WorldWideScience

Sample records for waste storage facility

  1. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  2. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  3. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  4. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  5. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  6. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  7. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  8. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  9. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  10. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  13. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  14. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  15. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  16. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  17. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  18. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  19. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  20. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  1. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  2. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  3. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  4. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  5. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  6. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  7. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  8. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  9. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  10. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  11. Radon exposure at a radioactive waste storage facility.

    Science.gov (United States)

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  12. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  13. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    Radioactive waste and spent sealed sources in Ghana are generated from various nuclear applications - diagnostic and therapeutic procedures in medicine, measurement and processing techniques in industry, irradiation techniques for food preservation and sterilization of medical products and a research reactor for research and teaching. Statistics available indicate that over 15 institutions in Ghana are authorized to handle radiation sources. At present radioactive waste and spent sealed sources are collected and stored in the interim facility without conditioning. With the increasing use of radioactive sources in the industry, medicine for diagnostic and therapeutic purpose and research and teaching, the volume of waste is expected to increase. The radioactive waste expected include spent ion exchange resins from the nuclear reactor water purification system, incompactible solid waste from mechanical filter, liquid and organic waste and spent sealed sources. It is estimated that four 200L drums will be needed annually to condition the waste to be generated. The National Radioactive Waste Management Centre (NRWMC) was therefore established to carry radioactive waste safety operations in Ghana and research to ensure that each waste type is managed in the most appropriate manner. Its main task includes development and establishment of the radioactive waste management infrastructure with a capacity considering the future nuclear technology development in Ghana. The first phase covers the establishment of administrative structure, development of basic regulations and construction of the radioactive waste processing and storage facility. The Ghana Radioactive Waste Management regulation has been presented to the Parliament of Ghana for consideration. The initial draft was reviewed by the RPB. A 3-day national seminar on the Understanding and Implementation of the Regulation on Radioactive Waste Management in Ghana was held to discuss and educate the general public on the

  14. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  15. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  16. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  17. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  18. Preparation for tritiated waste management of fusion facilities: Interim storage WAC

    Energy Technology Data Exchange (ETDEWEB)

    Decanis, C., E-mail: christelle.decanis@cea.fr [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Derasse, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pamela, J. [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-01

    Highlights: • Fusion devices including ITER will generate tritiated waste. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Interim storage is a buffer function in the process management and definition of the waste acceptance criteria (WAC) is a key milestone in the facility development cycle. • Defining WAC is a relevant way to identify ahead of time the studies to be launched and the required actions to converge on a detailed design for example material specific studies, required treatment, interfaces management, modelling and monitoring studies. - Abstract: Considering the high mobility of tritium through the package in which it is contained, the new 50-year storage concepts proposed by the French Alternative Energies and Atomic Energy Commission (CEA) currently provide a solution adapted to the management of waste with tritium concentrations higher than the accepted limits in the disposals. The 50-year intermediate storage corresponds to 4 tritium radioactive periods i.e., a tritium reduction by a factor 16. This paper details the approach implemented to define the waste acceptance criteria (WAC) for an interim storage facility that not only takes into account the specificity of tritium provided by the reference scheme for the management of tritiated waste in France, but also the producers’ needs, the safety analysis of the facility and Andra’s disposal requirements. This will lead to define a set of waste specifications that describe the generic criteria such as acceptable waste forms, general principles and specific issues, e.g. conditioning, radioactive content, tritium content, waste tracking system, and quality control. This approach is also a way to check in advance, during the design phase of the waste treatment chain, how the future waste could be integrated into the overall waste management routes and identify possible key points that need further investigations (design changes, selection

  19. Waste encapsulation and storage facility function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate Waste Encapsulation and Storage Facility (WESF)

  20. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  1. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft 2 waste storage facility for RCRA waste, one 42,000 ft 2 waste storage facility for toxic waste (TSCA), and one 200,000 ft 2 mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  2. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  3. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    Provides listing of Essential and Support Drawings for the Waste and Encapsulation Storage Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  4. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  5. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  6. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    This supporting document provides a detailed list of the Essential and Support drawing for the Waste and Storage Encapsulation Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  7. Safety analysis report for the Mixed Waste Storage Facility and portable storage units at the Idaho National Engineering Laboratory. Revision 4

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    This revision contains Section 2 only which gives a description of the Mixed Waste Storage Facility (MWSF) and its operations. Described are the facility location, services and utilities, process description and operation, and safety support systems. The MWSF serves as a storage and repackaging facility for low-level mixed waste

  8. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  9. Return of isotope capsules to the Waste Encapsulation and Storage Facility

    International Nuclear Information System (INIS)

    1994-05-01

    Cesium-137 and strontium-90 isotopes were removed from Hanford Site high-level tank wastes, and were encapsulated at the Hanford Site's Waste Encapsulation and Storage Facility (WESF), beginning in 1974. Over the past several years, radioactive isotope capsules have been sent to other U.S. Department of Energy (DOE)-controlled sites to be used for research and development applications, as well as leased to a number of commercial facilities for commercial applications (e.g., sterilization of medical supplies). Due to uncertainty regarding the cause of the release of a small quantity of cesium-137 to an isolated water basin from a WESF cesium-137 capsule in a commercial facility in Decatur, Georgia, the DOE has determined that it needs to return leased capsules from IOTECH, Incorporated (IOTECH), Northglenn, Colorado; Pacific Northwest Laboratory (PNL), Richland, Washington; and the Applied Radiant Energy Corporation (ARECO), Lynchburg, Virginia; to the WESF Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. All of these capsules located at the commercial facilities were successfully tested during Calendar Year 1993, and none showed any indication of off-normal specifications. Storage at the WESF will continue under the actions selected in the Record of Decision for the Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington

  10. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  11. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  12. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  13. Development of technical design for waste processing and storage facilities for Novi Han repository

    International Nuclear Information System (INIS)

    Canizares, J.; Benitez, J.C.; Asuar, O.; Yordanova, O.; Demireva, E.; Stefanova, I.

    2005-01-01

    Empresarion Agrupados Internacional S.A. (Spain) and ENPRO Consult Ltd. (Bulgaria) were awarded a contract by the Central Finance and Contracts Unit to develop the technical design of the waste processing and storage facilities at the Novi Han repository. At present conceptual design phase is finished. This conceptual design covers the definition of the basic design requirements to be applied to the installations defined above, following both European and Bulgarian legislation. In this paper the following items are considered: 1) Basic criteria for the layout and sizing of buildings; 2) Processing of radioactive waste, including: treatment and conditioning of disused sealed sources; treatment of liquid radioactive wastes; treatment of solid radioactive waste; conditioning of liquid and solid radioactive waste; 3) Control of waste packages and 4) Storage of radioactive waste, including storage facility and waste packages. An analysis of inventories of stored and estimated future wastes and its subsequent processes is also presented and the waste streams are illustrated

  14. Design, construction and commissioning of the new solid waste management and storage facilities of Ignalina NPP, Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, R.; Wenninger, K. [RWE NUKEM GmbH, Alzenau (Germany)

    2006-04-15

    The contract for the design, construction and commissioning (turn-key) of the New Solid Waste Management and Storage Facilities (SWMSF) has been awarded to RWE NUKEM GmbH. The contract was signed on the 30.11.2005. The New Solid Waste Management and Storage Facilities (SWMSF) are financed by the Ignalina Decommissioning Support Fund which is managed by European Bank for Reconstruction and Development (EBRD). The new facilities are required on the Ignalina Nuclear Power Plant (INPP) in order to support ongoing decomissioning work, including removal of waste from existing waste storage buildings. (orig.)

  15. Thermal operations conditions in a national waste terminal storage facility

    International Nuclear Information System (INIS)

    1976-09-01

    Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining the maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given

  16. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  17. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  18. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  19. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  20. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  1. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  2. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  3. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  4. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  5. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  6. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  7. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  8. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  9. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  10. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  11. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  12. Resource Conservation and Recovery Act closure plan for the Intermediate-Level Transuranic Storage Facility mixed waste container storage units

    International Nuclear Information System (INIS)

    Nolte, E.P.; Spry, M.J.; Stanisich, S.N.

    1992-11-01

    This document describes the proposed plan for clean closure of the Intermediate-Level Transuranic Storage Facility mixed waste container storage units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. Descriptions of the location, size, capacity, history, and current status of the units are included. The units will be closed by removing waste containers in storage, and decontamination structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  13. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  14. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  15. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  16. Safe dry storage of intermediate-level waste at CRL

    International Nuclear Information System (INIS)

    Chiu, A.; Sanderson, T.; Lian, J.

    2011-01-01

    Ongoing operations at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) generate High-, Intermediate- and Low-Level Waste (HLW, ILW and LLW) that will require safe storage for several decades until a long-term management facility is available. This waste is stored in below grade concrete structures (i.e. tile holes or bunkers) or the above-ground Shielded Modular Above Ground Storage (SMAGS) facility depending on the thermal and shielding requirements of the particular waste package. Existing facilities are reaching their capacity and alternate storage is required for the future storage of this radioactive material. To this end, work has been undertaken at CRL to design, license, construct and commission the next generation of waste management facilities. This paper provides a brief overview of the existing radioactive-waste management facilities used at CRL and focuses on the essential requirements and issues to be considered in designing a new waste storage facility. Fundamentally, there are four general requirements for a new storage facility to dry store dry non-fissile ILW. They are the need to provide: (1) containment, (2) shielding, (3) decay heat removal, and (4) ability to retrieve the waste for eventual placement in an appropriate long-term management facility. Additionally, consideration must be given to interfacing existing waste generating facilities with the new storage facility. The new facilities will be designed to accept waste for 40 years followed by 60 years of passive storage for a facility lifespan of 100 years. The design should be modular and constructed in phases, each designed to accept ten years of waste. This strategy will allow for modifications to subsequent modules to account for changes in waste characteristics and generation rates. Two design concepts currently under consideration are discussed. (author)

  17. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  18. Storage of long lived solid waste

    International Nuclear Information System (INIS)

    Ozarde, P.D.; Agarwal, K.; Gupta, R.K.; Gandhi, K.G.

    2009-01-01

    Long lived solid waste, generated during the fuel cycle mainly includes high level vitrified waste product, high level cladding hulls and low and intermediate level alpha wastes. These wastes require storage in specially designed engineered facilities before final disposal into deep geological repository. Since high-level vitrified waste contain heat generating radionuclides, the facility for their storage is designed for continuous cooling. High level cladding hulls undergo volume reduction by compaction and will be subsequently stored. (author)

  19. Spacing Sensitivity Analysis of HLW Intermediate Storage Facility

    International Nuclear Information System (INIS)

    Youn, Bum Soo; Lee, Kwang Ho

    2010-01-01

    Currently, South Korea's spent fuels are stored in its temporary storage within the plant. But the temporary storage is expected to be reaching saturation soon. For the effective management of spent fuel wastes, the need for intermediate storage facility is a desperate position. However, the research for the intermediate storage facility for waste has not made active so far. In addition, in case of foreign countries it is mostly treated confidentially and the information isn't easy to collect. Therefore, the purpose of this study is creating the basic thermal analysis data for the waste storage facility that will be valuable in the future

  20. Spatial interpolation of gamma dose in radioactive waste storage facility

    Science.gov (United States)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  1. Technical report on design base events related to the safety assessment of a Low-level Waste Storage Facility (LWSF)

    International Nuclear Information System (INIS)

    Karino, Motonobu; Uryu, Mitsuru; Miyata, Kazutoshi; Matsui, Norio; Imamoto, Nobuo; Kawamata, Tatsuo; Saito, Yasuo; Nagayama, Mineo; Wakui, Yasuyuki

    1999-07-01

    The construction of a new Low-level Waste Storage Facility (LWSF) is planned for storage of concentrated liquid waste from existing Low-level Radioactive Waste Treatment Facility in Tokai Reprocessing Plant of JNC. An essential base for the safety designing of the facility is correctly implemented the adoption of the defence in depth principle. This report summarized criteria for judgement, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents for the safety assessment and evaluation of each event were presented. (Itami, H.)

  2. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  3. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  4. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  5. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  6. Current situation with the centralized storage facilities for non-power radioactive wastes in Latin American countries

    International Nuclear Information System (INIS)

    Benitez, Juan C.; Salgado, Mercedes; Idoyaga Navarro, Maria L.; Escobar, Carolina; Mallaupoma, Mario; Sbriz, Luciano; Moreno, Sandra; Gozalez, Olga; Gomez, Patricia; Mora, Patricia; Miranda, Alberto; Aguilar, Lola; Zarate, Norma; Rodriguez, Carmen

    2008-01-01

    Full text: Several Latin American (LA) countries have been firmly committed to the peaceful applications of ionizing radiations in medicine, industry, agriculture and research in order to achieve socioeconomic development in diverse sectors. Consequently the use of radioactive materials and radiation sources as well as the production of radioisotopes and labeled compounds may always produce radioactive wastes which require adequate management and, in the end, disposal. However, there are countries in the Latin American region whose radioactive waste volumes do not easily justify a national repository. Moreover, such facilities are extremely expensive to develop. It is unlikely that such an option will become available in the foreseeable future for most of these countries, which do not have nuclear industries. Storage has long been incorporated as a step in the management of radioactive wastes. In the recent years, there have been developments that have led some countries to consider whether the roles of storage might be expanded to provide longer-term care of long-live radioactive wastes The aim of this paper is to discuss the current situation with the storage facilities/conditions for the radioactive wastes and disused sealed radioactive sources in Latin-American countries. In some cases a brief description of the existing facilities for certain countries are provided. In other cases, when no centralized facility exists, general information on the radioactive inventories and disused sealed sources is given. (author)

  7. Quality Assurance Program Plan (QAPP) Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    ROBINSON, P.A.

    2000-01-01

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD

  8. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  9. Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70

  10. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  11. Suitable areas for a long-term radioactive waste storage facility in Portugal

    International Nuclear Information System (INIS)

    Duarte, P.; Paiva, I.; Trindade, R.; Mateus, A.

