

    Science.gov (United States)

    Olive, F; Rey, S; Zmirou, D

    1998-09-01

    Epidemiological studies, conducted in touristic resorts, often face the difficulty of assessing the size of the referent population. Recently, some population size indicators, have been tested. Among them, the amount of municipal waste seems to be easy and readily accessible. The purpose of the study is to describe how this indicator can be used in touristic mountain resorts. Four touristic resorts were chosen in Isère departement (France): Alpe d'Huez, Deux Alpes, Chamrousse, plateau du Vercors. The evolution of municipal waste over several years was used to compute an individual output level for residents and for tourists. This waste indicator was compared with data on tourists reservations in hotels in the resorts. We found a good fit during touristic seasons in three resorts (Spearman test). For the last one (Chamrousse), the correlation rate was low. We think that the type of tourism is different in this resort with many non residents. This indicator is reliable but needs further validation by sample surveys across several sites and several types of lodging. We propose to estimate the size of the referent population, based on an individual output of 1 kg per person and per day for residents and 0.5 kg per person per day for tourists.

  9. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18, 1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30, 1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  10. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18,1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30,1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  11. Radiation protection in transference of radioactive wastes among buildings of an intermediary deposit

    International Nuclear Information System (INIS)

    Mitake, Malvina Boni; Suzuki, Fabio Fumio

    2011-01-01

    This paper describes the planning of radioprotection realized for transfer operation of radioactive wastes from two old buildings for a one of the new buildings. For planning purposes the operation was divided into nine stages and, for evaluation of collective dose, it was considered various relevant factors. The result of radioprotection optimization it was expected a total collective dose of 58.6 mSv per person. The measured dose per dosemeter of direct reading was of 3.9 mSv per person. These difference among the values is due to conservative factors used in the calculation

  12. Defining waste acceptance criteria for the Hanford Replacement Cross-Site Transfer System

    International Nuclear Information System (INIS)

    Hudson, J.D.

    1996-04-01

    This document provides a methodology for defining waste acceptance criteria for the Hanford Replacement Cross-Site Transfer System (RCSTS). This methodology includes characterization, transport analysis, and control. A framework is described for each of these functions. A tool was developed for performing the calculations associated with the transport analysis. This tool, a worksheet that is available in formats acceptable for a variety of PC spreadsheet programs, enables a comparison of the pressure required to transport a given slurry at a rate that particulate suspension is maintained to the pressure drop available from the RCSTS

  13. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 , C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  14. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  15. Heat-transfer aspects of Stirling power generation using incinerator waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.T.; Lin, F.Y.; Chiou, J.S. [National Cheng Kung University, Tainan, Taiwan (China). Department of Mechanical Engineering

    2003-01-01

    The integration of a free-piston Stirling engine with linear alternator and an incinerator is able to effectively recover the waste energy and generate electrical power. In this study, a cycle-averaged heat transfer model is employed to investigate the performance of a free-piston Stirling engine installed on an incinerator. With the input of source and sink temperatures and other realistic heat transfer coefficients, the efficiency and the optimal power output are estimated, and the effect induced by internal and external irreversibilities is also evaluated. The proposed approach and modeling results presented in this study provide valuable information for engineers and designers to recover energy from small-scale incinerators. (author)

  16. Resolving legal issues in the transfer of technologies in environmental restoration and waste management

    International Nuclear Information System (INIS)

    Katz, J.; Richards, F. III; Underwood, J.P.

    1994-01-01

    In reforming its contracting and procurement processes, the Department of Energy (DOE) should also make reforms to facilitate the transfer and commercialization of environmental restoration and waste management technologies between DOE laboratories and the private sector. These reforms would address the three related legal issues of patents, conflict of interest, and liability. This paper discusses each issue and considers possible solutions to them. These solutions include contractual clauses to specifically address the needs of all involved parties, improved definition of development and implementation rights, and increased protections for contractors. If DOE, or the Federal Government more generally, successfully resolves these issues and makes the appropriate changes to the DOE procurement system, transfer and commercialization will more efficiently, effectively, and easily occur

  17. Using geographic information system (GIS) to determine waste ...

    African Journals Online (AJOL)

    lyndon

    could be used as waste transfer stations in relation to location of landfill sites using Geographic. Information ... Coast, bounded to the east by the Ga East Municipal Assembly, to the west by the .... Solid Waste and the Hierarchy in Solid Waste.

  18. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    Science.gov (United States)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  19. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  20. Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer

    International Nuclear Information System (INIS)

    Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang

    2013-01-01

    In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.

  1. Waste minimization and pollution prevention technology transfer : the Airlie House Projects

    International Nuclear Information System (INIS)

    Gatrone, R.; McHenry, J.; Myron, H.; Thout, J. R.

    1998-01-01

    The Airlie House Pollution Prevention Technology Transfer Projects were a series of pilot projects developed for the US Department of Energy with the intention of transferring pollution prevention technology to the private sector. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education project, the microscale cost benefit study project, and the Bethel New Life recycling trainee project. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The Bethel New Life recycling trainee project provided training for two participants who helped identify recycling and source reduction opportunities in Argonne National Laboratory's solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identifying target technologies that were already available, identifying target audiences, and focusing on achieving a limited but defined objective

  2. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  3. Biodegradation waste of the stations service by Rhodococcus erythropolis ohp-al-gp

    International Nuclear Information System (INIS)

    Pucci, Oscar Hector; Acuna, Adrian Javier; Pucci, Graciela Natalia

    2013-01-01

    The strain Rhodococcus erythropolis ohp-al-gp was isolated from turbine oil contaminated soil from northern Santa Cruz province, Argentina. Because of its potential in bioremediation, the aim was to know the abilities for degradation of pure compounds and mixtures of hydrocarbons, as well as degradation in the presence and absence of diesel nitrogen measured by gas chromatography. The strain possesses the ability to use diesel, kerosene, lubricating oil, pristane, hexane, heptane, octane, pentadecane and hexadecane. R. erythropolis ohp-al-gp has excellent potential for bioremediation of hydrocarbons, which are conflictive as lubricating oils, their potential use in removing mud from washing engines or gas stations would be its most important application. The degradation rate in optimal culture conditions, gives it an additional advantage. It also has a low degradation in the absence of nitrogen, a frequent limiting factor in Patagonian soils.

  4. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository

    International Nuclear Information System (INIS)

    Perlot, C.

    2005-09-01

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  5. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  6. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  7. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  8. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    Science.gov (United States)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  9. USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING

    International Nuclear Information System (INIS)

    Kenneth J. Bateman; Charles W. Solbrig

    2006-01-01

    The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas

  10. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  11. Reconnaissance survey of the intermediate-level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak occurred prior to this survey and had been repaired, but no contaminated soil had been removed. The second leak resulted in soil contamination that was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data indicate the effectiveness of the removal of the contaminated material from leak two. 1 ref., 5 figs., 3 tabs

  12. Reconnaissance survey of the intermediate level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak had occurred prior to this survey and had been repaired. However, no contaminated soil had been removed. The second leak had not been discovered previously and soil contamination in this area was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data that indicate the effectiveness of the removal of the contaminated material from leak two are presented. (U.S.)

  13. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  14. A hazard and probabilistic safety analysis of a high-level waste transfer process

    International Nuclear Information System (INIS)

    Bott, T.F.; Sasser, M.K.

    1996-01-01

    This paper describes a safety analysis of a transfer process for high-level radioactive and toxic waste. The analysis began with a hazard assessment that used elements of What If, Checklist, Failure Modes and Effects Analysis, and Hazards and Operability Study (HAZOP) techniques to identify and rough-in accident sequences. Based on this preliminary analysis, the most significant accident sequences were developed further using event trees. Quantitative frequency estimates for the accident sequences were based on operational data taken from the historical record of the site where the process is performed. Several modeling challenges were encountered in the course of the study. These included linked initiating and accident progression events, fire propagation modeling, accounting for administrative control violations, and handling mission-phase effects

  15. Defense-in-depth evaluation for the New Waste Transfer Facility

    International Nuclear Information System (INIS)

    Hayes, T.G.; Kelly, J.L.

    1995-01-01

    This report fulfills part of the requirements of References 2 and 3 by documenting a Defense-In-Depth evaluation for the New Waste Transfer Facility (NWTF). This evaluation was performed using methodology similar to that used in an evaluation for the Defense Waste Processing Facility (DWPF). It differs because the DWPF evaluation was based on an existing Process Hazards Analysis (PHA) while NWTF's is based on a Preoperational Process Hazards Review (PHR) (Ref. 1). The accidents in the Process Hazards Review (PHR) were reviewed to determine those that might have significant consequences. Significance was based on the findings of the PHR, The facility design was reviewed to determine the Structures, Systems, and Components (SSCs) and administrative controls available before and after each accident. From this was developed a list of the Lines of Defense (LODs) available to contain the hazard associated with the accident. A summary of these LODs is given in Appendix C. Items are tabulated that are suggested for consideration in the functional classification as worker protection items. The specific criteria used in the evaluation is given in the methodology section of this report. The results are documented in Appendices A, B, C, and D

  16. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  17. Product quality follow-up for the start of an industrial plant, e.g.: The waste station No 3 at La Hague

    International Nuclear Information System (INIS)

    Saas, A.; Vidal, H.; Alvy, J.C.; Boudry, J.C.; Bouin, R.

    1990-01-01

    During the start-up of the plant for waste treatment and mud coating in bitumen (waste station No 3 La Hague), the Characterization and Estimate of Containments and Analyses Service performed several different controls and tests to verify: whether the industrial plant was operating according to the defined procedure, whether the coated products obtained were in line with provisional specifications, whether the operational sector of the plant ensured the final quality of the coated product. The main results of these measurements and tests are presented in this paper. (orig./DG)

  18. The nuclear techniques in function of improving the efficiency of the flocculators and floats in the industrial waste treatment station of PETROBRAS

    International Nuclear Information System (INIS)

    Damera Martinez, Arnaldo; Ramos Espinosa, Kenia A.; Pinto, Amenonia Ferreira; Barbalho, Andrea de Magalhaes; Derivet Zarzabal, Milagros

    2001-01-01

    This work was carried out in the Station of Treatment of Industrial Waste (STIW) in PETROBRAS (Brazil). The STIW has the function of receiving, to treat and storage liquid wastes coming from diverse points of the refinery, avoiding the environment contamination. This study consists on the determination of the time of residence inside the flocculators and floats, by means of nuclear technique of radioactive tracer, using Tc-99m. This technique has a great economic and environmental importance because the time of residence obtained experimentally in the flocculators and the floats, can be compared with those obtained theoretically, which allow to influence on the system, optimizing its operation

  19. Transfer into the biosphere of radionuclides released from deep storage of radioactive wastes. Bibliographical study

    International Nuclear Information System (INIS)

    Guedon, V.; Siclet, F.

    1995-03-01

    Most countries with civilian nuclear programs today are encountering difficulty in implementing a nuclear waste management policy that is both technically safe in the long term and accepted by the public. To meet both criteria, the solution most generally envisaged is deep storage either of untreated spent nuclear fuel or of highly radioactive wastes resulting from reprocessing. In order to predict the potential impact of such storage on man, one needs to understand the path followed by radionuclides in the geosphere, and later in the biosphere. Given the time scales involved and the critical nature of the elements concerned, it is indispensable to turn to mathematical modeling of the phenomena. This, however, does not preclude the essential need for in-depth knowledge of the phenomena and of the physico-chemical characteristics of radionuclides. This report presents what is hoped to be a complete inventory of the radionuclides contained in ''high level'' wastes (categories B AND C). The elements concerned in studies on deep storage are essentially long-life radionuclides (both actinides and certain fission and activation products). Their physico-chemical characteristics and their behavior in various ecological compartments are examined. Bibliographical data bearing on: solubility (in an oxidizing, reducing medium), distribution factors (water/rock-sediment-soil), concentration and transfer factors (in aquatic and terrestrial mediums), dose conversion factors (in the case of internal and external irradiation), principal paths of exposure for each radionuclide studied, are presented in this report. Initial results from international projects to model what happens to radionuclides in the biosphere are also presented. In general, they are optimistic as to the future, but nonetheless point to a need to improve the conceptual base of the models, to ensure that all major phenomena and processes are taken into consideration and to examine any possible amplification

  20. An evaluation of the production of solid radio-active waste in the Tricastin nuclear power station and, more generally, in the other French nuclear power stations

    International Nuclear Information System (INIS)

    Cuisenier, R.G.

    1986-01-01

    The importance of the effect of processing and packaging of solid radio-active wastes on the necessary staff, on the dosimetry acquired by this personnel and on the running costs will be presented, thus permitting a quantitative evaluation of the different types of waste produced, not only for the Tricastin plant but also for any typical French nuclear plant. Experience in the Tricastin power plant has shown that the volume of solid wastes can vary considerably depending on the different problems which can arise during production (cooling system leaks or less regular incidents). The different techniques used will be relooked at in order to facilitate the explanation of these fluctuations in the volume of waste produced and the measures which can be taken to limit them. The different measures which have been taken to improve performance in this domain will be presented: improvements in equipment, in methods, and in the increased awareness of the personnel concerning these problems

  1. Co-ordination of federal and provincial environmental assessment processes for the Point Lepreau Generating Station Solid Radioactive Waste Management Facility modifications

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, C.; Thompson, P.D. [Point Lepreau Generating Station, Point Lepreau Refurbishment Project, Lepreau, New Brunswick (Canada); Barnes, J. [Jacques Whitford Environment Ltd., Fredericton, New Brunswick (Canada)

    2006-07-01

    Modification of the Solid Radioactive Waste Management Facility at Point Lepreau Generating Station is required to accommodate waste generated during and after an 18-month maintenance outage during which the station would be Refurbished. The modification of the facility triggered both federal and provincial environmental assessment requirements, and these assessments were conducted in a 'coordinated' and cooperative fashion. In this project, the coordinated approach worked well, and provided some significant advantages to the proponent, the public and the regulators. However, there are opportunities for further improvement in future projects, and this paper explores the advantages and disadvantages of this 'co-ordinated' approach. As part of this exploration, there is a discussion of administrative and regulatory changes that the province is considering for the environmental assessment process, and a discussion of the need for a formal 'harmonization' agreement. (author)

  2. Co-ordination of federal and provincial environmental assessment processes for the Point Lepreau Generating Station Solid Radioactive Waste Management Facility modifications

    International Nuclear Information System (INIS)

    Hickman, C.; Thompson, P.D.; Barnes, J.

    2006-01-01

    Modification of the Solid Radioactive Waste Management Facility at Point Lepreau Generating Station is required to accommodate waste generated during and after an 18-month maintenance outage during which the station would be Refurbished. The modification of the facility triggered both federal and provincial environmental assessment requirements, and these assessments were conducted in a 'coordinated' and cooperative fashion. In this project, the coordinated approach worked well, and provided some significant advantages to the proponent, the public and the regulators. However, there are opportunities for further improvement in future projects, and this paper explores the advantages and disadvantages of this 'co-ordinated' approach. As part of this exploration, there is a discussion of administrative and regulatory changes that the province is considering for the environmental assessment process, and a discussion of the need for a formal 'harmonization' agreement. (author)

  3. Transfer of test samples and wastes between post-irradiation test facilities (FMF, AGF, MMF)

    International Nuclear Information System (INIS)

    Ishida, Yasukazu; Suzuki, Kazuhisa; Ebihara, Hikoe; Matsushima, Yasuyoshi; Kashiwabara, Hidechiyo

    1975-02-01

    Wide review is given on the problems associated with the transfer of test samples and wastes between post-irradiation test facilities, FMF (Fuel Monitoring Facility), AGF (Alpha Gamma Facility), and MMF (Material Monitoring Facility) at the Oarai Engineering Center, PNC. The test facilities are connected with the JOYO plant, an experimental fast reactor being constructed at Oarai. As introductory remarks, some special features of transferring irradiated materials are described. In the second part, problems on the management of nuclear materials and radio isotopes are described item by item. In the third part, the specific materials that are envisaged to be transported between JOYO and the test facilities are listed together with their geometrical shapes, dimensions, etc. In the fourth part, various routes and methods of transportation are explained with many block charts and figures. Brief explanation with lists and drawings is also given to transportation casks and vessels. Finally, some future problems are discussed, such as the prevention of diffusive contamination, ease of decontamination, and the identification of test samples. (Aoki, K.)

  4. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  5. Mass transfer of CO2 to groundwaters from a near-surface waste disposal site

    International Nuclear Information System (INIS)

    Caron, F.; Wilkinson, S.R.; Manni, G.; Torok, J.

