WorldWideScience

Sample records for waste storage site

  1. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  2. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  3. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  4. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1985-08-01

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  5. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  6. Final storage site for radioactive waste. Gorleben mine

    International Nuclear Information System (INIS)

    1995-02-01

    Out of more than 20 salt stocks, the Gorleben salt stock was chosen. In addition to the preliminary information available on its size and depth, detailed exploratory investigations were carried out in order to test its suitability as a site for ultimate storage of all types of radioactive waste. (orig.) [de

  7. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  8. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  9. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Kehle, R.; e.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  10. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  11. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  12. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  13. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  14. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  15. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  16. Geological setting of the Novi Han radioactive waste storage site

    International Nuclear Information System (INIS)

    Evstatiev, D.; Kozhukharov, D.

    2000-01-01

    The geo environment in the area of the only operating radioactive waste repository in Bulgaria has been analysed. The repository is intended for storage of all kinds of low and medium level radioactive wastes with the exception of these from nuclear power production. The performed investigations prove that the 30 years of operation have not caused pollution of the geo environment. Meanwhile the existing complex geological settings does not provide prerequisites to rely on the natural geological safety barriers. The studies performed so far are considered to be incomplete since they do not provide the necessary information for the development of a model describing the radionuclide migration as well as for understanding of the neotectonic circumstances. The tasks of the future activities are described in order to obtain more detailed information about the geology in the area. (authors)

  17. Environmental impact assessment of decommissioning treatment about radioactive model plant waste ore storage site

    International Nuclear Information System (INIS)

    Bei Xinyu

    2012-01-01

    Aiming at decommissioning treatment project of radioactive model plant waste ore storage site, based on the detailed investigations of source terms and project description, systematic environmental impacts have been identified. The environmental impacts both during decommissioning treatment, radioactive waste transportation and after treatment are assessed. Some specific environmental protection measures are proposed so as to minimize the adverse environmental impacts. (author)

  18. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1986. 4 figs., 7 tabs

  19. Conceptual design report for regional low-level waste interim storage site

    International Nuclear Information System (INIS)

    Bird, M.V.; Thompson, J.D.

    1981-08-01

    An interim storage site design concept was developed for receiving 100,000 ft 3 low-level waste per year, in the form of solidified wastes in 55-gallon drums with a dose rate of < 200 mrem per hour at contact

  20. Methodology of site generation for evaluation of the behaviour of radioactive waste storage

    International Nuclear Information System (INIS)

    Ruiz Rivas, C.; Eguilior Diez, S.

    1997-01-01

    The present report summarizes the purpose of methodology for the site generation in the evaluation of high-level radioactive waste storage for long-term. This work is developed into the project Safety analysis long-term of high-level radioactive waste. This project is carried on for CIEMAT and ENRESA

  1. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  2. Report on site-independent environmental impacts of radioactive waste storage and management

    International Nuclear Information System (INIS)

    1985-10-01

    The organisation responsible for radioactive wastes in the Netherlands is COVRA: Centrale Organisatie Voor Radioactief Afval. It deals especially with storage and management of these wastes. For that purpose, COVRA will build a waste managing and storage facility at a central site in the Netherlands. In this report, environmental impacts of these activities are studied, that are independent of the location. The report is readable and useful for a broad audience. In the main report, the general features are outlined starting from figures and tables on environmental effects. In a separate volume, detailed numerical data are presented. (G.J.P.)

  3. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Science.gov (United States)

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  4. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  5. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  6. The Cabril: The Spanish Storage Site for Low and medium Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Zuloaga, P.

    1993-01-01

    The new installations at El Cabril are one of the most modern storage sites for low and medium level radioactive wastes worldwide. The site was conceived in such a way that it is possible its reutilization without any radiological restriction after its current surveillance period of 300 years. Additionally, the installations have enough of a capacity to store all the medium and low level wastes to be produced in Spain during the next 30 years plus all the already gathered ones at the three old installations. In order to achieve all the objectives a storage system, a control network and installations for sewage water treatment are available. An incinerator to burn biological and organic wastes from hospitals and a laboratory of wastes characterization complete the variety of installations

  7. Technical factors in the site selection for a radioactive wastes storage of low and intermediate level

    International Nuclear Information System (INIS)

    Badillo A, V. E.; Ramirez S, J. R.; Palacios H, J. C.

    2009-10-01

    The storage on surface or near surface it is viable for wastes of low and intermediate level which contain radio nuclides of short half life that would decay at insignificant levels of radioactivity in some decades and also radio nuclides of long half life but in very low concentrations. The sites selection, for the construction of radioactive waste storages, that present an appropriate stability at long term, a foreseeable behavior to future and a capacity to fulfill other operational requirements, is one of the great tasks that confront the waste disposal agencies. In the selection of potential sites for the construction of a radioactive wastes storage of low and intermediate level, several basic judgments should be satisfied that concern to physiography, climatology, geologic, geo-hydrology, tectonic and seismic aspects; as well as factors like the population density, socioeconomic develops and existent infrastructure. the necessary technician-scientific investigations for the selection of a site for the construction of radioactive waste storages are presented in this work and they are compared with the pre-selection factors realized in specify areas in previous studies in different regions of the Mexican Republic. (Author)

  8. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1986-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1985. This report differs from previous issues in that the data cutoff date is December 31, 1985, rather than the fiscal year end. Another difference from previous issues is that data for the TRU categories 1 and 6 have been omitted

  9. NRC perspective on extended on-site storage of low-level radioactive waste after 1993

    International Nuclear Information System (INIS)

    Remick, Forrest J.

    1992-01-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires that each State, which has not provided for disposal capacity by January 1, 1993, must take title and possession of the low-level radioactive wastes generated in the State. If the states do not take title and possession of the wastes, the rebates to which the states would have been entitled to would be returned to the waste generators. in considering the matter, the Commission solicited comments from States) low-level radioactive waste compacts, local governments, and the general public so that the public's views could be factored into the Commission's deliberations on this issue. This paper addresses the current status of NRC positions on the adequacy of the NRC's existing regulatory framework associated with the title transfer provisions of the LLRWPAA and the Commission's views on extended on-site storage of low-level radioactive wastes after the 1993 and 1996 milestones. (author)

  10. Description of INR-Pitesti own strategy for on site radioactive solid waste storage concepts

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Toma, V.; Bujoreanu, D.; Prava, M.

    1993-01-01

    The Post Irradiation Examination Laboratory (PIEL) produces and will produce the majority of institute's alpha-contaminated solid radioactive waste, generated by the process of examination of irradiated CANDU-600 type nuclear fuel. The wastes will be divided into three categories: low-level, medium-level, and high-level general process trash (LLGPT, MLGPT, and HLGPT). The paper describes the strategy adopted for immobilization, conditioning and on-site long-term storage of these wastes. The proposed strategy is based on the best experience acquired by other nuclear centers, confronted with same problems. (Author)

  11. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  12. Remediation and assessment of the national radioactive waste storage and disposal site in Tajikistan - 59110

    International Nuclear Information System (INIS)

    Buriev, Nazirzhon T.; Abdushukurov, Dzhamshed A.; Vandergraaf, Tjalle T.

    2012-01-01

    The National Radioactive Waste Storage and Disposal Site was established in 1959 in the Faizabad region approximately 50 km east of the capital, Dushanbe. The site is located on the southern flank of the Fan Mountains facing the Gissar Valley in a sparsely populated agricultural area, with the nearest villages located a few km from the site. The site was initially designed to accept a wide range of contaminated materials, including obsolete smoke detectors, sealed radioactive sources, waste from medical institutions, and radioactive liquids. Between 1962 and 1976, 363 tonnes and 1146 litres of material, contaminated with a range of radionuclides were shipped to the site. Between 1972 - 1980 and 1985 - 1991, ∼4.8 x 10 14 and 2 x 10 13 Bq, respectively, were shipped to the site. An additional 7 x 10 14 Bq was shipped to the site in 1996. Partly as a result of the dissolution of the former Soviet Union, the disposal site had fallen into disrepair and currently presents both an environmental hazard and a potential for the proliferation of radionuclides that could potentially be used for illicit purposes. Remediation of the disposal site was started in 2005. New security fences were erected and a new superstructure over an in-ground storage site constructed. A central alarm monitoring and observation station has been constructed and is now operational. The geology, flora, and fauna of the region have been documented. Radiation surveys of the buildings and the storage and disposal sites have been carried out. Samples of soil, surface water and vegetation have been taken and analyzed by gamma spectrometry. Results show a slight extent of contamination of soils near the filling ports of the underground liquid storage container where a Cs-137 concentration of 2.3 x 104 Bq/kg was obtained. Similar values were obtained for Ra- 226. Radiation fields of the in-ground storage site were generally 3 . Most of the activity appears to be associated with the sediments in the tank

  13. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  14. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-01-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs

  15. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  16. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  17. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  18. Safety and optimization aspects of radioactive waste long-term storage at the ''Vector'' site

    International Nuclear Information System (INIS)

    Tokarevs'kij, O.V.; Kondrat'jev, S.M.; Aleksjejeva, Z.M.; Ribalka, N.V.

    2015-01-01

    The paper analyzes links between the final disposal option and needs for long-term storage of radioactive waste taking into proposals on possible changes in radwaste classification as regards disposal. It considers the conceptual approach to design facilities for long-term storage of long-lived radioactive waste at the Vector site and approaches to apply requirements of regulatory documents, radiation safety principles and criteria for long-term storage of radwaste and safety assessment.

  19. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  20. Final storage high-level radioactive waste in Sweden - the way to the 2009 siting decision

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    In Sweden, high-level radioactive waste producing heat, i.e. spent fuel, is to be emplaced for final storage on the site of Forsmark, which also holds three reactor units. The siting decision was taken in June 2009. A 100 percent private company, a merger of the commercial nuclear power plant operators as producers of the waste, is responsible for the siting decision as well as for waste storage. Major impulses were given to the back-end fuel cycle policy in the early 1970s. Sweden practically gave up the reprocessing option very soon, but kept on pursuing final storage in deep geologic formations. Between 1977, when legislation was adopted with conditions relating to repository storage, and 2009, when the decision in favour of the Forsmark site was taken, the path followed was not always a straight line. The boundary conditions, such as the organization of the repository and procedural and safety criteria established by the government, are interesting with regard to their influence on the siting decision, if any. For this reason, the approaches chosen and their connections with government criteria and with geological conditions in Sweden, including their impacts on the repository concept chosen, will be examined. After a summary review of developments in Sweden, filing of the licensing application and the accompanying documents up to commissioning of the repository, a short comparison will be made with the situation in Germany, especially the status reached of the Gorleben salt dome, highlighting and evaluating important criteria and parameters. Sweden as a model is important especially in these respects: A repository site was found by a private company in consensus with the local government within the framework of government criteria, and with ultimate responsibility resting with the government; the local government of a place not winning the siting decision is disappointed although it will have the conditioning plant and receive higher grants; it was not only

  1. Procedures for the site location of an storage centre of medium and low level radioactive wastes

    International Nuclear Information System (INIS)

    Pena G, P.; Garcia B, M.

    2001-01-01

    In order to establish the procedures for the location of a new and definitive storage center for medium and low level radioactive wastes which will be the place where confining, controlling and keeping those waste products of radioactive materials which were used in the hospitable centers, clinics and institutions (research and techniques development) as well as those obtained from industry. The site studies for nuclear facilities, require the participation of a several professionals with different specialities to be able to make use of competence in different disciplines. The result is the exclusion of unacceptable zones followed them by a pre-selection, a selection and a systematic comparison of those sites which are in the remaining zones considered as acceptable. (Author)

  2. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration

    Energy Technology Data Exchange (ETDEWEB)

    Gaskova, Olga L.; Boguslavsky, Anatoly E. [Institute of Geology and Mineralogy SB RAS, Ac. Koptyug prosp. 3, Novosibirsk 630090 (Russian Federation)

    2013-07-01

    This paper presents results of detailed sampling of groundwater and surface water near the storage sites of radioactive waste from the Electrochemical Plant ECP (Zelenogorsk, Krasnoyarsk region, Russia) and the Angarsk Electrolysis Chemical Complex AEC (Angarsk, Irkutsk region, Russia), both of which have produced enriched uranium since 1960's. The liquid (LRW) and solid (SRW) radioactive wastes belong to the category of low-level activity waste. The main result is that the uranium is below the recommended MPC for drinking waters in all types of groundwater around the sludge of ECP and AEC. But alkaline nitrate solutions have been penetrating and spreading into the aquifers under the LRW sludge pits. According to our calculations, redox conditions in the groundwater influenced by discharge are controlled by the couple NO{sub 3}{sup -}/NO{sub 2}{sup -} that facilitates U(VI) migration. The groundwater under SRW repositories is distinguished by its low mineralization and neutral pH. Co-contaminants, such as Mo, V, and Zr may serve as markers of techno-genous contamination in storage sites of the LRW sludge. (authors)

  3. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  4. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  5. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  6. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    International Nuclear Information System (INIS)

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables

  7. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Smith, G M; Kiselev, M F; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Romanov, V V; Seregin, V A; Filonova, A V; Semenova, M P

    2008-12-01

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  8. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, N K; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Seregin, V A; Filonova, A V; Semenova, M P [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Sneve, M K [Norwegian Radiation Protection Authority, Oslo (Norway); Smith, G M [GMS Abingdon Ltd (United Kingdom); Kiselev, M F; Romanov, V V [Federal Medical-Biological Agency, Moscow (Russian Federation)], E-mail: shandala@srcibph.ru

    2008-12-15

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  9. Modifications to an existing waste containment structure at Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    Paez-Restrepo, A.; Darby, J.W.

    1992-01-01

    The Niagara Falls Storage Site (NFSS), located near Lewiston, New York, is an interim waste containment facility for low-level radioactive waste. The facility was completed in 1986 and is managed for the Department of Energy (DOE) by Bechtel National, Inc. (BNI) as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The waste containment structure (WCS) at NFSS is approximately 297 m (975 ft) long and 137 m (450 ft) wide and reaches a maximum height of 10.4 m (34 ft). The peripheral slopes rise at an angle of 3:1 (h:v) for a width of about 16.8 m (55 ft), where the inclination decreases to 7.5%. The apex of the pile is higher at the south end, sloping about 1.2 m (4 ft) to the north. The interim layered cap consists of 0.9 m (3 ft) of clay overlain by 0.45 m (1.5 ft) of topsoil. The uppermost 15 cm (6 in.) of soil was loosely compacted to permit the development of a grass cover. In the summer of 1991, approximately 2,677 m 3 (3,500 yd 3 ) of additional contaminated soil and material in temporary storage elsewhere at NFSS was incorporated into the WCS. To accommodate the waste, a portion of the cap roughly centered with the pile [including 0.45 m (1.5 ft) of topsoil and 0.6 m (2 ft) of clay cap] was removed from an area 99 m (325 ft) long and 58.5 m (192 ft) wide, leaving a minimum of 0.3 m (I ft) of clay over the old waste as a radiation and radon barrier. The newly incorporated waste forms a layer 0.6 m (2 ft) thick, replacing the clay portion of the excavated cap. The waste is contained laterally by the old cap and sealed by a new cap, which also consists of 0.9 m (3 ft) of compacted clay and 0.45 m (1.5 ft) of topsoil. A transition zone about 6.1 m (20 ft) wide feathers the new cap to the old cap (see Fig. 3). Except for the uppermost 10.5 to 15.2 cm (4 to 6 in.) of vegetated topsoil, the excavated cap materials were stockpiled and reused in constructing the new cap. Additional material required to complete cap construction was imported from

  10. Use of artificial barriers in a site for surface storage of radioactive waste

    International Nuclear Information System (INIS)

    Gros, J.C.; Madoz-Escande, C.; Metivier, J.M.; Grimaud, P.