    2006-01-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  12. Suitable areas for a long-term radioactive waste storage facility in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, P.; Paiva, I.; Trindade, R. [Instituto Tecnologico e Nuclear, Dept. de Proteccao Radiologica e Seguranca Nuclear, Sacavem (Portugal); Mateus, A. [Lisboa Univ., Dept. de Geologia and Creminer, Faculdade de Ciencias (Portugal)

    2006-07-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  13. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  14. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  15. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, 90 Sr and 137 Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the 137 Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF

  16. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    Energy Technology Data Exchange (ETDEWEB)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  17. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  18. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  19. Environmental information document: New hazardous and mixed waste storage/disposal facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities and alternative operations are described for new hazardous and mixed waste storage/disposal facilities at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented

  20. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  1. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  2. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  3. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  4. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  5. TWRS HLW interim storage facility search and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B., Westinghouse Hanford

    1996-05-16

    The purpose of this study was to identify and provide an evaluation of interim storage facilities and potential facility locations for the vitrified high-level waste (HLW) from the Phase I demonstration plant and Phase II production plant. In addition, interim storage facilities for solidified separated radionuclides (Cesium and Technetium) generated during pretreatment of Phase I Low-Level Waste Vitrification Plant feed was evaluated.

  6. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  7. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  8. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 ''Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  9. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242'' Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  10. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  11. An assessment of potential risk resulting from a maximum credible accident scenario at the proposed explosive waste storage facility (EWSF)

    International Nuclear Information System (INIS)

    Otsuki, K.; Harrach, R.; Berger, R.

    1992-10-01

    Lawrence Livermore National Laboratory (LLNL) proposes to build, permit, and operate a storage facility for explosive wastes at LLNL's Explosive Test Site, Site 300. The facility would consist of four existing magazines, four new magazettes (small concrete vaults), and a new prefabricated metal building. Ash from on-site treatment of explosive waste would also be stored in the prefabricated metal building prior to sampling analysis, and shipment. The magazettes would be installed at each magazine-and would provide segregated storage for explosive waste types including detonators, actuators, and other initiating devices. The proposed facility would be used to store explosive wastes generated by the Hydrotest and Explosive Development Programs at LLNL prior to treatment on-site or shipment to permitted, commercial, off-site treatment facilities. Explosive wastes to be stored in the proposed facility represent a full spectrum of Department of Energy (DOE) and LLNL explosive wastes. This document identifies and evaluates the risk to human health and the environment associated with the operation of the proposed EWSF

  12. Norwegian work on establishing a combined storage and disposal facility for low and intermediate level waste

    International Nuclear Information System (INIS)

    International Atomic Energy Agency WATRP Review Team.

    1995-12-01

    The IAEA has, through its Waste Management Assessment and Technical Review Programme (WATRP), evaluated policies and facilities related to management of radioactive waste in Norway. It is concluded that the Himdalen site, in combination with the chosen engineering concept, can be suitable for the storage and disposal of the relatively small amounts of Norwegian low and intermediate level waste

  13. A study on radiation shield design of storage facility for low and intermediate level radioactive waste in Bangladesh

    International Nuclear Information System (INIS)

    Khan, JJahirul Haque

    2005-02-01

    Bangladesh has no nuclear power reactor but has only one 3 MW TRIGA Mark-II Research Reactor. The Bangladesh Atomic Energy commission (BAEC) operates a 3 MW TRIGA Mark-II Research Reactor and maintains not only the nuclear facilities at its Atomic Energy Research Establishment (AERE) at Savar (near Dhaka) but also the related radiation facilities the whole country. The main sources of radioactive wastes result from the use of sealed and unsealed radiation sources in medicine industry, research, agriculture, etc as well as from operation and maintenance of the nuclear facilities the whole country. As a result radioactive wastes are increasing day by day and these wastes are classified as low and intermediate level radioactive waste (LILW) following the radiation safety philosophy of IAEA recommendations in Bangladesh. Radioactive waste is very sensitive issue to public and environment from the hazardous standpoint of ionizing radiation. Therefore, storage facility of LILW is very essential for safe radioactive waste management in Bangladesh and in parallel: this study is of a great importance due to new installation of this storage facility in future. The basic objective of this study is to recommend the radiation shield design parameters of the installation of storage facility for low and intermediate level radioactive waste from the points of view of radiation safety and sensitivity analysis. The shield design of this installation has been carried out with the Monte Carlo Code MCNP4C and the point Kernel Code Micro Shield 5.05 respectively considering the ICRP-60 (1990) recommendations for occupational exposure limit (10 μ Sv/hr). For more safety purpose every equivalent dose rate at different positions of this installation is considered below 9 μ Sv/hr in this study. The radiation shield design parameters are recommended based on MCNP4C calculated results than those of Micro Shield due to more credible results and these parameters are: (I) 51 cm thickness of

  14. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  15. Magnox waste storage complex

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This article looks at the design and construction of British Nuclear Fuel Limited's (BNFL) Magnox waste storage complex by Costain Engineering Limited. Magnox swarf from fuel decanning is stored underwater in specially designed silos. Gas processing capabilities from Costain Engineering Limited and the experience of BNFL combined in this project to provide the necessary problem-solving skills necessary for this waste storage upgrading and extension project. A retrofitted inerting facility was fitted to an existing building and a new storage extension was fitted, both without interrupting reprocessing operations at Sellafield. (UK)

  16. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  17. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  18. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  19. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  20. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  1. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  2. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Science.gov (United States)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  3. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Directory of Open Access Journals (Sweden)

    Andrade C.

    2011-04-01

    Full Text Available The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW, which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  4. Construction of mixed waste storage RCRA facilities, Buildings 7668 and 7669: Environmental assessment

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has prepared an environmental assessment, DOE/EA-0820, to assess the potential environmental impacts of constructing and operating two mixed waste Resource Conservation and Recovery Act (RCRA) storage facilities. The new facilities would be located inside and immediately west of the security-fenced area of the Oak Ridge National Laboratory Hazardous Waste Management Area in Melton Valley, Tennessee. Based on the analyses in the environmental assessment, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department is issuing this finding of no significant impact

  5. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  6. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  7. Waste analysis plan for 222-S dangerous and mixed waste storage area

    International Nuclear Information System (INIS)

    Warwick, G.J.

    1994-01-01

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility

  8. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  9. 616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2

    International Nuclear Information System (INIS)

    Busching, K.R.

    1994-01-01

    This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A

  10. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  11. Concept for an ultimate storage facility for heat-generating radioactive waste in clay stone in Germany

    International Nuclear Information System (INIS)

    Bollingerfehr, Wilhelm; Poehler, Matthias

    2010-01-01

    According to the German reference ultimate storage concept heat-generating radioactive waste from the operation of nuclear power stations should be stored permanently maintenance-free and in a non-recoverable manner in a salt formation. Within the framework of investigations into the utilisation of alternative host rocks a concept for an ultimate storage facility in clay stone was developed in an R and D project. For this purpose all important aspects of the design, development, operation and shutdown were taken into account for a model region in northern Germany. It was established that storage in 50 m deep vertical boreholes in a mine at a depth of about 350 m appears to be the most practical solution for an ultimate storage facility in clay stone. Compared to the reference concept in salt an ultimate storage facility in clay stone requires solid support of all mine openings with steel arches or shotcrete. Because of the lower maximum permissible temperature in the backfilling material (bentonite) the area required for the ultimate storage facility is about five times larger. A period of more than 100 years is estimated from survey to shutdown. (orig.)

  12. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  13. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  14. Concepts for Waste Retrieval and Alternate Storage of Radioactive Waste

    International Nuclear Information System (INIS)

    F.J. Bierich

    2005-01-01

    The primary purpose of this technical report is to present concepts for retrieval operations, equipment to be used, scenarios under which waste retrieval operations will take place, methods for responding to potential retrieval problems, and compliance with the preclosure performance objectives of 10 CFR 63.111(a) and (b) [DIRS 156605] during the retrieval of waste packages from the subsurface repository. If a decision for retrieval is made for any or all of the waste, the waste to be retrieved would be dispositioned in accordance with the regulations applicable at the time. The secondary purpose is to present concepts for the design, construction, and operation of an alternate storage facility. The alternate storage facility would temporarily house the retrieved waste until final disposition is established. The concept presented is consistent with current practices and regulations for the protection of public health and safety and the environment, it demonstrates the feasibility of such a facility, if required, and it is based on the consideration for keeping radiation exposure as low as is reasonably achievable (ALARA)

  15. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  16. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  17. Facility for low-level solid waste treatment

    International Nuclear Information System (INIS)

    Vicente, R.; Miyamoto, H.

    1987-01-01

    A facility for low-level solid waste compaction, encapsulation and storage is described. Solid wastes are compacted in 200 l drums and stored over concrete platforms covered with canvas, for decay or for interim storage before transport to the final disposal site. (Author) [pt

  18. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  19. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  20. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  1. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  2. Feasibility study on the business of collection and storage of waste from small producer of radioactive waste

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu; Hayashi, Masaru; Senda, Masaki

    2008-01-01

    Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center (RANDEC) has investigated the feasibility study on the business of collection and storage of many kinds of low level radioactive waste in radioactive facilities. This works include the total volume of waste, conceptual design of storage facility and cost estimation of construction and operation of this business. This paper describes the some points of the results of this study. (author)

  3. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  4. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  5. 40 CFR 761.63 - PCB household waste storage and disposal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...

  6. Waste-clearance strategy for DOE waste processed at commercial facilities

    International Nuclear Information System (INIS)

    Chen, S.Y.; Pfingston, M.; LePoire, D.

    1996-01-01

    In May 1991, a moratorium was issued on shipping potentially mixed waste from DOE facilities nationwide to commercial treatment, storage, and disposal facilities. A potential waste-clearance strategy was developed to address the DOE mixed-waste moratorium issues, which had resulted from a lack of exisitng volume contamination regulations. This strategy also has important potential applications for establishing site clearance limits that ensure worker and public risks remain well below regulatory limits

  7. Highest manageable level of radioactivity in the waste storage facilities of power plants

    International Nuclear Information System (INIS)

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  8. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  9. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  10. Thermal Analysis of Fission Moly Target Solid Waste Storage

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Park, Jonghark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are various ways to produce Mo-99. Among them, nuclear transmutation of uranium target became the major one owing to its superior specific activity. After the fission molybdenum (FM) target is irradiated, it is transported to treatment facility to extract wanted isotope. During the process, various forms of wastes are produced including filter cake and other solid wastes. The filter cake is mostly consisted of decaying uranium compounds. The solid wastes are then packaged and moved to storage facility which will stay there for considerable amount of time. Being the continuous source of heat, the solid wastes are required to be cooled for the certain amount of time before transported to the storage area. In this study, temperature evaluation of the storage facility is carried out with pre-cooling time sensitivity to check its thermal integrity. In this study, thermal analysis on the FM target solid waste storage is performed. Finite volume method is utilized to numerically discretize and solve the geometry of interest. Analysis shows that the developed method can simulate temperature behavior during storage process, but needs to be checked against other code to see calculation accuracy. Highest temperature distribution is observed when every hole is filled with waste containers. Sensitivity results on pre-cooling time shows that at least 13 months of cooling is necessary to keep the structure integrity.