    1995-01-01

    Gaseous 14 CO 2 originating from buried low-level radioactive wastes (LLRW) in a near-surface disposal site can be released to the environment via two major paths: gas-phase diffusion through soils to the atmosphere, and dissolution in groundwater, followed by aqueous migration. Aqueous migration would give the highest dose to an individual, especially if C-14 was converted to an organic form and ingested. Gaseous diffusion would give a lower dose, largely because of atmospheric dispersion and dilution. The objective of this study was to develop the capability to estimate which of the two paths will likely be dominant for typical near-surface disposal facilities. The main missing parameter for making this estimate was a mass-transfer coefficient (K L ) of 14 CO 2 to groundwaters, which was determined experimentally using a large sand box. The K L thus determined was approximately 10 to 20 times smaller than for an open liquid surface. This suggests that there is a potential resistance to mass transfer, probably caused by the capillary fringe. The value obtained was incorporated into a simple model of CO 2 transport around a typical near-surface disposal site. The model suggests that CO 2 transport via both gaseous release and aqueous migration paths are of similar magnitude for a repository located ∼2 m above the water table. (author). 11 refs., 2 tabs., 2 figs

  6. Components for containment enclosures - Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. 1. ed.

    International Nuclear Information System (INIS)

    1998-01-01

    This part of ISO 11933 specifies requirements for the selection, construction and use of the following leak tight components: doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. Some of the elements, double doors or airlock chambers are described in ISO 11933-1 and ISO 11933-2 as well. Doors having bigger dimensions used for personnel od larger objects are not covered by this document

  7. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  8. Influence of convective-energy transfer on calculated temperature distributions in proposed hard-rock nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R R; Reda, D C [Sandia National Labs., Albuquerque, NM (USA)

    1982-06-01

    This study assesses the relative influence of convective-energy transfer on predicted temperature distributions for a nuclear-waste repository located in water-saturated rock. Using results for energy transfer by conduction only (no water motion) as a basis of comparison, it is shown that a considerable amount of energy can be removed from the repository by pumping out water that migrates into the drift from regions adjacent to the buried waste canisters. Furthermore, the results show that the influence of convective-energy transfer on mine drift cooling requirements can be significant for cases where the in-situ permeability of the rock is greater than one millidarcy (a regime potentially encountered in repository scenarios).

  9. Investigation of Contaminated Groundwater at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2008

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.

    2009-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.

  10. Transfer of radioactive waste disposal knowledge to future generations: A stiff challenge for universities

    International Nuclear Information System (INIS)

    Sabet, B.B.; Elorza, F.J.

    2007-01-01

    Full text: In general, effective knowledge management strategies rely on the capacity to perform a full range of allied functions, among which education and research are the key components. However, in most countries and notably in Europe, universities which have to conduct leading-edge research and to supply society with future skilled staffs on radioactive waste disposal, suffer from both the shortage of the institutional national support and the decline of interest among students. This paper gives an overview of the academic educational challenges in geological disposal of radioactive waste. Prior to presenting possible solutions to overcome difficulties encountered in this field, the causes of the present failure that seriously threaten the future provision of human resources are identified and analysed. Some of the main findings are: The poor image of nuclear issues in general and the lack of public confidence in the management and disposal of radioactive waste in particular; The smallness of the radwaste community and the narrowness of the job market at the national level; The organisational structure of most universities that inhibits partnerships with non-academic institutions and impedes collaborative activities; The reticence of most governments to invest public funds in the academic education on radwaste disposal. These particular motives added to the common problems shared by the whole nuclear sector such as the lack of educational programmes, the ageing of teachers, and the decline in academic R and D activities, bring about the need for collaborative actions. The paper gives an example of possible solutions through the development of a European academic initiative. In response to the rising alarm about the future shortage of expertise, EURATOM has launched the ENEN II (European Commission 6th FP project No. FP6-036414 for years 2007-2008) project. The goal of this project is to consolidate the European nuclear education, training and knowledge

  11. Microbial removal of alkanes from dilute gaseous waste streams: kinetics and mass transfer considerations.

    Science.gov (United States)

    Barton, J W; Klasson, K T; Koran, L J; Davison, B H

    1997-01-01

    Treatment of dilute gaseous hydrocarbon waste streams remains a current need for many industries, particularly as increasingly stringent environmental regulations and oversight force emission reduction. Biofiltration systems hold promise for providing low-cost alternatives to more traditional, energy-intensive treatment methods such as incineration and adsorption. Elucidation of engineering principles governing the behavior of such systems, including mass transfer limitations, will broaden their applicability. Our processes exploit a microbial consortium to treat a mixture of 0.5% n-pentane and 0.5% isobutane in air. Since hydrocarbon gases are sparingly soluble in water, good mixing and high surface area between the gas and liquid phases are essential for biodegradation to be effective. One liquid-continuous columnar bioreactor was operated for more than 30 months with continued degradation of n-pentane and isobutane as sole carbon and energy sources. The maximum degradation rate observed in this gas-recycle system was 2 g of volatile organic compounds (VOC)/(m3.h). A trickle-bed bioreactor was operated continuously for over 24 months to provide a higher surface area (using a structured packing) with increased rates. Degradation rates consistently achieved were approximately 50 g of VOC/(m3.h) via single pass in this gas-continuous columnar system. Effective mass transfer coefficients comparable to literature values were also measured for this reactor; these values were substantially higher than those found in the gas-recycle reactor. Control of biomass levels was implemented by limiting the level of available nitrogen in the recirculating aqueous media, enabling long-term stability of reactor performance.

  12. Heat transfer analysis of the waste-container sleeve/salt configuration

    International Nuclear Information System (INIS)

    Callahan, G.D.; Ratigan, J.L.; Russell, J.E.; Fossum, A.F.

    1975-01-01

    Prior to this investigation, the heat transport considered was only that of straight conduction. The waste container, air gap, and sleeve arrangement was considered to be a single, consistent, time-dependent, heat-generating unit in intimate contact with the salt. The conduction model does not accurately model the heat transfer mechanisms available. Thus radiation and combined radiation and convection must also be considered in the determination of the temperature field. As would be expected, the canister temperatures are higher for the case of radiation across the airgap than those that result from conduction when the canister is in intimate contact with the salt. For the radiation case, the canister temperatures rise rapidly to a temperature of approximately 1,140 0 F and maintain an almost steady state condition for one year whereafter the temperatures slowly decrease. The far field temperatures, near the pillar centerline, are essentially equivalent for all cases. As time proceeds, the far field temperatures of the conduction models are about 15% different

  13. Governmental Decree No. 224/1997 of 13 August 1997 on fees levied on nuclear waste producers and on the transfer of such fees to the Nuclear Account

    International Nuclear Information System (INIS)

    1997-01-01

    Nuclear power plants are obliged to pay a fee of CZK 50 per MWe produced. This amount is transferred to the Nuclear Account. The fee return is filed with the Czech Radioactive Repositories Administration. Minor radioactive waste producers only pay the radioactive waste storage cost; this sum is also transferred to the Nuclear Account. Each entity applying with the State Office for Nuclear Safety for a licence regarding activities which are associated with the production of radioactive wastes shall register with the Radioactive Repositories Administration as a prospective radioactive waste producer. (P.A.)

  14. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  15. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  16. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  17. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  18. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  19. The International Stripa Project: Technology transfer from cooperation in scientific and technological research on nuclear waste disposal

    International Nuclear Information System (INIS)

    Levich, R.A.; Ferrigan, P.M.; Wilkey, P.L.

    1990-01-01

    The Nuclear Energy Agency of the organization for Economic Cooperation and Development (OECD/NEA) sponsors the International Stripa Project. The objectives of the Stripa Project are to develop techniques for characterizing sites located deep in rock formations that are potentially suitable for the geologic disposal of high-level radioactive wastes and to evaluate particular engineering design considerations that could enhance the long-term safety of a high-level radioactive waste repository in a geologic medium. The purpose of this paper is to briefly summarize the research conducted at Stripa and discuss the ways in which the technology developed for the Stripa Project has been and will be transfered to the United States Civilian Radioactive Waste Management Program's Yucca Mountain Project. 3 refs., 2 figs

  20. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    International Nuclear Information System (INIS)

    JEWETT, J.R.

    2000-01-01

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 (micro)m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system

  1. Heat transfer analysis of the geologic disposal of spent fuel and high-level waste storage canisters

    International Nuclear Information System (INIS)

    Allen, G.K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the Crank-Nicolson finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two- and three-dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media for spent fuel canisters. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters. Results of the studies on spent fuel assembly canisters showed that the canisters could be stored in salt formations with a maximum heat loading of 134 kw/acre without exceeding the temperature limits set for salt stability. The use of an overpack had little effect on the peak canister temperatures. When the total heat load per acre decreased, the peak temperatures reached in the geologic formations decreased; however, the time to reach the peak temperatures increased. Results of the studies on high-level waste canisters showed that an increased canister diameter will increase the canister interior temperatures considerably; at a constant areal heat loading, a 381 mm diameter canister reached almost a 50 0 C higher temperature than a 305 mm diameter canister. An overpacked canister caused almost a 30 0 C temperature rise in either case

  2. Optimization of municipal solid waste collection and transportation routes

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  3. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  4. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  5. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station. Attchment to Waste Site Reclassification Form 2005-033

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2006-01-01

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling

  6. The study on the recycle condition for existence of the decommissioning waste in the nuclear power station

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Ozaki, Sachio; Hirai, Mitsuyuki; Sakamoto, Hiroyuki; Usui, Tatsuo; Simizu, Yasuo; Ogane, Daisuke

    2000-01-01

    To establish the technique of the recycle for concrete waste, this paper describes the recycle condition for existence of the decommissioning concrete waste in the nuclear power plant and considers the durability of cask yard concrete constructed at about twenty years ago. The authors examine the recycle system of concrete in the power plant. (author)

  7. Preliminary identification of interfaces for certification and transfer of TRU waste to WIPP

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.

    1982-02-01

    This study complements the national program to certify that newly generated and stored, unclassified defense transuranic (TRU) wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The objectives of this study were to identify (1) the existing organizational structure at each of the major waste-generating and shipping sites and (2) the necessary interfaces between the waste shippers and WIPP. The interface investigations considered existing waste management organizations at the shipping sites and the proposed WIPP organization. An effort was made to identify the potential waste-certifying authorities and the lines of communication within these organizations. The long-range goal of this effort is to develop practicable interfaces between waste shippers and WIPP to enable the continued generation, interim storage, and eventual shipment of certified TRU wastes to WIPP. Some specific needs identified in this study include: organizational responsibility for certification procedures and quality assurance (QA) program; simple QA procedures; and specification and standardization of reporting forms and procedures, waste containers, and container labeling, color coding, and code location

  8. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  9. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  10. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  11. Marine biofouling and its implications in the use of seawater as a heat transfer fluid in Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Nair, K.V.K.; Venugopalan, V.P.

    1996-01-01

    Even though the problem of fouling is quite severe in the tropics because of rich diversity of species and longer periods available for breeding activity, most of the literature is from the temperate waters. In this paper, an attempt is made to illustrate the potential of biofouling to compromise the economical operation of coastal power plants by taking Madras Atomic Power Station (MAPS) as an example. The significance of acquiring information on biological aspects of the fouling species in successfully combating the problems is also highlighted. 3 refs., 3 tabs., 1 fig

  12. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  13. Mathematical models for diffusive mass transfer from waste package container with multiple perforations

    International Nuclear Information System (INIS)

    Lee, J.H.; Andrews, R.W.; Chambre, P.L.

    1996-01-01

    A robust engineered barrier system (EBS) is employed in the current design concept for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, US. The primary component of the EBS is a multi-barrier waste package container. Simplifying the geometry of the cylindrical waste package container and the underlying invert into the equivalent spherical configuration, mathematical models are developed for steady-state and transient diffusive releases from the failed waste container with multiple perforations (or pit penetrations) at the boundary of the invert. Using the models the steady-state and transient diffusive release behaviors form the failed waste container are studied. The analyses show that the number of perforations, the size of perforation, the container wall thickness, the geometry of the waste container and invert, and the adsorption of radionuclide in the invert are the important parameters that control the diffusive release rate. It is emphasized that the failed (or perforated) waste package container can still perform as a potentially important barrier (or diffusion barrier) to radionuclide release

  14. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Wells, BE; Meyer, P.E.; Chen, G.

    2000-01-01

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000

  15. Transfer factor for 210Pb from soil to vegetables in the surrounding environment of Kaiga nuclear power station

    International Nuclear Information System (INIS)

    Rao, Chetan; Karunakara, N.; Yashodhara, I.; Ravi, P.M.

    2013-01-01

    The paper presents a detailed study on site specific soil to vegetable (leafy, fruit and root) transfer factors for 210 Pb for Kaiga region, India where a PHWR, nuclear power plant is in operation. An experimental vegetable field was developed at about 500 m aerial distance from the Nuclear Power Plant (NPP) site at Kaiga to study the site-specific soil to plant transfer factors. Different types of vegetables were grown in the experimental field, during different seasons of the year, using the discharge water from the Kaiga nuclear power plant. The development of the experimental vegetable fields helped in evaluating accurate site-specific data. For a comparative study of the transfer factors obtained for the experimental field, samples cultivated using normal water resources by the local farmers of nearby villages, were also collected and analysed. The soil to leafy vegetable transfer factor of 210 Pb varied in the range of < 1.5 x 10 -2 - 1.6 x 10 -1 with a mean value of 6.0 x 10 -2 . Similarly the soil to fruit vegetable varied in the range of < 1.0 x 10 -2 - 3.4 x 10 -1 and the soil to root vegetable varied in the range of < 1.0 x 10 -2 - 4.0 x 10 -2 with corresponding mean values of 6.0 x 10 -2 and 3.0 x 10 -2 respectively. The annual effective dose due to intake of 210 Pb through leafy vegetables varied in the range of 7.9 - 76.0 μSv a -1 with a mean value of 35.2 ìSv a -1 . And through fruit and root vegetables, it varied in the range of 34.9 - 207 μSv a -1 with a mean value of 119 ìSv a -1 . It was found that radionuclide concentration in plants was not linearly related to soil concentration. (author)

  16. The Ypresian clays as alternative host rock for radioactive waste disposal in Belgium. A transferability study

    International Nuclear Information System (INIS)

    Van Baelen, Herve; Wouters, Laurent; Brassinnes, Stephane; Van Geet, Maarten; Vandenberghe, Noel

    2012-01-01

    Document available in extended abstract form only. For the long-term management of high-level and/or long-lived radioactive waste, ONDRAF/NIRAS advises deep geological repository in a plastic clay host rock. Since the seventies, Oligocene Boom Clay has been extensively studied for this purpose and is, in the Belgian context, considered as the reference host rock with Mol as the reference site for the RD and D. The alternative host rock, the Ypresian clays, has been studied for their basic properties, from the late nineties onwards, with Doel as reference site. This study aims at determining to which extent methodologies, knowledge and know-how can be transferred from Boom Clay to the Ypresian clays, in order to enhance the knowledge of this alternative without excessive research efforts. It evaluates the present knowledge of the Ypresian clays and figures out which elements are sufficiently known and understood, which elements of the Boom Clay can be reused and which need additional research. The Ypresian clays refer to a nearly continuous sequence of non-indurated, clayey layers, deposited early in the Eocene, in an open marine basin. It has a total thickness of 100 m or more and, in the area of interest, it occurs at a few hundreds of meters depth. Apart from a very slight tilt to the north, no major structures are known to affect the Ypresian clays in the investigated area. The lateral continuity inside the Ypresian clays might, however, be compromised by the potential occurrence of small-scale intra-formational faults. Two drilling campaigns, carried out in the framework of potential radioactive waste disposal, allowed to collect new data and describe and compare the Ypresian clays relative to Boom Clay. The grain size distribution of both clays is comparable. Although the minerals they are composed of are the same, the relative proportions within the clay fraction are significantly different, the Ypresian clays containing more smectite and swelling mixed

  17. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  18. Process and container system for transferring or transporting fuel elements from a nuclear power station to a store

    International Nuclear Information System (INIS)

    Vox, A.J.