    1990-01-01

    The objective is the on site study of the influence of an injection screen on the flow in a water table of a porous medium, in order to improve the safety of a surface radioactive waste storage site. A hydrodispersive study has provided information for the definition of the role of the screen: the transfer times of the pollutant in the water table are increased by a factor of 2 and, in comparison, the concentration are clearly reduced by a factor of 10. The implantation of an injection screen in the ground should result in an improvement in the restrictive quality of the barrier and the contamination of an aquifer should be slower without interruption to the flow

  11. Biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations project study area includes five major vegetation associations characteristic of the transition between the northern extent of the Mojave Desert and the southern extent of the Great Basin Desert. A total of 32 species of reptiles, 66 species of birds, and 46 species of mammals are known to occur within these associations elsewhere on the Nevada Test Site. Ten species of plants, and the mule deer, wild horse, feral burro, and desert tortoise were defined as possible sensitive species because they are protected by federal and state regulations, or are being considered for such protection. The major agricultural resources of southern Nye County included 737,000 acres of public grazing land managed by the Bureau of Land Management, and 9500 acres of irrigated crop land located in the Beatty/Oasis valleys, the Amargosa Valley, and Ash Meadows. Range lands are of poor quality. Alfalfa and cotton are the major crops along with small amounts of grains, Sudan grass, turf, fruits, and melons. The largest impacts to known ecosystems are expected to result from: extensive disturbances associated with construction of roads, seismic lines, drilling pads, and surface facilities; storage and leaching of mined spoils; disposal of water; off-road vehicle travel; and, over several hundred years, elevated soil temperatures. Significant impacts to off-site areas such as Ash Meadows are anticipated if new residential developments are built there to accommodate an increased work force. Several species of concern and their essential habitats are located at Ash Meadows. Available literature contained sufficient baseline information to assess potential impacts of the proposed project on an area-wide basis. It was inadequate to support analysis of potential impacts on specific locations selected for site characterization studies, mining an exploratory shaft, or the siting and operation of a repository

  12. An Applied Study of the Storage for Old Intermediate Level Waste at the Studsvik Site

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Lindskog, Staffan

    2004-02-01

    The Storage for Old Intermediate Level Waste (SOILW) at Studsvik has been used for interim storage of intermediate and high level radioactive waste from various activities at the Studsvik site including post irradiation investigations. The SOILW facility was in operation during the years 1961 - 1984. The waste was stored in tube positions in concrete blocks and in concrete vaults. In some instances, radioactive debris and liquid has contaminated the storage positions as well as the underlying ventilation space. The primary purpose of the present work is to improve and extend the present knowledge basis for cost estimates for decommissioning, with the ACSF facility as an example. The main objective has been to explore the possibilities to improve the reliability and accuracy of capital budgeting for decommissioning costs at SOILW. In this study, the present international status of decommissioning, planning and cost estimation has been compiled. The various relevant guidance documents of the IAEA are also compiled, and their emphasis on the necessity of radiological and other surveying as well as technical planning and method selection is reiterated. Cost calculation schemes for new plants and for decommissioning are compiled. It is emphasized that the calculations should be carried out differently at different stages. At the early stages of decommissioning, there should be more emphasis on comparison, and at later stages the emphasis should be more oriented towards summation. The error/uncertainty in a cost calculation is strongly dependent on the selection of methodology, which, in turn, is strongly dependent on the radiological condition. The magnitude of the level of uncertainty has been illustrated by the example of concrete surface removal, and advice is provided on how to identify alternative measures that will enable more sure decisions. An example is also given on a rather similar decontamination and dismantling involving highly contaminated tubes in a

  13. Social assessment of siting a low-level radioactive waste storage facility in Michigan

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Traugott, M.J.; Stone, J.V.; McIntyre, P.D.; Davidson, C.C.; Jensen, F.V.; Coover, G.E.

    1990-01-01

    This report presents findings from a social assessment of siting a low-level radioactive waste storage facility in Michigan. Social assessments derive from direct interaction between researchers and study participants. The report is organized into five chapters. Chapter One, Summary of Findings, focuses on key findings from the statewide telephone surveys and the in-depth ethnographic study conducted by the SNR/ISR study team. These and additional findings are discussed in greater detail in the three subsequent chapters. Chapter Two, Statewide Telephone Survey Findings, presents the knowledge, attitudes and beliefs statewide residents have regarding the LLRW project. Chapter Three, Statewide Demographic Findings, presents a detailed examination of differences among various demographic groups and includes regional analysis. Chapter Four, Hillsdale-area Ethnographic Study Findings, discusses perceived impacts of the proposed LLRW storage facility on local residents who mistakenly came to believe that their area had been specially selected as the location for the facility. Specifically, the chapter presents the development, spread, shape and persistence of what is termed a risk perception shadow in the greater Hillsdale area. Possible causes of the shadow also are discussed, and comparisons are made between statewide and Hillsdale-area survey populations. Chapter Five, Research Methods, presents a discussion of the social assessment research methods used to derive these findings

  14. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    International Nuclear Information System (INIS)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3 - to 0.9 - m depth); the maximum values were 1566 μg/g and 101 pCi/g, respectively. Below about the 6 - m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 μg/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system

  15. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome

  16. The search for a storage site for low-level and long-life wastes. December 2008 report

    International Nuclear Information System (INIS)

    2008-01-01

    After having recalled the methodology and approach implemented for the search and selection of radioactive waste storage sites, this report proposes a brief synthesis of contacts taken during the call for candidates. It comments the results of this call, describes the project technical constraints (waste inventory, studied solutions, graphite and radiferous wastes, programmed investigations on preselected sites), gives the results of the geological analysis (methodology, geological context, site ranking), of the environmental analysis (context and principles, collected information), and of the socio-economic analysis of the candidate sites. The last chapter discusses the identification of possible preselected sites. Some more detailed information are available in appendix: candidate list, geological sheets and maps, environmental and socio-economic analysis of candidate towns or districts

  17. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  18. Managing the process for storage and disposal of immobilized high- and low-level tank waste at the Hanford Site

    International Nuclear Information System (INIS)

    Murkowski, R.J.

    1998-01-01

    Lockheed Martin Hanford Corporation (LMHC) is one of six subcontractors under Fluor Daniel Hanford, Inc., the Management and Integration contractor for the Project Hanford Management Contract working for the US Department of Energy. One of LMHC's responsibilities is to prepare storage and disposal facilities to receive immobilized high and low-level tank waste by June of 2002. The immobilized materials are to be produced by one or more vendors working under a privatization contract. The immobilized low-activity waste is to be permanently disposed of at the Hanford Site while the immobilized high-level waste is to be stored at the Hanford Site while awaiting shipment to the offsite repository. Figure 1 is an overview of the entire cleanup mission with the disposal portion of the mission. Figure 2 is a representation of major activities required to complete the storage and disposal mission. The challenge for the LNIHC team is to understand and plan for accepting materials that are described in the Request for Proposal. Private companies will submit bids based on the Request for Proposal and other Department of Energy requirements. LMHC, however, must maintain sufficient flexibility to accept modifications that may occur during the privatization bid/award process that is expected to be completed by May 1998. Fundamental to this planning is to minimize the risks of stand-by costs if storage and disposal facilities are not available to receive the immobilized waste. LMHC has followed a rigorous process for the identification of the functions and requirements of the storage/disposal facilities. A set of alternatives to meet these functions and requirements were identified and evaluated. The alternatives selected were (1) to modify four vaults for disposal of immobilized low-activity waste, and (2) to retrofit a portion of the Canister Storage Building for storage of immobilized high-level waste

  19. Radiation effects issues related to US DOE site remediation and nuclear waste storage

    International Nuclear Information System (INIS)

    Weber, W.J.; Ewing, R.C.

    1994-10-01

    Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at the same DOE facilities involve working with and within various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. This paper reviews the impact of radiation fields on site restoration activities and on the release rate of radionuclides to the biosphere from nuclear waste forms

  20. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  1. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  2. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  3. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  4. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  5. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  6. Annotated bibliography for biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1981-12-01

    This annotated bibliography was compiled to accompany the Biologic Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, EG and G, Santa Barbara Operations Report No. EGG 1183-2443, which documents and synthesizes important biotic information related to Nevada Nuclear Waste Storage Investigations (NNWSI). As such, it is an important part of the NNWSI screening process that was designed to include a systematic, traceable, defensible, and documented basis for a decision to proceed or not with site-specific phases on NTS. Included are all published, and available but unpublished, baseline information on life histories, habitat requirements, distributions, and ecological relationships of the flora and fauna of the region. Special effort was made to include information on endangered, threatened, or sensitive species. 131 references

  7. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    Energy Technology Data Exchange (ETDEWEB)

    Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States); MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed

  8. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  9. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  10. Nuclear waste. Storage at Vaalputs

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Vaalputs nuclear waste dump site in Namaqualand is likely to be used to store used fuel from Koeberg, as well as low and intermediate waste. It is argued that Vaalputs is the most suitable site in the world for the disposal of nuclear waste. The Vaalputs site is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lend itself towards the ground-storage of used nuclear fuel

  11. Cancer mortality and incidence survey around the Aube's low- and medium-activity radioactive waste storage site

    International Nuclear Information System (INIS)

    2010-01-01

    This report presents the main results of a survey performed in 2010 to describe the health status of the population around the Aube's low- and medium-activity radioactive waste storage site. The aim of this survey was to determine whether the frequencies of death and hospitalization on account of cancer are different for this population (15 km around the site) with respect to two reference populations (the population of the Champagne-Ardennes region and the French metropolitan population). Results of mortality, hospitalization, and lung cancer are presented under the form of maps and tables giving global data or data for males, females, adults, or children

  12. DSND report on radio-ecological monitoring of INBS and management of radioactive waste old storage sites

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report describes the radiological monitoring of secret base nuclear installations (INBS): applicable arrangements and actors in terms of transparency and information on nuclear safety, regulatory arrangements related to surveillance of underground and surface water quality, assessment of the application of regulatory arrangements, arrangements in terms of public information, and actions of the ASND. The second part describes the management of nuclear waste old storage sites: INBS coming under the ministry of defence (air force sites, military harbors), INBS coming under the minister in charge of energy

  13. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  14. Report on the performance monitoring system for the interim waste containment at the Niagara Falls Storage Site, Lewiston, New York

    International Nuclear Information System (INIS)

    1985-10-01

    The Niagara Falls Storage Site (NFSS) is an interim storage site for low-level radioactive waste, established by the US Department of Energy (DOE) at Lewiston, New York. The waste containment structure for encapsulating low-level radioactive waste at the NFSS has been designed to minimize infiltration of rainfall, prevent pollution of groundwater, preclude formation of leachate, and prevent radon emanation. Accurately determining the performance of the main engineered elements of the containment structure will be important in establishing confidence in the ability of the structure to retain the wastes. For this purpose, a waste containment performance monitoring system has been developed to verify that these elements are functioning as intended. The key objective of the performance monitoring system is the early detection of trends that could be indicative of weaknesses developing in the containment structure so that corrective action can be taken before the integrity of the structure is compromised. Consequently, subsurface as well as surface monitoring techniques will be used. After evaluating several types of subsurface instrumentation, it was determined that vibrating wire pressure transducers, in combination with surface monitoring techniques, would satisfactorily monitor the parameters of concern, such as water accumulation inside the containment facility, waste settlement, and shrinkage of the clay cover. Surface monitoring will consist of topographic surveys based on predetermined gridlines, walkover surveys, and aerial photography to detect vegetative stress or other changes not evident at ground level. This report details the objectives of the performance monitoring system, identifies the elements of the containment design whose performance will be monitored, describes the monitoring system recommended, and outlines the costs associated with the monitoring system. 5 refs., 4 figs., 3 tabs

  15. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Pittman, F.K.

    1974-01-01

    Four methods for managing radioactive waste in order to protect man from its potential hazards include: transmutation to convert radioisotopes in waste to stable isotopes; disposal in space; geological disposal; and surface storage in shielded, cooled, and monitored containers. A comparison of these methods shows geologic disposal in stable formations beneath landmasses appears to be the most feasible with today's technology. (U.S.)

  16. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, C.R.; Knutson, C.F.

    1978-02-15

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced.

  17. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    International Nuclear Information System (INIS)

    Boardman, C.R.; Knutson, C.F.

    1978-01-01

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced

  18. Magnox waste storage complex

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This article looks at the design and construction of British Nuclear Fuel Limited's (BNFL) Magnox waste storage complex by Costain Engineering Limited. Magnox swarf from fuel decanning is stored underwater in specially designed silos. Gas processing capabilities from Costain Engineering Limited and the experience of BNFL combined in this project to provide the necessary problem-solving skills necessary for this waste storage upgrading and extension project. A retrofitted inerting facility was fitted to an existing building and a new storage extension was fitted, both without interrupting reprocessing operations at Sellafield. (UK)

  19. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  20. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  1. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  2. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage

    International Nuclear Information System (INIS)

    1993-12-01

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes

  3. Radiological criteria for the remediation of sites for spent fuel and radioactive waste storage in the Russian Northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Titov, A V; Smith, G M; Novikova, N Ya; Romanov, V V; Seregin, V A

    2008-12-01

    In the 1960s, two technical bases of the Northern Fleet were created in Northwest Russia, at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel, and are now designated sites of temporary storage (STSs). An analysis of the radiation situation at these sites demonstrates that substantial long-term remediation work will be required after the removal of the waste and spent nuclear fuel. Regulatory guidance is under development to support this work. Having in mind modern approaches to guaranteeing radiation safety, the primary regulatory focus is on a justification of dose constraints for determining acceptable residual contamination which might lead to exposure to workers and the public. For these sites, four principal options for remediation have been considered-renovation, conversion, conservation and liquidation. This paper describes a system of recommended dose constraints and derived control levels formulated for each option. The unconditional guarantee of long-term radioecological protection provides the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimisation principle. The developed criteria relate to the condition of the facilities and the STS areas after the termination of remediation activities. The proposed criteria for renovation, conversion, conservation and liquidation are entirely within the dose limits adopted in Russia for the management of man-made radiation sources, and are consistent with ICRP recommendations and national practice in other countries. The proposed criteria for STS remediation and new industrial (non-radiation-hazardous) facilities and buildings on

  4. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  5. Characterization and assessment for the Weldon Spring Quarry low-level radioactive waste storage site

    International Nuclear Information System (INIS)

    1984-09-01

    The Weldon Spring Quarry is located approximately 4 miles from the Weldon Spring Chemical Plant and 20 miles west of St. Louis. Originally a limestone and sand quarry, the 9 acre site was later used for the disposal of TNT-contaminated soils during the 1940's and the disposal of low-level radioactive waste during the 1960's. The most important potential hazards posed by the quarry are contamination of groundwater, radiation exposure and contamination of trespassers, and contamination of surface waters. The potential for groundwater contamination was identified at an early date by the US Department of Energy (DOE) as the most important of these potential hazards. Particular concern exists for the future of the municipal well field located between the quarry and the Missouri River. At the present time the well field supplies drinking water for the area from Weldon Spring up to and including parts of the city of St. Charles. Chapters are devoted to geology, waste inventory, hydrology, investigations of radionuclide migration from the quarry, numerical modeling of engineering options, and raffinate pits. 40 references, 182 figures, 49 tables, 7 appendixes

  6. CIS as a successor of the Soviet Union: who is financially responsible for the uranium waste storage sites in Kyrgyzstan?

    International Nuclear Information System (INIS)

    Ajtmatova, J.

    2001-05-01

    weapons' arsenal. Yet, the newly independent Kyrgyz Republic was left alone with an enormous amount of uranium waste, which was extracted on the Kyrgyz territory to produce these nuclear armaments. As a consequence of the Soviet policy, uranium waste storage sites represent a direct danger to the environment of present-day Kyrgyzstan. Therefore, Russia as the official successor of the Soviet Empire should help the Kyrgyz Republic to deal with this costly and extensive problem. These environmental issues serve as a basis for the given work. In turn, research will be primarily concentrated on several the most problematic radioactive waste storage sites, namely, the Mailuu-Suu, Kadji-Say, Kara-Balta, and Ak-Tuz uranium storages. Today, Kyrgyzstan has 50 radioactive waste storage sites, located throughout its territory and contained altogether about 300 million tons of wastes. In general, it could be suggested that the financial responsibility could be delegated to the Kyrgyz government; the Central Asian Community; Russia. It is clear with the first instance, the Kyrgyz government, as it ought to deal with the environmental problems of its country. The situation is more sophisticated and arguable in terms of second and third instance, namely, the Central Asian Community and, particularly, Russia. This paper is designed to prove not only the necessity for their involvement, but rather their responsibility for the present-day situation with the Kyrgyz storage sites. As regards the other Central Asian States, it is in their interests since they are under immediate threat of being affected. Concerning Russia, it is rather a moral right to demand its assistance than a legally legitimate one. All information, related to uranium, its extraction and further utilization was totally classified and only revealed after the Soviet Union's dissolution. Only in 1994 did the Kyrgyz public become acquainted with the truly poor environmental conditions of the newly fledged Republic. Yet, no

  7. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  8. Objective thermo-hydro-mechanical modelling of the damaged zone around a radioactive waste storage site

    International Nuclear Information System (INIS)

    Marinelli, Ferdinando

    2013-01-01

    We present two different approaches to describe the hydro-mechanical behaviour of geo-materials. In the first approach the porous media is studied through an equivalent continuum media where the interaction between the fluid and solid phases characterize the coupling behaviour at the macro-scale. We take into account this approach to model experimental tests performed over a hollow cylinder sample of clay rock (Boom Clay), considered for nuclear waste storage. The experimental results clearly show that the mechanical behaviour of the material is strongly anisotropic. For this reason we chose an elasto-plastic model based on Drucker-Prager criterion where the elastic part is characterized by cross anisotropy. The numerical results of boundary value problem clearly show localised strains around the inner hollow section. In order to regularize the numerical problem we consider a second gradient local continuum media with an enriched kinematic where an internal length can be introduced making the results mesh independent. The uniqueness study is carried out showing that changing the temporal discretization of the problem leads to different solutions. In the second approach we study the hydro-mechanical behaviour of a porous media that it is characterised by the microstructure of the material. The microstructure taken into account is composed by elastic grains, cohesive interfaces and a network of fluid channels. Using a periodic media a numerical homogenization (square finite element method) is considered to compute mass flux, stress and density of the mixture. In this way a pure numerical constitutive law is built from the microstructure of the media. This method has been implemented into a finite element code (Lagamine, Universite de Liege) to obtain results at the macro-scale. A validation of this implementation is performed for a pure mechanical boundary value problem and for a hydro-mechanical one. (author)

  9. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  10. Design cost scoping studies. Nevada Test Site Terminal Waste Storage Program, Subtask 1.3: facility hardening studies

    International Nuclear Information System (INIS)

    Yanev, P.I.; Owen, G.N.