  11. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  12. Intermediate storage facility for vitrified high level waste from the reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-04-01

    An intermediate storage facility for vitrified high level waste is described. The design was made specifically for Swedish conditions but can due to modular design be applied also for other conditions. Most of the plant is located underground with a rock cover of about 30 m in order to provide protection against external forces such as acts of war and sabotage. The storage area consists of four caverns each with 150 pits. Each pit can take 10 waste cylinders of 0.4 m diameter and 1.5 m length containing 150 liters of glass. The capacity can be increased by adding additional caverns. Cooling is obtained by forced air convection. Reception areas, auxiliary systems and operation of the plant are also described

  13. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  14. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  15. Routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities fiscal year 1995 report

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1995-12-01

    This report presents the data and results of the routine organic air emissions monitoring performed in the Radioactive Waste Management Complex Waste Storage Facility, WMF-628, from January 4, 1995 to September 3, 1995. The task objectives were to systematically identify and measure volatile organic compound (VOC) concentrations within WMF-628 that could be emitted into the environment. These routine measurements implemented a dual method approach using Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) monitoring and the Environmental Protection Agency (EPA) analytical method TO-14, Summa reg-sign Canister sampling. The data collected from the routine monitoring of WNF-628 will assist in estimating the total VOC emissions from WMF-628

  16. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  17. Retrieval of fluidizable radioactive wastes from storage facilities

    International Nuclear Information System (INIS)

    2006-08-01

    This report provides guidance for strategic planning and implementation of resuspension and retrieval of stored fluid or fluidizable radioactive wastes. The potential risks associated with preparation and realization of these processes are included in the report, and lessons learned from previous applications are highlighted. Technological procedures and equipment used in various countries for resuspension and remobilization of stored fluidizable radioactive wastes are described in the attached annexes as potential options. Waste retrieval is a maturing technology of major importance now that Member States are moving forward in the responsible management of wastes by removal to safe interim storage or disposal. Retrieval of fluidizable wastes is a four-phase operation: (1) access to the waste, (2) mobilize the waste, (3) remove the waste; and (4) transfer the waste.This report divides successful retrieval of radioactive waste into two areas. The first area applies the concept of the waste retrieval as being the final component of a systematic process of old waste management. It also encompasses characterization as it applies to waste retrieval and downstream processes, including acceptance of wastes for treatment, conditioning, storage or disposal. It should be in conformity with national policy, as well as complying with international safety standards and environmental agreements. The second area of the report focuses on implementation of waste retrieval in a wide range of scenarios and using a wide range of retrieval approaches, equipment and technologies. Technical processes are further explained as part of the experience gained in advanced countries on the subject. A set of detailed retrieval technology descriptions by country is included as Annexes to this report. Thirteen experts from seven Member States that previously implemented, or have planned for the near future, significant resuspension and remobilization operations were involved in the preparation of

  18. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  19. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  20. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1995-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  1. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1996-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  2. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  3. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes; Le centre de stockage des dechets de faible et moyenne activite a vie courte. Pour une gestion controlee des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  4. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  5. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  6. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  7. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  8. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  9. Safety analysis report for packaging (onsite) for the Waste Encapsulation and Storage Facility ion exchange module

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Waste Encapsulation and Storage Facility (WESF) is in need of providing an emergency ion exchange system to remove cesium or strontium from the pool cell in the event of a capsule failure. The emergency system is call the WESF Emergency Ion Exchange System and the packaging is called the WESF ion exchange module (WIXM). The packaging system will meet the onsite transportation requirements for a Type B, highway route controlled quantity package as well as disposal requirements for Category 3 waste

  10. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  11. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  12. Modular design of processing and storage facilities for small volumes of low and intermediate level radioactive waste including disused sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and to install and eventually operate those modules.

  13. Laboratory simulation of high-level liquid waste evaporation and storage

    International Nuclear Information System (INIS)

    Anderson, P.A.

    1978-01-01

    The reprocessing of nuclear fuel generates high-level liquid wastes (HLLW) which require interim storage pending solidification. Interim storage facilities are most efficient if the HLLW is evaporated prior to or during the storage period. Laboratory evaporation and storage studies with simulated waste slurries have yielded data which are applicable to the efficient design and economical operation of actual process equipment

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  15. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  16. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  17. 190-C Facility <90 Day Storage Pad training plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    This is the Environmental Restoration Contractor (ERC) team training plan for the 190-C Facility <90 Day Storage Pad of Hazardous Waste. It is intended to meet the requirements of Washington Administrative Code (WAC) 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 190-C Facility <90 Day Storage Pad, and are therefore not covered in this training plan

  18. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  19. New challenges in the safety assessment of radioactive waste storage and disposal facilities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Linge, I.; Utkin, S. [Nuclear Safety Inst. (IBRAE RAN), Moscow (Russian Federation)

    2014-07-01

    Russian radioactive waste (RW) management practice (disposal, in particular) is characterized by a number of features which makes it fundamentally different from the international one. The technologies used in the middle of the XX century became widespread even after the nuclear arms race was over. As a result: Industrial sites comprise a large number of old solid RW storage facilities and surface water reservoirs (ponds, lakes), which capacity varies from one to several hundred million cubic meters, storing liquid RW; Deep well injection of liquid RW into aquifers has been in practice since the early 1960's. Major changes aimed at addressing the accumulated problems began to occur only a decade ago. In 2008, a large-scale state nuclear legacy program was initiated, and in 2011, the framework act «On RW management» was passed. New tasks were set before the Russian nuclear industry for the purpose of establishing a unified state system for RW management. It was accompanied by a number of new challenges in the safety justification and calculation tools development. They are discussed in the paper with significant consideration to the existing nuclear legacy facilities; unique liquid radioactive waste storage and disposal facilities; and new-built disposal facilities. (author)

  20. Long-term storage of Greater-Than-Class C Low-Level Waste

    International Nuclear Information System (INIS)

    Magleby, M.T.

    1990-01-01

    Under Federal law, the Department of Energy (DOE) is responsible for safe disposal of Greater-Than-Class C Low-Level Waste (GTCC LLW) generated by licenses of the Nuclear Regulatory commission (NRC) or Agreement States. Such waste must be disposed of in a facility licensed by the NRC. It is unlikely that licensed disposal of GTCC LLW will be available prior to the year 2010. Pending availability of disposal capacity, DOE is assessing the need for collective, long-term storage of GTCC LLW. Potential risks to public health and safety caused by long-term storage of GTCC LLW at the place of generation will be evaluated to determine if alternative facilities are warranted. If warranted, several options will be investigated to determine the preferred alternative for long-term storage. These options include modification of an existing DOE facility, development of a new DOE facility, or development of a facility by the private sector with or without DOE support. Reasonable costs for long-term storage would be borne by the waste generators. 5 refs., 1 fig

  1. Economic analysis of a centralized LLRW storage facility in New York State

    International Nuclear Information System (INIS)

    Spath, J.P.; Voelk, H.; Brodie, H.

    1994-01-01

    In response to the possibility of no longer having access to out-of-State disposal facilities, the New York State Energy Research and Development Authority (Energy Authority) was directed by the New York State Legislature (1990-91 State Operation Budget Appropriations) to conduct a low-level radioactive waste (LLRW) storage study. One of the objectives of this study was to investigate the economic viability of establishing a separate Centralized Storage Facility for Class A LLRW from medical and academic institutions. This resulted in the conceptual design of a nominal Centralized Storage Facility capable of storing 100,000 cubic feet of dry-solid and liquid wastes and freezer storage capacity of 20,000 cubic feet for biological wastes. The facility itself includes office and laboratory space as well as receipt, inspection, and health physics monitoring stations. The Conceptual Design was initially developed to define the scope and detail of the cost parameters to be evaluated. It established a basis for conducting comparisons of the cost of four alternative project approaches and the sensitivity of unit storage costs to siting-related costs. In estimating costs of a Centralized Storage Facility, four cases were used varying assumptions with respect to parameters such as volume projections and freezer capacity; siting costs; and site acquisition costs

  2. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  3. Waste management and the land disposal restriction storage prohibition

    International Nuclear Information System (INIS)

    1992-05-01

    RCRA Sect. 3004(j) prohibits storage of wastes that have been prohibited from land disposal, unless that storage is for the purpose of accumulating sufficient quantities of hazardous wastes to facilitate proper recovery, treatment, or disposal. This requirement was incorporated as part of the Land Disposal Restriction (LDR) regulations. Under the LDR storage prohibition, facilities may only store restricted wastes in containers and tanks. As stated in the Third LDR rule, storage of prohibited waste is only allowed in non-land based storage units since land-based storage is a form of disposal. The EPA has recognized that generators and storers of radioactive mixed waste (RMW) may find it impossible to comply with storage prohibition in cases where no available treatment capacity exists. Additionally, under the current regulatory interpretation, there is no provision that would allow for storage of wastes for which treatment capacity and capability are not available, even where capacity is legitimately being developed. Under the LDR program, restricted wastes that are disposed of, or placed into storage before an LDR effective date, are not subject to the LDR requirements. However, if such wastes are removed from a storage or disposal site after the effective date, such wastes would be subject to LDR requirements. The purpose of this information brief is to clarify what waste management practices constitute removal from storage

  4. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  5. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  6. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  7. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  8. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  9. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  10. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  11. Transport, handling, and interim storage of intermediate-level transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Metzger, J.C.; Snyder, A.M.

    1977-09-01

    The Idaho National Engineering Laboratory stores transuranic (TRU)-contaminated waste emitting significant amounts of beta-gamma radiation. This material is referred to as intermediate-level TRU waste. The Energy Research and Development Administration requires that this waste be stored retrievably during the interim before a Federal repository becomes operational. Waste form and packaging criteria for the eventual storage of this waste at a Federal repository, i.e., the Waste Isolation Pilot Plant (WIPP), have been tentatively established. The packaging and storage techniques now in use at the Idaho National Engineering Laboratory are compatible with these criteria and also meet the requirement that the waste containers remain in a readily-retrievable, contamination-free condition during the interim storage period. The Intermediate Level Transuranic Storage Facility (ILTSF) provides below-grade storage in steel pipe vaults for intermediate-level TRU waste prior to shipment to the WIPP. Designated waste generating facilities, operated for the Energy Research and Development Administration, use a variety of packaging and transportation methods to deliver this waste to the ILTSF. Transfer of the waste containers to the ILTSF storage vaults is accomplished using handling methods compatible with these waste packaging and transport methods

  12. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  13. Social assessment of siting a low-level radioactive waste storage facility in Michigan

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Traugott, M.J.; Stone, J.V.; McIntyre, P.D.; Davidson, C.C.; Jensen, F.V.; Coover, G.E.

    1990-01-01

    This report presents findings from a social assessment of siting a low-level radioactive waste storage facility in Michigan. Social assessments derive from direct interaction between researchers and study participants. The report is organized into five chapters. Chapter One, Summary of Findings, focuses on key findings from the statewide telephone surveys and the in-depth ethnographic study conducted by the SNR/ISR study team. These and additional findings are discussed in greater detail in the three subsequent chapters. Chapter Two, Statewide Telephone Survey Findings, presents the knowledge, attitudes and beliefs statewide residents have regarding the LLRW project. Chapter Three, Statewide Demographic Findings, presents a detailed examination of differences among various demographic groups and includes regional analysis. Chapter Four, Hillsdale-area Ethnographic Study Findings, discusses perceived impacts of the proposed LLRW storage facility on local residents who mistakenly came to believe that their area had been specially selected as the location for the facility. Specifically, the chapter presents the development, spread, shape and persistence of what is termed a risk perception shadow in the greater Hillsdale area. Possible causes of the shadow also are discussed, and comparisons are made between statewide and Hillsdale-area survey populations. Chapter Five, Research Methods, presents a discussion of the social assessment research methods used to derive these findings

  14. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    Science.gov (United States)

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  15. Storage facilities for radioactive waste in tertiary education environment

    International Nuclear Information System (INIS)

    Sinclair, G.; Benke, G.

    1994-01-01

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  16. High level waste facilities - Continuing operation or orderly shutdown

    International Nuclear Information System (INIS)

    Decker, L.A.

    1998-04-01

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed

  17. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The CSNI Working Group on Fuel Cycle Safety held an International Topical Meeting on safety aspects of Intermediate Storage Facilities in Newby Bridge, England, from 28 to 30 October 1997. The main purpose of the meeting was to provide a forum for the exchange of information on the technical issues on the safety of nuclear fuel cycle facilities (intermediate storage). Titles of the papers are: An international view on the safety challenges to interim storage of spent fuel. Interim storage of intermediate and high-level waste in Belgium: a description and safety aspects. Encapsulated intermediate level waste product stores at Sellafield. Safety of interim storage facilities of spent fuel: the international dimension and the IAEA's activities. Reprocessing of irradiated fuel and radwaste conditioning at Belgoprocess site: an overview. Retrieval of wastes from interim storage silos at Sellafield. Outline of the fire and explosion of the bituminization facility and the activities of the investigation committee (STAIJAERI). The fire and explosion incident of the bituminization facility and the lessons learned from the incident. Study on the scenario of the fire incident and related analysis. Study on the scenario of the explosion incident and related analysis. Accident investigation board report on the May 14, 1997 chemical explosion at the plutonium reclamation facility, Hanford site, Richland, Washington. Dry interim storage of spent nuclear fuel elements in Germany. Safe and effective system for the bulk receipt and storage of light water reactor fuel prior to reprocessing. Receiving and storage of glass canisters at vitrified waste storage center of Japan Nuclear Fuel Ltd. Design and operational experience of dry cask storage systems. Sellafield MOX plant; Plant safety design (BNFL). The assessment of fault studies for intermediate term waste storage facilities within the UK nuclear regulatory regime. Non-active and active commissioning of the thermal oxide

  18. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  19. Salt creep design consideration for underground nuclear waste storage

    International Nuclear Information System (INIS)

    Li, W.T.; Wu, C.L.; Antonas, N.J.