    1984-01-01

    A system of containers with three types of containers (an inside container, a transport container and a storage container) is used. One either sets the inside container open on the lid side into the transport container first in the water pond of the nuclear power station, and one then sets the fuel elements into the inside container, or one places the inside container, loaded with fuel elements away from the transport container, into the transport container. Both containers are then closed and are transported to the store as a unit. The storage container open on the lid side is prepared there, the floor of the transport container is opened and this, together with the inside container, is lifted above the storage container or set above the storage container. The inside container is then lowered onto the storage container, the transport container is removed and the lid of the storage container is closed. (orig./HP) [de

  19. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  20. Identification of Heat Transfer Resistance of Scale Deposit on theEvaporator of Radioactive Waste Management Installation

    International Nuclear Information System (INIS)

    Zainus-Salimin

    2000-01-01

    Identification of heat transfer resistance of scale deposit from fixedhardness of liquid waste in the form of CaSO 4 and MgSO 4 ratio 2:1 has beendone on the evaporation system of Serpong Nuclear Facilities fordetermination of the quality of heat transfer obstruction from heating sourceto solution. Evaporation simulation of solution containing hardness withconcentration 0.5; 1; 2; and 2.5% mass were done on the stainless steelcontainer of 1 / volume with electrical heater in which a stainless-steeltube is put down on the base container. After 24, 168, 336, 504 and 672 hoursevaporation process it is obtained the thickness of scale deposit on thesurface of tube for determining the fouling factor. Heat transfer resistanceof scale deposit from 672 hours evaporation of solution 2.5% concentrationhampered heat transfer, the value of fouling factor be superior to limitsvalue of 0.000515 hours.m 2 . o C/kcal.The fouling factor from the evaporationof solution of 0.5; 1; and 2% concentration during 672 hours be inferior tolimits value. (author)

  1. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  2. EC Study: Radioactive waste and spent fuel data collection, reporting, record keeping and knowledge transfer by EU Member States

    International Nuclear Information System (INIS)

    Hilden, Wolfgang; )

    2012-01-01

    Preservation of RK and M starts in the pre-closure phase. A comprehensive waste inventory is required which needs to be maintained over significantly long time spans before RWM has reached the step of disposal. Since long term management solutions are often not clearly defined, disposal acceptance criteria are and cannot be known beforehand, at least not in early stages of disposal programs. Thus a Preservation of RK and M should therefore be approached within the rationale of life cycle analysis. There is a wide variety of approaches with regard to waste inventories at EU level, and retrieving data is often lengthy and difficult. The Commission dedicated a study to identify good practices and formulate recommendations. There are two main issues; firstly waste data collection, recording and reporting, and secondly record keeping and knowledge transfer. One concerns the present time, while the other is concerned with long periods of time. With regard to the analysis of data requirements, it was found that they depend on the context of their use, be it safe treatment, storage and disposal, policy making and capacity planning or funding. The study identifies for each use relevant data sets. Thus, the question of the purpose of RK and M preservation heavily influences the question of which records need to be maintained (cf. the RK and M Vision Document). This is also true with regard to the potential need to cope with changes of the regulatory system or overall RWM policy, which requires to preserve raw data in continuously accessible form. On the other hand the contextualization of data is needed, for which the safety case may be a useful tool. With regard to legacy waste, re-assessment or re-conditioning campaigns should aim at maximum information gain. Agreements on how to coherently account for the total volume of the waste need to be made. A balance needs to be found between completeness and overload (watch out for 'Keep everything, find nothing'). Data security

  3. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories [ heat transfer and nuclear disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lyczkowski, R. W.; Solbrig, C. W.; Gidaspow, D.

    1980-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.

  4. Contamination movement around a permeable reactive barrier at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Conlon, Kevin J.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. In early 2004, groundwater contaminants began moving around the southern end of a permeable reactive barrier (PRB) installed by a consultant in December 2002. The PRB is a 130-foot-long and 3-foot-wide barrier consisting of varying amounts of zero-valent iron with or without sand mixture. Contamination moving around the PRB probably has been transported at least 75 feet downgradient from the PRB at a rate of about 15 to 29 feet per year.

  5. Analysis of heat and mass transfer in sub-seabed disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hickox, C.E.; Gartling, D.K.; McVey, D.F.; Russo, A.J.; Nuttall, H.E.

    1980-01-01

    A mathematical basis is developed for the prediction of thermal and radionuclide transport in marine sediments. The theory is applied to the study of radioactive waste disposal by emplacement, in specially designed containers, well below the sediment/water interface. Numerical results are obtained for a specified model problem through use of two computer programs designed primarily for the analysis of waste disposal problems. One program (MARIAH) provides descriptions of the temperature and velocity fields induced by the presence of a container of thermally active nuclear waste. A second program (IONMIG), which utilizes the results of the thermal analysis, is used to provide predictions for the migration of four representative radionuclides: 239 Pu, 137 Cs, 129 I, and 99 Tc

  6. National economic models of industrial water use and waste treatment. [technology transfer

    Science.gov (United States)

    Thompson, R. G.; Calloway, J. A.

    1974-01-01

    The effects of air emission and solid waste restrictions on production costs and resource use by industry is investigated. A linear program is developed to analyze how resource use, production cost, and waste discharges in different types of production may be affected by resource limiting policies of the government. The method is applied to modeling ethylene and ammonia plants at the design stage. Results show that the effects of increasingly restrictive wastewater effluent standards on increased energy use were small in both plants. Plant models were developed for other industries and the program estimated effects of wastewater discharge policies on production costs of industry.

  7. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  8. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  9. Thermal management of space stations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.

  10. Genetic Polymorphism of the Lactoferrin Gene in Dairy and Beef Cattles at National Artificial Insemination and Embryo Transfer Stations

    Directory of Open Access Journals (Sweden)

    Anneke Anggraeni

    2016-12-01

    Full Text Available Lactoferrin (LTF adalah gen pengontrol komponen protein susu dan memiliki karakteristik sebagai antimikrobial. LTF pada susu berfungsi untuk mencegah diare, sedangkan pada sapi laktasi untuk mencegah mastitis pada ambing. Mempertimbangkan peran penting dari gen LTF, maka perlu dilakukan peningkatan kadar LTF dalam susu melalui seleksi pada taraf DNA. Polymorfisme genetik dari gen LTF diidentifikasi pada sapi perah dan potong dengan metoda Polymerase Chain Reaction - Restricsion Fragment Length Polymorphism (PCR-RFLP, dengan enzim restriksi EcoRI. Genotyping dilakukan pada sapi perah Friesian Holstein (FH total sejumlah 89 ekor, meliputi dari Balai Inseminasi Buatan Lembang (BIB Lembang untuk 17 pejantan, Balai Besar IB Singosari (BBIB Singosari untuk 32 pejantan, dan Balai embrio Transfer Cipelang (BET Cipelang pada 40 dara. Genotyping dilakukan pula pada sapi potong dara berasal dari empat bangsa, meliputi Limousin (14 ekor, Angus (5 ekor, Simmental (13 ekor dan Brahman (5 ekor dari BET Cipelang. Gen LTF|EcoRI pada sapi perah dan potong pengamatan menghasilkan dua tipe alel, yaitu alel A dan B. Kedua jenis sapi tersebut menghasilkan hanya dua genotipe, yaitu genotipe AA dan AB, tanpa genotipe BB. Ini dapat menjadi hal yang baik karena genotipe AA dan AB dipertimbangkan berasosiasi dengan ketahan pada mastitis. Nilai-nilai dari heterozygositas observasi (Ho dari gen ini lebih tinggi dibandingkan heterozigositas ekspektasi (He. Disimpulkan bahwa gen LTF|EcoRI memiliki variasi yang baik pada sapi perah dan sapi potong dari ketiga balai bibit nasional tersebut.

  11. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    International Nuclear Information System (INIS)

    Bolinsky, F.T.; Ross, J.; Dennis, D.S.

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO 2 ) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO 2 will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO 2 is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs

  12. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    advective movement of contaminants from selected sites within the solid waste management units to discharge points was simulated using MODPATH. Most of the particles were discharged to the nearest surface-water feature after traveling less than 1,000 feet in the ground-water system. Most areas within 1,000 feet of a surface-water feature or storm sewer had traveltimes of less than 50 years, based on an effective porosity of 40 percent. Contributing areas, traveltimes, and pathlines were identified for 224 wells at Naval Station Mayport under steady-state and transient conditions by back-tracking a particle from the midpoint of the wetted screen of each well. Traveltimes to contributing areas that ranged between 15 and 50 years, estimated by the steady-state model, differed most from the transient traveltime estimates. Estimates of traveltimes and pathlines based on steady-state model results typically were 10 to 20 years more and about twice as long as corresponding estimates from the transient model. The models differed because the steady-state model simulated 1996 conditions when Naval Station Mayport had more impervious surfaces than at any earlier time. The expansion of the impervious surfaces increased the average distance between contributing areas and observation wells.

  13. Potential for radioactive patient excreta in hospital trash and medical waste

    International Nuclear Information System (INIS)

    Evdokimoff, V.; Cash, C.; Buckley, K.

    1994-01-01

    Radioactive excreta from nuclear medicine patients can enter solid waste as common trash and medical biohazardous waste. Many landfills and transfer stations now survey these waste streams with scintillation detectors which may result in rejection of a hospital's waste. Our survey indicated that on the average either or both of Boston University Medical Center Hospital's waste streams can contain detectable radioactive excreta on a weekly basis. To avoid potential problems, radiation detectors were installed in areas where housekeepers carting trash and medical waste must pass through to ensure no radioactivity leaves the institution. 3 refs

  14. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    Science.gov (United States)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  15. Practical aspects of heat transfer in radioactive-waste repository design

    International Nuclear Information System (INIS)

    Deane, J.S.; Hollis, A.A.

    1979-01-01

    An assessment has been made of the effect on temperature rises of the practical features associated with the disposal of high-level radioactive wastes in a repository constructed within a granite formation. Encapsulation, the use of a backfill material, and reduction in the axial spacing between blocks to 8m will have little effect on temperature rises. On the other hand thermal conductivity does have a marked effect on the temperature rises in the granite, and there is clear need for the measurement of granite thermal conductivity at selected sites. (author)

  16. The mass transfers of water by diffusion and permeation through a covering of wastes disposal

    International Nuclear Information System (INIS)

    Beaudoing, G.; Duding, B.; Margrita, R.; Launay, M.

    1991-01-01

    The purpose of the experiments described in this article is to measure the transfer conditions similarly to the reality 'in situ', for a barrier constituted of sodic bentonite. For that purpose, these experiments were realized with a possibility of distension into the material receiving the membrane. The studied samples are constituted by a film of heavy, strong, durable and supple propylene coated with a bed of particles of sodic mineral bentonite. This clay is covered with a thin film of polyester for the mechanical protection (transport, placing). The characterisation of water transfer was realized with non mineral tritiated water HTO, nH 2 0 with a specific activity of 37 GBq.m -3 (1 Ci.m -3 ) and placed in the upward cavity of the permeameter. Diffusion, permeation and permeability coefficients are determined under pressure of 0.15.10 5 Pa (1.50 meter of water) and 10 5 Pa (10 meters of water)

  17. Analytical methods of heat transfer compared with numerical methods as related to nuclear waste repositories

    International Nuclear Information System (INIS)

    Estrada-Gasca, C.A.

    1986-01-01

    Analytical methods were applied to the prediction of the far-field thermal impact of a nuclear waste repository. Specifically, the transformation of coordinates and the Kirchhoff transformation were used to solve one-dimensional nonlinear heat conduction problems. Calculations for the HLW and TRU nuclear waste with initial areal thermal loadings of 12 kW/acre and 0.7 kW/acre, respectively, are carried out for various models. Also, finite difference and finite element methods are applied. The last method is used to solve two-dimensional linear and nonlinear heat conduction problems. Results of the analysis are temperature distributions and temperature histories. Explicit analytical expressions of the maximum temperature rise as a function of the system parameters are presented. The theoretical approaches predict maximum temperature increases in the overburden with an error of 10%. When the finite solid one-dimensional NWR thermal problem is solved with generic salt and HLW thermal load as parameters, the maximum temperature rises predicted by the finite difference and finite element methods had maximum errors of 2.6 and 6.7%, respectively. In all the other cases the finite difference method also gave a smaller error than the finite element method

  18. The transfer of reprocessing wastes from north-west Europe to the Arctic

    Science.gov (United States)

    Kershaw, Peter; Baxter, Amanda

    The discharge of radioactive waste, from nuclear fuel reprocessing facilities, into the coastal waters of north-west Europe has resulted in a significant increase in the inventories of a number of artificial radionuclides in the North Atlantic. Radiocaesium, 90Sr and 99Tc, which behave conservatively in seawater, have been used widely as tracers of water movement through the North Sea, Norwegian Coastal Current, Barents Sea, Greenland Sea, Fram Strait, Eurasian Basin, East Greenland Current and Denmark Strait overflow. These studies are summarised in the present paper. It has been estimated that 22% of the 137Cs Sellafield discharge has passed into the Barents Sea, en route to the Nansen Basin, via the Bjomoya-Fugloya Section, with another 13% passing through the Fram Strait. This amounts to 14 PBq 137Cs. Quantifying the influx of other radionuclides has been more problematic. The inflowing Atlantic water now appears to be diluting waters in the Arctic Basin, which were contaminated in the late 1970s and early 1980s as a result of the substantial decrease in the discharge of reprocessing wastes. Sellafield (U.K.) has dominated the supply of 134Cs, 137Cs, 90Sr, 99Tc and Pu, whereas La Hague (France) has contributed a larger proportion of 129I and 125Sb.

  19. [Optimization for MSW logistics of new Xicheng and new Dongcheng districts in Beijing based on the maximum capacity of transfer stations].

    Science.gov (United States)

    Yuan, Jing; Li, Guo-xue; Zhang, Hong-yu; Luo, Yi-ming

    2013-09-01

    It is necessary to achieve the optimization for MSW logistics based on the new Xicheng (combining the former Xicheng and the former Xuanwu districts) and the new Dongcheng (combining the former Dongcheng and the former Chongwen districts) districts of Beijing. Based on the analysis of current MSW logistics system, transfer station's processing capacity and the terminal treatment facilities' conditions of the four former districts and other districts, a MSW logistics system was built by GIS methods considering transregional treatment. This article analyzes the MSW material balance of current and new logistics systems. Results show that the optimization scheme could reduce the MSW collection distance of the new Xicheng and the new Dongcheng by 9.3 x 10(5) km x a(-1), reduced by 10% compared with current logistics. Under the new logistics solution, considering transregional treatment, can reduce landfill treatment of untreated MSW about 28.3%. If the construction of three incineration plants finished based on the new logistics, the system's optimal ratio of incineration: biochemical treatment: landfill can reach 3.8 : 4.5 : 1.7 compared with 1 : 4.8 : 4.2, which is the ratio of current MSW logistics. The ratio of the amount of incineration: biochemical treatment: landfill approximately reach 4 : 3 : 3 which is the target for 2015. The research results are benefit in increasing MSW utilization and reduction rate of the new Dongcheng and Xicheng districts and nearby districts.

  20. Requirements Verification Report AN Farm to 200E Waste Transfer System for Project W-314, Tank Farm Restoration and Safe Operations

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    1999-01-01

    This Requirements Verification Report (RVR) for Project W-314 ''AN Farm to 200E Waste Transfer System'' package provides documented verification of design compliance to all the applicable Project Development Specification (PDS) requirements. Additional PDS requirements verification will be performed during the project's procurement, construction, and testing phases, and the RVR will be updated to reflect this information as appropriate

  1. Health physics and operational experience gained from slurry transfer of wastes containing 780 curies of radium-226

    International Nuclear Information System (INIS)

    Borden, W.C.; Land, R.R.

    1986-01-01

    During remedial action at the DOE Niagara Falls Storage Site 3.5 million kilogram (3891 ton) of uranium ore residues (code named K-65 during the Manhattan Project) were slurry transferred about one mile from a concrete water tower to an engineered waste containment facility. This operation presented a number of unusual health physics problems, mandating special handling, measurement, and exposure control methodologies. Principles among these were: (1) a specific activity of 220,000 pCi/gm; (2) open air concentrations of radon-222 of up to 60,000 pCi/1; (3) radon concentrations inside the tower of 1,700,000 pCi/1; (4) exposure rates of up to 350 mR/hr; (5) widely varying climatic conditions; and (6) working atop a 165 foot tall, 40 foot diameter, structure in these conditions. This paper will describe the transfer operation, its problems, problem solutions, and successes. Detailed attention is given to personnel and environmental monitoring, as well as contamination and exposure control methodologies. Operations concluded with the K-65 residues stored in an environmentally stable condition, less than 10 man-rem of worker exposure, and average off-site radon-222 concentrations of less than 0.3 pCi/1 above background

  2. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    International Nuclear Information System (INIS)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    2012-01-01

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ∼ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ∼ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ∼ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron

  3. Preliminary evaluation of the impact and inter-generation risk transfers related to the release and disposal of radioactive waste from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tort, V.; Lochard, J.; Schneider, T.; Sugier, A.