    1978-04-01

    As part of a program being conducted by the U.S. Department of Energy, Nevada Operations Office, to determine the feasibility of establishing a terminal waste storage repository at the Nevada Test Site, URS/John A. Blume and Associates, Engineers, made approximate determinations of the additional costs required to provide protection of structures against seismic forces. A preliminary estimate is presented of the added costs required to harden the surface structures, underground tunnels and storage rooms, and vertical shafts of the repository against ground motion caused by earthquakes and underground nuclear explosions (UNEs). The conceptual design of all of the structures was adapted from proposed bedded-salt waste-isolation repositories. Added costs for hardening were calculated for repositories in three candidate geological materials (Eleana argillite, Climax Stock granite, and Jackass Flats tuff) for several assumed peak ground accelerations caused by earthquakes (0.3g, 0.5g, and 0.7g) and by UNEs (0.5g, 0.7g, and 1.0g). Hardening procedures to protect the tunnels, storage rooms, and shafts against incremental seismic loadings were developed from (1) qualitative considerations of analytically determined seismic stresses and (2) engineering evaluations of the dynamic response of the rock mass and the tunnel support systems. The added costs for seismic hardening of the surface structures were found to be less than 1% of the estimated construction cost of the surface structures. For the underground structures, essentially no hardening was required for peak ground accelerations up to 0.3g; however, added costs became significant at 0.5g, with a possible increase in structural costs for the underground facilities of as much as 35% at 1.0g

  11. Site selection methods for nuclear waste storage in sub-schistic granites

    International Nuclear Information System (INIS)

    Alsac, C.; Chantraine, J.; Chevremont, P.

    1984-02-01

    Intrusive granites in schists, where most of the roof is at a depth of several hundred metres can be regarded as favourable sites for storing radioactive waste since the schistic cover has extremely low permeability. This configuration exists in various parts of France. In this paper the authors describe methods which can be applied to the study of such structures, taking a region in the Armorican Massif as a reference example. The geological evidence here showed an extensive zone with a slight gravimetric anomaly around a few granite outcrops dispersed in the schists. This structure gave reason to believe that a shallow granite mass would be found under the schistic cover, and geological and gravimetric surface studies did indeed prove that this supposition was correct. Apart from the slight gravimetric anomaly, the extent of which has been confirmed and the outlines determined, the transformations (contact metamorphism and hydrothermalism) of the enclosing schists are particularly indicative of the presence of granite. The gravimetric model shows that the thickness of the granite is at least 2.3 km and provides an initial representation of the shape and depth of the roof. These results, together with those of the structural analysis, can be used to demarcate a favourable region for investigations at depth which will make it possible: to monitor the geological structures; to define the geotechnical characteristics of the formations; to analyse and model the hydrogeological behaviour, at present known only from surface studies which do not appear to indicate any circulation of water upwards towards the surface

  12. Storage of nuclear wastes

    International Nuclear Information System (INIS)

    Ahlstroem, P.E.

    1988-01-01

    The Swedish system of handling and storage of nuclear wastes is well-developed. Existing plants and systems provide great freedom of action and flexibility regarding future development and decisions of ultimate storage of the spent fuel. The interim storage in CLAB - Central interim storage facility for spent nuclear fuel - could continue without any safety related problems for more than 40 years. In practice the choice of ultimate treatment system is not locked until the encapsulation of the fuel starts. At the same time it is of importance that the generation benefiting by the nuclear power production also be responsible for the development of the ultimate storage system and not unnecessarily postpones important decisions. The ultimate storage system for spent fuel could and should be developed within existing schedule. At the same time is should be worked out to provide coming generations with possibilities to do the type of supervision they like without maintenance and supervision requiring to become a prerequisite for a safe function. (O.S.)

  13. Radioecological condition assessment and remediation criteria for sites of spent fuel and radioactive waste storage in the russian northwest

    International Nuclear Information System (INIS)

    Shandala, Nataliya; Titov, Alex; Novikova, Natalia; Kiselev, Mikhail; Romanov, Vladimir; Sneve, Malgorzata; Smith, Graham

    2008-01-01

    The Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of the Russian Federation have a regulatory cooperation programme which is concerned with management of the nuclear legacy in northwest Russia, and, in particular, the remediation of facilities for spent fuel and radioactive waste management at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage, but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. This paper presents the progress made and on-going projects in 2008 which involve development of the radio-ecological basis for identifying radiation supervision area boundaries and a system of recommended dose constraints and derived control levels for protection of workers and the public. Unconditional guarantee of long-term radioecological protection serves as the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimization principle. A number of remediation strategies are considered, corresponding to different future land use assumptions, including interim continued use in a nuclear context. The developed criteria relate to conditions of facilities and surrounding areas at the sites of temporary storage after completion of their remediation, and during the interim stages of remediation, depending upon the remediation strategy adopted. (author)

  14. Atmospheric overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bowen, J.L.; Egami, R.T.

    1983-11-01

    This report discusses atmospheric considerations for a nuclear waste repository at NTS. It presents the climatology of Nevada, and NTS in particular, including paleoclimatology for past climatic changes, present climatology for mean meterological conditions, feature climatological expectations, and occurrence of extreme weather. It discusses air quality aspects including an estimation of present air quality and possible dispersion conditions on NTS. It briefly assesses noise problems. It outlines a plan for an Environmental Impact Statement and covers the federal and state regulations for air quality. It identifies data for climatology and air quality and evaluates their applicability to nuclear waste repository

  15. Guidelines for interim storage of low level waste

    International Nuclear Information System (INIS)

    Hornibrook, C.; Castagnacci, A.; Clymer, G.; Kelly, J.; Naughton, M.; Saunders, P.; Stoner, P.; Walker, N.; Cazzolli, R.; Dettenmeier, R.; Loucks, L.; Rigsby, M.; Spall, M.; Strum, M.

    1992-12-01

    This report presents an overview of on-site storage of Low Level Waste while providing guidelines for using the complete Interim On-Site Storage of Low Level Waste report series. Overall, this report provides a methodology for planning and implementing on-site storage

  16. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1995-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  17. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1996-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  18. Storage of radioactive wastes in geological formations. Technical criteria for site selection. Report by the work-group chaired by Professor Goguel

    International Nuclear Information System (INIS)

    Goguel, Jean; Candes, Pierre; Izabel, Cecile; Autran, Albert; Barthoux, Alain; Baudin, Guy; Devillers, Christian; Habib, Pierre; Lafuma, Jacques; Lefevre, Jean; Peaudecerf, Pierre; Pradel, Jacques; Salle, Claude; Treuil, Michel; Lebrun, Patrick; Tissier, Marie-Solange

    1985-06-01

    This document is the result of a prospective mission on the long term storage of radioactive wastes containing long-period emitters (wastes of B and C categories), and notably on a definitive storage in deep continental geological formations. After a presentation of hypotheses (brief description of the storage concept, main safety principles, objectives in terms of radiological safety, safety options, time-related considerations), the authors addressed the following issues: safety before closing during the exploitation period, and safety after closure (after backfilling and sealing of all underground cavities). For the first issue, they discuss the impacts of works on safety and thermal effects during exploitation. For the second issue, they discuss the site natural hydro-geological context, the disturbances brought by the storage (access of water to the storage, and return of water into the biosphere), and the influence of external factors (geological phenomena, human intrusion). Then, the authors make recommendations regarding reconnaissance programs and studies for the selection and qualification of a site. They finally propose technical criteria and main recommendations for site selection. Appendices propose a list of hearings, a presentation of the storage concept, a report on the impact of works, a report on the presence of mineralisation in granite massifs, reports on radiological consequences of intrusions in salt formations and in granite massif containing storage of radioactive wastes or vitrified wastes, a report on the characterization of unsteady parts of the French continental construction, a presentation of the evolution of climate and icings, and a study of seismic movements in the case of deep storages

  19. Decommissioning of a grout- and waste-filled storage tank in the 200 East Area of the Hanford Site

    International Nuclear Information System (INIS)

    Marske, S.G.

    1991-01-01

    A self-concentrating waste tank located at the Strontium Semiworks Facility in the 200 East Area of the Hanford Site will be decommissioned following waste removal. During a previous decommissioning phase, the tank, thought to be empty, was filled with grout to prevent it from collapsing over time. Several years later, an agitator rod was pulled from within the tank and found to contain significant amounts of radiation, indicating there was still radioactive waste in the tank. Several alternative waste-removal options have been researched and evaluated. It is concluded that before the waste is to be disposed, the grout must be removed. This paper addresses that effort

  20. CY2000 Hanford Site Mixed Waste Land Disposal Restrictions Report Vol. 1 Storage Report and Vol 2: Characterization and Treatment Report [SEC 1 thru SEC 4

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2001-01-01

    This volume presents information about the storage and minimization of mixed waste and potential sources for the generation of additional mixed waste. This information is presented in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1996) Milestone M-26-01K. It is Volume 1 of a two-volume report on the status of Hanford Site land-disposal-restricted mixed waste, other mixed waste, and other waste that the parties have agreed to include in this report. This volume also contains the approval page for both volumes and assumptions, accomplishments, and some other information that also pertains to waste characterization and treatment, which are addressed in Volume 2. Appendix A lists the land disposal restriction (LDR) reporting requirements and explains where they are addressed in this report. The reporting period for this document is from January 1, 2000, to December 31, 2000

  1. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  2. Preliminary geologic site selection factors for the National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    1977-06-01

    The geologic considerations and the associated factors that have to be addressed in the selection of repository sites in deep geologic formations are listed and described. In addition a description is given of the information necessary to assess the geologic factors. The methods of obtaining this information are described. An illustration is given of a general approach of how the geologic factors could be applied and integrated to assess the acceptability of candidate sites. No consideration is given to a detailed description of the application of integration of the geologic factors. The criteria associated with each factor that will be used are not defined

  3. Description of Allied-General Nuclear Services on-site solid waste storage concepts

    International Nuclear Information System (INIS)

    Sumner, W.B.; Thomas, L.L.

    1979-01-01

    AGNS will divide the majority of the contaminated solid waste generated during reprocessing of commercial spent nuclear reactor fuels into three categories: spent fuel cladding hulls, high-level general process trash (HLGPT) and low-level general process trash (LLGPT). The LLGPT will be stored in cargo containers identical to those used for road, rail, and sea transport. As these cargo containers are filled, they will be covered with earth for protection from natural phenomenon. The cargo containers will be sufficiently monitored to allow detection and recovery of any radionuclides before they reach the environment. The hulls and HLGPT will be stored in caissons within separate engineered soil berms. The caissons will be lined and capped to provide sufficient protection from natural phenomenon. The berms will include impervious clay layers at the bottom to prevent the downward movement of radionuclides and will be provided with sufficient monitoring to allow detection and recovery of radioactivity before it reaches the environment

  4. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  5. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  6. Storage and Disposal of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pomarola, J. [Head of Technical Section, Monitoring and Protection Division, Atomic Energy Commission, Saclay (France)

    1960-07-01

    This paper deals with solutions for the problem of final disposal of solid radioactive waste. I. It is first essential to organize a proper system of temporary storage. II. Final Storage In order to organize final storage, it is necessary to fix, according to the activity and form of the waste, the site and the modes of transport to be used within and outside the nuclear centre. The choice of solutions follows from the foregoing essentials. The paper then considers, in turn, final storage, on the ground, in the sub-soil and in the sea. Economic considerations are an important factor in determining the choice of solution. (author)

  7. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  8. [Microbiological Aspects of Radioactive Waste Storage].

    Science.gov (United States)

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  9. Preliminary site characterization radiological monitoring plan for the Nevada Nuclear Waste Storage Investigations Project, Yucca Mountain Site

    International Nuclear Information System (INIS)

    1987-03-01

    The activities described in this plan occur in the early phases of site characterization. This document presents the Preliminary Site Characterization Radiological Monitoring Plan (PSCRMP) for collecting and evaluating data in support of the NNWSI Project. The PSCRMP defines and identifies control procedures for the monitoring activities. The PSCRMP activity will utilize integrating radon monitoring devices, a continuous radon monitor, and a particulate air sampler. These instruments will be used to establish the baseline radioactivity and/or radioactivity released due to early site characterization activities. The sections that follow provide a general project description, the specifics of the monitoring program, and the practices that will be employed to ensure the validity of the collected data by integrating quality assurance into all activities. Section 2 of this document describes the regulatory base of this document. Section 3 describes the site characterization activities which may lead to release of radioactivity. Section 4 provides a description of the potential sources of radioactivity that site characterization could generate. Section 5 summarizes the sampling and monitoring methodology, which will be used to monitor the potential sources of radioactivity. The network of sampling and monitoring equipment is described in Section 6, and Section 7 summarizes the systems operation activities. The data reporting activities are described in Section 8. Finally, a description of the Quality Assurance (QA) and Quality Control (QC) activities is provided in Section 9. Appendix A contains a summary of the procedures to be used in this program, and Appendix B contains technical specification on equipment and services. 20 refs., 11 figs., 2 tabs

  10. Safety issues in construction of facilities for long-term storage of radioactive waste at vector site

    Energy Technology Data Exchange (ETDEWEB)

    Tokarevskyi, O.; Alekseeva, Z.; Kondratiev, S. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine); Rybalka, N. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, it is planned to create a number of near-surface facilities for disposal of short-lived RW and long-term (up to 100 years) storage of long-lived RW at the Vector site in the Chernobyl exclusion zone. The expected streams of long-lived RW are analyzed in the paper. According to the analysis of RW streams, in particular, issues are considered on development of RW acceptance criteria, admissible radiological impacts during preparation of RW for long-term storage, reliability of barriers (RW packages, modules and structures, etc.) during long-term storage of RW. (orig.)

  11. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  12. Management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1995-01-01

    Management of radioactive waste is a matter of public concern. Such management, however, is today handled industrially in France, and when these techniques are well applied, its is possible to create storage centres. Waste having a short half-life is now stored in the Centre de l'Aube, which replaces the one begun in 1969 in the Department de la Manche. For waste with a long half-life, following the law passed in 1991, ANDRA is pursuing its programme of site prospecting to establish two underground laboratories for studying geological storage. (author). 2 figs., 1 tab

  13. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  14. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  15. Waste canister for storage of nuclear wastes

    International Nuclear Information System (INIS)

    Duffy, J.B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall. 4 claims, 4 figures

  16. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  17. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  18. Site characterization plan: Conceptual design report, Volume 2: Chapters 4-9: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. 147 refs., 145 figs., 83 tabs

  19. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  20. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  1. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues

  2. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  3. Long-term management of the existing radioactive wastes and residues at the Niagara Falls Storage Site. Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1984-08-01

    The statement assesses and compares several alternatives for long-term management of the existing radioactive wastes and residues at the Niagara Falls Storage Site (NFSS), Lewiston, New York. The alternatives include: (1) no action (continued interim storage at NFSS within a diked and capped containment area), (2) long-term management at NFSS (improved containment, with or without modified form of the residues), (3) long-term management at other DOE sites (Hanford, Washington, or Oak Ridge, Tennessee), and (4) offsite management of the residues at Hanford or Oak Ridge and either leaving the wastes at NFSS or removing them for disposal in the ocean. In addition to alternatives analyzed in depth, several options are also considered, including: other modifications of residue form, modification of the basic conceptual designs, other containment design options, transportation routes, and transportation modes. The radiological health effects (primarily increased risk of cancer) associated with long-term management of the wastes and residues are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. During the action period, the risk is highest for workers if all wastes and residues are moved to Hanford. The risk is highest for the general public if the residues are moved to Hanford and the wastes are moved to the ocean. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. For all alternatives, if controls ceased, there would be eventual dispersion of the radioactive materials to the environment. If it is assumed that all controls cease, predicted time for loss of covers over the buried materials ranges from several hundred years to more than two million years, depending on the use of the land surface

  4. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  5. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  6. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  7. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  8. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  9. Waste management and the land disposal restriction storage prohibition

    International Nuclear Information System (INIS)

    1992-05-01

    RCRA Sect. 3004(j) prohibits storage of wastes that have been prohibited from land disposal, unless that storage is for the purpose of accumulating sufficient quantities of hazardous wastes to facilitate proper recovery, treatment, or disposal. This requirement was incorporated as part of the Land Disposal Restriction (LDR) regulations. Under the LDR storage prohibition, facilities may only store restricted wastes in containers and tanks. As stated in the Third LDR rule, storage of prohibited waste is only allowed in non-land based storage units since land-based storage is a form of disposal. The EPA has recognized that generators and storers of radioactive mixed waste (RMW) may find it impossible to comply with storage prohibition in cases where no available treatment capacity exists. Additionally, under the current regulatory interpretation, there is no provision that would allow for storage of wastes for which treatment capacity and capability are not available, even where capacity is legitimately being developed. Under the LDR program, restricted wastes that are disposed of, or placed into storage before an LDR effective date, are not subject to the LDR requirements. However, if such wastes are removed from a storage or disposal site after the effective date, such wastes would be subject to LDR requirements. The purpose of this information brief is to clarify what waste management practices constitute removal from storage

  10. Review of criterias for shallow burial sites and geohydrological evaluation around the site of temporary storage of low-level solid radioactive wastes of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Chandra, U.; Marcelino, S.