    1983-01-01

    This paper summarizes the creep consideration in the design of nuclear waste storage facilities in salt, describes the non-linear analysis method for evaluating the design adequacy, and presents computational results for the current storage design. The application of rock mechanics instrumentation to assure the appropriateness of the design is discussed. It also describes the design evolution of such a facility, starting from the conceptual design, through the preliminary design, to the detailed design stage. The empirical design method, laboratory tests and numerical analyses, and the underground in situ tests have been incorporated in the design process to assure the stability of the underground openings, retrievability of waste during the operation phase and encapsulation of waste after decommissioning

  20. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  1. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  2. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  3. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  4. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  5. Hanford facility dangerous waste permit application, general information portion. Revision 3

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy's contractors are identified as ''co-operators'' and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ''operator'' elsewhere in the application is not meant to conflict with the contractors' designation as co-operators but rather is based on the contractors' contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  6. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  7. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.

  8. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report

  9. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  10. Evaluation of separation distance from the temporary storage facility for decontamination waste to ensure public radiological safety after Fukushima nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Go, A Ra; Kim, Kwang Pyo [Kyung Hee University, Yongin (Korea, Republic of)

    2016-09-15

    The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except 5 × 5 × 2 m size) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a 50 × 50 × 2 m size facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

  11. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  12. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  13. Automated Storage Retrieval System (ASRS) Role Towards Achievement of Safety Objective and Safety Culture in Radioactive Storage Facilities

    International Nuclear Information System (INIS)

    Mohamad Hakiman Mohd Yusoff; Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Muhammad, Z.A.; Nur Azna Mahmud; Norfazlina Zainal Abidin

    2012-01-01

    Waste Technology Development Centre (WasTeC) has been awarded with quality management system ISO 9001:2000 in June 2004 or now known as ISO 9001:2008. The scope of the unit's ISO certification is radioactive waste management and storage of radioactive material. To meet the objectives and requirements ISO 9001:2008, WasTeC has started a project known as Automated Storage and Retrieval System (ASRS). ASRS is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33.The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

  14. Application of SAFRAN Tool for the Knowledge Management at the Stage of Radioactive Waste Retrieval from Historical Radon-type Storage Facility

    International Nuclear Information System (INIS)

    Smetnik, A.; Murlis, D.

    2016-01-01

    Our task was to assess waste retrieval operations from a typical RADON-type historical waste storage facility during decommissioning. Challenges: “Historical radioactive waste” is generated without a complete traceable characterization programme or quality management system in place. Key characteristics of historical waste are: — may be conditioned, partially treated, or raw; — poor or no information/traceability; — cannot conclusively identify originating process/location; — waste streams may be mixed. Conclusions: • SAFRAN uses methodologies agreed upon at the international level, namely, by IAEA standards; • Several experts can work more effectively when performing the same safety assessment. SAFRAN makes it easier to exchange experience through sharing projects and data bases; • It is helpful for systematic and structured safety assessment as per safety standards; • It manages information and data in the same software environment. • SAFRAN can play a significant role in managing records and knowledge on radioactive waste, nuclear facility site, characteristics of geological environment and safety barriers. • It can provide reliable long-term storage and effective management of safety related records for the purposes of safety reassessments, review and supervision.

  15. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  16. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  17. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  18. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  19. Effectiveness of interim remedial actions at a radioactive waste facility

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs

  20. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  1. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  2. Risks attached to container- and bunker-storage of nuclear waste

    International Nuclear Information System (INIS)

    Jager, D. de

    1987-12-01

    The results are presented of a literature study into the risks attached to the two dry-storage options selected by the Dutch Central Organization For Radioactive Waste (COVRA): the container- and the bunker-storage for irradiated nuclear-fuel elements and nuclear waste. Since the COVRA does not make it clear how these concepts should have to be realized, the experiences abroad with dry interim-storage are considered. In particular the Castor-container-storage and the bunker storage proposed in the committee MINSK (Possibilities of Interim-storage in the Netherlands of Irradiated nuclear-fuel elements and Nuclear waste) are studied further in depth. The committee MINSK has performed a study into the technical realizability of various interim-storage facilities, among which a storage in bunkers. (author). 75 refs.; 14 figs.; 16 tabs

  3. INEEL special case waste storage and disposal alternatives

    International Nuclear Information System (INIS)

    Larson, L.A.; Bishop, C.W.; Bhatt, R.N.

    1997-07-01

    Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria

  4. Remediation and decommissioning of radioactive waste facilities in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Full text: The nuclear training facility at Paldiski was constructed in the early 1960's by the former USSR Navy. The hull sections of Delta and Echo class submarines each housing a full-sized ship reactor were installed in the main building of the site for training of navy personnel in safe operation of the submarine nuclear reactor systems. The first reactor was commissioned in 1968 and the second in 1982, while both was shut down in 1989. After Estonia's reproclamation of independence in 1991 the responsibility for the clean up and decommissioning of the Paldiski site became a subject of negotiations between Russia and Estonia. As the result Estonia took the ownership and control of the site in September 1995. Before the take over the Russian authorities defuelled the reactors and transported the spent fuel to Russia, dismantled the hull sections not related with reactor systems, seal-welded the hull sections housing the reactor vessels with their primary circuitry and enclosed those in reinforced concrete sarcophagi. The auxiliary facilities and radioactive waste were left intact. Main goals of the Conceptual Decommissioning Plan for the Paldiski facilities, developed under the auspices of the Paldiski International Expert Reference Group (Pier, a group established at the request of the Estonian government to advise local authorities to maintain the decommissioning and waste management at Paldiski) were defined as following: Establishing the waste management system and a long term monitored interim storage, corresponding to internationally accepted safety standards and capable to condition, receive and store all the waste generated during decommissioning of the facility; Reductions of the extent of radiologically controlled areas as much as possible, in order to minimise maintenance requirements. To achieve these goals the following main tasks were addressed in the short and medium term site management action plans: Rearrangement of site for the needs of

  5. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  6. PUREX Storage Tunnels waste analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  7. Expertise concerning the request by the ZWILAG Intermediate Storage Facility Wuerenlingen AG for granting of a licence for the building and operation of the Central Intermediate Storage Facility for radioactive wastes

    International Nuclear Information System (INIS)

    1995-12-01

    On July 15, 1993, the Intermediate Storage Facility Wuerenlingen AG (ZWILAG) submitted a request to the Swiss Federal Council for granting of a license for the construction and operation of a central intermediate storage facility for radioactive wastes. The project foresees intermediate storage halls as well as conditioning and incineration installations. The Federal Agency for the Safety of Nuclear Installations (HSK) has to examine the project from the point of view of nuclear safety. The present report presents the results of this examination. Different waste types have to be treated in ZWILAG: spent fuel assemblies from Swiss nuclear power plants (KKWs); vitrified, highly radioactive wastes from reprocessing; intermediate and low-level radioactive wastes from KKWs and from reprocessing; wastes from the dismantling of nuclear installations; wastes from medicine, industry and research. The wastes are partitioned into three categories: high-level (HAA) radioactive wastes containing, amongst others, α-active nuclides, intermediate-level (MAA) radioactive wastes and low-level (SAA) radioactive wastes. The projected installation consists of three repository halls for each waste category, a hot cell, a conditioning plant and an incineration and melting installation. The HAA repository can accept 200 transport and storage containers with vitrified high-level wastes or spent fuel assemblies. The expected radioactivity amounts to 10 20 Bq, including 10 18 Bq of α-active nuclides. The thermal power produced by decay is released to the environment by natural circulation of air. The ventilation system is designed for a maximum power of 5.8 MW. Severe conditions are imposed to the containers as far as tightness and shielding against radiation is concerned. In the repository for MAA wastes the maximum radioactivity is 10 18 Bq with 10 15 Bq of α-active nuclides. The maximum thermal power of 250 kW is removed by forced air cooling. Because of the high level of radiation the

  8. Licence applications for low and intermediate level waste predisposal facilities: A manual for operators

    International Nuclear Information System (INIS)

    2009-07-01

    This publication covers all predisposal waste management facilities and practices for receipt, pretreatment (sorting, segregation, characterization), treatment, conditioning, internal relocation and storage of low and intermediate level radioactive waste, including disused sealed radioactive sources. The publication contains an Annex presenting the example of a safety assessment for a small radioactive waste storage facility. Facilities dealing with both short lived and long lived low and intermediate level waste generated from nuclear applications and from operation of small nuclear research reactors are included in the scope. Processing and storage facilities for high activity disused sealed sources and sealed sources containing long lived radionuclides are also covered. The publication does not cover facilities processing or storing radioactive waste from nuclear power plants or any other industrial scale nuclear fuel cycle facilities. Disposal facilities are excluded from the scope of this publication. Authorization process can be implemented in several stages, which may start at the site planning and the feasibility study stage and will continue through preliminary design, final design, commissioning, operation and decommissioning stages. This publication covers primarily the authorization needed to take the facility into operation

  9. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  10. Transport of a solute pulse through the bentonite barrier of deep geological high-level waste storage facilities in granite

    International Nuclear Information System (INIS)

    Cormenzana Lopez, J.L.; Alonso Diaz-Teran, J.; Gonzalez- Herranz, E.

    1997-01-01

    Spain like Sweden, Finland, Canada and other countries has opted for an open nuclear fuel cycle, and to store the unreprocessed spent fuel in a stable geological formation. Sweden, Finland and Canada have chosen granite rock for their high-level waste storage facilities. Their Performance Assessment of disposal systems have all obtained to the same result. The greatest annual doses are caused by I 129 in the gap between the fuel rods and the cladding. The reference concept for the Spanish high-level waste storage facility in granite provides for final storage in a granite mass at a depth of 500 m in carbon steel capsules in horizontal tunnels surrounded by a bentonite buffer. It the capsule fails due to generalised corrosion, an not giving credit for the cladding, the I 129 and other radionuclides in the gap would pass immediately into the surrounding water. This paper describes the modelling of the transport of the solute through the bentonite around the capsule to determine the fraction that crosses the bentonite each year. It also analyses the sensitivity of the results to the boundary condition adopted and changes in the values of the relevant parameters. (Author)

  11. Reduction of radioactive waste by improvement of conditioning facilities

    Energy Technology Data Exchange (ETDEWEB)

    Radde, E.

    2014-07-01

    The NES (Nuclear Engineering Seibersdorf) is the only radioactive waste conditions and storage facility in Austria. It manages waste originating from research, industry and medicine. Its main goal is, not only to treat and store waste safety, but also to optimize processes to further reduce the waste volume. To achieve this goal, the New Handling Facility was built. In this paper we will show how the waste volume can be easily reduced by optimizing the conditioning and waste stream process. The NES owns a water treatment plant for cleaning of active waste water, an incineration plant that is used to burn radioactive waste. (Author)

  12. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  13. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  14. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  15. Storage of nuclear wastes

    International Nuclear Information System (INIS)

    Ahlstroem, P.E.

    1988-01-01

    The Swedish system of handling and storage of nuclear wastes is well-developed. Existing plants and systems provide great freedom of action and flexibility regarding future development and decisions of ultimate storage of the spent fuel. The interim storage in CLAB - Central interim storage facility for spent nuclear fuel - could continue without any safety related problems for more than 40 years. In practice the choice of ultimate treatment system is not locked until the encapsulation of the fuel starts. At the same time it is of importance that the generation benefiting by the nuclear power production also be responsible for the development of the ultimate storage system and not unnecessarily postpones important decisions. The ultimate storage system for spent fuel could and should be developed within existing schedule. At the same time is should be worked out to provide coming generations with possibilities to do the type of supervision they like without maintenance and supervision requiring to become a prerequisite for a safe function. (O.S.)

  16. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  17. Plutonium Finishing Plant (PFP) Treatment and Storage Unit Waste Analysis Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  18. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  19. Safety assessment for the above ground storage of Cadmium Safety and Control Rods at the Solid Waste Management Facility

    International Nuclear Information System (INIS)

    Shaw, K.W.

    1993-11-01

    The mission of the Savannah River Site is changing from radioisotope production to waste management and environmental restoration. As such, Reactor Engineering has recently developed a plan to transfer the safety and control rods from the C, K, L, and P reactor disassembly basin areas to the Transuranic (TRU) Waste Storage Pads for long-term, retrievable storage. The TRU pads are located within the Solid Waste Management Facilities at the Savannah River Site. An Unreviewed Safety Question (USQ) Safety Evaluation has been performed for the proposed disassembly basin operations phase of the Cadmium Safety and Control Rod Project. The USQ screening identified a required change to the authorization basis; however, the Proposed Activity does not involve a positive USQ Safety Evaluation. A Hazard Assessment for the Cadmium Safety and Control Rod Project determined that the above-ground storage of the cadmium rods results in no change in hazard level at the TRU pads. A Safety Assessment that specifically addresses the storage (at the TRU pads) phase of the Cadmium Safety and Control Rod Project has been performed. Results of the Safety Assessment support the conclusion that a positive USQ is not involved as a result of the Proposed Activity

  20. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  1. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  2. Container material and design considerations for storage of low-level radioactive waste

    International Nuclear Information System (INIS)

    Temus, C.J.