    1997-12-01

    This report is an attempt to contribute to the complex issue of the decision-making in the field of radioactive waste management. Because of the complex and multidimensional nature of the distant future consequences of waste management options, their analysis implies the taking into considerations of various aggregated indicators which depend on the elapse of time during which the radionuclides remain in the environment and their local, regional or world-wide dispersion. This report is a preliminary work sponsored by IPSN mainly focused on the risk transfer dimension, inherent to waste disposal management. Its objective is to illustrate, using the French nuclear fuel cycle context, the relative impact of some simple waste management options, outlining particularly the issue of inter-generation risk transfer. Even though the selected six radionuclides are the most important, a complete assessment should include all the radionuclides contained in the waste, what is particularly important in case of underground waste disposal were both normal evolution scenarios and intrusion must be considered. The extreme alternatives, i.e. the total disposal or total release of the radionuclides are analyzed but realistic are the intermediate options, which should be thoroughly examined from the technical point of view. The analysis of intermediate management options could give an estimation of the most appropriate solution in an ALARA perspective

  4. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  5. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1977-11-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester, a residue recovery system, and an off-gas treatment system

  6. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1978-01-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester a residue recovery system, and an off-gas treatment system

  7. Investigation of Contaminated Ground Water at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006-2007

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2008-01-01

    The U.S. Geological Survey investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. The permeable reactive barrier (PRB) along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells 12MW-10S and 12MW-03S, upgradient from the PRB, showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest showed a sharp increase, followed by a decrease. In 2007, the VOC concentrations began to increase in well 12MW-12S, downgradient from the PRB and thought to be unaffected by the PRB. The VOC-concentration changes in the forest, such as at well 12MW-12S, may represent lateral shifting of the plume in response to changes in ground-water-flow direction or may represent movement of a contamination pulse through the forest.

  8. Low- and intermediate-level waste management practices in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1982-05-01

    Low- and intermediate-level wastes arise in Canada from the operation of nuclear power stations, nuclear research establishments, nuclear fuel and radioisotope production facilities, as well as from many medical, research and industrial organizations. Essentially all of the solid radioactive wastas are stored in a retrievable fashion at five waste management areas from which a portion is expected to be transferred to future disposal facilities. Waste processing for volume reduction and stabilization is becoming an increasingly important part of low-level waste management because of the advantages it provides for both interim storage currently, and permanent disposal in the future

  9. Acceptance for Beneficial Use (ABU) Update for 241-AW-104 Waste Transfer Project

    International Nuclear Information System (INIS)

    MEWES, B.S.

    2001-01-01

    In October of 2000 an Engineering Task Plan (ETP), RPP-6869, was drafted to define objectives, document requirements, and define organizational responsibilities for the purpose of design installation and turnover of the 241-AW-104 Pump Replacement Project The ETP included an Acceptance for Beneficial Use (ABU) checklist, which delineated all tasks necessary to turn the 241-AW-104 Replaced Transfer Pump over to Operations, Maintenance, and Plant Engineering Signature approval of the respective Engineering Data Transmittal (EDT 630501) signified agreement that the ABU checklist was all-inclusive. In January 2001 an additional EDT (EDT 624153) was drafted to define completed ABU items, provide corresponding supporting documentation, and status open items in need of completion. This supporting document is to serve two purposes: (1) update ABU checklist items completed since January 2001, and (2) define remaining ABU checklist items in need of completion

  10. Validation of TEMP: A finite line heat transfer code for geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Atterbury, W.G.; Hetteburg, J.R.; Wurm, K.J.

    1987-09-01

    TEMP is a FORTRAN computer code for calculating temperatures in a geologic repository for nuclear waste. A previous report discusses the structure, usage, verification, and benchmarking of TEMP V1.0 (Wurm et al., 1987). This report discusses modifications to the program in the development of TEMP V1.1 and documents the validation of TEMP. The development of TEMP V1.1 from TEMP V1.0 consisted of two major efforts. The first was to recode several of the subroutines to improve logic flow and to allow for geometry-independent temperature calculation routines which, in turn, allowed for the addition of the geometry-independent validation option. The validation option provides TEMP with the ability to model any geometry of temperature sources with any step-wise heat release rate. This capability allows TEMP to model the geometry and heat release characteristics of the validation problems. The validation of TEMP V1.1 consists of the comparison of TEMP to three in-ground heater tests. The three tests chosen were Avery Island, Louisiana, Site A; Avery Island, Louisiana, Site C; and Asse Mine, Federal Republic of Germany, Site 2. TEMP shows marginal comparison with the two Avery Island sites and good comparison with the Asse Mine Site. 8 refs., 25 figs., 14 tabs

  11. Comparison of the results of several heat transfer computer codes when applied to a hypothetical nuclear waste repository

    International Nuclear Information System (INIS)

    Claiborne, H.C.; Wagner, R.S.; Just, R.A.

    1979-12-01

    A direct comparison of transient thermal calculations was made with the heat transfer codes HEATING5, THAC-SIP-3D, ADINAT, SINDA, TRUMP, and TRANCO for a hypothetical nuclear waste repository. With the exception of TRUMP and SINDA (actually closer to the earlier CINDA3G version), the other codes agreed to within +-5% for the temperature rises as a function of time. The TRUMP results agreed within +-5% up to about 50 years, where the maximum temperature occurs, and then began an oscillary behavior with up to 25% deviations at longer times. This could have resulted from time steps that were too large or from some unknown system problems. The available version of the SINDA code was not compatible with the IBM compiler without using an alternative method for handling a variable thermal conductivity. The results were about 40% low, but a reasonable agreement was obtained by assuming a uniform thermal conductivity; however, a programming error was later discovered in the alternative method. Some work is required on the IBM version to make it compatible with the system and still use the recommended method of handling variable thermal conductivity. TRANCO can only be run as a 2-D model, and TRUMP and CINDA apparently required longer running times and did not agree in the 2-D case; therefore, only HEATING5, THAC-SIP-3D, and ADINAT were used for the 3-D model calculations. The codes agreed within +-5%; at distances of about 1 ft from the waste canister edge, temperature rises were also close to that predicted by the 3-D model

  12. Implementation of the waste management transfer act. Requirements from a regulatory point of view; Zur Umsetzung des Entsorgungsuebergangsgesetzes. Anforderungen aus regulatorischer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Dehn, Christian [PreussenElektra GmbH, Hannover (Germany). Regulierung, Grundsatzfragen

    2017-11-15

    In future in Germany, the state will be responsible for financing and handling the interim and final storage of radioactive waste from nuclear power plants. With regard to interim storage, this objective is achieved with the provisions of the Waste Management Transfer Act. Regulatory implementation is based on these regulations. BGZ Gesellschaft fuer Zwischenlager mbH is responsible for interim storage on behalf of the Federal Government. Simultaneously with the transfer of interim storage facilities to BGZ a legal transfer of approval is carried out. Insofar as there is a technical, organisational or personnel conjunction with the nuclear power plant operation, which continues to exist beyond this deadline and is relevant for regulatory purposes, a regulation is made via a service contract with the BGZ. This ensures compliance with the licensing regulations. Irradiated fuel assemblies and the waste from reprocessing can be handed over to BGZ from 1 January 2019 onwards and waste with negligible heat generation can be disposed of as of the determination of their proper packaging.

  13. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  14. Mobile environmental radiation monitoring station

    International Nuclear Information System (INIS)

    Assido, H.; Shemesh, Y.; Mazor, T.; Tal, N.; Barak, D.

    1997-01-01

    A mobile environmental radiation monitoring station has been developed and established for the Israeli Ministry of Environment. The radiation monitoring station is ready for immediate placing in any required location, or can be operated from a vehicle. The station collects data Tom the detector and transfers it via cellular communication network to a Computerized Control Center for data storage, processing, and display . The mobile station is fully controlled from the. Routinely, the mobile station responses to the data request accumulated since the last communication session. In case of fault or alarm condition in the mobile station, a local claim is activated and immediately initiates communication with the via cellular communication network. (authors)

  15. PROSPECTS AND FEATURES OF BIOGASOLINE STATIONS

    OpenAIRE

    Grigorash O. V.; Kvitko A. V.; Koshko A. R.

    2015-01-01

    The article deals with one of the promising areas belonging to energy-saving technologies; it is the introduction of biogasoline stations into agricultural production. The analysis of the application in the world has been shown. To determine the cost-effectiveness of biogasoline stations we have shown the data for the calculation of the potential of biomass: organic waste settlements; animal waste; waste of poultry; crop residues; waste processing industry. We have obtained graphic dependence...

  16. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    International Nuclear Information System (INIS)

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository (DGR) for low and intermediate level waste in southern Ontario is currently proposed, at a depth of approximately 680 m in an argillaceous limestone formation (Cobourg Limestone) overlain by 200 m of low permeability shale (Ordovician Shale). Significant quantities of gas could be generated in the aforementioned DGR from several processes (e.g., degradation of waste forms, corrosion of waste containers). The accumulation and release of such gases from the repository system may affect a number of processes that influence its long-term safety. Consequently, safety assessments of the proposed DGR need to be supported by a solid understanding of the main mechanisms associated with gas generation and migration and the capability to mathematically model those mechanisms. The development of those mathematical models would usually require the consideration of complex coupled thermo-hydro-mechanical- chemical (THMC) processes. A research program is being conducted in the Department of Civil Engineering of the University of Ottawa in collaboration with the Canadian Nuclear Safety Commission (CNSC) to model the coupled THMC processes associated with gas migration and their impacts on the safety of DGR in southern Ontario. The development and validation of such model as well as the assessment of the impact of gas migration need the acquisition of sufficient amount of (good quality) data on the geomechanical, geochemical, hydraulic, thermal properties of the sedimentary rocks in Southern Ontario as well as relevant gas transport parameters, such as gas entry pressure, Klinkenberg effect, intrinsic permeability, capillary pressure-water saturation relationship. During the past fifteen years, several laboratory and field investigations have been conducted in several countries to acquire geo-data to study and model the THMC processes associated with gas migration in DGR in sedimentary rocks. However

  17. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  18. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  19. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  20. Numerical analyses of the effect of a biphasic thermosyphon vapor channel sizes on the heat transfer intensity when heat removing from a power transformer of combined heat and power station

    Directory of Open Access Journals (Sweden)

    Nurpeiis Atlant

    2017-01-01

    Full Text Available Numerical analyses of the effect of a biphasic thermosyphon vapor channel sizes on the heat transfer intensity was conducted when heat removing from an oil tank of a power transformer of combined heat and power station (CHP. The power transformer cooling system by the closed biphasic thermosyphon was proposed. The mathematical modeling of heat transfer and phase transitions of coolant in the thermosyphon was performed. The problem of heat transfer is formulated in dimensionless variables “velocity vorticity vector – current function – temperature” and solved by finite difference method. As a result of numerical simulation it is found that an increase in the vapor channel length from 0.15m to 1m leads to increasing the temperature difference by 3.5 K.

  1. Shippingport Station Decommissioning Project (SSDP). A progress report

    International Nuclear Information System (INIS)

    Mullee, G.R.; Usher, J.M.

    1986-01-01

    The Shippingport Atomic Power Station was shutdown in October, 1982 by the Plant Operator, Duquesne Light Company, for decommissioning by the US Department of Energy. The planning for decommissioning was completed in September, 1983. In September, 1984 operational responsibility for the station was transferred to the DOE's Decommissioning Operations Contractor - the General Electric Company (assisted by an integrated subcontractor, MK Ferguson Company). Significant accomplishments to date include the completion of all prerequisites for decommissioning, the removal of asbestos from plant systems, loading of irradiated reactor components into the reactor vessel for shipment, the commencement of electrical deactivations and the commencement of piping/component removal. Decontamination and waste processing are progressing in support of the project schedule. The reactor vessel will be shipped as one piece on a barge for burial at Hanford, Washington. The final release of the site is scheduled for April, 1990. A technology transfer program is being utilized to disseminate information about the project

  2. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  3. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  4. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Kelly, S.E.; Haass, C.C.; Kovach, J.L.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through out the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  5. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Haas, C.C.; Kovach, J.L.; Kelly, S.E.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  6. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  7. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  8. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project

  9. Consequences of a radioactive surface pool resulting from waste transfer operations between tanks 214-C-106 and 241-AY-102

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J.

    1997-08-05

    This document contains supporting calculations for quantifying the dose consequences from a pool formed from an underground leak or a-leak from an above grade structure for the Waste Retrieval Sluicing System (Project W-320), i.e., sluicing the contents of Tank 241-C-106 (high heat, SST) into Tank 241-AY-102 (aging waste, DST).

  10. Consequences of a radioactive surface pool resulting from waste transfer operations between tanks 214-C-106 and 241-AY-102

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1997-01-01

    This document contains supporting calculations for quantifying the dose consequences from a pool formed from an underground leak or a-leak from an above grade structure for the Waste Retrieval Sluicing System (Project W-320), i.e., sluicing the contents of Tank 241-C-106 (high heat, SST) into Tank 241-AY-102 (aging waste, DST)

  11. Mathematical modeling in municipal solid waste management: case study of Tehran.

    Science.gov (United States)

    Akbarpour Shirazi, Mohsen; Samieifard, Reza; Abduli, Mohammad Ali; Omidvar, Babak

    2016-01-01

    Solid Waste Management (SWM) in metropolises with systematic methods and following environmental issues, is one of the most important subjects in the area of urban management. In this regard, it is regarded as a legal entity so that its activities are not overshadowed by other urban activities. In this paper, a linear mathematical programming model has been designed for integrated SWM. Using Lingo software and required data from Tehran, the proposed model has been applied for Tehran SWM system as a case study. To determine the optimal status of the available system for Tehran's Solid Waste Management System (SWMS), a novel linear programming model is applied. Tehran has 22 municipal regions with 11 transfer stations and 10 processing units. By running of the model, the transfer stations and processing units are decreased to 10 and 6 units, respectively. The proposed model is an alternative method for improvement the SWMS by decreasing the transfer stations and processing units.

  12. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Draft

    International Nuclear Information System (INIS)

    1986-12-01

    In accordance with the National Environmental Policy Act and the Commission's implementing regulations and its April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This draft supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the draft supplement includes a specific environmental evaluation of the licensee's recently submitted proposal for water disposition

  13. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A Final Programmatic Environmental Impact Statement (PEIS) related to the decontamination and disposal of radioactive wastes resulting from the March 28, 1979, accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission in response to a directive issued by the Commission on November 21, 1979. This statement is an overall study of the activities necessary for decontamination of the facility, defueling, and disposition of the radioactive wastes. The available alternatives considered ranged from implementation of full cleanup to no action other than continuing to maintain the reactor in a safe shutdown condition. Also included are comments of governmental agencies, other organizations, and the general public on the Draft PEIS on this project, and staff responses to these comments. (author)

  14. The nuclear techniques in function of improving the efficiency of the station of treatment of industrial waste in PETROBRAS; Las tecnicas nucleares en funcion de mejorar la eficiencia de la estacion de tratamiento de desechos industriales en PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Damera Martinez, Arnaldo; Ramos Espinosa, Kenia A. [Centro de Atencion a la Actividad Nuclear, Camaguey (Cuba)]. E-mail: damera@caonao.cmw.inf.cu; Pinto, Amenonia Ferreira; Barbalho, Andrea de Magalhaes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Derivet Zarzabal, Milagros [Instituto Cubano de Investigaciones Azucareras, La Habana (Cuba)

    2001-07-01

    The industry of the petroleum has become in the last decades, an user of the Nuclear Techniques. Due to the amplification of activities in some of the technical and economic characteristics of this industry the possibilities of application of the nuclear techniques in the oil sector are proportionally bigger and more important than in many other sectors of the economy. This work was carried out in the Station of Treatment of Industrial Wastes in PETROBRAS (Brazil). It has the objective of determinating the time of real residence of the misture of waste inside the separator by means of radioactive tracer, using the Tc-99m. This has a great economic and environmental importance, because when obtaining the time of residence experimentally in the separators, you can compare with those obtained theoretically, which allows to influence with more precision on the system, optimizing their operation, and diminishing the magnitude of its possible negative environmental impact. (author)

  15. Analysis of the behavior of tubular-type equipment for nuclear waste treatment: sensitivities of the parameters affecting mass transfer yield

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Kim, Eung Ho

    2007-01-01

    It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipment. as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the back mixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface. and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate

  16. The Princess Elisabeth Station

    Science.gov (United States)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  17. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  18. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu

    2017-01-01

    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are

  19. Amtrak Stations

    Data.gov (United States)

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  20. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  1. Radiation protection in transference of radioactive wastes among buildings of an intermediary deposit; Radioprotecao na transferencia de rejeitos radioativos entre edificios de um deposito intermediario

    Energy Technology Data Exchange (ETDEWEB)

    Mitake, Malvina Boni; Suzuki, Fabio Fumio, E-mail: mbmitake@ipen.b, E-mail: ffsuzuki@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/-CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Radioprotecao

    2011-10-26

    This paper describes the planning of radioprotection realized for transfer operation of radioactive wastes from two old buildings for a one of the new buildings. For planning purposes the operation was divided into nine stages and, for evaluation of collective dose, it was considered various relevant factors. The result of radioprotection optimization it was expected a total collective dose of 58.6 mSv per person. The measured dose per dosemeter of direct reading was of 3.9 mSv per person. These difference among the values is due to conservative factors used in the calculation

  2. UMTS Network Stations

    Science.gov (United States)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  3. Modelling the transfer of chemical pollutants to the aquifer in the very low level waste disposal site of El Cabril, Spain

    International Nuclear Information System (INIS)

    Duro, L.; Merino, J.; Grive, M.; Jordana, S.; Bruno, J.; Ordonez, M.