    1986-01-01

    Some comments about norms of pollutants release from nuclear and other industries are made. For radioactive discharges, the strictly implemented national norms/criterias, are much more advanced technically than those existing for other pollutants. Based on the criterias of site selection and site evaluations, the site of IPEN for temporary storage of low level solid radioactive waster has been evaluated geohydrologically. Rainfall infiltration rate (297 cm/y) was determined by tritium labelling technique. Ground water velocity (max. 46.1 cm/d) and direction (to north) was determined by various radioactive (Br-82, I-131, Cr-51) tracers using single well techniques. (Author) [pt

  11. Assessment and characterization of radioactive waste for ultimate storage

    International Nuclear Information System (INIS)

    Brennecke, P.; Warnecke, E.

    1986-01-01

    The waste specifications determined from site safety analyses define the requirements to be met by waste forms for ultimate storage. Product quality control is the process step ensuring compliance with the conditions to be met for ultimate storage. For this purpose, radionuclide inventory, fixation method, container type, waste form and quantity, and type of waste are the most significant items on the checking list. (DG) [de

  12. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  13. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O

  14. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  15. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  16. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  17. The storage center of very-low level radioactive wastes

    International Nuclear Information System (INIS)

    2008-01-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  18. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  19. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  20. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, Revision 1 with ROTC 1

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 140 is located within Areas 5, 22, and 23 of the NTS and is comprised of the following corrective action sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; and 23-17-01, Hazardous Waste Storage Area. The purpose of this CADD is to identify and provide a rationale for the recommendation of a corrective action alternative for each CAS within CAU 140. Corrective action investigation activities were performed from November 13 through December 11, 2002. Additional sampling to delineate the extent of contaminants of concern (COCs) was conducted on February 4 and March 18 and 19, 2003. Corrective action investigation activities were performed as set forth in the Corrective Action Investigation Plan for CAU 140. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify COCs for each CAS. Assessment of the data generated from investigation activities revealed the following: (1) CAS 05-08-01 contains the COCs lead and the radioisotope thorium-234 in the surface soil at sample location A05. (2) CAS 05-23-01 did not have any COCs identified during the field investigation; however, based on historical knowledge of activities at this site, the interior of the Gravel Gertie is considered contaminated with uranium. (3) CAS 23-17-01 contains the COC total petroleum hydrocarbons (diesel-range organics) at location J20 at a depth of 9 to 10 feet below ground surface. (4) No COCs were identified at CASs 05-08-02, 05-17-01, 05-19-01, 05

  1. Storage container for radioactive wastes

    International Nuclear Information System (INIS)

    Catalayoud, L.; Gerard, M.

    1990-01-01

    Tightness, shock resistance and corrosion resistance of containers for storage of radioactive wastes it obtained by complete fabrication with concrete reinforced with metal fibers. This material is used for molding the cask, the cover and the joint connecting both parts. Dovetail grooves are provided on the cask and the cover for the closure [fr

  2. Ultimate storage of reactor wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The report describes the store, SFR 1, designed for final disposal of high and intermediate radioactive wastes from the Swedish nuclear power stations and from the Central Interior Storage Facility for Spent Nuclear Fuel and from other industry, research institutes and medical service. The store is located in rock more than 60 meters below bottom of the Baltic Sea. (O.S.)

  3. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Albrecht, E.; Kolditz, H.; Thielemann, K.; Duerr, K.; Klarr, K.; Kuehn, K.; Staupendahl, G.; Uerpmann, E.P.; Bechthold, W.; Diefenbacher, W.

    1974-12-01

    The present report - presented by the Gesellschaft fuer Strahlen- und Umweltforschung mbH, Muenchen in cooperation with the Gesellschaft fuer Kernforschung mbH, Karlsruhe - gives a survey of the 1973 work in the field of final storage of radioactive wastes. The mining and constructional work carried out aboveground and underground in the saline of Asse near Remlingen with a view to repair, maintenance and expansion for future tasks is discussed. Storage of slightly active wastes on the 750 m floor and the tentative storage of medium-activity wastes on the 490 m floor were continued in the time under review. In September, the multiple transport container S 7 V, developped in the GfK for transports of 7 200 l iron-hooped drums containing medium activity wastes, were employed in Asse for the first time. With two transports a week between Karlsruhe Nuclear Research Centre and the Asse mine, 14 drums were stored per week with a total of 233 drums at the end of the year. The report also gives information on the present state of research in the fields of mountain engineering geology and hydrology, and its results. In addition, new storage methods are mentioned which are still in the planning stage. (orig./AK) [de

  4. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  5. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  6. Time to rethink nuclear waste storage

    International Nuclear Information System (INIS)

    Flynn, J.; Kasperson, R.; Kunreuther, H.; Slovic, P.

    1992-01-01

    The authors feel that given the levels of public opposition and distrust, congress should scrap the current nuclear waste storage program and reconsider the options. They observe that no compelling reason currently exists for siting a permanent repository at an early date. Technology developed in the past decade, especially dry-cask storage, provides assurance that wastes from commercial reactors can be stored safely for a lengthy period at current sites. In the longer term, reprocessing may reduce the volume of high-level wastes; storage elsewhere than in a geological repository may prove attractive; and experimental techniques such as transmutation - aimed at radically reducing the amount of time that wastes remain highly radioactive - could help solve the problem. In the meantime, the authors suggest that the US must begin a long-term effort to engage the public in a process of active collaboration. In doing so, the US has much to learn from other countries, where innovative approaches and techniques have began to establish public confidence

  7. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  8. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  9. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  10. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  11. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  12. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  13. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  14. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  15. Pollution Prevention, Waste Minimization and Material Recycling Successes Realized during Savannah River Site's K Area Materials Storage (KAMS) Project, W226

    International Nuclear Information System (INIS)

    Ellis, M.S.

    2001-01-01

    As DOE continues to forge ahead and re-evaluate post cold war missions, facilities that were constructed and operated for DOE/DOD over the past 50+ years are coming to the end of their useful life span. These various facilities throughout the country had served a very useful purpose in our nations history; however, their time of Cold War materials production has come to an end. With this looming finalization comes a decision as to how to remedy their existence: D and R the facilities and return to ''Greenfield''; or, retrofit the existing facilities to accommodate the newer missions of the DOE Complex. The 105-K Reactor Building located at the Savannah River Site in Aiken, South Carolina was retrofit on an accelerated project schedule for a new mission called K-Area Materials Storage (KAMS). Modifications to the former defense reactor's building and equipment will allow storage of Plutonium from the Rocky Flats Site in Colorado and other materials deemed necessary by the Department of Energy. Proper project planning and activity sequencing allowed the DOE and the Westinghouse Savannah River Company to realize savings from: the recycling and/or reuse of modified facility components; reduction and reclassification of waste; reduction in radiological area footprint (rollbacks)

  16. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1977-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the Southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory

  17. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1978-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory. 31 figures

  18. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan

  19. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  20. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  1. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  2. Formerly utilized MED/AEC sites Remedial Action Program. Radiological survey of the St. Louis Airport Storage Site, St. Louis, Missouri. Final report. [U, Ra-bearing wastes stored in 1940-60's

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    Results of two radiological surveys of the St. Louis-Lambert Airport property, formerly known as the Airport Storage Site, St. Louis, Missouri, are presented. Uranium- and radium-bearing waste materials were stored from the 1940's to the late 1960's in this area. The surveys included direct measurements of beta-gamma radiation; determination of uranium, actinium, and radium concentrations in soil samples and from bore holes; determination of radionuclide concentrations in groundwater and surface water; measurement of radon flux from the ground surface; and measurements of /sup 222/Rn in air near the site. Results indicate that some offsite drainage pathways are becoming contaminated, probably by runoff from the site; no migration of /sup 222/Rn from the site was observed.

  3. Storage of long lived solid waste

    International Nuclear Information System (INIS)

    Ozarde, P.D.; Agarwal, K.; Gupta, R.K.; Gandhi, K.G.

    2009-01-01

    Long lived solid waste, generated during the fuel cycle mainly includes high level vitrified waste product, high level cladding hulls and low and intermediate level alpha wastes. These wastes require storage in specially designed engineered facilities before final disposal into deep geological repository. Since high-level vitrified waste contain heat generating radionuclides, the facility for their storage is designed for continuous cooling. High level cladding hulls undergo volume reduction by compaction and will be subsequently stored. (author)

  4. PUREX Storage Tunnels waste analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  5. Radiation situation dynamics at the Andreeva Bay site for temporary storage of spent nuclear fuel and radioactive waste over the period 2002-2016.

    Science.gov (United States)

    Chizhov, K; Sneve, M K; Shandala, N; Siegien-Iwaniuk, K; Smith, G M; Krasnoschekov, A; Kosnikov, A; Grigoriev, A; Simakov, A; Kemsky, I; Kryuchkov, V

    2018-02-01

    The Coastal Technical Base (CTB) №569 at Andreeva Bay was established in the early 1960s and intended for the refueling of nuclear submarine reactors and temporary storage of spent nuclear fuel (SNF) and radioactive waste (RW). In 2001, the base was transferred to the Russian Ministry for Atomic Energy and the site remediation began. The paper describes in detail the radiation situation change at the technical site in Andreeva Bay from 2002-2016, the period of preparation for the most critical phase of remedial work: removal of spent fuel assemblies. The analysis of aggregated indicators and data mining were used. The article suggests the best number and location of checkpoints needed to ensure sufficient accuracy of the radiation situation description. The fractal properties of the radiation field are studied using the Hurst index. The relationship between checkpoints was assessed using the method of searching for checkpoint communities. The decrease in the integral of the ambient dose equivalent rate (ADER) at the technical site was evaluated by the method of time series decomposition. Three components of time series were identified: trend, seasonal and residual. The trend of the ADER integral over the technical site is a monotonic decreasing function, where the initial and final values differ tenfold. Taking into account that 137 Cs dominates the radiation situation on-site, it is clear that the ADER due to the radionuclide decay will have decreased by 1.4 times. It is estimated that only a small proportion of 137 Cs has migrated off-site. Therefore, approximately a sevenfold decrease in dose rate is mainly due to remediation activities of personnel. During the year, the seasonal component varies the ADER integral by a factor of two, due to snowfall. The residual component reflects the uncertainty of the ADER integral calculation and phases of active SNF and RW management. The methods developed are used to support the optimization of remediation work as well

  6. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  7. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    International Nuclear Information System (INIS)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year

  8. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  9. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  10. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  11. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  12. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  13. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  14. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Ziehm, Cornelia

    2015-01-01

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  15. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  16. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  17. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  18. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  19. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  20. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  1. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  2. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-17

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

  3. INEEL special case waste storage and disposal alternatives

    International Nuclear Information System (INIS)

    Larson, L.A.; Bishop, C.W.; Bhatt, R.N.

    1997-07-01

    Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria

  4. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  5. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  6. The search for a storage site for low-level and long-life wastes. A national project and a development opportunity for your town. A dossier for local communities

    International Nuclear Information System (INIS)

    2008-01-01

    After a review of the program schedule, this document presents the project of a storage site for low-level and long life radioactive wastes as an opportunity for a district: it outlines the benefits of such a realisation for the dynamics of the local activity, specifies the main economical and financial characteristics associated with such a facility, and evokes the elements which are taken into account for the selection of the site. It describes the storage centre as a place of industrial activity, a monitored and controlled facility, an installation opened to the public. It describes the different stages of the life cycle of this future storage centre: pre-selection, on-site investigations, additional studies and administrative process for the selected site, building and starting, operation, shutting down, surveillance. The document indicates the legal frame related to this activity, specifies what are the different concerned wastes, and their present warehousing locations. It gives some details on the different safety principles for such a storage: environment and health protection, geological layer, public works engineering solutions, waste packages

  7. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  8. Pyramid mountain diesel fuel storage site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brolmsa, M.; Sandau, C. [Jacques Whitford Environment Ltd., Burnaby, BC (Canada)

    2005-07-01

    Remediation activities during the decommissioning of a microwave tower facility where a tram line was used to transfer diesel fuel from the base of a mountain to its summit were described. As the site was leased from Parks Canada, federal guidelines were used to assess levels of contamination. Underground storage tanks (USTs) used for diesel storage had been replaced with aboveground storage tanks (AST) in 1994. Remediation was also complicated by the remote location and altitude of the site, as well as by extreme weather conditions. Hand auguring and test pitting were used at both the summit and base to allow characterization and preliminary delineation of impacted soils. A heavy lift helicopter was used to place demolition and excavation equipment on the summit. An excavator was used to remove hydrocarbon impacted soils. Following the remedial excavation for the summit diesel AST, residual soil impacts in excess of the applicable remediation guidelines were present at the bottom of the tank nest and under a floor slab. An environmental liner was installed, and a quantitative screening level risk assessment demonstrated the low level of risk for the area, as well as for waste oil impacted soils on the slope below the summit. Contaminants of potential concern were barium, zinc, naphthalene, and petroleum hydrocarbon fractions F1-F4. It was concluded that there are now no unacceptable ecological or human risks from residual impacts at the site. 1 tab., 19 figs.

  9. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  10. The waste bin: nuclear waste dumping and storage in the Pacific

    International Nuclear Information System (INIS)

    Branch, J.B.

    1984-01-01

    Relatively small amounts of nuclear waste have been stored on Pacific islands and dumped into the Pacific Ocean since 1945. Governments of Pacific countries possessing nuclear power plants are presently seeking permanent waste storage and disposal solutions at Pacific sites including subseabed emplacement of high-level nuclear wastes and ocean dumping of low-level wastes. This article examines these plans and the response of Pacific islanders in their development of policies and international strategies to ban the proposed dumping on a regional basis. Island governments are preparing for a Regional Convention during which a treaty concerned with radioactive waste storage and disposal will be signed. (Author)

  11. Hydrology and water resources overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada: annotated bibliography

    International Nuclear Information System (INIS)

    French, R.H.; Elzeftawy, A.; Elliot, B.

    1984-06-01

    The literature available regarding hydrology and utilization of water resources in the southwestern Nevada Test Site area is reviewed. In the context of this annotated bibliography, hydrology is defined to include hydrometeorology, surface water resources, and groundwater resources. Water utilization includes water supply, demand and use; future supply, demand and use; and wastewater treatment and disposal. The bibliography is arranged in alphabetical order and indexed with both technical key words and geographical key words

  12. Performance monitoring report for the Niagara Falls Storage Site Waste Containment Structure, Lewiston, New York: Calendar year 1987 and January--June of 1988

    International Nuclear Information System (INIS)

    Blanke, J.A.; Johnson, R.T.; Stanley, W.F.

    1989-01-01

    A performance monitoring program has been developed for the Niagara Falls Storage Site (NFSS) Waste Containment Structure (WCS). The WCS contains soils contaminated with residual radioactive materials, rubble, and radioactive residues removed from various areas of the NFSS and vicinity properties during remedial action conducted by the Department of Energy (DOE) from 1982 through 1986. The NFSS is a part of the DOE Surplus Facilities Management Program (SFMP). The purpose of the performance monitoring program is to verify that the WCS main engineering elements are functioning to minimize infiltration of rainfall; prevent pollution of groundwater; preclude formation of leachate; and prevent radon emanation. This report presents the findings of performance monitoring conducted at the WCS during calendar year 1987, and January through June of 1988. the data received during the initial performance monitoring period in 1986 (Ref. 3) established a baseline for interpretation contained in this report. The period covered by this report has been expanded to include 6 months in 1988 because the impact of the winter is most evident in the spring growing season. 5 refs., 12 figs., 8 tabs

  13. Characterization of solidified radioactive wastes produced at Montalto di Castro BWR plant with reference to the site storage

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.; Pace, A.

    1985-01-01

    The cement solidification of the Montalto di Castro BWR plant radwastes has been studied both from the point of view of the mixtures of formulation and of the product characterization. Five radwaste types and mixtures of them have been taken into consideration, determining the best chemical formulations starting from the compressive strenght as leading parameter. The solidified products have been characterized from the point of view of the freeze and thawing resistance, the water immersion resistance, the leachability, the dimensional changes and the free standing water. All the tests have been performed taking into account the real site conditions, so the leaching tests and the water immersion tests have been carried out using sea water and table water as leachant

  14. Synthesis long life storage studies surface storage of vitrified wastes

    International Nuclear Information System (INIS)

    Beziat, A.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.; Hollender, F.; Jourdain, F.; Piault, E.; Garnier, J.; Lamare, V.; Duret, B.; Helie, M.; Ferry, C.; Mijuin, D.; Gagnier, E.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It justifies the choices concerning long time surface storage installation of vitrified wastes, called high activity wastes. The long time of the installation would reach 300 years at the maximum. These wastes represent 1 % at the maximum, of radioactive wastes in France but 95 % of the whole radioactivity. Three main objectives were followed: provide a permanent containment of radionuclides; give the possibility of wastes containers retrieval at all the time; minimize the maintenance and the control. The results allow to conclude that the long time surface storage of high activity wastes is feasible. (A.L.B.)

  15. Fate of nuclear waste site remains unclear

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1980-01-01

    The only commercial nuclear fuel reprocessing plant in the U.S., located in West Valley, N.Y., has been shut down since 1972, and no efforts have yet been made to clean up the site. The site contains a spent-fuel pool, high level liquid waste storage tanks, and two radioactive waste burial grounds. Nuclear Fuel Services, Inc., has been leasing the site from the New York State Energy RandD Authority. Federal litigation may ensue, prompted by NRC and DOE, if the company refuses to decontaminate the area when its lease expires at the end of 1980. DOE has developed a plan to solidify the liquid wastes at the facility but needs additional legislation and funding to implement the scheme

  16. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  17. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  18. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  19. Aspects of the storage of radioactive waste

    International Nuclear Information System (INIS)

    Nienhuys, K.