    1987-01-01

    With the threat of increased burial site restrictions and increased surcharges; the ease with which waste is sent to the burial site has been reduced. For many generators of waste the only alternative after maximizing volume reduction efforts is to store the waste. Even after working through the difficult decision of deciding what type of storage facility to have, the decision of what type of container to store the waste in has to still be made. This paper explores the many parameters that affect not only the material selection but also the design. The proper selection of materials affect the ability of the container to survive the storage period. The material selection also directly affects the design and utilization of the storage facility. The impacts to the facility include the functional aspects as well as its operational cost and liability as related to such things as fire insurance and active environmental control systems. The advantages and disadvantages of many of the common systems such as carbon steel, various coatings, polyethylene, stainless steel, composites and concrete will be discussed and evaluated. Recognizing that the waste is to be disposed of in the future differentiates it from waste that is shipped directly to the disposal site. The stored waste has to have the capability to be handled not only once like the disposal site waste but potentially several times before ultimate disposal. This handling may be by several different systems both at the storage facility and the burial site. Some of these systems due to ALARA considerations are usually remote requiring various interfaces, while not interfering with handling, transportation or disposal operations

  3. Storage and disposal of high-level radioactive waste from advanced FBR fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2011-01-01

    Waste management of fast breeder reactor (FBR) fuel cycle with and without partitioning and transmutation (P and T) technology was investigated by focusing on thermal constraints due to heat deposition from waste in storage and disposal facilities including economics aspects of those facilities. Partitioning of minor actinides (MAs) and heat-generating fission products in high-level waste can enlarge the containment ratio of waste elements in the glass waste forms and shorten predisposal storage period. Though MAs can be transmuted in FBRs or dedicated transmuters, heat-generating fission products are difficult to be transmuted; they are partitioned and stored for a long time before disposal. The disposal concepts for heat-generating fission products and remainders such as rare-earth elements depend on storage period that ranges from several years to several hundreds of years. Short-term storage results in small size of storage facilities and large size of repositories, and vice versa for long-term storage. This trade-off relation was analyzed by estimating repository size as a function of storage period. The result shows that transmutation of MAs is essentially effective to reduce repository size regardless to storage period, and a combination of P and T can provide a smaller repository than the conventional one by two orders of magnitude. The cost analysis for waste management was also made based on rough assumptions on storage, transportation and repository excluding cost for introducing P and T that are still under evaluation. Cost of waste management for FBR without P and T is 0.25 Yen/kWh that is slightly smaller than that for LWR without P and T, 0.30 Yen/kWh. The introduction of MA transmutation to the FBR results in cost of 0.20 Yen/kWh, and full introduction of P and T provides the smallest cost of 0.08 Yen/kWh. (author)

  4. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  5. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance, and lessons learned in each country. The audience is invited to participate in the discussion.

  6. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  7. Conditioning and storage of low level radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2000-01-01

    FR Yugoslavia is a country without any nuclear power plant on its territory. In the last forty years in the country, as a result of the two research reactors operation and also from radionuclides applications in medicine, industry and agriculture, radioactive waste materials of different levels of specific activity are generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facility. Since one of the storage facilities is completely full with radioactive wastes, packed in metal drums and plastic barrels, and the second one has an effective space for the next few years, attempts are made in the 'Vinca' Institute of Nuclear Sciences in developing the the immobilization process, for low and intermediate level radioactive wastes and their safe disposal. As an immobilization process, cementation process is investigated. Developed immobilization process has, as a final goal, production of solidified waste-matrix mixture form, that is easy for handling and satisfies requirements for interim storage and final disposal. Radioactive wastes immobilized in inactive matrices are to be placed into concrete containers for further manipulation and disposal

  8. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  9. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1977-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the Southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory

  10. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1978-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory. 31 figures

  11. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  12. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  13. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  14. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  15. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  16. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  17. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  18. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  19. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  20. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  1. Ultimate storage of reactor wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The report describes the store, SFR 1, designed for final disposal of high and intermediate radioactive wastes from the Swedish nuclear power stations and from the Central Interior Storage Facility for Spent Nuclear Fuel and from other industry, research institutes and medical service. The store is located in rock more than 60 meters below bottom of the Baltic Sea. (O.S.)

  2. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  3. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    King, J.W.

    1993-01-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction

  4. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  5. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C.; Freeman, W.

    1994-01-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE's Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented

  6. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C. [Argonne National Lab., IL (United States); Freeman, W. [Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry

    1994-03-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE`s Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented.

  7. 303-K Storage Facility: Report on FY98 closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1998-01-01

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy

  8. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  9. Use of base isolation techniques for the design of high-level waste storage facility enclosure at INEL

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, Chun K.; Beer, M.J.

    1993-08-01

    Current Department of Energy criteria for facilities subjected to natural hazards provide guidelines to place facilities or portions of facilities into usage categories. Usage categories are based on characteristics such as mission dependence, type of hazardous materials involved, and performance goals. Seismic requirements are significantly more stringent for facilities falling into higher ''hazard facility use categories''. A special problem arises in cases where a facility or portion of a facility is dependent on another facility of lower ''hazard facility use category'' for support or protection. Creative solutions can minimize the cost Unpact of ensuring that the lower category item does not compromise the performance of the higher category item. In this paper, a base isolation solution is provided for a ''low hazard facility use category'' weather enclosure designed so it will not collapse onto a ''high hazard facility use category'' high level waste storage facility at INEL. This solution is compared to other more conventional procedures. Details, practical limitations, licensing and regulatory considerations, and cost comparisons are provided

  10. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  11. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  12. SWSA [Solid Waste Storage Area] 6 tumulus disposal demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    A facility to demonstrate the above-grade disposal of solid low-level radioactive wastes (LLW) is being constructed in the Solid Waste Storage Area 6 (SWSA 6) at the Oak Ridge National Laboratory (ORNL). The demonstration facility will utilize the ''Tumulus'' technology, which basically involves sealing the waste in concrete vaults, placing the vaults on a grade level concrete pad, and covering the pad with a soil cover after vault placement is complete. Loading of the demonstration unit is scheduled to begin in June, and will continue one to one and a half years until the 28,000 ft 3 capacity is exhausted

  13. Evaluation of the risk associated with the storage of radioactive wastes. The deterministic approach

    International Nuclear Information System (INIS)

    Lewi, J.

    1988-07-01

    Radioactive waste storage facility safety depends on a certain number of barriers being placed between the waste and man. These barriers, certain of which are articial (the waste package and engineered barriers) and others are natural (geological formations), are of characteristics suited to the type of storage facility (surface storage or storage in deep geological formations). The combination of these different barriers provide protection for man, under all circumstances considered plausible. Justification, for the storage of given quantities of radionuclides, of the choice of the site, the artificial barriers and the overall storage architecture, is obtained by evaluation of the risk. It being this which provides a basis for determining the acceptability of the storage facility. One of the following two methods is normally used for evaluation of the risk: the deterministic method and the probabilistic method. This adress describes the deterministic method. This method is employed in France for the safety analysis of the projects and works of ANDRA, the national agency responsible for the management of radioactive waste. It should be remembered that in France, the La Manche surface storage centre for low and medium activity waste has been in existence since 1969, close to the reprocessing plant at La Hague and a second surface storage centre is to be commissioned around 1991 at Soulaines in centre of France (departement de l'Aube). Furthermore, geological surveying of four sites located in geological formations consisting of granite, schist, clay and salt were begun in 1987 for the selection in about three years time of a site for the creation of an underground laboratory. This could later be transformed, if safety is demonstrated, into a deep storage centre

  14. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  15. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  16. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  17. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  18. Aube's very-low-level waste storage Center. Annual report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    After a presentation of the ANDRA (the French national Agency for radioactive waste management), its missions, its facilities, and its financing, this report reviews the activity of the very-low-activity level waste storage centre located in the boroughs of Morvilliers and La Chaise in the Aube district (France), the operation of which started in 2003. It briefly specifies the waste types and origins, its facilities, its operation data for 2008. It describes its safety, security, and radioprotection installations and actions, its environment monitoring activity, its actions for information transparency

  19. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  20. Monitoring of the storage facility Asse II

    International Nuclear Information System (INIS)

    Regenauer, Urban; Wittwer, Christiane

    2012-01-01

    The storage facility Asse II is former salt mine near Wolfenbuettel in Niedersachsen. From 1967 to 1978 totally 125787 barrels with low-and medium-level radioactive wastes were disposed in the salt cavern. Since 1988 ingress of saturated brines from the adjoining rocks were observed in the mine. An extensive monitoring concept was installed for the surveillance of possible radionuclides released with the mine air into the surrounding. The report is aimed to n describe the actual situation in the salt mine Asse II with special emphasis to the monitoring concept. The discussion is based on the history of the storage facility that was primarily a research mine. Furthermore a regional accompanying process is described that was created in 2007.

  1. Plutonium Finishing Plant Treatment and Storage Unit Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    2000-01-01

    The training program for personnel performing waste management duties pertaining to the Plutonium Finishing Plant (PFP) Treatment and Storage Unit is governed by the general requirements established in the Plutonium Finishing Plant Dangerous Waste Training Plan (PFP DWTP). The PFP Treatment and Storage Unit DWTP presented below incorporates all of the components of the PFP DWTP by reference. The discussion presented in this document identifies aspects of the training program specific to the PFP Treatment and Storage Unit. The training program includes specifications for personnel instruction through both classroom and on-the-job training. Training is developed specific to waste management duties. Hanford Facility personnel directly involved with the PFP Treatment and Storage Unit will receive training to container management practices, spill response, and emergency response. These will include, for example, training in the cementation process and training pertaining to applicable elements of WAC 173-303-330(1)(d). Applicable elements from WAC 173-303-330(1)(d) for the PFP Treatment and Storage Unit include: procedures for inspecting, repairing, and replacing facility emergency and monitoring equipment; communications and alarm systems; response to fires or explosions; and shutdown of operations

  2. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  3. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Policastro, A.J.

    1995-04-01

    This report focuses on the generation of hazardous waste (HW) and the treatment, storage, and disposal (TSD) of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for TSD are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial TSD facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine TSD operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. Furthermore, this report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the TSD alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  4. The planning, construction, and operation of a radioactive waste storage facility for an Australian state radiation regulatory authority

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.D.; Kleinschmidt, R.; Veevers, P. [Radiation Health, Queensland (Australia)

    1995-12-31

    Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safety of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.

  5. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  6. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other, miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume 1 provides a narrative of the project background, objective and justification. A description of the WRAP 2A mission, operations and project scope is also included. Significant project requirements such as security, health, safety, decontamination and decomissioning, maintenance, data processing, and quality are outlined. Environmental compliance issues and regulatory permits are identified, and a preliminary safety evaluation is provided

  7. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at the Hanford Reservation. The mission of the facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume III is a compilation of the outline specifications that will form the basis for development of the Title design construction specifications. This volume contains abbreviated CSI outline specifications for equipment as well as non-equipment related construction and material items. For process and mechanical equipment, data sheets are provided with the specifications which indicate the equipment overall design parameters. This volume also includes a major equipment list

  8. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  9. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  10. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  11. Criticality safety of transuranic storage arrays at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Boyd, W.A.; Fecteau, M.W.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) facility is designed to store transuranic waste that will consist mainly of surface contaminate articles and sludge. The fissile material in the waste is predominantly 239 Pu. The waste is grouped into two categories: contact-handled waste, which will be stored in 55-gal steel drums or in steel boxes, and remote-handled waste, which will be stored in specially designed cylindrical steel canisters. To show that criticality safety will be acceptable, criticality analyses were performed to demonstrate that a large number of containers with limiting loadings of fissile material could be stored at the site and meet a k eff limit of 0.95. Criticality analyses based on the classic worst-case moderated plutonium sphere approach would severely limit the capacity for storage of waste at the facility. Therefore, these analyses use realistic or credible worst-case assumptions to better represent the actual storage situation without compromising the margin of safety. Numerous sensitivity studies were performed to determine the importance of various parameters on the criticality of the configuration. It was determined that the plutonium loading has the dominant effect on the system reactivity. Nearly all other reactivity variations from the sensitivity studies were found to be relatively small. The analysis shows that criticality of the contact-handled waste storage drums and boxes and the remote-handled canisters is prevented by restrictions on maximum fissile loading per container and on the size of handling/storage areas

  12. Experience in ultimate storage of radwaste, illustrated by the information on geomechanics gained in the Asse storage facility

    International Nuclear Information System (INIS)

    Schmidt, M.W.

    1981-01-01

    Among the numerous variants of storing radioactive waste in the deep geological underground the storage in appropriate mineral salt formations has a couple of particular advantages. In order to effect research- and development works with regard to a safe secular storage of radioactive wastes, the former mineral salt deposit ASSE was assigned to the GSF in the year 1965. At this test plant storage technologies are developed, tested and the operational efficiency of according technical facilities is demonstrated. As a part of these duties several technical and natural scientific fields like nuclear engineering, mining, geomechanics, geochemistry or hydrogeology are worked in interdisciplinarily. Departing from the existing mine building of the shaft ASSE storage bunkers for low- and intermediate-level radioactive wastes (LAW/MAW) are presented. Accompanying geotechnical investigations are explained. An outlook alludes to an eventually possible development potential of the storage bunker arrangement from the geomechanic view. (orig./HP) [de

  13. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  14. Implications of long-term surface or near-surface storage of intermediate and low-level wastes in the UK

    International Nuclear Information System (INIS)

    Murray, N.; Vande Putte, D.; Ware, R.J.