    2005-01-01

    A Very Low Level Radioactive Waste disposal site is being planned in El Cabril, Spain, where a Low and Intermediate Level Radioactive Waste disposal site is already located. As part of the ongoing safety assessment for this new facility, we have modelled the transfer of chemical pollutants from the disposal site to the underlying aquifer. The conceptual model is based on the water transport due to the infiltration of rain through the disposal cell. The source term is given by the dissolution of the initial inventory limited by sorption in cement (the main form of the waste) and secondary phase solubility. Several assumptions have been made: all protective layers are degraded, the system is saturated and the water flux is stationary and unidimensional in the vertical direction. A compartment modelling approach has been followed, and the system has been divided in four compartments: Top clay layer, Waste, Bottom clay layer and Subsoil. The latter acts as a sink representing the discharge to the aquifer. Advective and diffusive fluxes are defined between the compartments taking into account hydrological, geochemical and transport properties of the different materials and compounds. The results of the simulation (up to 106 years) show that there is an initial increase in the contaminant release to the aquifer due to the leaching of the waste by the infiltrating waters until a maximum is obtained. In most of the elements the maximum is given by their respective solubility limit and therefore the release is constant during all the time the concentration in the pore water is controlled by solubility. (author)

  4. ASSESSMENT OF MEDICAL WASTE MANAGEMENT IN EDUCATIONAL HOSPITALS OF TEHRAN UNIVERSITY MEDICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    M. H. Dehghani, K. Azam, F. Changani, E. Dehghani Fard

    2008-04-01

    Full Text Available The management of medical waste is of great importance due to its potential environmental hazards and public health risks. In the past, medical waste was often mixed with municipal solid waste and disposed in residential waste landfills or improper treatment facilities in Iran. In recent years, many efforts have been made by environmental regulatory agencies and waste generators to better managing the wastes from healthcare facilities. This study was carried in 12 educational hospitals of Tehran University of Medical Sciences. The goals of this study were to characterize solid wastes generated in healthcare hospitals, to report the current status of medical waste management and to provide a framework for the safe management of these wastes at the considered hospitals. The methodology was descriptive, cross-sectional and consisted of the use of surveys and interviews with the authorities of the healthcare facilities and with personnel involved in the management of the wastes. The results showed that medical wastes generated in hospitals were extremely heterogeneous in composition. 42% of wastes were collected in containers and plastic bags. In 75% of hospitals, the stay-time in storage sites was about 12-24h. 92% of medical wastes of hospitals were collected by covered-trucks. In 46% of hospitals, transferring of medical wastes to temporary stations was done manually. The average of waste generation rates in the hospitals was estimated to be 4.42kg/bed/day.

  5. A treatment station for solid radio-active waste at the Saclay nuclear research centre (1962); Station de traitement des dechets radioactifs solides au centre d'etudes nucleaires de Saclay (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P; Mestre, E; Lebrun, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    The waste from an atomic centre is very varied in nature, in form, and in activity, going from weakly contaminated laboratory waste to objects actuated in a pile and strongly radioactive. After one year's working of a pilot plant, a factory has been built, in which solide waste is treated and then conditioned in concrete blocks. The present communication describes the treatment and conditioning techniques in this factory which uses to a maximum remotely controlled operation. (authors) [French] Les dechets d'un Centre Atomique sont de natures, de forme et d'activites extremement variees, allant des dechets de laboratoires faiblement contamines, aux dispositifs actives en pile et fortement radioactifs. Apres l'exploitation pendant un an d'une unite pilote, une usine a ete construite dans laquelle les dechets solides sont traites, puis conditionnes en bloc de beton. La presente communication a pour objet la description des techniques de traitement et de conditionnement dans cette usine ou les operations sont au maximum commandees automatiquement et a distance. (auteurs)

  6. Response to resolve environmental problems caused from power stations. Reuse engineering of waste water; Hatsudensho kankyo mondai kaiketsu e mukete no torikumi. Haisui no sairiyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, T. [Hitachi Plant Engineering and Construction Co. Ltd., Tokyo (Japan); Hatta, T. [Kurita Water Industries Ltd., Tokyo (Japan)

    1997-10-15

    This paper introduces the electrodialysis method, the reverse osmosis method, and the evaporation system for reutilization of waste water in non-collection lines in power plants. In the electrodialysis method, waste water which has been divided and fed conventionally into a desalination chamber and a concentration chamber is supplied into the desalination chamber in the whole quantity to improve the recovery efficiency. A process of supplying sea water into the concentration chamber has made prevention of scaling possible. A small testing machine of high recovery electrodialysis system utilizing sea water was installed in an exclusively coal burning thermal power plant. A 3200-hour verification test has been performed, and its high treatment performance was verified. General waste water in thermal power plants is a waste water relatively less contaminated, which can be desalinated by using the reverse osmosis method to recover usable water at a low cost. However, the recovery rate decreases if salt concentration in the waste water is high. In contrast, the evaporation method can maintain the recovery rate at 90% or higher for salt concentration in the subject waste water of up to 20 g/l. Power plants in the United States built in inland areas use the evaporation method because of difficulty in obtaining sufficient amount of water. 6 refs., 22 figs., 7 tabs.

  7. Soil-to-Rice Seeds Transfer Factors of Radioiodine and Technetium for Paddy Fields around the Radioactive-Waste Disposal Site in Gyeongju

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Park, Doo Won; Keum, Dong Kwon; Han, Moon Hee

    2010-01-01

    Radiotracer experiments were performed over two years using pot cultures in a greenhouse to investigate soil-torice seeds transfer factors of radioiodine and technetium for paddy fields around the radioactive-waste disposal site in Gyeongju. Before transplanting rice seedlings, the top about 20 cm soils were thoroughly mixed with 125 I (2007) and 99 Tc (2008), and the pots were irrigated to simulate flooded rice fields. Transfer factors were determined as the ratios of the radionuclide concentrations in dry rice seeds (brown rice) to those in dry soils. Transfer factors of radioiodine and technetium were in the ranges of 1.1 x 10 -3 ∼ 6.4 x 10 -3 (three soils) and 5.4 x 10 -4 ∼ 2.5 x 10 -3 (four soils), respectively, for different soils. It seems that the differences in the clay content among soils played a more important role for such variations than those in the organic matter content and pH. As the representative values of radioiodine and technetium transfer factors for rice seeds, 2.9 x 10 -3 and 1.1 x 10 -3 , respectively, were proposed. In order to obtain more highly representative values in the future, investigations for the sites of interest need to be carried out continuously

  8. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2012-01-01

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  9. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [University of Eastern Finland, Department of Environmental Science, Kuopio (Finland)

    2012-03-15

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  10. Sex-dependent accumulation and maternal transfer of Dechlorane Plus flame retardant in fish from an electronic waste recycling site in South China

    International Nuclear Information System (INIS)

    Wu, Jiang-Ping; She, Ya-Zhe; Zhang, Ying; Peng, Ying; Mo, Ling; Luo, Xiao-Jun; Mai, Bi-Xian

    2013-01-01

    Knowledge is limited on sex-related accumulation and maternal transfer of Dechlorane Plus (DP) flame retardant in wildlife. In the present study, DP isomers were examined in liver and eggs of two fish species, northern snakehead and crucian carp, from an electronic waste recycling site in China. Hepatic ∑DP (sum of syn- and anti-DP) concentrations ranged 260–1920 ng/g lipid in northern snakehead and 340–1670 ng/g in crucian carp, with significantly higher levels in males relative to females. ∑DP concentrations ranged 4.6–310 ng/g lipid in the eggs, demonstrating their maternal transfer in the female fish. The mean eggs to liver concentration ratios (E/L ratios) were 0.03 and 0.03 in northern snakehead, and 0.26 and 0.25 in crucian carp, for syn- and anti-DP, respectively. A significantly negative correlation between the E/L ratios and the hepatic DP concentrations was observed, indicating a dose-dependent maternal transfer of DP isomers in the fish. -- Highlights: ► Male fish contained significantly higher DP residues than females. ► DP isomers can be maternally transferred to eggs in female fish. ► A dose-dependent maternal transfer of DP isomers was observed. ► First report on sex-related bioaccumulation of DP isomers in wildlife. -- Sex-dependent accumulation and species-specific maternal transfer of Dechlorane Plus flame retardant was observed in two highly contaminated fish species

  11. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  12. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    International Nuclear Information System (INIS)

    Tuovinen, Tiina S.; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-01-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R 2 -values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  13. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  14. DATA TRANSFER FROM A DEC PDP-11 BASED MASS-SPECTROMETRY DATA STATION TO AN MS-DOS PERSONAL-COMPUTER

    NARCIS (Netherlands)

    RAFFAELLI, A; BRUINS, AP

    This paper describes a simple procedure for obtaining better quality graphic output for mass spectrometry data from data systems equipped with poor quality printing devices. The procedure uses KERMIT, a low cost public domain software, to transfer ASCII tables to a MS-DOS personal computer where

  15. Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102

    International Nuclear Information System (INIS)

    Stewart, C.W.; Erian, F.F.; Meyer, P.A.

    1997-07-01

    The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual open-quotes fluffing factorclose quotes for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around ± 10%

  16. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  17. Official publication of the regulatory guide concerning control of LAW and MAW with negligible heat release, which are not delivered to the waste collection station of the Land

    International Nuclear Information System (INIS)

    1989-01-01

    Control of the LAW and MAW from nuclear installations is to be made so as to ensure that amounts, residence and status of conditioning of the wastes can be determined any time in order to provide for a safe interim storage or ultimate disposal by supervision and control of all waste management steps (waste treatment, conditioning, interim storage, transport). The checks have to determine the radionuclide inventory, and, independent of aforesaid measurements, the nuclear fuel content (e.g. Pu) has to be declared if the limit of 74 Bq/g is exceeded. The provisions of the regulatory guide are intended to be valid for a period of three years, and shall then be replaced by a statutory instrument (an ordinance to be prepared by the joint Committee of the Laender for Nuclear Energy - Executive Committee). (orig./HP) [de

  18. Prediction for the high-level alpha-active waste to be generated by nuclear power stations in the Member States of the European Communities

    International Nuclear Information System (INIS)

    Schmidt, E.

    1977-04-01

    Starting with a forecast for the nuclear power generating capacity to be installed in the Member States of the European Communities before the end of this century, a prediction is made of the annual production of high-level alpha-active waste from reprocessing plants and the corresponding accumulation up to the year 2000. The isotopic composition of the alpha-active waste from individual reactor types was calculated and an estimation of the influence of recycling plutonium through light water reactors on the produced quantity of higher actinides is made

  19. Mass transfer between waste canister and water seeping in rock fractures. Revisiting the Q-equivalent model

    International Nuclear Information System (INIS)

    Neretnieks, Ivars; Liu Longcheng; Moreno, Luis

    2010-03-01

    Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer

  20. Evaluation of the impact and inter-generation risk transfers related to the release and disposal of radioactive waste from the nuclear fuel cycle: a methodological exercise

    International Nuclear Information System (INIS)

    Croueail, P.; Schneider, T.; Sugier, A.

    2000-01-01

    Reflections about the consequences of decisions involving the long term raise various theoretical and complex issues related to the validity of the quantitative assessment of what could be future risks, but also to the ethical position we are adopting towards future generations. In this perspective, decision-making in the field of radioactive waste management, with a view to maintaining present and future radiation exposures as low as reasonably achievable, implies being able to discriminate among alternative options, i.e., being in a position to evaluate the differences in terms of radiological impacts between the options. Because of the complex and multi-dimensional nature of the distant future consequences of waste management options, their comparison involves expressing these impacts using various aggregated or disaggregated indicators, taking into account the time during which radionuclides remain in the environment and their local, regional, or world-wide dispersion. This paper is an attempt to contribute to the development of such a framework. It is mainly focused on the risk transfer dimension inherent to waste disposal management. Any decision to protect people now against the potential impacts of radioactive releases into the environment leads inevitably to the exposure of current generations and potentially of future generations. In this perspective, one of the key questions related to waste management is to decide on the best compromise between present dilution-dispersion into the environment or concentration in surface or underground disposal sites. The objective of this paper is to illustrate, the relative impact of different waste management options, focusing especially on inter-generational risk transfers. For the sake of the exercise, calculations have been performed for six particular radionuclides and for the current waste management options combining underground disposal and releases as well as for extreme alternative waste management options

  1. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  2. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  3. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  5. Removal of high-level radioactive substances contained with water from the Fukushima No. 1 Nuclear Power Stations. Some technical problems in waste treatment

    International Nuclear Information System (INIS)

    Amano, Osamu; Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira; Hattori, Toshio

    2011-01-01

    The Japanese government and plant operator Tokyo Electric Power Co. announced to process the highly radioactive water amounting to about 250,000 cubic meters by the end of fiscal year 2011. Radiation-contaminated water will be moved to the waste facility to remove oil and radioactive cesium using zeolite. The process using Prussian Blue is expected for the effectiveness. Other radioactive substances will be removed through precipitation using special chemicals and radioactivity in the water will be reduced to 10 -6 of its original level. The water will be then be returned to the reactors and used to cool them after going through a desalination process. The facility can process about 1,200 tons of contaminated water a day. TEPCO will store radioactive materials and other waste from the cleansing process at the Fukushima plant. They need to decide how the waste will finally be disposed of and to figure out what to do with the highly radioactive waste produced in the above process. Kurion Inc., Areva SA, and some domestic firms provide equipment and technology, but all the Japanese facilities and institutions should join to settle the problems. (S. Ohno)

  6. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  7. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  8. Handling, assessment, transport and disposal of tritiated waste materials at JET

    International Nuclear Information System (INIS)

    Newbert, G.; Haigh, A.; Atkins, G.

    1995-01-01

    All types of JET radioactive wastes are received for disposal at the Waste Handling Facility (WHF) which features a waste sorting and sampling station, a glove box, a compactor, and packaging and transfer systems. The WHF is operated as a contamination control area with monitored tritium discharges. Two main types of tritium monitors used are liquid scintillation counters and ionization chambers, and samples of various components and materials have now been assessed for tritium. The results so far indicate a widespread of tritium levels from 2Bq/g for cold gas transfer lines to 200kBq/g for in-vessel tiles. General soft housekeeping waste is assessed by a sniffing technique which has a limit of detection corresponding to 120Bq/g. Investigation of improved methods of tritium measurement and of component detritiation was made to facilitate future waste disposal. 8 refs., 6 figs., 2 tabs

  9. Remaining Sites Verification Package for 132-DR-1, 1608-DR Effluent Pumping Station. Attachment to Waste Site Reclassification Form 2005-035

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    Radiological characterization, decommissioning and demolition of the 132-DR-1 site, 1608-DR Effluent Pumping Station was performed in 1987. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling

  10. Numerical simulation of heat transfer and fluid flow in a DC plasma-arc device for waste thermal treatment

    International Nuclear Information System (INIS)

    Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi

    2010-01-01

    In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)

  11. Close-out of open pit and waste rock piles of a uranium mine in Guangxi province of China

    International Nuclear Information System (INIS)

    Xu Lechang; Zhang Zhao; Zhang Guopu; Liu Min

    2012-01-01

    Close-out of projects of a mine in Guangxi province of China includes open pit,east and west waste rock piles, ore transfer station, industrial fields, buildings, ore transporting road, and equipment and conduits. The following remediation limits are introduced: environment penetrating radiation dose rate and 222 Rn flux of open pit and waste rock piles, 226 Ra specific activity of soil and individual dose. Remediation objective and programme are discussed in details. Remediation effects are evaluated. (authors)

  12. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  13. Analysis of interactions of mechanical deformations and mass transfer on heat transfer from an underground nuclear-waste repository. Final report

    International Nuclear Information System (INIS)

    Bloom, S.G.; Hulbert, L.E.