    1978-01-01

    The expansion in the number of nuclear power stations in the netherlands is amongst other things, dependent on an acceptable policy for the storage of the waste from the stations. Consequently the idea has developed for storage in a salt-dome. The sub-committee on radioactive waste substances of the Interdepartmental Committee for Nuclear Energy has therefore given a mandate to initiate further research. For the risk analysis over the definitive storage of nuclear waste the sub-comittee produced a report in 1975, entitled 'Safety analysis for the underground storage of nuclear waste in salt-dome outcrops'. The analysis reveals a number of defective features. This makes especially clear that statements about the definitive storage of nuclear waste in salt domes can only be made with a great deal of uncertainty. There is no guarantee that the nuclear waste generated may be stowed away so that it will never return to the ionosphere. The speed whereby the nuclear waste may return would be dependent on a combination of events which cannot generally be calculated or assessed. The long term consequences of an irreversible radioactive contamination of the biosphere is not acceptable. There is insufficient proof that the storage of radioactive waste in salt domes is feasible. (G.C.)

  20. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  1. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  2. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    International Nuclear Information System (INIS)

    1996-04-01

    The Department of Energy's (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site's original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site's new mission of environmental restoration and deactivation, decontamination and decommissioning (D ampersand D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed

  3. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  4. A Quantitative Analysis of the Reversibility of Nuclear Waste Storage: Waste Re-utilization

    International Nuclear Information System (INIS)

    Gollier, Christian; Devezeaux de Lavergne, Jean-Guy

    2001-01-01

    The reversibility of nuclear waste storage can be justified on various economic grounds, including the eventuality that future generations may wish to recover this waste in order to re-utilise it. Real options theory is used to cost this option. By including the value of this option in the cost/benefit analysis, it is possible to determine what present generations should spend to organise this reversibility. Taking current values of the materials contained in the waste, and taking into account the low growth trend of such values, we show that the reversibility value of a waste storage site is derisory

  5. The different solutions for the waste storage

    International Nuclear Information System (INIS)

    Fillion, E.

    2001-01-01

    Created in 1979, the National agency for the management of radioactive waste (A.N.D.R.A.) is a public establishment in charge of the management of radioactive waste produced in France. It is independent from waste producers and watches over the long term protection of man and his environment, at any step of radioactive waste management. It has for mission to check the waste quality and to conceive, to establish, to build and to manage storage centers where waste are stored according their characteristics. (N.C.)

  6. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  7. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  8. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  9. Aube very low activity waste storage Centre. Annual report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the ANDRA (the French national agency for radioactive waste management), its role and missions, its sites, its strategy with respect to a sustainable development, this report contains a description of waste storage installations and key figures of the activity in 2009 (origin and nature of very low activity wastes, brief description of the Aube centre installations, stored volumes, performed works). It describes arrangements related to security, safety and radioprotection, presents results of the radiological survey activity performed in the environment and on wastes, and activities related to public information

  10. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  11. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  12. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  13. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  14. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  15. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  16. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  17. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  18. Situation of the environmental surveillance and situation of the water table and rivers labelling around nuclear sites and old radioactive waste storages. Report for the high committee for the transparency and information on nuclear safety

    International Nuclear Information System (INIS)

    2008-01-01

    The High Committee for the openness and information on nuclear safety (H.C.T.I.S.N.) requested a study at I.R.S.N. concerning the situation of the surveillance of media and their quality and the diffusion of this information near the public, the identification of ground water or rivers that would present a radiological or chemical labelling, the link of these elements with the future national network of the radioactivity measurement in environment. This assessment must also allow to take stock of the situation relative to the surveillance of the quality of ground water that flow out of the level of old radioactive waste storages, especially registered in the ANDRA inventory. I.R.S.N. chose to limit its contribution: to the sites housing nuclear base installations and nuclear base installations that have been classified secret that come under the Minister in charge of energy; to old radioactive wastes storages located in these installations. (N.C.)

  19. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  20. Analysis and study of the sites of storages radioactive wastes. Preservation of the records of knowledge and memory of the sites; Analisis y estudio de las ubicaciones de los almacenamientos de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Farias, J.

    2015-07-01

    The storage of radioactive waste are designed to accommodate safely for society and the environment, these materials over long periods of hundreds to thousands of years. Preserve in memory the existence of these storages and documentation and accurate information about their location, content and features for future generations, so that their safety is preserved and avoid unwanted intrusions, is the subject of analysis and study today by the NEA / OECD, European Commission and other international scientific organisms. (Author)

  1. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  2. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  3. Perry Nuclear Plant's Plans for on-site storage

    International Nuclear Information System (INIS)

    Ratchen, J.T.

    1993-01-01

    Because of current radwaste disposal legislation and the eventual denial of access to the Barnwell, Richland, and Beatty burial sites, it was imperative for the Perry nuclear power plant to develop alternative means for handling its generated radioactive waste. The previous radwaste facilities at Perry were developed for processing, packaging, short-term storage, and shipment for burial. In order to meet the changing needs, new facilities have been constructed to handle the processing, packaging, and 5-yr interim storage of both dry active waste (DAW) and dewatered or solidified resin, filter media, etc

  4. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  5. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  6. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  7. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  8. Radiolytic bubble formation and level changes in simulated high-level waste salts and sludges -- application to Savannah River Site and Hanford Storage tanks

    International Nuclear Information System (INIS)

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-01-01

    Radiolytically-produced bubbles of trapped gas are observed in simulated high-level waste (HLW) damp salt cake exposed to Co-60 gamma radiation. As the damp salt cake is irradiated, its volume increases due to the formation of trapped gas bubbles. Based on the increase in volume, the rate of trapped gas generation varies between 0.04 and 0.2 molecules/100 eV of energy deposited in the damp salt cake. The maximum volume of trapped gas observed in experiments is in the range 21--26 vol %. After reaching these volumes, the gas bubbles begin to escape. The generated gas includes hydrogen, oxygen, and nitrous oxide. The ratio in which these components are produced depends on the composition of the waste. Nitrous oxide production increases with the amount of sodium nitrite. Gases trapped by this mechanism may account for some of the observed level changes in Savannah River Site and Hanford waste tanks

  9. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  10. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  11. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  13. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  15. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  16. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  17. Proceedings of the 1981 National Waste Terminal Storage Program information meeting

    International Nuclear Information System (INIS)

    1981-11-01

    Separate abstracts have been prepared for each of the following sixteen sections: Overview of the National Waste Terminal Storage Program; Site Characterization; Repository Development; Regulatory Framework; Systems; Socioeconomic Evaluation; Site Screening/Characterization Support Activities; Repository Data Base Development; Regulatory Implementation; Systems Performance Assessment; Sociopolitical Initiatives; Earth Sciences; International Waste Management; Waste Package Development; Quality Assurance; and Overviews of NWTS Projects

  18. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  19. National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    Zerby, C.D.

    1976-01-01

    Objective of this program is to provide facilities (Federal repositories) in various deep geologic formations at several locations in USA for the safe disposal of commercial radioactive waste from power reactors. The four types of containerized waste are described. The steps for developing the repositories are outlined

  20. Underground nuclear waste storage backed

    International Nuclear Information System (INIS)

    Long, J.R.

    1978-01-01

    Latest to hold hearings on nuclear waste disposal problems is the Senate Commerce Subcommittee on Science, Technology and Space. Testimonies by John M. Deutch, Rustum Roy (presenting results of National Research Council panel on waste solidification), and Darleane C. Hoffman are summarized

  1. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  2. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  3. Method to increase the safety of a final storage site in a salt cavern filled with solidified radioactive waste with regard to unforeseen rock movements and/or water ingress into cavities of the final storage site

    International Nuclear Information System (INIS)

    Koester, R.; Rudolph, G.; Kroebel, R.

    1986-01-01

    The wastes of weak or average radio-activity (e.g. T) are stored in barrels in a salt mine. In order to prevent leaching of the waste after the ingress of water into the salt mine, the intermediate spaces between the barrels are filled with a concrete grout. This grout consists of a water/bentonite/cement mixture, to which sand may be added, and which hardens. It forms a monolithic block. (orig./PW)

  4. Method to increase the safety of a final storage site in a salt cavern filled with solidified radioactive waste with regard to unforeseen rock movements and/or water ingress into cavities of the final storage site

    International Nuclear Information System (INIS)

    Koester, R.; Rudolph, G.; Kroebel, R.

    1980-01-01

    The wastes of weak or average radio-activity (e.g. T) are stored in barrels in a salt mine. In order to prevent leaching of the waste after the ingress of water into the salt mine, the intermediate spaces between the barrels are filled with a concrete grout. This grout consists of a water/bentonite/cement mixture, to which sand may be added, and which hardens. It forms a monolithic block. (DG) [de

  5. Waste Encapsulation and Storage Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In 1972, two chemical elements which generate a lot of heat were removed from the high level waste tanks at Hanford. Called cesium and strontium, these elements had...

  6. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  7. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  8. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  9. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  10. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  11. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  12. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  13. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available

  14. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  15. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  18. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  19. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  20. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  1. Description of a Multipurpose Processing and Storage Complex for the Hanford Site's radioactive material

    International Nuclear Information System (INIS)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy's (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials)

  2. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  3. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  4. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  5. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  6. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  7. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  8. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  9. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  10. The very-low activity waste storage facility. A new waste management system; Le centre de stockage des dechets de tres faible activite. Une nouvelle filiere de gestion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  11. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  12. Norwegian work on establishing a combined storage and disposal facility for low and intermediate level waste

    International Nuclear Information System (INIS)

    International Atomic Energy Agency WATRP Review Team.

    1995-12-01

    The IAEA has, through its Waste Management Assessment and Technical Review Programme (WATRP), evaluated policies and facilities related to management of radioactive waste in Norway. It is concluded that the Himdalen site, in combination with the chosen engineering concept, can be suitable for the storage and disposal of the relatively small amounts of Norwegian low and intermediate level waste

  13. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  14. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  15. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  16. Essential relationships between in situ measurements and laboratory experiments for realistic evaluation of transport in the neighbourhood of geological waste storage sites

    International Nuclear Information System (INIS)

    Rancon, D.

    1984-02-01

    As part of the study of waste storage in geological formations, a plan of research was developed which reconciles the difficulty of carrying out transport experiments in formations at a depth of 1000 m and reproducing in the laboratory the real conditions of these environments. In situ measurements should provide the characteristics of the solid and aqueous environments of the formation under consideration. In solid environments, it is essential to distinguish between pulverulent rocks and fissured compact rocks because they have totally different retention mechanisms. In the aqueous environment the physical and chemical properties of the water are of paramount importance for determining the behaviour of the radioisotopes. Borehole core samples enable the structure of the materials to be studied and provide the necessary samples for experiments. The water analysis takes into account the high pressures prevailing at depth, and for this purpose special probes are used which enable direct measurements to be taken (pH, Eh, temperature, pressure). The samples are transferred in air-tight bottles to special facilities for quantitative determination of the dissolved gases. The transformations which the aqueous environment undergoes as a result of interactions with the confinement barriers are to be taken into account in a large-scale ''integral experiment'' which will reproduce the various stages of transport while monitoring the parameters and allowing for the source term. The integral experiment will enable the tests to be carried out from underground laboratories with optimum reliability

  17. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  18. Effect of the waste products storage on the environmental pollution by toxic organic compounds

    Directory of Open Access Journals (Sweden)

    Aleksandra Lewkiewicz-Małysa

    2005-11-01

    Full Text Available A permanent deposition of industrial wastes is a method of its neutralization. A storage yard for toxic materials must meet specific site and construction conditions. The storage place region of toxic organic waste materials has to be monitored. The environmental impact of this waste on the groundwater quality, especially the migration of persistent organic pollutants, was discussed on the example of a chemical plant.

  19. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  20. Characteristics of soils and saprolite in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Ammons, J.T.; Phillips, D.H.; Timpson, M.E.

    1987-01-01

    Solid Waste Storage Area 6 (SWSA-6) is one of the disposal sites for solid low-level radioactive waste at Oak Ridge National Laboratory. Soils and saprolites from the site were characterized to provide base line information to initiate assessment for remedial actions and closure plans. Physical, chemical, mineralogical, and engineering analyses were conducted on soil and saprolite samples

  1. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  2. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Kehle, R.

    1979-01-01

    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  3. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  4. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  5. Characterization plan for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Dreier, R.B.; Huff, D.D.; Kelmers, A.D.; Kocher, D.C.; Lee, S.Y.; O'Donnell, F.R.; Pin, F.G.; Smith, E.D.

    1985-12-01

    Solid Waste Storage Area 6 (SWSA-6) is the only currently operating low-level radioactive waste (LLW) shallow land burial facility at the Oak Ridge National Laboratory. The US Department of Energy (DOE) recently issued DOE Order 5820.2, which provides new policy and guidelines for the management of radioactive wastes. To ensure that SWSA-6 complies with this Order it will be necessary to establish whether sufficient data on the geology, hydrology, soils, and climatology of SWSA-6 exist, and to develop plans to obtain any additional information required. It will also be necessary to establish a source term from the buried waste and provide geochemical information for hydrologic and dosimetric calculations. Where data gaps exist, methodology for obtaining this information must be developed. The purpose of this Plan is to review existing information on SWSA-6 and develop cost estimates and schedules for obtaining any required additional information. Routine operation of SWSA-6 was initiated in 1973, and it is estimated that about 29,100 m 3 (1,000,000 ft 3 ) of LLW containing about 250,000 Ci of radioactivity have been buried through 1984. Since SWSA-6 was sited prior to enactment of current disposal regulations, a detailed site survey of the geologic and hydrologic properties of the site was not performed before wastes were buried. However, during the operation of SWSA-6 some information on site characteristics has been collected

  6. Characteristics of transuranic waste at Department of Energy sites

    International Nuclear Information System (INIS)

    Jensen, R.T.; Wilkinson, F.J. III.

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981

  7. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  8. The storage of nuclear wastes; General problematic of radioactive waste management; The currently operated ANDRA's storage centres in France; The Aube storage centre (CSA) and the industrial centre for gathering, warehousing and storage (Cires); The Cigeo project - Industrial centre of radioactive waste storage in deep geological layers; From R and D to innovation within the ANDRA

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Tallec, Michele; Legee, Frederic; Krieguer, Jean-Marie; Plas, Frederic

    2016-01-01

    This publication proposes a set of four articles which address various aspects related to the storage of nuclear wastes. The authors respectively propose an overview of the general problematic of nuclear waste management, a detailed description of existing storage sites which are currently operated by the ANDRA with a focus on the Aube storage centre or CSA, and on the industrial centre for gathering, warehousing and storage or Cires (The currently operated ANDRA's storage centres in France - The Aube Storage Centre or CSA, and the Industrial Centre for Regrouping, Warehousing and Storage or CIRES), a comprehensive overview of the current status of the Cigeo project which could become one of the most important technological works in France (The Cigeo project - Industrial centre of radioactive waste storage in deep geological layers), and a presentation showing how the ANDRA is involved in R and D activities and innovation (From R and D to innovation within the ANDRA)

  9. Storage drums for radio-active waste

    International Nuclear Information System (INIS)

    Knights, H.C.

    1982-01-01

    The lid of a storage drum for radioactive waste is secured by a series of clamps each of which has a hook for engaging the rim of the drum. Each clamp has an indicating means whereby a remote operator can check that the lid is secured to the drum. In a second embodiment, the position of an arm acts as a visual indication as to whether or not the clamp is in engagement with the container rim. (author)

  10. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  11. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  12. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Science.gov (United States)

    2010-07-01

    ..., storage or disposal facility. If an eligible academic entity makes the hazardous waste determination... hazardous waste permit or interim status as soon as it arrives in the on-site treatment, storage or disposal... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the...

  13. Concepts for Waste Retrieval and Alternate Storage of Radioactive Waste

    International Nuclear Information System (INIS)

    F.J. Bierich

    2005-01-01

    The primary purpose of this technical report is to present concepts for retrieval operations, equipment to be used, scenarios under which waste retrieval operations will take place, methods for responding to potential retrieval problems, and compliance with the preclosure performance objectives of 10 CFR 63.111(a) and (b) [DIRS 156605] during the retrieval of waste packages from the subsurface repository. If a decision for retrieval is made for any or all of the waste, the waste to be retrieved would be dispositioned in accordance with the regulations applicable at the time. The secondary purpose is to present concepts for the design, construction, and operation of an alternate storage facility. The alternate storage facility would temporarily house the retrieved waste until final disposition is established. The concept presented is consistent with current practices and regulations for the protection of public health and safety and the environment, it demonstrates the feasibility of such a facility, if required, and it is based on the consideration for keeping radiation exposure as low as is reasonably achievable (ALARA)

  14. Radioactive waste will be stored at desolate Cape site

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    High, intermediate and low-level radioactive waste will be stored at the Vaalputs nuclear waste dump site near Springbok. This area is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lends itself towards the ground-storage of used nuclear fuel, because of the remote possibility of earthquakes

  15. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  16. Geophysical investigations at ORNL solid waste storage area 3

    International Nuclear Information System (INIS)

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs

  17. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  18. Geologic and engineering dimensions of nuclear waste storage

    International Nuclear Information System (INIS)

    Hoskins, E.R.; Russell, J.E.