    1986-02-01

    Various options for 200 year-long storage of all Low- and Intermediate-Level wastes generated to the year 2030 are considered. On-site storage and centralised storage have been examined and compared. The feasibility of storing some of the wastes in underground facilities that are convertible to repositories has been demonstrated, but it is shown that centralised, surface storage of wastes would be more economical. There appears to be little merit in storing Intermediate Level wastes in separate facilities that could be converted to repositories. Storage is shown to be more expensive than direct disposal, except if future costs are discounted by more than about 10%. With carefully designed stores and remote handling, the collective dose to operators could be limited to about 20-40 man Sv over the whole period of storage. (author)

  15. Measurement methodology for fulfilling of waste acceptance criteria for low and intermediate level radioactive waste in storages - 59016

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.

    2012-01-01

    Low and intermediate level radioactive waste must be sorted and treated before it can be sent to radioactive waste storage. The waste must fulfil an extensive amount of acceptance criteria (WAC) to guarantee a safe storage period. NUKEM Technologies has a broad experience with the building and management of radioactive waste treatment facilities and has developed methods and equipment to produce the waste packages and to gather all the required information. In this article we consider low and intermediate level radioactive waste excluding nuclear fuel material, even fresh fuel with low radiation. Only solid radioactive waste (RAW) will be considered. (Liquid RAW is usually processed and solidified before storage. Exception is the reprocessing of nuclear fuel.) Low and intermediate level radioactive waste has to be kept in storage facilities until isotopes are decayed sufficiently and the waste can be released. The storage has to fulfil certain conditions regarding the possible radiological impact and the possible chemical impact on the environment. With the inventory of nuclear waste characterised, the radiological impact can be estimated. RAW mainly originates from the operation of nuclear power plants. A small amount comes from reprocessing installations or from research entities. Chemical safety aspects are of qualitative nature, excluding substances in whole but not compared to limit values. Therefore they have minor influence on the storage conditions. Hereby corrosion and immobilisation of the waste play important roles. The storage concept assumes that the waste will be released if the radioactivity has decreased to an acceptable level. NUKEM Technologies has been specialised on collecting all data needed for the fulfilling of waste acceptance criteria (WAC). The classification as low or intermediate level waste is made on base of surface dose rate of the waste package as well as on the mass specific beta activity. Low level waste must not include isotopes

  16. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  17. High-level waste canister storage final design, installation, and testing. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  18. High-level waste canister storage final design, installation, and testing. Topical report

    International Nuclear Information System (INIS)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project's radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project's vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access

  19. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    International Nuclear Information System (INIS)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-01-01

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed

  20. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  1. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  2. MRS [monitored retrievable storage] Systems Study Task 1 report: Waste management system reliability analysis

    International Nuclear Information System (INIS)

    Clark, L.L.; Myers, R.S.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study evaluates the relative reliabilities of systems with and without an MRS facility using current facility design bases. The principal finding of this report is that the MRS system has several operational advantages that enhance system reliability. These are: (1) the MRS system is likely to encounter fewer technical issues, (2) the MRS would assure adequate system surface storage capacity to accommodate repository construction and startup delays of up to five years or longer if the Nuclear Waste Policy Amendments Act (NWPAA) were amended, (3) the system with an MRS has two federal acceptance facilities with parallel transportation routing and surface storage capacity, and (4) the MRS system would allow continued waste acceptance for up to a year after a major disruption of emplacement operations at the repository

  3. Managing commercial low-level radioactive waste beyond 1992: Issues and potential problems of temporary storage

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1991-01-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, States will become responsible for managing low-level radioactive waste, including mixed waste, generated within their borders as of January 1, 1993. In response to this mandate, many States and compact regions have made substantial progress toward establishing new disposal capacity for these wastes. While this progress is noteworthy, many circumstances can adversely affect States' abilities to meet the 1993 deadline, and many States have indicated that they are considering other waste management options in order to fulfill their responsibilities beyond 1992. Among the options that States are considering for the interim management of low- level radioactive waste is temporary storage. Temporary storage may be either short term or long term and may be at a centralized temporary storage facility provided by the State or a contractor, or may be at the point of generation or collection. Whether States choose to establish a centralized temporary storage facility or choose to rely on generators or brokers to provide additional and problem areas that must be addressed and resolved. Areas with many potential issues associated with the temporary storage of waste include: regulations, legislation, and policy and implementation guidance; economics; public participation; siting, design, and construction; operations; and closure and decommissioning

  4. Environmental justice: Implications for siting of Federal Radioactive Waste Management Facilities

    International Nuclear Information System (INIS)

    Easterling, J.B.; Poles, J.S.

    1994-01-01

    Environmental justice is a term that has developed as a result of our need to address whether some of the environmental decisions we have made -- and others we will make -- are fair. The idea of environmental justice has been actively pursued by the Clinton Administration, and this consideration has resulted in Executive Order 12898, which was signed by President Clinton on February 11, 1994. The Executive Order calls for adverse impacts of Federal actions on minority or low-income populations to be identified before decisions implementing those actions are made. Numerous studies show that noxious facilities, such as incinerators and landfills, have been constructed in minority or low-income communities. And since the Department has not yet decided on sites for high-level waste storage or disposal facilities, it will have to take the new Executive Order into consideration as another piece in the complicated quilt of requirements that cover facility siting. An interesting twist to this is the fact that twenty Native American Indian Tribes expressed interest in voluntarily hosting a high-level radioactive waste management facility for temporary storage. They made these expressions on their own initiative, and several Tribes continue to pursue the idea of negotiations with either the Federal Government or private entities to locate a temporary storage site on Tribal land. The Executive Order goes beyond simply studying the effect of siting a facility and addresses in spirit a criticism that the Federal Government has been guilty of open-quotes environmental racismclose quotes in its siting policies -- that it has intentionally picked minority or low-income communities for waste management facilities. What Department of Energy staff and others may have considered foregone conclusions in terms of interim storage facility siting and transportation options will have to be reevaluated for compatibility with provisions of the new Executive Order

  5. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  6. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  7. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  8. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  9. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  10. Intermediate storage of radioactive waste and spent nuclear fuel at the Kola Peninsula

    International Nuclear Information System (INIS)

    Bohmer, N.

    1999-01-01

    The problem of nuclear waste and disused nuclear submarines are a product of the arms race and the Cold War. Russia still continues to build new nuclear submarines, but there are very few provisions being made to properly store old nuclear submarines, and develop sufficient storage facilities for spent nuclear fuel and other radioactive waste. A solution to this problem is proposed: to construct a new regional interim storage facilities at Kola for the spent nuclear fuel instead of transporting it to Mayak, the existing reprocessing plant. This storage should have the capacity to handle the fuel in the existing storage and the fuel still on board of retired nuclear submarines. Its lifetime should be 50 years. later it would be possible to make a decision on the future of this fuel

  11. Sacramento Municipal Utility district's interim onsite storage building for low level radioactive waste

    International Nuclear Information System (INIS)

    Gillis, E.

    1986-01-01

    In order to meet current and anticipated needs for the low level radwaste management program at the Rancho Seco Nuclear Generating Station, the Sacramento Municipal Utility District has a design and construction program underway which will provide an onsite interim storage facility that can be expanded in two and one-half year increments. The design approach utilized allows capital investment to be minimized and still provides radwaste management flexibility in anticipation of delays in resolution of the nationwide long term radwaste disposal situation. The facility provides storage and material accountability for all low level radwastes generated by the plant. Wastes are segregated by radioactivity level and are stored in two separate storage areas located within one facility. Lower activity wastes are stored in a lightly shielded structure and handled by lift trucks, while the higher activity wastes are stored in a highly shielded structure and handled remotely by manual bridge crane. The layout of the structure provides for economy of operation and minimizes personnel radiation exposure. Design philosophy and criteria, building layout and systems, estimated costs and construction schedule are discussed

  12. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  13. 190-C Facility <90 Day Storage Pad supplemental information to the Hanford facility contingency plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    The 190-C Facility <90 Day Storage Pad stores waste oils primarily contaminated with lead generated while draining equipment within the building of residual lubricating oils. Waste oils are packaged and stored in fifty-five gallon drums, or other containers permitted by the Site Specific Waste Management Instruction. Bechtel Hanford, Inc. (BHI) manual BHI-EE-02, Environmental Requirements Procedures, references this document. This document is to be used to demonstrate compliance with the contingency plan requirements in Washington Administrative Code, Chapter 173-303, Dangerous Waste Regulations, for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units (units). Refer to BHI-EE-02, for additional information

  14. Monitored Retrievable Storage conceptual system study: metal storage casks

    International Nuclear Information System (INIS)

    Unterzuber, R.; Cross, T.E.; Krasicki, B.R.

    1983-08-01

    A description of the metal cask storage facility concept is presented with the operations required to handle the spent fuel or high-level wastes and transuranic wastes. A generic Receiving and Handling Facility, provided by PNL, has been used for this study. Modifications to the storage delivery side of the handling facility, necessary to couple the Receiving and Handling Facility with the storage facility, are described. The equipment and support facilities needed for the storage facility are also described. Two separate storage facilities are presented herein: one for all spent fuel storage, and one for storage of high-level waste (HLW) and transuranic waste (TRU). Each facility is described for the capacities and rates defined by PNL in the Concept Technical Performance Criteria and Base Assumptions (see Table 1.3-1). Estimates of costs and time-distributions of expenditures have been developed to construct, operate, and decommission the conceptual MRS facilities in mid-1983 dollars, for the base cases given using the cost categories and percentages provided by PNL. Cost estimates and time-distributions of expenditures have also been developed to expand the facility throughput rate from 1800 MTU to 3000 MTU, and to expand the facility storage capacity from 15,000 MTU to 72,00 MTU. The life cycle cost of the facility for the bounding cases of all spent fuel and all HLW and TRU, using the time-distributions of costs developed above and assuming a two percent per year discount rate, are also presented. 3 references, 16 figures, 18 tables

  15. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  16. Waste sampling and characterization facility (WSCF)

    International Nuclear Information System (INIS)

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF

  17. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations. Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report

  18. National facilities for the management of institutional radioactive waste in Romania

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.N.; Dragolici, F.; Nicu, M.; Lungu, L.; Cazan, L.; Matei, G.; Guran, V.

    2000-01-01

    The management of the non-fuel cycle radioactive wastes from all over Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR). Final disposal is carried out at the National Repository of Radioactive Wastes (DNDR) at Baita Bihor. Radioactive waste treated at STDR arise from three main sources: 1. Wastes arising from the WWR-S research reactor during operation and the future decommissioning works; 2. Local waste from other facilities operating on IFIN-HH site. These sources include wastes generated during the normal activities of the STDR; 3. Wastes from IFIN-HH off site facilities and activities including medical, biological, and industrial applications all over the country. The Radiochemical Production Center, operating within IFIN-HH is the most important source of low and intermediate level radioactive wastes (liquid and solid), as the operational wastes arising from processing at STDR are. The STDR basically consists of liquid and solid waste treatment and conditioning facilities, a radioactive decontamination centre, a laundry and an intermediate storage area. The processing system of the STDR are located at six principal areas performing the following activities: 1. Liquid effluent treatment; 2. Burning of combustible solid stuff; 3. Compaction of solid non-combustible stuff; 4. Cement conditioning; 5. Radioactive decontamination; 6. Laundry. The annual designed treatment capacity of the plant is 1500 m 3 Low Level Aqueous Waste, 100 m 3 Low Level Solid Waste and shielded drums for Intermediate Level Waste. The temporary storage within and final disposal of waste in the frame of DNDR are explained as well as the up-dating of institutional radioactive waste infrastructure

  19. Radiation safety perspective in storage of Cat-III liquid waste in a typical over ground dyke system

    International Nuclear Information System (INIS)

    Singh, Sanjay; Singh, Anjan K.; Gangadharan, A.; Gopalakrishnan, R.K.