    1979-10-01

    A review of existing models identified several effects that may need consideration in further model development. Most of these effects involved coupling equations through variable property values rather than through omission of any significant mechanism. However, it was also shown that more than one mechanism may adequately simulate a given set of experimental data and additional experimental data are needed to establish which (if any) of the possible mechanisms would actually control conditions in a nuclear waste repository. In particular, it is believed that mathematical modeling of major thermomechanical effects can be accomplished with finite element analysis computer programs, provided that adequate thermomechanical property data of salt and overburden are attained. An attempt was made to develop a general set of differential equations for simulating momentum, mass, and energy flows in geologic formations in order to illustrate the possible mechanisms and point out those included and not included in existing models. Most of the mechanisms are included in some manner in existing models although some approximations may not be adequate. More experimental data are required to assess the importance of most omitted mechanisms. Analysis of some data on brine migration in salt indicated that two mechanisms, acting simultaneously, could adequately explain the flow. These are Darcy flow and a combination of ordinary and thermal diffusion enhanced by temperature-dependent solubility. Equations based on this simultaneous action correlated the data very well and indicated the possible need to include both (and, maybe other) mechanisms in future models. A program is recommended for further study of brine mobility. An expected result of this program includes recommendations for further experimental work

  14. Analysis of interactions of mechanical deformations and mass transfer on heat transfer from an underground nuclear-waste repository. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.G.; Hulbert, L.E.

    1979-10-01

    A review of existing models identified several effects that may need consideration in further model development. Most of these effects involved coupling equations through variable property values rather than through omission of any significant mechanism. However, it was also shown that more than one mechanism may adequately simulate a given set of experimental data and additional experimental data are needed to establish which (if any) of the possible mechanisms would actually control conditions in a nuclear waste repository. In particular, it is believed that mathematical modeling of major thermomechanical effects can be accomplished with finite element analysis computer programs, provided that adequate thermomechanical property data of salt and overburden are attained. An attempt was made to develop a general set of differential equations for simulating momentum, mass, and energy flows in geologic formations in order to illustrate the possible mechanisms and point out those included and not included in existing models. Most of the mechanisms are included in some manner in existing models although some approximations may not be adequate. More experimental data are required to assess the importance of most omitted mechanisms. Analysis of some data on brine migration in salt indicated that two mechanisms, acting simultaneously, could adequately explain the flow. These are Darcy flow and a combination of ordinary and thermal diffusion enhanced by temperature-dependent solubility. Equations based on this simultaneous action correlated the data very well and indicated the possible need to include both (and, maybe other) mechanisms in future models. A program is recommended for further study of brine mobility. An expected result of this program includes recommendations for further experimental work.

  15. Programmatic Environmental Impact Statement: related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Final supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1984-10-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Wastes Resulting from March 28, 1979 Accident Three Mile Island Nuclear Station, Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup may entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although nearly 2000 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternative cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  16. Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Final report

    International Nuclear Information System (INIS)

    1987-06-01

    In accordance with the National Environmental Policy Act, the Commission's implementing regulations, and the Commission's April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the supplement includes a specific environmental evaluation of the licensee's proposal for water disposition. Although no clearly preferable water disposal alternative was identified, the supplement concluded that a number of alternatives could be implemented without significant environmental impact. The NRC staff has concluded that the licensee's proposed disposal of the accident-generated water by evaporation will not significantly affect the quality of the human environment. Further, any impacts from the disposal program are outweighed by its benefits

  17. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Draft supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1983-12-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Waste for the 1979 Accident at Three Mile Island Nuclear Station Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup will entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although only 1700 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternate cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  18. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  19. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Fisher, J.J.

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures

  20. Thermodynamic effects when utilizing waste heat from condensation in cases of a reduced vacuum in steam turbine plants of thermal power stations, to provide heat at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljevic, N.; Savic, B.; Stojakovic, M.

    1986-01-01

    There is an interesting variant of cogeneration in the steam turbine system of a thermal power plant, i.e. the utilisation of the waste heat of condensation with a reduced vacuum without reconstruction of the thermal power plant. The thermodynamic effect in cogeneration was calculated in consideration of the dynamics of heat consumption. This cogeneration process has the advantage of saving primary energy without reconstruction of the thermal power plant.

  1. Interactive firing and control station simulation of a waste incineration plant with grate firing; Interaktive Feuerungsbetriebs- und Leitstandssimulation einer Abfallverbrennungsanlage mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Boller, M.; Urban, A.I. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In the course of several years` work in the area of waste engineering a model was developed which maps the dynamic behaviour of the plant from waste delivery to deslagging, crude gas output, and steam generation, thus providing a unique solution in terms of function and scope. This was made possible by the use of the semi-empirical approach of ``System Dynamics``. The approach presupposes that the model has already been adapted to reality by means of comparative studies. Expensive as it is, this procedure is necessary for waste incineration plants because theoretical analyses can never model the behaviour of the plant as a whole but only individual stages. [Deutsch] Durch mehrjaehrige Arbeiten ist im Fachgebiet Abfalltechnik ein Modell einer Abfallverbrennungsanlage enstanden, welches das dynamische Verhalten der Anlage von der Abfallaufgabe bis zur Entschlackung, dem Rohgasausgang und der Dampfproduktion abbildet und damit vom Umfang und der Funktion einmalig ist. Dies war moeglich, da der halbempirische Ansatz `System Dynamics` gewaehlt wurde, der das Anpassen des Modells an die Realitaet durch vergleichende Untersuchungen voraussetzt. Eine solche Vorgehensweise ist zwar aufwendig, im Bereich der MVA aber notwendig, da sich mit theoretischen Analysen nie das gesamte Anlagenverhalten erfassen laesst, sondern immer nur einzelne Ausschnitte. (orig.)

  2. Low-cost concepts for dry transfer of spent fuel and waste between storage and transportation casks

    International Nuclear Information System (INIS)

    Schneider, K.L.

    1984-01-01

    The federal government may provide interim storage for spent fuel from commercial nuclear power reactors that have used up their available storage capacity. One of the leading candidate concepts for this interim storage is to place spent fuel in large metal shielding casks. The Federal Interim Storage (FIS) site may not have the capability to transfer spent fuel from transportation casks to storage casks and vice versa. Thus, there may be an incentive to construct a relatively inexpensive but reliable intercask transfer system for use at an FIS site. This report documents the results of a preliminary study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel betwee shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept) and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). Information derived for each of the concepts is operating, capital and relocation costs; implementation and relocation time requirements; and overall characteristics

  3. Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln

    DEFF Research Database (Denmark)

    Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    A numerical study on combined free convection, forced convection, and radiation heat transfers from an industrial isothermal rotating cylinder (cement kiln) is carried out in this work. The investigation is done by the study of two-dimensional (2D) incompressible turbulent flow around the kiln un...

  4. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO 3 ), germanium (IV) oxide (GeO 2 ) and cesium carbonate (Cs 2 CO 3 ) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to ∼12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO 2 /year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO 2 may increase to 4 kg/yr when improvements are implemented to attain an annual canister production

  5. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  6. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  7. Radioactive waste warehousing site installation - INB 56, Additional safety assessment with respect to the accident which occurred in the Fukushima-Daiichi nuclear power station

    International Nuclear Information System (INIS)

    2012-01-01

    After a presentation of some characteristics of the installation located in Cadarache and used for radioactive waste warehousing (description, radioactive and chemical materials, specific risks, present status), this document reports the identification of cliff-edge effect risks and of critical structures and equipment. Then, it addresses the different risks: earthquake (installation sizing, margin assessment), external flooding (installation sizing, margin assessment in relationship with the different flooding origins), other extreme natural events (hail, extreme rainfalls, strong winds, lightning, and earthquake exceeding the design level), loss of electric supplies. The next parts address severe accident management (means and organization for crisis management, robustness of available means), and subcontracting conditions and practices

  8. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F; Serne, R JEFFREY; Bjornstad, Bruce N; Valenta, Michelle M; Lanigan, David C; Vickerman, Tanya S; Clayton, Ray E; Geiszler, Keith N; Iovin, Cristian; Clayton, Eric T; Kutynakov, I V; Baum, Steven R; Lindberg, Michael J; Orr, Robert D

    2007-02-05

    A geologic/geochemical investigation in the vicinity of UPR-200-E-82 was performed using pairs of cone-penetrometer probe holes. A total of 41 direct-push cone-penetrometer borings (19 pairs to investigate different high moisture zones in the same sampling location and 3 individual) were advanced to characterize vadose zone moisture and the distribution of contaminants. A total of twenty sample sets, containing up to two split-spoon liners and one grab sample, were delivered to the laboratory for characterization and analysis. The samples were collected around the documented location of the C-152 pipeline leak, and created an approximately 120-ft diameter circle around the waste site. UPR-200-E-82 was a loss of approximately 2,600 gallons of Cs-137 Recovery Process feed solution containing an estimated 11,300 Ci of cesium-137 and 5 Ci of technetium-99. Several key parameters that are used to identify subsurface contamination were measured, including: water extract pH, electrical conductivity, nitrate, technetium-99, sodium, and uranium concentrations and technetium-99 and uranium concentrations in acid extracts. All of the parameters, with the exception of electrical conductivity, were elevated in at least some of the samples analyzed as part of this study. Specifically, soil pH was elevated (from 8.69 to 9.99) in five samples collected northeast and southwest of the C-152 pipeline leak. Similarly, samples collected from these same cone-pentrometer holes contained significantly more water-extractable sodium (more than 50 g/g of dry sediment), uranium (as much as 7.66E-01 g/g of dry sediment), nitrate (up to 30 g/g of dry sediment), and technetium-99 (up to 3.34 pCi/g of dry sediment). Most of the samples containing elevated concentrations of water-extractable sodium also had decreased levels of water extractable calcium and or magnesium, indicating that tank-related fluids that were high in sodium did seep into the vadose zone near these probe holes. Several of the

  9. 42 CFR 35.21 - Authorization of transfer.

    Science.gov (United States)

    2010-10-01

    ... EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Transfer of Patients § 35.21 Authorization of transfer. Except as... of a station or hospital of the Service may provide, without any cost to the patient, for the transfer of the patient either from such station or hospital to another station or hospital of the Service...

  10. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.

    1982-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior. (orig.)

  11. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.

    1980-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior

  12. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Lyczkowski, R W [Institute of Gas Technology, Chicago, IL (USA); Solbrig, C W [EG and G Idaho, Inc., Idaho Falls (USA); Gidaspow, D [Illinois Inst. of Tech., Chicago (USA). Dept. of Chemical Engineering

    1982-02-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.

  13. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  14. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  15. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.

    Science.gov (United States)

    Woon, Kok Sin; Lo, Irene M C

    2016-01-01

    Hong Kong is experiencing a pressing need for food waste management. Currently, approximately 3600 tonnes of food waste are disposed of at landfills in Hong Kong daily. The landfills in Hong Kong are expected to be exhausted by 2020. In the long run, unavoidable food waste should be sorted out from the other municipal solid waste (MSW) and then valorized into valuable resources. A simple sorting process involving less behavioural change of residents is, therefore, of paramount importance in order to encourage residents to sort the food waste from other MSW. In this paper, a sustainable framework of food waste collection and recycling for renewable biogas fuel production is proposed. For an efficient separation and collection system, an optic bag (i.e. green bag) can be used to pack the food waste, while the residual MSW can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations in the conventional way (i.e. refuse collection vehicles). At the refuse transfer stations, the food waste is separated from the residual MSW using optic sensors which recognize the colours of the bags. The food waste in the optic bags is then delivered to the proposed Organic Waste Treatment Facilities, in which biogas is generated following the anaerobic digestion technology. The biogas can be further upgraded via gas upgrading units to a quality suitable for use as a vehicle biogas fuel. The use of biogas fuel from food waste has been widely practiced by some countries such as Sweden, France, and Norway. Hopefully, the proposed framework can provide the epitome of the waste-to-wealth concept for the sustainable collection and recycling of food waste in Hong Kong. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis and optimization of the thermal behaviour of a sprinkled greenhouse with underground heating: Increased value of power station waste heat -Application to greenhouse cultivation energy independence

    International Nuclear Information System (INIS)

    Lemaitre, P.

    1986-12-01

    A global thermal approach to sprinkled greenhouse cultivation was developed, which led to monographs which can be used for preliminary studies. As a second step, the thermal behaviour of this particular greenhouse was used to define the relevant parameters for the optimisation of the procedure and the ideal characteristics of the material to be used for the shelter. At the same time, a physical model of a buried tubular heat exchanger was built, together with a flexible and thoroughly tested computer program. An example of its use to help determine the dimensions for ground heating systems is presented. The various waste heat recovery procedures described have been studied, leading to an internal economic study including a comparison with other means of greenhouse heating [fr

  17. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  18. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  19. "Artificial intelligence" at streamgaging stations

    Science.gov (United States)

    R. B. Thomas

    1985-01-01

    Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.

  20. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights

  1. Comparison of silver(II), cobalt(III), and cerium(IV) as electron transfer mediators in the MEO mixed waste treatment process

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.M.; McKee, S.D.

    1997-01-01

    Mediated electrochemical oxidation (MEO) has been developed as a method to treat mixed hazardous waste. The technology has for the most part been targeted toward wastes generated by the nuclear industry, consisting of a hazardous or non-hazardous organic material contaminated by a radioactive substance. The MEO process consists of the electrochemical generation of a powerful oxidizing agent, which serves as an electron transfer mediator to bring about the oxidation of the organic component. Numerous studies on a variety of organic substrates have demonstrated complete oxidation to carbon dioxide can be realized under the proper reaction conditions, with water serving as the source of oxygen. The radioactive component, usually an actinide element or heavy metal isotope, can then be recovered from the resulting organic free aqueous solution by standard methods such as ion exchange or solvent extraction. In addition to the variety of organic compounds tested, investigators have also looked at a number of process parameters including choice of mediator, temperature, concentration of mediator, current density, anode material, acid concentration, and cell separator material. From these studies it would appear that for a given organic substrate, the two most important process parameters are choice of mediator and temperature. The purpose of this work is to evaluate these two parameters for a given organic material, holding all other parameters constant. The organic material chosen for this study is the industry standard sulfonated styrene-divinyl benzene based cation exchange resin. This material is ubiquitous throughout the nuclear complex as a process residue, and is very resistant to chemical attack making it an ideal substrate to evaluate MEO capability. A high acid concentration is necessary to solubilize the mediator in its higher oxidation state, 6 M nitric acid was chosen since it is compatible with existing subsequent actinide element recovery processes

  2. Remaining Sites Verification Package for the 100-F-26:15 Miscellaneous Pipelines Associated with the 132-F-6, 1608-F Waste Water Pumping Station. Attachment to Waste Site Reclassification Form 2007-031

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2008-01-01

    The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  3. Physical-Chemical Characterization of Solid Waste Generated in the Water Industry: Case Study of the Water Treatment Stations of the Metropolitan Region of Recife

    Directory of Open Access Journals (Sweden)

    Rosângela Gomes Tavares

    2017-12-01

    Full Text Available The objective of this research is to characterize the solid waste, commonly known as sludge, from the water treatment industry. Six main water treatment plants (Alto do Céu, Botafogo, Caixa d'água, Gurjaú, Suape and Tapacurá were selected from the Metropolitan Region of Recife, managed by Companhia Pernambucana de Saneamento. Nine samples were collected in the eleven month period in the discharge of the sludge from the decanters. These samples were characterized physico-chemically, based on the methodology of the Standard Methods for the Examination of Water and Wastewater (2012. The results indicated average humidity of 93%, average COD around 30 g/L and BOD of 4.5 g/L, indicating sludge of low biodegradability. The average values of total solids were 72 g/L, with 75% corresponding to fixed residues and 25% to volatiles. High concentrations of aluminum (1000 mg/L were observed, due to the use of aluminum sulphate as a coagulant, and iron, around 500 mg/L. This study assists the manager in the decision making of the sustainable management of the sludge, mainly in relation to the final disposal.

  4. Notice of construction work in tank farm waste transfer pit 244-TX double contained receiver-tank

    International Nuclear Information System (INIS)

    HILL, J.S.

    1999-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millired year total effective dose equivalent to the hypothetical offsite maximally exposed individual, and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also will constitute EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. The activities described in this NOC are estimated to provide a potential offsite (unabated) total effective dose equivalent (TEDE) to the hypothetical maximally exposed individual (MEI) of 2.36 E-02 millirem per year

  5. Transfer of financial obligations for the disposal of nuclear waste and decommissioning of German NPP's. Legal aspects of a trust model

    International Nuclear Information System (INIS)

    Schewe, Markus; Wiesendahl, Stefan

    2015-01-01

    The nuclear power plant operators have to bear the costs associated with the closure and the decommissioning of the German nuclear power plants as well as the costs for the disposal of nuclear waste. For that purpose, the operators have to build up sufficient reserves for the decommissioning phase. These reserves at the end of 2013 amounted to approximately 36 billion Euro. Changing this system is discussed very so often. Last in May 2014, a public debate started dealing with the so called trust model (''Stiftungsmodell''). The press published deliberations of several operators to transfer their entire nuclear business to the Federal Republic of Germany. Under this deliberation the current nuclear power plant operations, as well as closure obligations would be contributed to trust. Further, also the reserves should be ''transferred'' to the trust. RAG-Foundation (RAG-Stiftung) - which will assume the financial obligations in connection with Germany's closure of underground coal mining activities - sometimes is cited as a role model. The article covers elements of German trust law and atomic energy law regarding such deliberations. In trust law e.g. it can be debated whether the trust should be established under public or - as in the case of RAG-Foundation - under private law. In this context we will set out the major differences between those two options. In the public law part we will notably address issues arising from individual licensing requirements for nuclear power plants and focus on questions concerning reliability, requisite qualification and organizational structures.