    1983-01-01

    Nuclear waste characteristics, existing and projected quantities of radioactive materials that need to be stored, various disposal or storage strategies or alternatives, geologic media under consideration, and repository construction techniques and problems are discussed. The best alternative at this time is containment in mined caverns, deep underground. There are still uncertainties in site selection criteria, in the design of underground openings, and in the prediction of both cultural and natural hazards and their effects on the repository over a 1000-year or longer time frame. It is possible to minimize the negative effects by careful site selection, although this involves more than just technical issues

  19. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  20. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    Faulk, G.W.; Kinney, J.C.; Knapp, D.C.; Burdette, T.E.

    1996-01-01

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  1. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  2. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites

  3. Terminal storage of radioactive waste in geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1976-01-01

    The principal aim of the National Waste Terminal Storage (NWTS) program is to develop pilot plants and, ultimately, repositories in several different rock formations in various parts of the country. Rocks such as salt, shale, limestone, granite, schists, and serpentinite may all qualify as host media for the disposition of radioactive wastes in the proper environments. In general, the only requirement for any rock formation or storage site is that it contain any emplaced wastes for so long as it takes for the radioactive materials to decay to innocuous levels. This requirement, though, is a formidable one as some of the wastes will remain active for periods of hundreds of thousands of years and the physical and chemical properties of rocks that govern circulating groundwater and hence containment, are difficult to determine and define. Nevertheless, there are many rock types and a host of areas throughout the country where conditions are promising for the development of waste repositories. Some of these are discussed below

  4. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  5. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  6. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  7. National waste terminal storage program bibliography

    International Nuclear Information System (INIS)

    Asher, J.M.

    1977-01-01

    In February 1976, the Energy Research and Development Administration (ERDA) announced a greatly expanded waste management program for defense and commercial radioactive waste. In that announcement, ERDA indicated that the Oak Ridge Operations Office (ORO) of ERDA would have lead responsibility for overall coordination of the expanded commercial geologic disposal program and that an Office of Waste Isolation (OWI) would be created within Union Carbide Corporation-Nuclear Division (UCC-ND) with the responsibility for program management of that activity. This bibliography lists many of the documents authored since 1958 by UCC-ND's technical personnel, consultants, and subcontractors as part of the geologic waste disposal programs at Oak Ridge National Laboratory and the current National Waste Terminal Storage (NWTS) Program. Future editions will contain new documents as well as other prior-year documents which, because of our schedule, we were unable to identify, locate, and include in this first edition. Longer-range plans include broadening the scope of coverage to include documents authored by other NWTS Program participants. This edition, as well as future editions, will list only those documents that have been processed through ERDA's Technical Information Center for public availability from the National Technical Information Service, Springfield, Virginia. Full reference and citation information appears only once, with various indexes provided for the convenience of the user. Report references are arranged by issuing organization with sequencing according to document numbers; references to journal articles and conference proceedings are arranged by issue date

  8. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  9. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  10. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  11. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  12. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  13. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  14. Cancer mortality and incidence survey around the Aube's low- and medium-activity radioactive waste storage site; Etude de mortalite et d'incidence des cancers autour du site de stockage de dechets radioactifs de faible et de moyenne activite de l'Aube

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report presents the main results of a survey performed in 2010 to describe the health status of the population around the Aube's low- and medium-activity radioactive waste storage site. The aim of this survey was to determine whether the frequencies of death and hospitalization on account of cancer are different for this population (15 km around the site) with respect to two reference populations (the population of the Champagne-Ardennes region and the French metropolitan population). Results of mortality, hospitalization, and lung cancer are presented under the form of maps and tables giving global data or data for males, females, adults, or children

  15. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  16. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  17. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  18. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  19. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  20. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  1. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  2. TFA'Expo Exhibition on the next low level radioactive wastes storage center Andra - Aube Center. January - june 2003

    International Nuclear Information System (INIS)

    2003-01-01

    In order to inform the public on the nuclear installations, the Andra this document on the next storage Center of the Aube, for the low level radioactive wastes. The six parts present, the wastes characteristics, the wastes management, the choice of the site, the organization of the TFA (very low activity wastes), the environmental impacts and the economical impacts. (A.L.B.)

  3. Mechanical degradation temperature of waste storage materials

    International Nuclear Information System (INIS)

    Fink, M.C.; Meyer, M.L.

    1993-01-01

    Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90 degrees C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66 degrees C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-density polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185 degrees C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110 degrees C; (2) polyvinyl chloride -- 130 degrees C; (3) high-density polyethylene -- 140 degrees C; (4) sealing tape -- 140 degrees C. Testing with LDPE and PVC at temperatures ranging from 110 to 130 degrees C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185 degrees C) is not anticipated

  4. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  5. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  6. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  7. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  8. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  9. Storage for low-level and intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    1992-11-01

    The objective of this report was to assess whether three nominated sites in Norway for underground storage of low-level and intermediate-level radioactive wastes would comply with safety standards and applicable laws and regulations. The site selection criteria are described and the report evaluates the technical, environmental and socio-economic suitability of the different sites. The site selection process eliminated two of the nominated sites, whereas one site was singled out. 28 refs., 14 figs., 10 tabs

  10. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  11. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  12. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  13. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  14. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    Burgard, K.C.

    1998-01-01

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  15. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  16. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  17. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  18. Follow-up of foreign safety studies of final storage of nuclear fuel waste

    International Nuclear Information System (INIS)

    Gelin, R.

    1985-04-01

    The development of mathematical models and calculation programs for estimating radionuclide migration from radioactive waste storage is continuing. Detailed site studies are in progress in the United States. The Swiss investigation which has been recently published, recommends waste storage in granite at the depth of 1200 m. The safety analysis is similar to the one of the Swedish KBS-3 study. 68 references. (G.B.)

  19. Pre-disposal storage, transport and handling of vitrified high level waste

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.

    1981-05-01

    The objectives of the study were to review non site-specific engineering features of the storage, transport and handling of vitrified high level radioactive waste prior to its transfer into an underground repository, and to identify those features which require validation or development. Section headings are: introduction (historical and technical background); characteristics and arisings of vitrified high level waste; overpacks (additional containment barrier, corrosion resistant); interim storage of HLW; transport of HLW; handling; conclusions and recommendations. (U.K.)

  20. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  1. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  2. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  3. CPA ups storage at Lavera site

    International Nuclear Information System (INIS)

    Back, R.

    1992-01-01

    Compagnie Parisienne des Asphaltes (CPA; Paris) and its subsidiary Pacsud -owned 65% by CPA and 35% by Shell Chimie (Paris) - have inaugurated their new chemicals storage site at Lavera, France, in the Europort South complex near Marseilles. The facilities, with 60,000-m.t./year capacity, also include a barreling plant that will have output of up to 250 bbl/hour when it comes onstream next spring. Total investment for these facilities amount to F122 million ($22.5 million), including F22 million for the barreling unit. CPA, France's number two storage specialist, after LB Chimie (Paris), is jointly owned by investment company Union Normandie (60%), Elf Aquitaine (Paris; 20%), and Total (Paris; 20%). Adding to its existing French storage sites at Dunkirk and Rouen, CPA says it decided to build on the Pacsud venture because it considered it attractive to invest in the petroleum and petrochemical complex of Fos-Berre-Lavera, particularly since the present trend in the oil and chemical industries is to subcontract all ancillary functions, especially logistics. CPA general manager Rafic Charles Rathle says that customer requirements and the role of the service provider are changing. With that in mid, CPA, in addition to providing storage terminals, converts its depots into distribution and packing centers. At Lavera the company has taken over storage, blending, and barreling operations for Pacsud and its direct customers. For example, Pacsud has a long-term contract with Shell Chimie for the latter's additive production at a 10,000-m.t./year rate. Another long-term contract is being negotiated, but the identity of the customer was not revealed

  4. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  5. The conditions under civil law and supervisory functions of the authorities with regard to the construction and operation of an underground final storage site for radioactive wastes

    International Nuclear Information System (INIS)

    Prasse, R.

    1974-01-01

    1. Atomic and radiation protection law; 2. judicial mining provisions; 3. industrial law; 4. energy industry law; 5. law on water; 6. waste disposal laws; 7. building law; 8. general police law; 9. the law on the protection against nuisances. (orig./HP) [de

  6. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  7. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  8. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  10. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  11. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  12. Projecting future solid waste management requirements on the Hanford Site

    International Nuclear Information System (INIS)

    Shaver, S.R.; Stiles, D.L.; Holter, G.M.; Anderson, B.C.

    1990-09-01

    The problem of treating and disposing of hazardous transuranic (TRU), low-level radioactive, and mixed waste has become a major concern of the public and the government. At the US Department of Energy's Hanford Site in Washington state, the problem is compounded by the need to characterize, retrieve, and treat the solid waste that was generated and stored for retrieval during the past 20 years. This paper discusses the development and application of a Solid Waste Projection Model that uses forecast volumes and characteristics of existing and future solid waste to address the treatment, storage, and disposal requirements at Hanford. The model uses a data-driven, object-oriented approach to assess the storage and treatment throughout requirements for each operation for each of the distinct waste classes and the accompanying cost of the storage and treatment operations. By defining the elements of each alternative for the total waste management system, the same database can be used for numerous analyses performed at different levels of detail. This approach also helps a variety of users with widely varying information requirements to use the model and helps achieve the high degree of flexibility needed to cope with changing regulations and evolving treatment and disposal technologies. 2 figs

  13. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  14. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  15. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  16. Recommendation for basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    2006-12-01

    In 2003 the Danish Parliament consented to let the government start the preparation of a basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes. The present report is the result of the preparation process, and it describes the fundamental safety and environmental principles for establishing an ultimate storage, including determining the principles for the site selection, storage construction, and safety analyses. (LN)

  17. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  18. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  19. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  20. Robotics for waste storage inspection: A user's perspective

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1994-01-01

    Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities

  1. Nevada Nuclear Waste Storage Investigations. FY 1979 project plan

    International Nuclear Information System (INIS)

    1979-03-01

    This document presents the management and cost for the Nevada Nuclear Waste Storage Investigations (disposal of high-level wastes at Nevada Test Site) and provides a complete description of the overall project, management structure, technical approach, and work breakdown structure. The document is organized into five major sections. Section I summarizes the history of the project and indicates a potential future course of action. FY 1979 project work is briefly described in Section II. Section III outlines the delegated responsibilities of all project management functions. A list of critical questions that guide the technical approach of the project are presented in Section IV. Section V contains subtask work plans which outline the work in detail for this fiscal year

  2. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  3. Central processing and interim storage of radioactive wastes

    International Nuclear Information System (INIS)

    Wenger, J.P.

    1996-01-01

    Within the ZWILAG project, the buildings for the temporary storage of all categories of radioactive wastes including the spent fuel elements are being readied at a central location. The intermediate storage installations are enhanced by a conditioning and burning plant for weak radioactive operating waste from the nuclear power plants and from the area of responsibility of the state. (author) 2 figs

  4. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  5. The storage center of very-low level radioactive wastes; Le centre de stockage des dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  6. Public perception on nuclear energy and radioactive waste storage

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Mourao, Rogerio P.; Fleming, Peter M.; Soares, Wellington A.; Braga, Leticia T.P.; Santos, Rosana A.M.

    2009-01-01

    The final destination of the waste generated in a nuclear power plant remains a big challenge. The question is not only the radiation emitted by the sources, in some cases for many years, but also the public acceptance of this theme. In many countries where a nuclear waste storage facility has to be built, the local population of the chosen site did not accept it at first, and the whole process had to restart including this variable. In the past, the population opinion was considered not relevant but several international experiences showed that in fact it can not be forgotten. Statistical data show that a significant fraction of the population of the world has many concerns about nuclear energy and its potential impacts. Although many experts state that it has environmental advantages, such as the absence of greenhouse gases emissions, the subject is still the target of never ending discussions. But it is a concrete fact that the sector is growing in many countries. The objective of this article is to summarize several experiences in many countries associated with nuclear energy, mainly those ones that involve nuclear storage facilities, and its acceptance by the public. This task can help CNEN in the studies associated with the RMBN project - Repository for Radioactive Waste with Low and Medium Levels of Radiation. (author)

  7. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  8. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  9. Storage of nuclear waste in long boreholes

    International Nuclear Information System (INIS)

    Sandstedt, H.; Wichmann, C.; Pusch, R.; Boergesson, L.; Loennerberg, B.

    1991-08-01

    This report constitutes a feasibility study for the storage of high level radioactive waste in long TBM drilled tunnels. The report will form the basis for a comparison with other concepts in future analysis of the isolation performance in a typical Swedish rock structure. The suggested repository concept consists of three parallel, 4.5 km long, horizontal tunnels at a depth of 500 m constructed using TBM technology. The tunnel diameter will be about 2.4 m for deployment of canisters with a diameter of 1.6 m. The space between the canisters and rock will be totally sealed off by bentonite. The study comprises the design of canisters, canister handling and deposition, near field design, near field sealing and behaviour, and technical design of the repository. The report also includes a tentative time schedule and cost estimate, incorporating the construction phase and deployment of canisters. (au)

  10. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  11. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  12. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  13. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  14. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  15. New York State's low-level radioactive waste storage study

    International Nuclear Information System (INIS)

    Spath, John P.

    1992-01-01

    Like their counterparts in other states, low-level radioactive waste (LLRW) generators in New York State face the prospect of being unable to transfer their LLRW off site beginning January 1, 1993. How long will those generators be able to accumulate and store LLRW on site before activities producing the waste are seriously interrupted? Would a centralized storage facility be a more economically viable solution for medical and academic institutions? The New York State Energy Research and Development Authority is conducting a study that seeks to answer these and a variety of related questions over the coming year. This paper describes the origin and design of the study. It reviews the plans for generator-specific data collection, the method for assessing generator storage capability, and the approach to evaluating economic viability. In pursuing this study, the Energy Authority has attempted to incorporate the views of the broad spectrum of LLRW interests. The formation and role of the Study Review Panel, established specifically for that purpose, is discussed. Finally, the paper reviews some of the more interesting questions and issues raised in the development of the study and relates the study to the State's other LLRW management activities, particularly its Interim LLRW Management Plan. (author)

  16. Agency practice and future policy in decay storage of radioactive wastes

    International Nuclear Information System (INIS)

    Mitchell, N.G.

    2002-01-01

    The Environment Agency issues authorisations under the Radioactive Substances Act 1993 for the accumulation of radioactive waste at non-nuclear sites prior to disposal. Radioactive decay during the accumulation period reduces the radioactive content of waste packages and provides a waste management option that has become known as decay-in-storage or decay storage. The project brief excluded nuclear licensed sites. A database of information in authorisations and application forms has been constructed. This information has been used alongside a literature review, international contacts, input from the Small Users Liaison Group and a dose assessment to look at the practice of decay storage. The basic principles behind decay storage are presented with specific sections on general safety, waste characterisation and segregation, storage containers, waste stores, and waste treatment and conditioning. The regulatory approach in seven other countries is described. The information collected from Agency public registers is summarised with particular attention given to storage periods of greater than 60 days and the corresponding information available from application forms. Operational experiences are presented. IAEA recommendations are compared with current practice based on the conditions found in authorisations, on the information from application forms and details provided by the Small Users Liaison Group

  17. Flexible OSSC or the on-site storage alternative and how it grew

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1986-01-01

    The On-Site Storage Container (OSSC) is an accepted and proven concept currently in widespread use for both operations and the storage of low level radioactive waste. In addition, it represents a very attractive enhancement to a geological low-level waste disposal site. Use of the proven OSSC concept at a site can provide additional safety to the environment by combining the benefits of an engineered storage facility with the proven safety of a sound geological repository. The concept of flexibility which was built into the OSSC concept for the temporary above ground storage of low-level waste is directly applicable to a permanent storage facility. Manufacturing costs, size flexibility, handling systems, and real-world operational advantages are well known and proven. This background provides a high confidence level for adapting this technology to a disposal site while keeping in mind the significance of both operational economics, safety to the environment, and ALARA principles. The development, design and cost effectiveness features of the OSSC as a temporary storage facility are discussed in detail. The flexible OSSC provides significant economic advantages over a permanent storage building. The application of the OSSC to a permanent geological disposal site provides the environmental advantages of an engineered facility while maintaining the inherent operational and economic benefits of the flexible OSSC concept

  18. Bored tunnel storage of nuclear waste

    International Nuclear Information System (INIS)

    Penberthy, L.

    1983-01-01

    Contrary to the current emphasis on deep geologic disposal of high-level nuclear waste, simple bored tunnels offer many advantages. Much lower cost is important in this period of severe budget crisis. Recoverability is feasible from a tunnel in a mountain, but dubious from a flooded mine 3000 ft deep. It is quite possible that the world will need the breeder energy cycle urgently 200 years from now. In the writer's opinion, it would be a sin for our generation to make so much fertile and fissile uranium fuel unavailable for future generations. Storage conditions in a near-surface repository are much better than deep because the temperature can be kept down, pressure will be atmospheric instead of potentially 1200 psi, and flooding will not occur. The so-called ''hydrothermal'' conditions are thus completely avoided. Accordingly, endless studies of hydrogeology, water pathway times, waste-host rock interactions and the like are unnecessary, and the time for action is much shorter

  19. An investigation of storage and treatment options for radioactive wastes prepared for sea disposal

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Woodfine, B.C.