    2016-01-01

    Radioactive liquid waste gets generated during various operations at the back end of nuclear fuel cycle facilities. This consists of five categories for liquid waste. Cat-III liquid waste with activity concentration in the range: 37 to 3700 Bq/ml is managed under the philosophy of 'delay and decay', 'concentrate and confine' and finally 'dilute and disperse'. In exiting designs of Low Level Waste (LLW) management facilities, storage tanks are underground and ambient dose rate around these facilities are well understood. In various proposed new plant designs, storage tanks are above the ground and kept in dyke. This change in concept necessitated studying radiation shielding perspectives and is highlighted in this paper

  20. Evaluation of existing Hanford buildings for the storage of solid wastes

    International Nuclear Information System (INIS)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft 2 of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft 2 while new construction will cost about $50 per ft 2 . Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D ampersand D) cost avoidances realized by using existing facilities

  1. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  2. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  3. The monitored retrievable storage proposal in the context of the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1986-01-01

    The Department of Energy plans to submit to Congress a proposal for an integral monitored retrievable storage (MRS) facility located in the eastern United States to serve as the main waste receiving and packaging facility for the geologic repository. This integral role for the MRS is substantially different from the backup storage role previously discussed for Federal storage facilities. The debate over this proposal offers an opportunity for Congress to address and resolve issues that were not dealt with in passage of NWPA, in a way that will enhance the consensus about the waste program. Compared to the no-action option (the authorized system), approval of the integral MRS would probably increase the front-end political and economic costs of developing the waste management system, but could enhance prospects for success and reduce costs in the long run

  4. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    Science.gov (United States)

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  5. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  6. Report of conceptual design for TRU solid waste facilities adjacent to 200H Area: Savannah River Plant

    International Nuclear Information System (INIS)

    1978-02-01

    Facilities for consolidating Savannah River Plant solid transuranic (TRU) waste and placing in long-term safe, retrievable storage have been designed conceptually. A venture guidance appraisal of cost for the facilities has been prepared. The proposed site of the new processing area is adjacent to existing H Area facilities. The scopes of work comprising the conceptual design describe facilities for: exhuming high-level TRU waste from buried and pad-stored locations in the plant burial ground; opening, emptying, and sorting waste containers and their contents within shielded, regulated enclosures; volume-reducing the noncombustibles by physical processes and decontaminating the metal waste; burning combustibles; fixing the consolidated waste forms in a concrete matrix within a double-walled steel container; placing product containers in a retrievable surface storage facility adjacent to the existing plant burial ground; and maintaining accountability of all special nuclear materials. Processing, administration, and auxiliary service buildings are to be located adjacent to existing H Area facilities where certain power and waste liquid services will be shared

  7. Operation of Temporary Radioactive waste stoprage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kinseem, A A; Abulfaraj, W H; Sohsah, M A; Kamal, S M; Mamoon, A M [Nuclear Engineering Department, Faculty of Engineering, King Abdelazizi University jeddah-21413, Saudi Arabia (Saudi Arabia)

    1997-12-31

    Radionuclides of various half lives have been in use for several years years at different Departments of king Abdulaziz university, the university hospital, and research center. The use of unsealed radionuclides in many laboratories, resulted in considerable amounts of solid and liquid radwaste, mainly radiopharmaceuticals. To avoid accumulation of radwastes in working areas, a temporary radioactive waste storage facility was built. Segregation of radwastes according to type was carried out, followed by collection into appropriate containers and transfer to the storage facility. Average radiation dose rate inside the store was maintained at about 75 {mu} h{sup -1} through use of appropriate shielding. The dose rates at points one meter outside the store walls were maintained at about 15-20 {mu}Sv h{sup -1}. Utilization of radioisotopes during the period of 1991-1995 resulted in a volume of about 1.8 m{sup 3} of solid radwaste and about 200 L of liquid radwaste. Records of the store inventory are maintained in a computer database, listing dates, types, activities and packaging data pertinent to the radwastes delivered to the store. Quality assurance procedures are implemented during the different stages of the radwaste collection, transportation, and storage. Construction and operation of the storage facility comply with radiation safety requirements for the workers handling the radwastes, the public and the environment. The capacity of the storage facility is such that it will accommodate storage of generated radwastes of long half life up to year 2016. Permanent disposal of such radwastes may be indicated afterwards. 2 figs., 3 tabs.

  8. Hanford Facility dangerous waste permit application, general information

    International Nuclear Information System (INIS)

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility

  9. Application of airborne photogrammetry for the visualisation and assessment of contamination migration arising from a Fukushima waste storage facility.

    Science.gov (United States)

    Connor, D T; Martin, P G; Smith, N T; Payne, L; Hutson, C; Payton, O D; Yamashiki, Y; Scott, T B

    2018-03-01

    Airborne systems such as lightweight and highly portable unmanned aerial vehicles (UAVs) are becoming increasingly widespread in both academia and industry - with an ever-increasing range of applications, including (but not limited to), air quality sampling, wildlife monitoring and land-use mapping. In this work, high-resolution airborne photogrammetry obtained using a multi-rotor system operating at low survey altitudes, is combined with ground-based radiation mapping data acquired at an interim storage facility for wastes removed as part of the large-scale Fukushima clean-up program. The investigation aimed to assess the extent to which the remediation program at a specific site has contained the stored contaminants, as well as present a new methodology for rapidly surveying radiological sites globally. From the three-dimensional rendering of the site of interest, it was possible to not only generate a powerful graphic confirming the elevated radiological intensity existing at the location of the waste bags, but also to also illustrate the downslope movement of contamination due to species leakage from the large 1m 3 storage bags. The entire survey took less than 1 h to perform, and was subsequently post-processed using graphical information software to obtain the renderings. The conclusions within this study not only highlight the usefulness of incorporating three-dimensional renderings within radiation mapping protocols, but also conclude that current methods of monitoring these storage facilities in the long term could be improved through the integration of UAVs within the standard protocol. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mastery of risks: we build the memory of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Lacourcelle, C.

    2011-01-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  11. Safety of Long-term Interim Storage Facilities - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this workshop was to discuss and review current national activities, plans and regulatory approaches for the safety of long term interim storage facilities dedicated to spent nuclear fuel (SF), high level waste (HLW) and other radioactive materials with prolonged storage regimes. It was also intended to discuss results of experiments and to identify necessary R and D to confirm safety of fuel and cask during the long-term storage. Safety authorities and their Technical Support Organisation (TSO), Fuel Cycle Facilities (FCF) operating organisations and international organisations were invited to share information on their approaches, practices and current developments. The workshop was organised in an opening session, three technical sessions, and a conclusion session. The technical sessions were focused on: - National approaches for long term interim storage facilities; - Safety requirements, regulatory framework and implementation issues; - Technical issues and operational experience, needs for R and D. Each session consisted of a number of presentations followed by a panel discussion moderated by the session Chairs. A summary of each session and subsequent discussion that ensued are provided as well as a summary of the results of the workshop with the text of the papers given and presentations made

  12. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  13. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    International Nuclear Information System (INIS)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations

  14. Conceptual design for the Waste Receiving And Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. This volume provides the detailed cost estimate for the WRAP 2A facility. Included in this volume is the project construction schedule

  15. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  16. Norwegian work on establishing a combined storage and disposal facility for low and intermediate level waste; Vurdering av det planlagte kombinerte lager og deponi for radioaktivt avfall i Himdalen

    Energy Technology Data Exchange (ETDEWEB)

    International Atomic Energy Agency WATRP Review Team

    1995-12-01

    The IAEA has, through its Waste Management Assessment and Technical Review Programme (WATRP), evaluated policies and facilities related to management of radioactive waste in Norway. It is concluded that the Himdalen site, in combination with the chosen engineering concept, can be suitable for the storage and disposal of the relatively small amounts of Norwegian low and intermediate level waste.

  17. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  18. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  19. Handling and storage of high-level radioactive liquid wastes requiring cooling

    International Nuclear Information System (INIS)

    1979-01-01

    The technology of high-level liquid wastes storage and experience in this field gained over the past 25 years are reviewed in this report. It considers the design requirements for storage facilities, describes the systems currently in use, together with essential accessories such as the transfer and off-gas cleaning systems, and examines the safety and environmental factors

  20. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  1. Report on site-independent environmental impacts of radioactive waste storage and management

    International Nuclear Information System (INIS)

    1985-10-01

    The organisation responsible for radioactive wastes in the Netherlands is COVRA: Centrale Organisatie Voor Radioactief Afval. It deals especially with storage and management of these wastes. For that purpose, COVRA will build a waste managing and storage facility at a central site in the Netherlands. In this report, environmental impacts of these activities are studied, that are independent of the location. The report is readable and useful for a broad audience. In the main report, the general features are outlined starting from figures and tables on environmental effects. In a separate volume, detailed numerical data are presented. (G.J.P.)

  2. Administrative Court Stade, decision of March 22, 1985 (interim storage facility at Gorleben)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This decision deals with the planned interim storage facility of Gorleben (F.R.G.). The provisions introduced by the 4th ammendment to sec. 5 para. 6 and 9a to 9c of the German Atomic Energy Act might contain a definite regulation of the 'Entsorgung' of nuclear power stations. Sec. 6 of the Atomic Energy Act is not applicable to interim storage facilities because irradiated nuclear fuel has a double nature: It is spent fuel and nuclear waste as well. Considering current licensing procedures of construction and operation of nuclear installations in the field of 'Entsorgung', special legal regulations for the construction and operation of an interim storage facility have to be required. (CW)

  3. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  4. Treatment, Storage and Disposal (TSD) Corrective Action Facility Polygons, Region 9, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — RCRA Treatment, Storage and Disposal facilities (TSDs) are facilities that have treated, stored or disposed of hazardous wastes. They are required to clean up...

  5. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  6. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  7. Experiences of storage of radioactive waste packages in the Nordic countries

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Ruokola, E.; Ramsoey, T.

    2001-04-01

    The present report includes results from a study on intermediate storage of radioactive waste packages in the Nordic countries. Principles for intermediate storage in Denmark, Finland, Norway and Sweden are presented. Recommendations are given regarding different intermediate storage options and also regarding control and supervision. The disposal of drums at Kjeller in Norway has also been included in the report. This is an example of an intended (and correctly licensed) disposal facility turned into what in practice has become a storage system. (au)

  8. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  9. CESARR V.2 manual: Computer code for the evaluation of surface storage of low and medium level radioactive waste

    International Nuclear Information System (INIS)

    Moya Rivera, J.A.; Bolado Lavin, R.

    1997-01-01

    CESARR (Code for the safety evaluation of low and medium level radioactive waste storage). This code was developed for the safety probabilistic evaluations in the facilities of low-and medium level radioactive waste storage

  10. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  11. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented

  12. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  13. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  14. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  15. Feasibility and economic consequences of retrievable storage of radioactive waste in the deep underground

    International Nuclear Information System (INIS)

    Prij, J.; Heijdra, J.J.

    1995-01-01

    The economic consequences of retrievable storage have been investigated by comparing two extreme options of retrievable storage. In one option the storage facility is kept in operation using minimal backfill of the storage galleries. In the other option the storage facility is completely backfilled, sealed and abandoned. In the second option construction of a new mine will be necessary in case of retrieval. The point in time has been determined when the second option will be cheaper than the first. This has been done for clay, granite and rock salt as host formation, and both for vitrified waste and spent fuel. (authors)

  16. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  17. The very-low activity waste storage facility. A new waste management system; Le centre de stockage des dechets de tres faible activite. Une nouvelle filiere de gestion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  18. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    Burgard, K.C.

    1998-01-01

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  19. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  20. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  1. Controlling changes - lessons learned from waste management facilities

    International Nuclear Information System (INIS)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.; Waetje, W.D.

    1995-01-01

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-level waste through compaction, incineration, and sizing operations. WROC and WERF's efforts aim to improve change control processes that have worked inefficiently in the past

  2. Evaluation of the ORNL area for future waste burial facilities

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Byerly, D.W.; Gonzales, S.

    1983-10-01

    Additional waste-burial facilities will be needed at ORNL within this decade. In order to find environmentally acceptable sites, the ORNL area must be systematically evaluated. This document represents the first step in that selection process. Geologic and hydrologic data from the literature and minor field investigations are used to identify more favorable sites for Solid Waste Storage Area (SWSA) 7. Also underway at this time is a companion study to locate a Central Waste Storage Area which could be used in the future to accommodate wastes generated by the X-10, Y-12, and K-25 facilities. From the several watershed options available, the Whiteoak Creek drainage basin is selected as the most promising hydrologic regime. This area contains all past and present waste-disposal facilities and is thus already well monitored. The seven bedrock units within the ORNL area are evaluated as potential burial media. Shales of the Conasauga Group, which are currently used for waste burial in the Whiteoak Creek drainage basin, and the Knox Group are considered the leading candidates. Although the residuum derived from and overlying the Knox dolomite has many favorable characteristics and may be regarded as having a high potential for burial of low-level wastes, at the present it is unproven. Therefore, the Conasauga shales are considered a preferable option for SWSA 7 within the ORNL area. Since the Conasauga interval is currently used for waste burial, it is better understood. One tract in Melton Valley that is underlain by Conasauga shales is nominated for detailed site-characterization studies, and several other tracts are recommended for future exploratory drilling. Exploration is also suggested for a tract in the upper Whiteoak Creek basin where Knox residuum is the shallow subsurface material

  3. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  4. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D ampersand D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews

  5. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  6. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  7. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  8. Interim and final storage casks

    International Nuclear Information System (INIS)

    Stumpfrock, L.; Kockelmann, H.

    2012-01-01

    The disposal of radioactive waste is a huge social challenge in Germany and all over the world. As is well known the search for a site for a final repository for high-level waste in Germany is not complete. Therefore, interim storage facilities for radioactive waste were built at plant sites in Germany. The waste is stored in these storage facilities in appropriate storage and transport casks until the transport in a final repository can be carried out. Licensing of the storage and transport casks aimed for use in the public space is done according to the traffic laws and for handling in the storage facility according to nuclear law. Taking into account the activity of the waste to be stored, different containers are in use, so that experience is available from the licensing and operation in interim storage facilities. The large volume of radioactive waste to be disposed of after the shut-down of power generation in nuclear power stations makes it necessary for large quantities of licensed storage and transport casks to be provided soon.