  6. Study of sources terms and medical radioactivity transfer in the waste water system of the town of Toulouse

    International Nuclear Information System (INIS)

    Debayle, C.

    2004-01-01

    It was demonstrated that the health establishments we studied implement means of radiation protection in accordance with the regulations and the recommendations of the circular D.G.S./D.H.O.S. in 2001. However, some exceeding of the average guide value recommended to the emissary of nuclear medicine services for iodine 131 were observed. The hypothesis we can suggest in view of the results is the recommendation to separate urines from feces induces the presence of iodine 131 because of the direct release of feces in the sewerage. On this base it would be interesting to consider the systematic storage of feces in tank at the nuclear medicine services exit, in conditions allowing to limit the nosocomial risk and to realize the earliest possible decay. In any event, it is important to survey these releases with devices for continuous measurement and not by point sampling to better understand the mechanisms. Finally, it might be worth exploring the possibilities of wastewater treatment through activated carbon cartridges and then limit the radioactive releases coming in the wastewater treatment plant. This would have for consequences to reduce the radioactivity transferred in the two units of muds storage and incineration. (N.C.)

  7. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  8. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  9. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  10. Soil to plant 137Cs transfer factors in Zea mays and Phaseolus vulgaris in a semi-arid ecosystem from a radioactive waste site

    International Nuclear Information System (INIS)

    Cervantes, M.L.; Segovia, N.; Gaso, M.I.; Palacios, J.C.

    2002-01-01

    A study of 137 Cs in soil, maize plants, (Zea mays) and beans (Phaseolus vulgaris) has been performed at the confined Storage Centre for Radioactive Waste from Mexico. Under field conditions the site was divided in four zones with different soil contamination characteristics. The plants were grown 'in situ' reproducing the local agricultural practices without fertilizers, pesticides or artificial irrigation.The 137 Cs determinations were performed using a low background gamma spectrometry system with an HPGe detector. The results indicate that one of the zones had a striking 137 Cs contamination in the soil and the uptake by the grown plants showed the highest specific activities at the root. For the edible parts of the plants the amount of 137 Cs in the maize grains was one order of magnitude lower than for the beans. The transfer factors ranges for the different parts of the maize plants was from 0.001 in the grain to 0.6 in the root. (author)

  11. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    International Nuclear Information System (INIS)

    Parrot, Laurent; Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-01-01

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance

  13. Decontamination and disposal of radioactive wastes resulting from the March 28, 1979 accident, Three-Mile Island Nuclear Station, Unit 2, Pennsylvania-Docket No. 50-320 (final supplement 2 to the final environmental impact statement of March 1981)

    International Nuclear Information System (INIS)

    1987-06-01

    Implementation of actions necessary for decontamination of the facility, defueling of the reactor, and disposition of the radioactive wastes that resulted from the accident on March 28, 1979 at Unit 2 of the Three-Mile Island Nuclear Station in Dauphin County, Pennsylvania are discussed. This second final supplement to the final environmental impact statement, filed in March 1981 on facility decontamination, reevaluates the environmental impacts of accident-generated water disposal alternatives, using more complete and current information. This supplement also includes a specific evaluation of the recently submitted proposal for water disposition. The project would alleviate a radiological hazard that threatens the well-being of the surrounding population and downstream communities. Risks to the general public have been estimated to be very small fractions of the estimated normal incidence of cancer fatalities and genetic disorders. The most significant potential impact is the risk of physical injury associated with transportation accidents. Social impacts during the operation could result in reduced property values, competition between the work force and tourists for temporary housing, and congestion of local traffic arteries. Some psychological stress would experienced by area residents. Economic effects could include increased electricity rates, reduced tourism, and possible resistance to consumption of area goods that consumers might mistakenly think are contaminated

  14. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  15. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  16. Plasma arc melting treatment of low level radioactive waste with centrifugal hearth

    International Nuclear Information System (INIS)

    Tsuji, Yukito

    1997-01-01

    Plasma Arc Melting technology may possible be able to treat various kinds of waste streams through volume reduction and stabilization into a disposal waste form. The ability of other melting technologies to convert inorganic material in a single step, however, varies according to the characteristics of the materials. Plasma technology also can treat organic waste by selecting the oxidation atmosphere. The Japan Atomic Power Company (JAPC) has decided to construct a low level radioactive waste treatment facility using the Plasma Arc Centrifugal Treatment (PACT) process with an 8 ft rotating hearth and 1.2 MW transferred torch developed by Retech (Ukiah, CA. USA) in the Tsuruga power station. In Japan, the plasma technology has been developed for incineration ash treatment, but the JAPC plant will be the first treatment system using plasma technology for solid waste with various characteristics and shapes. (author)

  17. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans......, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors...... causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal...

  18. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  19. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  20. The nuclear techniques in function of improving the efficiency of the flocculators and floats in the industrial waste treatment station of PETROBRAS; Las tecnicas nucleares en funcion de mejorar la eficiencia de los floculadores y los flotadores de la estacion de tratamiento de desechos industriales en PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Damera Martinez, Arnaldo; Ramos Espinosa, Kenia A. [Centro de Atencion a la Actividad Nuclear, Camaguey (Cuba)]. E-mail: damera@caonao.cmw.inf.cu; Pinto, Amenonia Ferreira; Barbalho, Andrea de Magalhaes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Derivet Zarzabal, Milagros [Instituto Cubano de Investigaciones Azucareras, La Habana (Cuba)

    2001-07-01

    This work was carried out in the Station of Treatment of Industrial Waste (STIW) in PETROBRAS (Brazil). The STIW has the function of receiving, to treat and storage liquid wastes coming from diverse points of the refinery, avoiding the environment contamination. This study consists on the determination of the time of residence inside the flocculators and floats, by means of nuclear technique of radioactive tracer, using Tc-99m. This technique has a great economic and environmental importance because the time of residence obtained experimentally in the flocculators and the floats, can be compared with those obtained theoretically, which allow to influence on the system, optimizing its operation.

  1. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  2. Municipal solid waste management in Beijing City

    International Nuclear Information System (INIS)

    Li Zhenshan; Yang Lei; Qu XiaoYan; Sui Yumei

    2009-01-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km 2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  3. Automated box/drum waste assay (252Cf shuffler) through the material access and accountability boundary

    International Nuclear Information System (INIS)

    Horley, E.C.; Bjork, C.W.; Bourret, S.C.; Polk, P.J.; Schneider, C.J.; Studley, R.V.

    1992-01-01

    For the first time, a shuffler waste-assay system has been made a part of material access and accountability boundary (MAAB). A 252 Cf Pass-Thru shuffler integrated with a conveyor handling system, will process box or drum waste across the MAAB. This automated system will significantly reduce personnel operating costs because security forces will not be required at the MAAB during waste transfer. Further, the system eliminates the chance of a mix-up between measured and nonmeasured waste. This Pass-Thru shuffler is to be installed in the Westinghouse Savannah River Company 321M facility to screen waste boxes and drums for 235 U. An automated conveyor will load waste containers into the shuffler, and upon verification, will transfer the containers across the MAAB. Verification will consist of a weight measurement followed by active neutron interrogation. Containers that pass low-level waste criteria will be conveyed to an accumulator section outside the MAAB. If a container fails to meet the waste criteria, it will be rejected and sent back to the load station for manual inspection and repackaging

  4. The Trencin water power station

    International Nuclear Information System (INIS)

    2005-01-01

    This leaflet describes the Trencin water power station. The Trencin water power station was built seven years after the Dubnica nad Vahom water power station started its operation and was the last stage of the first and the oldest derived cascade of water power stations on the Vah River. After completing water power stations at Ladce (1936), Ilava (1946) and Dubnica nad Vahom (1949) and before constructing the Trencin water power station, the whole second derived cascade of water power stations including water power stations at Kostolna, Nove Mesto nad Vahom and Horna Streda was built as soon as possible mainly because the need to get compensation for discontinued electricity supplies as well as energetic coal from the Czech Republic. Hereby, experiences from the construction of previous grades were used, mainly as far as the dimensioning was concerned, as the fi rst installed power stations had, in comparison with the growing requirements on the electricity supplies, very low absorption capacity - only 150 m 3 .s -1 . Thus the Trencin power station (original name was the Skalka power station) was already dimensioned for the same absorption capacity as the cascade located downstream the river, that is 180 m 3 .s -1 . That was related also to growing demands on electricity supplies during the peaks in the daily electric system load diagram, and thus to the transfer from continuous operation of the water power station to semi-peak or even peak performance. According to the standards of power station classification, the Trencin water power station is a medium size, low pressure, channel power station with two units equipped by Kaplan turbines and synchronous hydro-alternators. The water power station installed capacity is 16.1 MW in total and its designed annual production of electrical energy for medium water year is 85,000 MWh, while the average annual production during the last 30 years is 86,252 MWh. Installed unit has a four-blade Kaplan turbine with the diameter

  5. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  6. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  7. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  8. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  9. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China

    DEFF Research Database (Denmark)

    Guo, Hanwen; Duan, Zhenhan; Zhao, Yan

    2017-01-01

    Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index...... in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R2 = 0.918 (n = 15, P technology to deal...... with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission....

  10. Effect of waste mica on transfer factors of {sup 134}Cs to spinach and lettuce; Effet de dechets de mica sur les facteurs de transfert du {sup 134}Cs a l'epinard et la laitue

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa Chari, M.; Manjaiah, K.M. [Indian Agricultural Research Institute, Division of Soil Science and Agricultural Chemistry, New Delhi - 110012 (India); Sachdev, P.; Sachdev, M.S. [Indian Agricultural Research Institute, Nuclear Research Laboratory, New Delhi - 110012 (India)

    2011-07-15

    A greenhouse pot culture experiment was conducted to study the effect of graded levels of waste mica (0, 10, 20 and 40 g kg{sup -1}) on reducing the radiocesium uptake by spinach (Spinacia olerecea L) and lettuce (Lactuca sativa L.) grown in {sup 134}Cs-contaminated (at 37 k Bq kg{sup -1} soil) Inceptisols, Vertisols and Ultisols. The biomass yield, and potassium content and its uptake by crops have been significantly improved by waste mica application. The crops grown in Vertisols recorded higher biomass yield, and K content and its uptake as compared with Inceptisols and Ultisols. The average {sup 134}Cs transfer factor values recorded were: 0.21, 0.17 and 0.26 at the first cutting, 0.15, 0.12 and 0.28 at the second cutting and 0.07, 0.05 and 0.23 at the third cutting from Inceptisols, Vertisols and Ultisols, respectively. Waste mica significantly suppressed radiocesium uptake, the effect being more pronounced at 40 g mica kg{sup -1} soil. There exists an inverse relationship between the {sup 134}Cs transfer factors with plant potassium content and also the K uptake by the crops. (authors)

  11. Influencing factors of domestic waste characteristics in rural areas of developing countries.

    Science.gov (United States)

    Han, Zhiyong; Liu, Yong; Zhong, Min; Shi, Guozhong; Li, Qibin; Zeng, Dan; Zhang, Yu; Fei, Yongqiang; Xie, Yanhua

    2018-02-01

    aquacultural waste into domestic waste in the harvesting season. In different geographies, significant differences of domestic waste characteristics were observed as a result of comprehensive effects caused by multiple factors. Other factors included the administrative levels of communities and survey methods. The characteristics of domestic waste in towns or central villages were similar with those in cities, but were different from those in common villages (the smallest type of community). The domestic waste sampled in households indicated a lower rate of generation and lower ash content than when the waste was sampled at transfer stations or dumping sites. Based on the above analysis, the factors influencing domestic waste must be considered in order to optimize the design of waste management strategies in the RADIC. Furthermore, it is valuable and important to obtain more accurate data about waste characteristics. Copyright © 2017. Published by Elsevier Ltd.

  12. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Science.gov (United States)

    2010-01-01

    ... Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports, or... who is the “waste generator” or “generator,” as defined in this part; or (c) Radioactively... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by...

  13. Space Station - Opportunity for international cooperation and utilization

    Science.gov (United States)

    Pedersen, K. S.

    1984-01-01

    In connection with his announcement regarding the development of a permanently manned Space Station, President Reagan invited the United States' friends and allies to join in the Space Station program. The President's invitation was preceded by more than two years of interaction between NASA and some of its potential partners in Space Station planning activities. Attention is given to international participation in Space Station planning, international cooperation on the Space Station, the guidelines for international cooperation, and the key challenges. Questions regarding quid pro quos are considered along with aspects of technology transfer, commercial use, problems of management, and the next steps concerning the Space Station program.

  14. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  15. State Waste Discharge Permit application, 100-N Sewage Lagoon

    International Nuclear Information System (INIS)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond

  16. Disposal of solid waste in Istanbul and along the Black Sea coast of Turkey

    International Nuclear Information System (INIS)

    Berkun, Mehmet; Aras, Egemen; Nemlioglu, Semih

    2005-01-01

    The increasing amount of solid waste arising from municipalities and other sources and its consequent disposal has been one of the major environmental problems in Turkey. Istanbul is a metropolitan city with a current population of around 14 million, and produces about 9000 ton of solid waste every day. The waste composition for Istanbul has changed markedly from 1981 to 1996 with large decreases in waste density, much of which is related to decreased amounts of ash collected in winter. In recent years, the Istanbul region has implemented a new solid waste management system with transfer stations, sanitary landfills, and methane recovery, which has led to major improvements. In the Black Sea region of Turkey, most of the municipal and industrial solid wastes, mixed with hospital and hazardous wastes, are dumped on the nearest lowlands and river valleys or into the sea. The impact of riverside and seashore dumping of solid wastes adds significantly to problems arising from sewage and industry on the Black Sea coast. Appropriate integrated solid waste management systems are needed here as well; however, they have been more difficult to implement than in Istanbul because of more difficult topography, weaker administrative structures, and the lower incomes of the inhabitants

  17. Environmental impact assessment of solid waste management in Beijing City, China

    International Nuclear Information System (INIS)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  18. Consolidation of existing solid waste management plans in the Greater Toronto Area

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The municipalities of the Greater Toronto Area (GTA) will be implementing initiatives in solid waste management, in view of the fact that current landfill capacity is nearly exhausted. A consolidation of information is provided on the solid waste management plans, programs, and facilities within the GTA. In response to environmental concerns coupled with difficulties encountered in developing new solid waste disposal facilities, waste reduction, reuse, and recycling efforts are developing rapidly. Some of the measures currently implemented and under investigation include: curbside recycling programs for newspapers, glass, metal, and plastic containers; expanding recycling efforts to apartment buildings; expanding the kinds of materials collected through the curbside programs; improving recycling services in rural areas; public education and promotional programs; promotion of home composting; household hazardous waste programs; recovery of cardboard from commercial and industrial sources, coupled with bans on cardboard at landfills; recovery of selected waste building materials such as wood and drywall, coupled with bans on these materials at landfills; recovery of paper from office buildings; and programs to assist industries in waste reduction, reuse, and recycling. The solid wastes generated in the GTA are managed in a number of facilities including recycling centers, transfer stations, and landfill sites. A 410 tonne/day energy-from-waste facility has recently been approved for Peel Region and is planned to be constructed in the coming year. 21 refs., 1 fig., 14 tabs.

  19. Guidelines for Learning Stations.

    Science.gov (United States)

    Fehrle, Carl C.; Schulz, Jolene

    Guidelines for designing and planning learning stations for pupils at the elementary grade level include suggestions on how to develop a station that will be successful in meeting the learners' needs. Instructions for the use of tapes at a station and matching pupils with stations are given, as are guidelines on classroom arrangement and record…

  20. Periodical inspection in nuclear power stations

    International Nuclear Information System (INIS)

    1986-01-01

    Periodical inspection is presently being made of eight nuclear power plants in nuclear power stations. Up to the present time, in three of them, failures as follows have been observed. (1) Unit 3 (PWR) of the Mihama Power Station in The Kansai Electric Power Co., Inc. Nineteen heat-transfer tubes of the steam generators were plugged up due to failure. A fuel assembly with a failed spring fixture and in another the control-rod cluster with a failed control rod fixture were replaced. (2) Unit 2 (PWR) of the Oi Power Station in The Kansai Electric Power Co., Inc. Eight heat-transfer tubes of the heat exchangers were plugged up due to failure. (3) Unit 6 (BWR) of the Fukushima Nuclear Power Station I in The Tokyo Electric Power Co., Inc. A fuel assembly with leakage was replaced. (Mori, K.)