    1986-07-01

    A sea disposal of 3500 t of packaged waste using a specially converted ship was planned for 1983, but did not take place. The major part of this waste is currently stored at two UKAEA sites. The waste packages were made with the intention that they would be disposed of within about 18 months of packaging. It was not intended that they would be stored for long periods. All wastes are packaged in mild steel drums and the wastes are temporarily stored within buildings. The conditions under which the packages are stored and their present condition are described and possible storage and treatment options are investigated having regard to available disposal routes. (author)

  20. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  1. Annual report 1999. Department of wastes disposal and storage

    International Nuclear Information System (INIS)

    2000-01-01

    This annual report presents the organization, the personnel, the collaborations, the scientific researches and the publications of the Department of wastes disposal and storage of the CEA. A thematic presentation of the research and development programs is provided bringing information on the liquid effluents processing, the materials and solid wastes processing, the wastes conditioning, the characterization, the storage, the radionuclides chemistry and migration, the dismantling and the environment. (A.L.B.)

  2. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  3. Nuclear waste and social peace - Strategies of site selection for radioactive waste disposal. Proceeding

    International Nuclear Information System (INIS)

    Dally, A.

    2003-01-01

    In February 1999, BMU appointed a working party to establish site selection procedures for repositories (AkEnd) which was to develop a transparent procedure of finding and selecting sites for the final storage of all kinds of radioactive waste in Germany. The procedure finally proposed by AkEnd implies considerable uncertainty, inter alia, about its legal implementability, the time required, and funding. The discussion papers of the meeting ''atomic waste and social peace'' show a tightrope walk between society, clerical aspects and scientists taking into account also a right of say for critical citizens. (GL)

  4. Underground storage tanks soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  5. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    Pourcelot, L.

    1997-01-01

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  6. Comprehensive characterization and hazard assessment of the DOE-Niagara Falls storage site

    International Nuclear Information System (INIS)

    Anderson, T.L.; Dettorre, J.F.; Jackson, D.R.; Ausmus, B.S.

    1981-06-01

    A comprehensive radioecological and nonradiological characterization and hazards assessment was conducted on DOE-Niagara Falls Storage Site. Pitchblende residues and other low-level nuclear waste have been stored on the site since 1944. The most highly radioactive residues were stored in four abandoned buildings, while other wastes were deposited in pits or piled on surface soils on the Site. Several ditches were constructed on the Site to facilitate drainage or excess precipitation. Results of the study will permit the US DOE to form an appropriate remedial action plan for the Site

  7. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  8. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1996-01-01

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  9. Evaluation of the risk associated with the storage of radioactive wastes. The deterministic approach

    International Nuclear Information System (INIS)

    Lewi, J.

    1988-07-01

    Radioactive waste storage facility safety depends on a certain number of barriers being placed between the waste and man. These barriers, certain of which are articial (the waste package and engineered barriers) and others are natural (geological formations), are of characteristics suited to the type of storage facility (surface storage or storage in deep geological formations). The combination of these different barriers provide protection for man, under all circumstances considered plausible. Justification, for the storage of given quantities of radionuclides, of the choice of the site, the artificial barriers and the overall storage architecture, is obtained by evaluation of the risk. It being this which provides a basis for determining the acceptability of the storage facility. One of the following two methods is normally used for evaluation of the risk: the deterministic method and the probabilistic method. This adress describes the deterministic method. This method is employed in France for the safety analysis of the projects and works of ANDRA, the national agency responsible for the management of radioactive waste. It should be remembered that in France, the La Manche surface storage centre for low and medium activity waste has been in existence since 1969, close to the reprocessing plant at La Hague and a second surface storage centre is to be commissioned around 1991 at Soulaines in centre of France (departement de l'Aube). Furthermore, geological surveying of four sites located in geological formations consisting of granite, schist, clay and salt were begun in 1987 for the selection in about three years time of a site for the creation of an underground laboratory. This could later be transformed, if safety is demonstrated, into a deep storage centre

  10. Safe dry storage of intermediate-level waste at CRL

    International Nuclear Information System (INIS)

    Chiu, A.; Sanderson, T.; Lian, J.

    2011-01-01

    Ongoing operations at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) generate High-, Intermediate- and Low-Level Waste (HLW, ILW and LLW) that will require safe storage for several decades until a long-term management facility is available. This waste is stored in below grade concrete structures (i.e. tile holes or bunkers) or the above-ground Shielded Modular Above Ground Storage (SMAGS) facility depending on the thermal and shielding requirements of the particular waste package. Existing facilities are reaching their capacity and alternate storage is required for the future storage of this radioactive material. To this end, work has been undertaken at CRL to design, license, construct and commission the next generation of waste management facilities. This paper provides a brief overview of the existing radioactive-waste management facilities used at CRL and focuses on the essential requirements and issues to be considered in designing a new waste storage facility. Fundamentally, there are four general requirements for a new storage facility to dry store dry non-fissile ILW. They are the need to provide: (1) containment, (2) shielding, (3) decay heat removal, and (4) ability to retrieve the waste for eventual placement in an appropriate long-term management facility. Additionally, consideration must be given to interfacing existing waste generating facilities with the new storage facility. The new facilities will be designed to accept waste for 40 years followed by 60 years of passive storage for a facility lifespan of 100 years. The design should be modular and constructed in phases, each designed to accept ten years of waste. This strategy will allow for modifications to subsequent modules to account for changes in waste characteristics and generation rates. Two design concepts currently under consideration are discussed. (author)

  11. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  12. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ''Pneumatic Excavator'' which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions

  13. Decision basis for a Danish ultimate storage for low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    2008-11-01

    In 2003 the Danish Parliament consented to let the government start the preparation of a basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes. The present report was prepared by a working group and it presents the final proposal for such a decision basis. The report describes the fundamental safety and environmental principles for establishing an ultimate storage, including determining the principles for site selection, storage construction, and safety analysis. In an appendix, the amount, types, and activity level of the Danish radioactive wastes are presented. (ln)

  14. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  15. Radioactive waste shipments to Hanford retrievable storage from Babcock and Wilcox, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1994-01-01

    This report characterizes, as far as possible, the solid radioactive wastes generated by Babcock and Wilcox's Park Township Plutonium Facility near Leechburg, Pennsylvania that were sent to retrievable storage at the Hanford Site. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. The objective is a description of characteristics of solid wastes that are or will be managed by the Restoration and Upgrades Program; gaseous or liquid effluents are discussed only at a summary level This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations, including the Waste Receiving and Processing (WRAP) Facility, because Babcock and Wilcox generated greater than 2.5 percent of the total volume of TRU waste currently stored at the Hanford Site

  16. Enhanced On-Site Waste Management of Plasterboard in Construction Works: A Case Study in Spain

    Directory of Open Access Journals (Sweden)

    Ana Jiménez-Rivero

    2017-03-01

    Full Text Available On-site management of construction waste commonly determines its destination. In the case of plasterboard (PB, on-site segregation becomes crucial for closed-loop recycling. However, PB is commonly mixed with other wastes in Spain. In this context, the involvement of stakeholders that can contribute to reversing this current situation is needed. This paper analyzes on-site waste management of PB in Spain through a pilot study of a construction site, with the main objective of identifying best practices to increase waste prevention, waste minimization, and the recyclability of the waste. On-site visits and structured interviews were conducted. The results show five management stages: PB distribution (I; PB installation (II; Construction waste storage at the installation area (III; PB waste segregation at the installation area (IV and PB waste transfer to the PB container and storage (V. The proposed practices refer to each stage and include the merging of Stages III and IV. This measure would avoid the mixing of waste fractions in Stage III, maximizing the recyclability of PB. In addition, two requisites for achieving enhanced management are analyzed: ‘Training and commitment’ and ‘fulfilling the requirements established by the current regulation’. The results show that foremen adopted a more pessimistic attitude than installers towards a joint commitment for waste management. Moreover, not all supervisors valued the importance of a site waste management plan, regulated by the Royal Decree 105/2008 in Spain.

  17. Remediation of the Provisional Storage of Radioactive Waste near Zavratec

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    1998-01-01

    In 1996 the remediation of the provisional storage situated near village Zavratec in western part of Slovenia started. In this storage radioactive waste contaminated with radium has been stored for many decades The RAO Agency organized remedial works, in which these activities inventorying and repacking of radioactive waste were carried out. Simultaneously with these activities a detailed programme for covering public relations was prepared and implemented. On the basis of the experimental results and general storage conditions relocation of radioactive waste to the Slovenian central storage was recommended and it is planned to be concluded by the end of 1998. In this paper main remedial activities in the provisional storage of radioactive waste near Zavratec are presented. An important and most challenging part of these activities represent PR activities. (author)

  18. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  19. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  20. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  1. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  2. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  3. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  4. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  5. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Khrushchov, D. P.; Matorin, Eu. M.; Shekhunova, S. B.

    2002-01-01

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  6. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    International Nuclear Information System (INIS)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-01-01

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed

  7. Environmental information document: New hazardous and mixed waste storage/disposal facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities and alternative operations are described for new hazardous and mixed waste storage/disposal facilities at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented

  8. Managing commercial low-level radioactive waste beyond 1992: Issues and potential problems of temporary storage

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1991-01-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, States will become responsible for managing low-level radioactive waste, including mixed waste, generated within their borders as of January 1, 1993. In response to this mandate, many States and compact regions have made substantial progress toward establishing new disposal capacity for these wastes. While this progress is noteworthy, many circumstances can adversely affect States' abilities to meet the 1993 deadline, and many States have indicated that they are considering other waste management options in order to fulfill their responsibilities beyond 1992. Among the options that States are considering for the interim management of low- level radioactive waste is temporary storage. Temporary storage may be either short term or long term and may be at a centralized temporary storage facility provided by the State or a contractor, or may be at the point of generation or collection. Whether States choose to establish a centralized temporary storage facility or choose to rely on generators or brokers to provide additional and problem areas that must be addressed and resolved. Areas with many potential issues associated with the temporary storage of waste include: regulations, legislation, and policy and implementation guidance; economics; public participation; siting, design, and construction; operations; and closure and decommissioning

  9. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    Vandergaast, G.; Moffett, D.; Lawrence, B.E.

    1988-01-01

    42,500 m 3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  10. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  11. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  12. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    International Nuclear Information System (INIS)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations

  13. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  14. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  15. Criticality safety of transuranic storage arrays at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Boyd, W.A.; Fecteau, M.W.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) facility is designed to store transuranic waste that will consist mainly of surface contaminate articles and sludge. The fissile material in the waste is predominantly 239 Pu. The waste is grouped into two categories: contact-handled waste, which will be stored in 55-gal steel drums or in steel boxes, and remote-handled waste, which will be stored in specially designed cylindrical steel canisters. To show that criticality safety will be acceptable, criticality analyses were performed to demonstrate that a large number of containers with limiting loadings of fissile material could be stored at the site and meet a k eff limit of 0.95. Criticality analyses based on the classic worst-case moderated plutonium sphere approach would severely limit the capacity for storage of waste at the facility. Therefore, these analyses use realistic or credible worst-case assumptions to better represent the actual storage situation without compromising the margin of safety. Numerous sensitivity studies were performed to determine the importance of various parameters on the criticality of the configuration. It was determined that the plutonium loading has the dominant effect on the system reactivity. Nearly all other reactivity variations from the sensitivity studies were found to be relatively small. The analysis shows that criticality of the contact-handled waste storage drums and boxes and the remote-handled canisters is prevented by restrictions on maximum fissile loading per container and on the size of handling/storage areas

  16. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  17. The storage of nuclear waste in concrete

    International Nuclear Information System (INIS)

    Sabine, T.M.

    2004-01-01

    Full text: This project was undertaken to investigate the setting of cement with a view to using concrete as a medium for the 'dilution and dispersion' of low-level nuclear waste. This is the preferred option for this category of waste chosen in 1981 by the International Atomic Agency (IAEA), which is a standing committee of the United Nations. This method has never been used because of the 'nimby (Not In My Back Yard)' syndrome. This syndrome, which is not logical, as shown by the Chernobyl accident in 1989, never the less is very popular. In this country we apply a weighting factor based on money. Imagine if we chose Vaucluse as a site to deposit waste. The backyards of the wealthy have high fences. In contrast the backyards of the residents of remote areas in South Australia have a low, or non-existent, fence. This is the criterion we used for the British bomb tests in the 50's and are using for waste now. Dilution in concrete is much fairer. The social equity is provided by the fact that the social groups consuming more energy will use more concrete, and will be more exposed to any slight hazards resulting from this use. It should be remembered that, while Australia does not use nuclear power for the generation of electricity, we produce and sell about 20 percent of the world's uranium. Uranium is not an uncommon element. Earth. It is about as common as nickel. The total amount of low-level nuclear waste accumulated in Australia after 40 years is 3,500 cubic metres. The dilution factor in the amounts of concrete we produce would easily satisfy IAEA standards. The starting point for the concrete project is the work of two eminent French chemists. Their interest probably arose from the very long lifetime of the Roman fortifications in the south of France, which have lasted for thousands of years. Lavoisier, in 1765, suggested that during hydration, very small crystals are produced which are 'so entangled with each other that a very hard mass results'. Le

  18. Container material and design considerations for storage of low-level radioactive waste

    International Nuclear Information System (INIS)

    Temus, C.J.

    1987-01-01

    With the threat of increased burial site restrictions and increased surcharges; the ease with which waste is sent to the burial site has been reduced. For many generators of waste the only alternative after maximizing volume reduction efforts is to store the waste. Even after working through the difficult decision of deciding what type of storage facility to have, the decision of what type of container to store the waste in has to still be made. This paper explores the many parameters that affect not only the material selection but also the design. The proper selection of materials affect the ability of the container to survive the storage period. The material selection also directly affects the design and utilization of the storage facility. The impacts to the facility include the functional aspects as well as its operational cost and liability as related to such things as fire insurance and active environmental control systems. The advantages and disadvantages of many of the common systems such as carbon steel, various coatings, polyethylene, stainless steel, composites and concrete will be discussed and evaluated. Recognizing that the waste is to be disposed of in the future differentiates it from waste that is shipped directly to the disposal site. The stored waste has to have the capability to be handled not only once like the disposal site waste but potentially several times before ultimate disposal. This handling may be by several different systems both at the storage facility and the burial site. Some of these systems due to ALARA considerations are usually remote requiring various interfaces, while not interfering with handling, transportation or disposal operations

  19. Waste encapsulation and storage facility function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate Waste Encapsulation and Storage Facility (WESF)

  20. Mass spectrometry analysis of tank wastes at the Hanford Site

    International Nuclear Information System (INIS)

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  1. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  2. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  3. Geological storage of nuclear wastes: Insights following the Fukushima crisis

    International Nuclear Information System (INIS)

    Gallardo, Adrián H.; Matsuzaki, Tomose; Aoki, Hisashi

    2014-01-01

    The geological storage of high-level nuclear wastes (HLW) has been in the agenda of Japan for several years. Nevertheless, all the research can become meaningless without understanding the public feelings about the disposal. The events at Fukushima in 2011 altered the perception towards nuclear-waste storage in the country. This work investigates the attitude of young Japanese towards the construction of a repository following the Fukushima crisis, and examines how public perception changed after the event. A survey among 545 university students from different regions of Japan addressed three main variables: dread, trust and acceptance. The results suggest that the economy of the country is still the most concerning issue, but there was a dramatic increase of attention towards everything n uclear . Radiation leakage and food contamination are major concerns as well. The distrust towards the government deepened after Fukushima, although more than half of the respondents would accept the repository. In a clear phenomenon of NIMBY (not in my back yard), the acceptance drops to less than 20% if the repository is to be installed near the respondents' residency. Financial incentives would increase the acceptability of the siting, although only a substantial compensation might minimise the NIMBY in potential host communities. - Highlights: • Major factors influencing the attitude towards nuclear waste disposal were examined. • The opinion of the Japanese youth before and after the Fukushima events was compared. • Unemployment and earthquakes are now at the upper end of the thought of dread. • The government and scientists are highly distrusted by the Japanese youth. • People might still accept the repository though the NIMBY phenomenon remains high

  4. Nevada Nuclear Waste Storage Investigations: Quality Assurance Plan

    International Nuclear Information System (INIS)

    1980-08-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) were established by DOE/NV to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) and contiguous areas to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Since the results of these evaluations will impact possible risks to public health and safety, a quality assurance program which conforms to the criteria given in the Code of Federal Regulations is needed to control the quality aspects of the work. This Quality Assurance Plan (QAP) describes the general quality assurance program for the overall NNWSI project under which the quality assurance programs of the individual participating organizations and support contractors are to operate. The details of how each of these groups will meet the criteria will differ among participating organizations and support contractors, and those details are given in the QAPP's listed in Appendix A. It is the purpose of this plan to show the commonality of quality assurance programs in effect within the project and to define how each element fits into the entire picture to give total quality assurance coverage for the NNWSI Project

  5. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  6. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Kawase, K.; Iijima, K.; Kato, M. [Fukushima Environmental Safety Center, Headquarters of Fukushima Partnership Operations, Japan Atomic Energy Agency, Fukushima (Japan)

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup and waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)

  7. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  8. Alternatives generation and analysis report for immobilized low-level waste interim storage architecture

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A., Westinghouse Hanford

    1996-09-01

    The Immobilized Low-Level Waste Interim Storage subproject will provide storage capacity for immobilized low-level waste product sold to the U.S. Department of Energy by the privatization contractor. This report describes alternative Immobilized Low-Level Waste storage system architectures, evaluation criteria, and evaluation results to support the Immobilized Low-Level Waste storage system architecture selection decision process.

  9. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  10. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  11. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  12. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    International Nuclear Information System (INIS)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  13. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  14. [Current status on storage, processing and risk communication of medical radioactive waste in Japan].

    Science.gov (United States)

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki

    2013-03-01

    Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.

  15. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  16. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  17. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  18. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  19. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  20. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  1. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  2. Storage facilities for radioactive waste in tertiary education environment

    International Nuclear Information System (INIS)

    Sinclair, G.; Benke, G.

    1994-01-01

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  3. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  4. Natural convection and vapor loss during underground waste storage

    International Nuclear Information System (INIS)

    Plys, M.G.; Epstein, M.; Turner, D.

    1996-01-01

    Natural convection and vapor loss from underground waste storage tanks is examined here. Stability criteria are provided for the onset of natural convection flow within the headspace of a tank, and between tanks and the environment. The flowrate is quantified and used to predict vapor losses during storage

  5. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  6. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  7. Engineering design study for storage and disposal of intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J R; Hackney, S; Richardson, J A; Heafield, W

    1982-11-01

    A conceptual design study is presented which covers both the storage and disposal of intermediate level waste; repositories in several rock formations are considered at a 300m depth. A total system is proposed including an engineered trench for ..beta gamma.. waste, emplacement systems and off site transportation. Safety during the emplacement phase and the radiological effects of human intrusion and geological catastrophies are considered.

  8. The Primary Solid Waste Storage Gaps Experienced By Nairobi ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Key Words: Household Storage, Solid Waste Management; Garbage Bins. Introduction .... depends on people's identification with the SWM system. The character of SWM ..... end up in the right place, and health and safety of those handling the full ... Afullo A (2004) Environmental and occupational health aspects of waste ...

  9. Criteria for the siting, construction, management and evaluation of low and intermediate activity radioactive waste stores

    International Nuclear Information System (INIS)

    Granero, J.J.

    1986-01-01

    The experience acquired by Spain for the storage of low and intermediate level radioactive wastes, is presented. General considerations related to the technology, financing, administrative measures and risk determination are done. The criteria of site selection for construction and management of the waste storage facility are described, evaluating the specific criteria for the licensing procedure, and taking in account the safety and the radiation protection during periods of the system operation. (M.C.K.) [pt

  10. DEPENDENCE OF WASTE PAPER QUALITATIVE INDICES ON ITS STORAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    I. Karpunin

    2012-01-01

    Full Text Available The paper investigates an influence of component quantity (lignin, cellulose and hemicellulose on qualitative (physical and mechanical indices of waste-paper in relation to its storage period and weather conditions. It has been established that while storing (in waste dumps waste paper it is to be kept at a definite temperature and humidity in order to reduce impact of weather conditions.

  11. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  12. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  13. National waste terminal storage program: configuration management plan. Volume I. Management summary

    International Nuclear Information System (INIS)

    1977-05-01

    Objective of the Configuration Management Plan is to describe the Office of Waste Isolation's approach for the systematic identification, change control, status accounting, and auditing of: documents defining the NWTS Program and the plans for attaining the defined objectives; physical and functional characteristics of each storage site, facility, systems and equipment; and associated costs and schedules

  14. ''Project Crystal'' for ultimate storage of highly radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    NAGRA (The National Association for storage of radioactive waste) in Baden has launched in North Switzerland an extensive geological research program. The current research program, under the title of ''Project Crystal'', aims at providing the scientific knowledge which is required for the assessment of the suitability of the crystalline sub-soil of North Switzerland for the ultimate storage of highly radioactive waste. Safety and feasibility of such ultimate storage are in the forefront of preoccupations. Scientific institutes of France, Germany, USA and Canada are cooperating more particularly on boring research and laboratory analyses. Technical data are given on the USA and German installations used. (P.F.K.)

  15. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  16. Thermal Analysis of Fission Moly Target Solid Waste Storage

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Park, Jonghark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are various ways to produce Mo-99. Among them, nuclear transmutation of uranium target became the major one owing to its superior specific activity. After the fission molybdenum (FM) target is irradiated, it is transported to treatment facility to extract wanted isotope. During the process, various forms of wastes are produced including filter cake and other solid wastes. The filter cake is mostly consisted of decaying uranium compounds. The solid wastes are then packaged and moved to storage facility which will stay there for considerable amount of time. Being the continuous source of heat, the solid wastes are required to be cooled for the certain amount of time before transported to the storage area. In this study, temperature evaluation of the storage facility is carried out with pre-cooling time sensitivity to check its thermal integrity. In this study, thermal analysis on the FM target solid waste storage is performed. Finite volume method is utilized to numerically discretize and solve the geometry of interest. Analysis shows that the developed method can simulate temperature behavior during storage process, but needs to be checked against other code to see calculation accuracy. Highest temperature distribution is observed when every hole is filled with waste containers. Sensitivity results on pre-cooling time shows that at least 13 months of cooling is necessary to keep the structure integrity.

  17. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  18. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  19. Siting a low-level waste facility

    International Nuclear Information System (INIS)

    English, M.R.

    1988-01-01

    In processes to site disposal facilities for low-level radioactive waste, volunteerism and incentives packages hold more promise for attracting host communities than they have for attracting host states. But volunteerism and incentives packages can have disadvantages as well as advantages. This paper discusses their pros and cons and summarizes the different approaches that states are using in their relationships with local governments

  20. Status of inventory, recycling, and storage of hazardous waste in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Yermekbayeva, L. [Ministry of Ecology and Bioresources, Almaty (Kazakhstan)

    1996-12-31

    Conditions associated with toxic and radioactive waste in the Republic of Kazakstan are discussed. At present, more than 19 billion tons of various wastes, including toxic, radioactive, and other hazardous waste, have accumulated in the country, and about 1 billion tons of waste are generated each year. Ecological legislation for toxic waste storage is being examined. However, the definition and classification of waste inventories are not finalized. Furthermore, the country does not have sites for salvaging, rendering harmless, or disposing of these wastes. Kazakstan also has problems with radioactive waste that are complicated by the activity at the Semipalatinsk nuclear testing site. Here, nuclear explosions occurred because of economic and other reasons. In ecologically challenged regions, high levels of pollutants from chemical, toxic, industrial, and radioactive wastes and pesticides cause many diseases. These complex problems may be resolved by establishing a Governmental body to manage industrial and consumer waste, including toxic and radioactive waste, and also by developing legal and other regulations. 3 tabs.

  1. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  2. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  3. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  4. Treatment of concentrated waste for storage

    International Nuclear Information System (INIS)

    Vidal, H.

    1982-01-01

    The french experience in bituminization of radioactive wastes is described through the successive items, an outline on the industrial realizations is followed by the inventories of the coatable wastes, the constraints to be respected for embedding and quality of bitumen to be used. The technological aspect is described with the example of brennilis, characteristics and properties of coated wastes are given in conclusion. (orig./RW)

  5. Retrieval of fluidizable radioactive wastes from storage facilities

    International Nuclear Information System (INIS)

    2006-08-01

    This report provides guidance for strategic planning and implementation of resuspension and retrieval of stored fluid or fluidizable radioactive wastes. The potential risks associated with preparation and realization of these processes are included in the report, and lessons learned from previous applications are highlighted. Technological procedures and equipment used in various countries for resuspension and remobilization of stored fluidizable radioactive wastes are described in the attached annexes as potential options. Waste retrieval is a maturing technology of major importance now that Member States are moving forward in the responsible management of wastes by removal to safe interim storage or disposal. Retrieval of fluidizable wastes is a four-phase operation: (1) access to the waste, (2) mobilize the waste, (3) remove the waste; and (4) transfer the waste.This report divides successful retrieval of radioactive waste into two areas. The first area applies the concept of the waste retrieval as being the final component of a systematic process of old waste management. It also encompasses characterization as it applies to waste retrieval and downstream processes, including acceptance of wastes for treatment, conditioning, storage or disposal. It should be in conformity with national policy, as well as complying with international safety standards and environmental agreements. The second area of the report focuses on implementation of waste retrieval in a wide range of scenarios and using a wide range of retrieval approaches, equipment and technologies. Technical processes are further explained as part of the experience gained in advanced countries on the subject. A set of detailed retrieval technology descriptions by country is included as Annexes to this report. Thirteen experts from seven Member States that previously implemented, or have planned for the near future, significant resuspension and remobilization operations were involved in the preparation of

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  7. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  8. Spent fuel storage requirements for nuclear utilities and OCRWM [Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Wood, T.W.

    1990-03-01

    Projected spent fuel generation at US power reactors exceeds estimated aggregate pool storage capacity by approximately 30,000 metric tons of uranium (MTU). Based on the current repository schedule, little of the spent fuel inventory will be disposed of prior to shutdown of existing reactors, and a large additional capacity for surface storage of spent fuel will be required, either at reactors or at a centralized DOE storage site. Allocation of this storage requirement across the utility-DOE interface, and the resulting implications for reactor sites and the performance of the federal waste management system, were studied during the DOE MRS System Study and again subsequent to the reassessment of the repository schedule. Spent fuel logistics and cost results from these analyses will be used in definition of spent fuel storage capacity requirements for the federal system. 9 refs., 8 figs., 1 tab

  9. System Specification for Immobilized High-Level Waste Interim Storage

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

  10. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  11. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  12. Underground storage tank soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  13. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs

  14. Testing in support of on-site storage of residues in the Pipe Overpack Container

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.

    1997-02-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs

  15. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  16. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  17. Selected charts: National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    1977-01-01

    Staff members of the Office of Waste Isolation on October 21, 1977 reviewed the status of the OWI Waste Management Program for Commissioner E.E. Varanini III, State of California Energy Resources Conservation and Development Commission, and members of his staff. Copies of the viewgraphs and 35-mm slides shown at the briefing are compiled

  18. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  19. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  20. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  1. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  2. Site suitability analysis and route optimization for solid waste ...

    African Journals Online (AJOL)

    Solid waste management system is a tedious task that is facing both developing and developed countries. Site Suitability analysis and route optimization for solid waste disposal can make waste management cheap and can be used for sustainable development. However, if the disposal site(s) is/are not sited and handle ...

  3. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  4. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  5. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  6. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  7. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  8. EMC: a new equipment for repackaging the ancient waste from Fontenay-aux-Roses CEA site

    International Nuclear Information System (INIS)

    Ithurbide, A.; Masy, J.C.; Serrano, R.; Blanc, S.

    2017-01-01

    A new equipment called EMC (Equipment for measuring and packaging) is being built on the Fontenay-aux Roses site in the framework of the cleaning-up of this CEA site. Studies on irradiated fuels and on radio-chemical processes were performed till 1995 and a large quantity of radioactive waste were generated and have stayed on the site so far in storage pits. EMC purpose is to prepare high level radioactive waste for their removal towards the Diadem storing facility that is being built on the Marcoule CEA site. EMC will deal with α-emitter contaminated waste and will be able to recover ancient 50 l waste drums from storage pits, to characterize their radioactive content, to open them, to package them in CDD1 drum (each CDD1 drum can contain up to 5 ancient drums), and to load CDD1 drums in transport packing. EMC is expected to operate for 4 years. (A.C.)

  9. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1994-01-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting

  10. Ultimate storage of radioactive wastes annual report, 1973

    International Nuclear Information System (INIS)

    The present report is a cooperative effort by the Company for Radiation and Environmental Research, Munich, and the Company for Nuclear Research, Karlsruhe, and provides a survey of work carried out during 1973 in the area of ultimate storage of radioactive wastes. Mining and construction works which were carried out in the Asse Salt Mine near Remlingen both underground as well as above the ground and which were used for repair, maintenance and expansion of the operation consistent with its future tasks are reported. The storage of low-level wastes at the 750 m level and also the test-oriented storage of medium-level waste materials at the 490 m level were carried out within the reporting period. Shielded storage casks S7V developed by the GfK were used for the first time in September for transporting 200 l iron-hooped drums filled with medium-level radioactive wastes to Asse, each shipment always containing seven drums. With two round-trips a week taking place between the Nuclear Research Center, Karlsruhe and the Asse II shaft installation, 14 drums were brought each week so that, by the end of the year, the quantity in storage amounted to a total of 233 drums. Further information is provided concerning the present status of research work in the fields of oromechanics, geology and hydrology as well as other findings. Further, storage techniques are discussed which are presently in the planning stage

  11. Synthesis of long live storage studies surface storage of MA-VL wastes

    International Nuclear Information System (INIS)

    Hollender, F.; Jourdain, F.; Piault, E.; Blanchet, Y.; Avakian, G.; Goger, F.; Caillaud, J.; Devictor, N.; Bary, B.; Moitier, C.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It presents a long time surface storage installation of medium activity long life wastes. The long time of the installation would reach 300 years at the maximum. The feasibility is demonstrated and the design choices are presented and justified. The specific points of the long time storage installation, which are different from a classical industrial storage installation, are also discussed. (A.L.B.)

  12. Polyvalent intermediate storage: first step in the cleaning of the Cogema Marcoule site

    Energy Technology Data Exchange (ETDEWEB)

    Cabe, J.M. [Cogema, 30 - Marcoule (France); Seurat, Ph. [Societe Generale pour les Techniques Nouvelles, SGN, 30 - Bagnols sur Ceze (France)

    1998-07-01

    Cleaning operations of Marcoule site consist, beside the permanent stop and the dismantling of the Cogema 's nuclear fuel reprocessing plant U.P.1., in assuring waste retaking and conditioning not dispatched to C.S.M., for the moment stored on production or pretreatment facilities, under a stabilized form. The Polyvalent Intermediate Storage (E.I.P.) receives preconditioned waste before treatment and reconditioning, receives storing over about 50 years conditioned waste before a permanent repository. Its main function is to wait for the construction of long term repository. (N.C.)

  13. Polyvalent intermediate storage: first step in the cleaning of the Cogema Marcoule site

    International Nuclear Information System (INIS)

    Cabe, J.M.; Seurat, Ph.

    1998-01-01

    Cleaning operations of Marcoule site consist, beside the permanent stop and the dismantling of the Cogema 's nuclear fuel reprocessing plant U.P.1., in assuring waste retaking and conditioning not dispatched to C.S.M., for the moment stored on production or pretreatment facilities, under a stabilized form. The Polyvalent Intermediate Storage (E.I.P.) receives preconditioned waste before treatment and reconditioning, receives storing over about 50 years conditioned waste before a permanent repository. Its main function is to wait for the construction of long term repository. (N.C.)

  14. Project B-589, 300 Area transuranic waste interim storage project engineering study

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1985-08-01

    The purpose of the study was to look at various alternatives of taking newly generated, remote-handled transuranic waste (caisson waste) in the 300 Area, performing necessary transloading operations and preparing the waste for storage. The prepared waste would then be retrieved when the Waste Isolation Pilot Plant becomes operational and transshipped to the repository in New Mexico with a minimum of inspection and packaging. The scope of this study consisted of evaluating options for the transloading of the TRU wastes for shipment to a 200 Area storage site. Preconceptual design information furnished as part of the engineering study is listed below: produce a design for a clean, sealed waste canister; hot cell loadout system for the waste; in-cell loading or handling equipment; determine transshipment cask options; determine assay system requirements (optional); design or specify transport equipment required; provide a SARP cost estimate; determine operator training requirements; determine waste compaction equipment needs if desirable; develop a cost estimate and approximate schedule for a workable system option; and update the results presented in WHC Document TC-2025

  15. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  16. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.

    1986-01-01

    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  17. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  18. Compensation: Will it provide a waste site?

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1993-01-01

    Offering an attractive compensation package to persuade a community to voluntarily accept an otherwise undesirable facility may work in some cases, but it's not likely to work for high-level nuclear-waste disposal. The public perception of the risks involved and the public distrust of the institutions responsible for managing those risks are just too great. Much of the controversy stems from public perceptions that the site-selection process itself is unfair. Resentment builds when this occurs, and offers of compensation come to be labeled bribes or blood money. The driving force behind current nuclear-waste policy is intergenerational equity - the moral concept that the generation that produced the waste should dispose of it, permanently. Regardless of the moral appeal, doubts have been raised about the technical feasibility of this approach. Alternatives featuring intergenerational monetary compensation may better honor the commitment hor-ellipsis and reduce pressure to try to do what may be impossible

  19. Method for storage of liquid radioactive waste

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1978-01-01

    When nuclear fuel is reprocessed, apart from liquid radioactive wastes in certain cases also oxyhydrogen, i.e. a mixture of oxygen and hydrogen, is formed by radiolysis. It is proposed to remove the decay heat that will be formed by means of boiling cooling, to condense the steam and to recycle the condensate to the liquid waste store. The oxyhydrogen is to be rarefied by means of the steam and then catalytically recombined. The most advantageous process steps are discussed. (RW) [de

  20. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...