  1. Manned space stations - A perspective

    Science.gov (United States)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  2. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  3. Reducing nitrogen oxides from power stations

    International Nuclear Information System (INIS)

    Scheller, W.

    1986-12-01

    The report contains 17 individual lectures of the seminar included in databanks. The lectures concern combustion and waste gas measures for reducing the sulfur dioxide and nitrogen oxide emission from coal-fired and gas-fired power stations. (PW) [de

  4. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  5. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  6. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  7. Swedish encapsulation station review

    International Nuclear Information System (INIS)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G.

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB's document 'Plan 1996'. This has been made through comparisons between the ES and BNFL's Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International's experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation

  8. Swedish encapsulation station review

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G. [NAC International, Zuerich (Switzerland)

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB`s document `Plan 1996`. This has been made through comparisons between the ES and BNFL`s Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International`s experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation 19 refs, 9 figs, 35 tabs

  9. The technology of concrete in the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hironaga, Michihiko

    2000-01-01

    The fuel policy of Japan with poor energy resources requires for establishment of nuclear fuel cycle, where uranium fuel once used at a nuclear power station is effectively used at a form of cycling by its reprocessing and its reuse at a fast breeder reactor. At present, 51 units of nuclear power plants are under operation in Japan, of which power generation is 302.1 billion kWh corresponding to 34.6 % of annual power generation in Japan. Radioactive waste is a wasted material containing radioactive materials forming at operation of the nuclear power station and at reprocessing process and so forth carried out at the nuclear fuel cycle. It is required for isolation from human biosphere environment because of its characteristic. Concrete is expected for a play to control leakage of radioactive materials and transfer to biosphere environment as a structural and barrier material constructing a disposal facility of radioactive wastes. Here were described on play, present state, and future problem of concrete mainly used for civil engineering and structural materials and with a strong common recognition at a viewpoint of the 'disposal of radioactive wastes'. (G.K.)

  10. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, Vladislav S.; Steranka, Steve A. [RadComm Systems Corp., 2931 Portland Dr., Oakville, ON L6H 5S4 (Canada)

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  11. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-01-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites

  12. A conveyor system for feeding work stations

    International Nuclear Information System (INIS)

    Sheader, J.; Davies, K.J.

    1986-01-01

    A conveyor system comprises carriages drive, e.g. by a linear motor, a pre-arranged sequence of steps to move workpieces in forward and reverse directions between work stations. Each work station has a part position and a work position and each carriage has a number of compartments for workpieces spaced apart at a pitch equal to the spacing between the part and work positions at each station. Transfer means at the work stations move workpieces between the carriage compartments and the part and work positions. The workpieces can be nuclear fuel pins mounted in carriers and the carriages shuttle to and fro between adjacent stations to move fuel pins and carriers in a forward direction and the return empty carriers in a reverse direction. (author)

  13. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    Energy Technology Data Exchange (ETDEWEB)

    Pacquet, E.A.

    1998-04-02

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station.

  14. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    International Nuclear Information System (INIS)

    Pacquet, E.A.

    1998-01-01

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station

  15. The law on wastes. November 2016 - october 2017

    International Nuclear Information System (INIS)

    Lanoy, Laurence

    2017-01-01

    In France, the law on wastes has been subject to important reforms following the passing, in 2015, of the law on the 'energy transition for a green growth'. In the continuity of this law, various evolutions concerning regulations and jurisprudence have been applied. These evolutions mainly concern waste management modalities (technical prescriptions applicable to facilities receiving wastes, status of wastes, domestic wastes, radioactive wastes, special wastes and cross-border waste transfers, general orientations of French and European laws on wastes) and liabilities related to wastes (administrative liability, taxation related to wastes, waste producer liabilities)

  16. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  17. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiment

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel, NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste

  18. Waste management in the regional level: Example of municipalities Pljevlja and Žabljak

    Directory of Open Access Journals (Sweden)

    Šljivančanin Dušan

    2011-01-01

    Full Text Available The problem of proper disposal of all types of solid waste and its inadequate treatment is one of the most dominant spatial-ecological problems of modern society, and as such seriously threatens the quality of basic environmental media and public health. The aim is to point out opportunities for sustainable development of Pljevlja and Zabljak Municipalities through the development of waste management system that will control waste generation, educe the impact of waste on the environment, improve resource efficiency, ensure the proper disposal, stimulate investment in public-private sector and maximize the economic opportunities arising from waste. The subject of this paper is to find an effective model of sustainable waste management in the municipalities of Zabljak and Pljevlja, with the main objective of rational use of space, as a limited resource, and reduce overall costs of waste treatment. The studied area that includes the administrative boundaries of these municipalities in the north of Montenegro, among to traffic geographical and functional correlation, present an area that is in the official republic documents (Spatial Rlan of Montenegro until 2020, 2008 recognized as a region in which envisages the construction of regional sanitary landfills and transfer stations network. In this sense, the work will represent the implementation of policies on waste management in Montenegro, in accordance with the recommendations, directives and EU guidelines.

  19. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    Energy Technology Data Exchange (ETDEWEB)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  20. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  1. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  2. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  3. Streamflow Gaging Stations

    Data.gov (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  4. Fire Stations - 2007

    Data.gov (United States)

    Kansas Data Access and Support Center — Fire Station Locations in Kansas Any location where fire fighters are stationed at or based out of, or where equipment that such personnel use in carrying out their...

  5. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  6. Water Level Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  7. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  8. Big Game Reporting Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...

  9. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  10. Fire Stations - 2009

    Data.gov (United States)

    Kansas Data Access and Support Center — Fire Stations in Kansas Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their jobs is...

  11. Newport Research Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Newport Research Station is the Center's only ocean-port research facility. This station is located at Oregon State University's Hatfield Marine Science Center,...

  12. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Koeberg nuclear power station, planned to come on stream in 1984, is expected to save South Africa some six million t/annum of coal, and to contribute some 10 per cent of the country's electricity requirements. The use of nuclear energy will provide for growing national energy needs, and reduce high coal transport costs for power generation at the coast. In the long term, however, it gives rise to the controversial question of nuclear waste storage. The Atomic Energy Corporation of South Africa Ltd (AEC) recently announced the purchase of a site in Namaqualand (NW Cape) for the storage of low-level radioactive waste. The Nuclear Development Corporation of South Africa (Pty) Ltd, (NUCOR) will develop and operate the site. The South African Mining and Engineering Journal interviewed Dr P.D. Toens, manager of the Geology Department and Mr P.E. Moore, project engineer, on the subject of nuclear waste, the reasons behind Nucor's choice of site and the storage method

  13. Shippingport station communications program

    International Nuclear Information System (INIS)

    Stote, J.J.

    1988-01-01

    At the Shippingport Station Decommissioning Project, the central idea of the communications program that was developed for use was purposely designed to be as uncomplicated as possible. The central theme, that was developed and communicated, is that all nuclear plants will someday need to be retired and also decommissioned. The Shippingport Plant, originally constructed as a demonstration nuclear power plant, was now being decommissioned as a demonstration to the world-wide nuclear industry that this evolution can be done in a safe and cost-effective manner. Furthermore, the technology currently exists to complete this process. The new phase of the communications program was initiated even before the responsibility for the plant was transferred from Duquesne Light to GE. With such a change forthcoming, it was necessary to inform local officials of these plans, and the reasons for them. Equally important was the need to inform a variety of agencies and offices in the three-state area of the changes, and the continuing need to involve them in the Site Emergency Plan. This document was also revised in recognition of changing site conditions, as well as the changes in responsibility. 1 ref

  14. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  15. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository; Influence de la decalcification de materiaux cimentaires sur les proprietes de transfert: application au stockage profond de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perlot, C

    2005-09-15

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  16. Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong.

    Science.gov (United States)

    Lo, Irene M C; Woon, Kok Sin

    2016-04-01

    About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.

  17. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  18. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  19. Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-Oil Injection Zone, Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina, 2004-2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Casey, Clifton C.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated the hydrology and groundwater chemistry in the vicinity of an emulsified vegetable-oil injection zone at Solid Waste Management Unit (SWMU) 17, Naval Weapons Station Charleston, North Charleston, South Carolina. In May 2004, Solutions-IES initiated a Phase-I pilot-scale treatability study at SWMU17 involving the injection of an edible oil emulsion into the aquifer near wells 17PS-01, 17PS-02, and 17PS-03 to treat chlorinated solvents. The Phase-I injection of emulsified vegetable oil resulted in dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE), but the dechlorination activity appeared to stall at cDCE, with little further dechlorination of cDCE to vinyl chloride (VC) or to ethene. The purpose of the present investigation was to examine the groundwater hydrology and chemistry in and near the injection zone to gain a better understanding of the apparent remediation stall. It is unlikely that the remediation stall was due to the lack of an appropriate microbial community because groundwater samples showed the presence of Dehalococcoides species (sp.) and suitable enyzmes. The probable causes of the stall were heterogeneous distribution of the injectate and development of low-pH conditions in the injection area. Because groundwater pH values in the injection area were below the range considered optimum for dechlorination activity, a series of tests was done to examine the effect on dechlorination of increasing the pH within well 17PS-02. During and following the in-well pH-adjustment tests, VC concentrations gradually increased in some wells in the injection zone that were not part of the in-well pH-adjustment tests. These data possibly reflect a gradual microbial acclimation to the low-pH conditions produced by the injection. In contrast, a distinct increase in VC concentration was observed in well 17PS-02 following the in-well pH increase. Adjustment

  20. CDIP Station Data Collection - All Stations

    Data.gov (United States)

    Scripps Institution of Oceanography, UC San Diego — The Coastal Data Information Program's station data collection consists of all publicly-released coastal environment measurements taken over the program's history, a...

  1. Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal

    International Nuclear Information System (INIS)

    Alam, R.; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R.

    2008-01-01

    Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m 3 /d (245 tons/day) and 1155 m 3 /d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water

  2. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  3. TRANSFERENCE BEFORE TRANSFERENCE.

    Science.gov (United States)

    Bonaminio, Vincenzo

    2017-10-01

    This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

  4. Waste acceptance and logistics

    International Nuclear Information System (INIS)

    Carlson, James H.

    1992-01-01

    There are three major components which are normally highlighted when the Civilian Radioactive Waste Management Program is discussed - the repository, the monitored retrievable storage facility, and the transportation system. These are clearly the major physical system elements and they receive the greatest external attention. However, there will not be a successful, operative waste management system without fully operational waste acceptance plans and logistics arrangements. This paper will discuss the importance of developing, on a parallel basis to the normally considered waste management system elements, the waste acceptance and logistics arrangements to enable the timely transfer of spent nuclear fuel from more than one hundred and twenty waste generators to the Federal government. The paper will also describe the specific activities the Program has underway to make the necessary arrangements. (author)

  5. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  6. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  7. Hazardous and Industrial Wastes Management: a Case Study of Khazra Industrial Park, Kerman

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2013-08-01

    Full Text Available Background & Aims of the Study: Increasing hazardous industrial wastes and lack of necessary regulations for management of them have led to serious problems in some parts of Iran. The aim of this study was to evaluate the situation of collection, transportation, recycling, and disposal of hazardous industrial wastes in the Khazra Industrial Park of Kerman, Iran. Materials & Methods: This study was a descriptive cross-sectional study that was done using questionnaires and local visits during year 2009. In this questionnaire, some information about the industrial wastes, production, storage on site , collection, transformation, sorting, recycling, and disposal were recorded. Results:   In the Khazra Industrial Park, 71,600 kg/day of different industrial waste is produced. The biggest proportion of waste includes metals, and construction and demolition waste which are about 16,500 tons a year. The smallest proportion is non-iron metal waste, which is produced at a rate of 8 tons per year. 88.7 percent of the active industries at the Khazra Industrial Park produce solid industrial waste. Most of the industrial units do not use a united and coordinated system for storing waste and have no specific place for temporary storage inside the industrial park. The majority of industrial waste collection, which is about 59.8%, is done by private contractors. The industrial units transfer their waste separately, and just 9 industrial units recycle their waste. Disposal of these wastes is mainly done by selling to trading agencies. Each day, 3 tons of hazardous industrial waste is produced in this park. The highest production belongs to the oil factory (Keyhan Motor. Conclusions: According to the results, the Khazra Industrial Park needs a unified system for storing, transporting and collecting the sorted waste, and it also needs to have a transportation station with basic facilities. The wastes of most industrial units at the Khazra Industrial Park have the

  8. Non-Coop Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station history documentation for stations outside the US Cooperative Observer network. Primarily National Weather Service stations assigned WBAN station IDs. Other...

  9. Design and heat transfer calculations of burial-bunker for one-stage melting converter for vitrification of high-level radioactive waste

    International Nuclear Information System (INIS)

    Pioro, L.S.; P'Yanykh, K.E.; Pioro, I.L.

    2001-01-01

    Widespread application of radioactive materials in different branches of industry, particularly in power engineering, has created a global problem in the area of ecological-disposal of radioactive waste (RAW). In general, three methods for reprocessing and disposal of RAW with high-level radionuclides are used: reservoir storage; burial in boreholes; and vitrification (solidification into glass blocks). Analysis of the recent methods of high level RAW (HLRAW) localization has shown that the most reliable method for long-term storage is vitrification. Vitrification allows to decrease by more than one order of magnitude the volume of HLRAW which is intended for long-term storage, and also to decrease leaching rates by 3-4 orders. This method includes incorporation of waste into physicochemical conglomerates during glass processing from active nuclides and neutral charging materials. Usually, this method consists of multistage processes. One-stage vitrification methods are seldom considered. (author)

  10. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  11. Life cycle assessment of municipal solid waste management methods: Ankara case study.

    Science.gov (United States)

    Ozeler, D; Yetiş, U; Demirer, G N

    2006-04-01

    Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.

  12. Mission analysis for cross-site transfer

    International Nuclear Information System (INIS)

    Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.

    1995-11-01

    The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ''initial state'' (or current cross-site transfer system) to meet the requirements and constraints

  13. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  14. Amtrak Rail Stations (National)

    Data.gov (United States)

    Department of Transportation — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  15. Cooperative Station History Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various forms, photographs and correspondence documenting the history of Cooperative station instrumentation, location changes, inspections, and...

  16. Waste law. November 2013 - September 2014

    International Nuclear Information System (INIS)

    Lanoy, Laurence

    2014-01-01

    The author comments the main evolution noticed regarding legal aspects (laws, decrees, jurisprudence, and so on) about wastes between November 2013 and September 2014. The main events have been the adoption of the bill on social and solidarity economy which contained some measures related to waste prevention, and the transposition of a European directive related to waste electric and electronic equipment. The author addresses the different concerned domains: the modalities of waste management (prescriptions applied to installations receiving wastes, the waste status, the case of radioactive wastes, the case of waste electronic and electric equipment, waste cross-border transfers, general orientations of the French and European waste laws), and the responsibility for wastes (administrative responsibility, waste related taxation, producer responsibility)

  17. Transfer into the biosphere of radionuclides released from deep storage of radioactive wastes. Bibliographical study; Transfert dans la biosphere des radionucleides issus des stockages profonds de dechets radioactifs. Etude bibliographique

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, V.; Siclet, F.

    1995-03-01

    Most countries with civilian nuclear programs today are encountering difficulty in implementing a nuclear waste management policy that is both technically safe in the long term and accepted by the public. To meet both criteria, the solution most generally envisaged is deep storage either of untreated spent nuclear fuel or of highly radioactive wastes resulting from reprocessing. In order to predict the potential impact of such storage on man, one needs to understand the path followed by radionuclides in the geosphere, and later in the biosphere. Given the time scales involved and the critical nature of the elements concerned, it is indispensable to turn to mathematical modeling of the phenomena. This report presents what is hoped to be a complete inventory of the radionuclides contained in ``high level`` wastes (categories B AND C). The elements concerned in studies on deep storage are essentially long-life radionuclides (both actinides and certain fission and activation products). Their physico-chemical characteristics and their behavior in various ecological compartments are examined. Bibliographical data bearing on: solubility (in an oxidizing, reducing medium), distribution factors (water/rock-sediment-soil), concentration and transfer factors (in aquatic and terrestrial mediums), dose conversion factors (in the case of internal and external irradiation), principal paths of exposure for each radionuclide studied, are presented in this report. Initial results from international projects to model what happens to radionuclides in the biosphere are also presented. In general, they are optimistic as to the future, but nonetheless point to a need to improve the conceptual base of the models, to ensure that all major phenomena and processes are taken into consideration and to examine any possible amplification (author). 67 refs., 39 figs., 20 tabs.

  18. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  19. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  20. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    Science.gov (United States)

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.