  9. Uses of the waste heat from the interim fuel storage facility

    International Nuclear Information System (INIS)

    Wehrum, A.

    It was the objective of this study to investigate the possibilities of a convenient use of the waste heat from the designed interim fuel storage at Ahaus. In this sense the following possibilities have been investigated: district heating, heat for industrial processes, fish-production, green house-heating, production of methane from original waste, agrotherm (agricultur field heating). It has been shown, that an economical behaviour for nearly all variations is not given without the financial help of the government, because of the high costs for heat transport and out-put. The most economical project is the intensive fish production plant. (orig.) [de

  10. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  11. Monitored retrievable storage design

    International Nuclear Information System (INIS)

    Woods, W.D.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established a national policy for the safe storage and disposal of spent nuclear fuel and high-level radioactive waste. The NWPA requires that DOE... ''submit a proposal to Congress on the need for and feasibility of one or more Monitored Retrievable Storage (MRS) Facilities''... In subsequent evaluations of the commercial nuclear waste management system, DOE has identified important advantages in providing an MRS Facility as an integral part of the total system. The integral MRS Facility serves as an independent, centralized spent nuclear fuel and high-level waste handling and packaging facility with a safe temporary storage capacity

  12. A monitored retrievable storage facility: Technical background information

    International Nuclear Information System (INIS)

    1991-07-01

    The US government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a state or an Indian tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who is to seek a state or an Indian tribe willing to host an MRS at a technically-qualified site on reasonable terms, and is to negotiate a proposed agreement specifying the terms and conditions under which the MRS would be developed and operated at that site. This agreement can ensure that the MRS is acceptable to -- and benefits -- the host community. The proposed agreement must be submitted to Congress and enacted into law to become effective. This technical background information presents an overview of various aspects of a monitored retrievable storage facility, including the process by which it will be developed

  13. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Khrushchov, D. P.; Matorin, Eu. M.; Shekhunova, S. B.

    2002-01-01

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  14. Nuclear waste: Is there a need for federal interim storage

    International Nuclear Information System (INIS)

    1989-01-01

    The Congress created the Monitored Retrievable Storage Review Commission to provide a report on the need for a Federal monitored retrievable storage facility (MRS) as part of the Nation's nuclear waste management system. The Commission concludes that the MRS as presently described in the law, which links the capacity and schedule of operation of the MRS to a permanent geologic repository, cannot be justified. The Commission finds, however, that while no single factor would favor an MRS over the No-MRS option, cumulatively the advantages of an MRS would justify the building of an MRS if: there were no linkages between the MRS and the repository; the MRS could be constructed at an early date; and the opening of the repository were delayed considerably beyond its presently scheduled date of operation. The Commission therefore recommends that the Congress take the following actions: Authorize construction of a Federal Emergency Storage facility with a capacity limit of 2,000 metric tons of uranium; Authorize construction of a User-Funded Interim Storage facility with a capacity limit of 5,000 metric tons of uranium; Reconsider the subject of interim storage by the year 2000

  15. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  16. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  17. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Science.gov (United States)

    2010-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  18. Waste Sampling and Characterization Facility (WSCF) Complex Safety Analysis

    International Nuclear Information System (INIS)

    MELOY, R.T.

    2003-01-01

    The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory complex on the Hanford Site that was constructed to perform chemical and low-level radiological analyses on a variety of sample media in support of Hanford Site customer needs. The complex is located in the 600 area of the Hanford Site, east of the 200 West Area. Customers include effluent treatment facilities, waste disposal and storage facilities, and remediation projects. Customers primarily need analysis results for process control and to comply with federal, Washington State, and US. Department of Energy (DOE) environmental or industrial hygiene requirements. This document was prepared to analyze the facility for safety consequences and includes the following steps: Determine radionuclide and highly hazardous chemical inventories; Compare these inventories to the appropriate regulatory limits; Document the compliance status with respect to these limits; and Identify the administrative controls necessary to maintain this status

  19. Resource Conservation and Recovery Act Closure Plan for the Y-12 9409-5 Tank Storage Facility

    International Nuclear Information System (INIS)

    1995-02-01

    This document presents information on the closure of the Y-12 9409-5 Tank Storage Facility. Topics discussed include: facility description; closure history; closure performance standard; partial closure; maximum waste inventory; closure activities; schedule; and postclosure care

  20. Radioactive waste shipments to Hanford retrievable storage from Babcock and Wilcox, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1994-01-01

    This report characterizes, as far as possible, the solid radioactive wastes generated by Babcock and Wilcox's Park Township Plutonium Facility near Leechburg, Pennsylvania that were sent to retrievable storage at the Hanford Site. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. The objective is a description of characteristics of solid wastes that are or will be managed by the Restoration and Upgrades Program; gaseous or liquid effluents are discussed only at a summary level This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations, including the Waste Receiving and Processing (WRAP) Facility, because Babcock and Wilcox generated greater than 2.5 percent of the total volume of TRU waste currently stored at the Hanford Site

  1. Activity measurements at a waste volume reduction facility

    International Nuclear Information System (INIS)

    Richardson, J.; Lee, D.A.

    1979-01-01

    The monitoring program for Ontario Hydro's radioactive waste management site will be described, several aspects of which will be discussed in detail. The program at this facility includes categorization, volume reduction processing, and storage of solid radioactive wastes from nuclear generating stations of the CANDU type. At the present time, two types of volume reduction process are in operation - incineration and compaction. Following categorization and processing, wastes are stored in in-ground concrete trenches or tile-holes, or in above-ground quadricells. The monitoring program is divided into three areas: public safety, worker safety, and structural integrity. Development projects with respect to the monitoring program have been undertaken to achieve activity accounting for the total waste management program. In particular, a field measurement for the radioactivity content of radioactive ash containers and compacted waste drums

  2. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    Hadlock, D.J.

    1999-01-01

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  3. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  4. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  5. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  6. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  7. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    Science.gov (United States)

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  8. Lining materials for waste disposal containment and waste storage facilities. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the design characteristics, performance, and materials used to make liners for the waste disposal and storage industry. Liners made of concrete, polymeric materials, compacted clays, asphalt, and in-situ glass are discussed. The use of these liners to contain municipal wastes, hazardous waste liquids, and both low-level and high-level radioactive wastes is presented. Liner permeability, transport, stability, construction, and design are studied. Laboratory field measurements for specific wastes are included. (Contains a minimum of 213 citations and includes a subject term index and title list.)

  9. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  10. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  11. MRS systems study, Task F: Transportation impacts of a monitored retrievable storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Brentlinger, L.A.; Gupta, S.; Plummer, A.M.; Smith, L.A.; Tzemos, S.

    1989-05-01

    The passage of the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) modified the basis from which the Office of Civilian Radioactive Waste Management (OCRWM) had derived and developed the configuration of major elements of the waste system (repository, monitored retrievable storage, and transportation). While the key aspects of the Nuclear Waste Policy Act of 1982 remain unaltered, NWPAA provisions focusing site characterization solely at Yucca Mountain, authorizing a monitored retrievable storage (MRS) facility with specific linkages to the repository, and establishing an MRS Review Commission make it prudent for OCRWM to update its analysis of the role of the MRS in the overall waste system configuration. This report documents the differences in transportation costs and radiological dose under alternative scenarios pertaining to a nuclear waste management system with and without an MRS, to include the effect of various MRS packaging functions and locations. The analysis is limited to the impacts of activities related directly to the hauling of high-level radioactive waste (HLW), including the capital purchase and maintenance costs of the transportation cask system. Loading and unloading impacts are not included in this study because they are treated as facility costs in the other task reports. Transportation costs are based on shipments of 63,000 metric tons of uranium (MTU) of spent nuclear fuel and 7,000 MTU equivalent of HLW. 10 refs., 41 tabs.

  12. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  13. Retrievable surface storage facility conceptual system design description

    International Nuclear Information System (INIS)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts

  14. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  15. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  16. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  17. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  18. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  19. Storage, Collection and Disposal of Kariakoo Market Wastes in Dar Es Salaam, Tanzania

    DEFF Research Database (Denmark)

    Yhdego, Michael

    1992-01-01

    waste management in Kariakoo market, Dar es Salaam. The main problems identified were poor market design and lack of a well organized waste storage, collection and disposal systems. Two-thirds of the waste consists of vegetable matter. Proposals for improved design of storage and collection facilities......In many developing countries, the market is still the most important source of commerce for traders and provisions for the general public. The transmission of disease in the market place involves factors relating to the host, the agent and the environment. This study examines the quality of solid...... are described. Experiments revealed wastes from the market are readily decomposable by composting. A change in the design of covered markets and improvements in waste handling are essential to reduce the potential health hazards in developing countries....

  20. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  1. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  2. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  3. Chemo-mechanical modeling of low-pH concretes: Application to the calculation of storage facilities for radioactive waste

    International Nuclear Information System (INIS)

    El Bitouri, Youssef

    2014-01-01

    The purpose of this work concerns to design a tool able to simulate the chemo-mechanical behavior of low-pH concretes used in radioactive waste storage, from early age to a long-term. This tool consists of a phenomenological hydration model and an original chemical evolution model. The first model is used for short-term. It can predict the development of hydration at early age and its consequences. But taking into account that this model has been developed for applications at a young age, it is based on a fixed stoichiometry of hydrates and does not take into account the specificities of low-pH cements (chemical evolution at the long-term by reaction of residual silica). Thus, a chemical evolution model at the long-term is proposed. This model is based on a variable stoichiometry of hydrates. For this, it uses the calcium mass balance for describing calcium exchange between the various hydrates and anhydrous. This equation includes the kinetics of exchanges which are based on the difference in the thermodynamic equilibrium, of the microstructure and temperature. Finally, a coupling with mechanical properties evolution was performed to simulate the mechanical behavior of the radioactive waste storage facility. (author)

  4. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  5. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    International Nuclear Information System (INIS)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-01-01

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal

  6. 30 CFR 56.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  7. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  8. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Staiger, M. Daniel; Swenson, Michael C.

    2011-01-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  10. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  11. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  12. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types

  13. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  14. Public perception on nuclear energy and radioactive waste storage

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Mourao, Rogerio P.; Fleming, Peter M.; Soares, Wellington A.; Braga, Leticia T.P.; Santos, Rosana A.M.

    2009-01-01

    The final destination of the waste generated in a nuclear power plant remains a big challenge. The question is not only the radiation emitted by the sources, in some cases for many years, but also the public acceptance of this theme. In many countries where a nuclear waste storage facility has to be built, the local population of the chosen site did not accept it at first, and the whole process had to restart including this variable. In the past, the population opinion was considered not relevant but several international experiences showed that in fact it can not be forgotten. Statistical data show that a significant fraction of the population of the world has many concerns about nuclear energy and its potential impacts. Although many experts state that it has environmental advantages, such as the absence of greenhouse gases emissions, the subject is still the target of never ending discussions. But it is a concrete fact that the sector is growing in many countries. The objective of this article is to summarize several experiences in many countries associated with nuclear energy, mainly those ones that involve nuclear storage facilities, and its acceptance by the public. This task can help CNEN in the studies associated with the RMBN project - Repository for Radioactive Waste with Low and Medium Levels of Radiation. (author)

  15. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  16. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  17. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  18. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  19. Design cost scoping studies. Nevada Test Site Terminal Waste Storage Program, Subtask 1.3: facility hardening studies

    International Nuclear Information System (INIS)

    Yanev, P.I.; Owen, G.N.

    1978-04-01

    As part of a program being conducted by the U.S. Department of Energy, Nevada Operations Office, to determine the feasibility of establishing a terminal waste storage repository at the Nevada Test Site, URS/John A. Blume and Associates, Engineers, made approximate determinations of the additional costs required to provide protection of structures against seismic forces. A preliminary estimate is presented of the added costs required to harden the surface structures, underground tunnels and storage rooms, and vertical shafts of the repository against ground motion caused by earthquakes and underground nuclear explosions (UNEs). The conceptual design of all of the structures was adapted from proposed bedded-salt waste-isolation repositories. Added costs for hardening were calculated for repositories in three candidate geological materials (Eleana argillite, Climax Stock granite, and Jackass Flats tuff) for several assumed peak ground accelerations caused by earthquakes (0.3g, 0.5g, and 0.7g) and by UNEs (0.5g, 0.7g, and 1.0g). Hardening procedures to protect the tunnels, storage rooms, and shafts against incremental seismic loadings were developed from (1) qualitative considerations of analytically determined seismic stresses and (2) engineering evaluations of the dynamic response of the rock mass and the tunnel support systems. The added costs for seismic hardening of the surface structures were found to be less than 1% of the estimated construction cost of the surface structures. For the underground structures, essentially no hardening was required for peak ground accelerations up to 0.3g; however, added costs became significant at 0.5g, with a possible increase in structural costs for the underground facilities of as much as 35% at 1.0g

  20. Improvement of storage conditions and closure of the radioactive waste repository - Rozan

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Pacey, N.R.; Buckley, M.J.; Thomson, J.G.; Miller, W.; Barraclough, I.; Tomczak, W.; Mitrega, J.; Smietanski, L.

    2005-01-01

    The Rozan repository is a near-surface repository on the site of an ex-military fort, operated by Radioactive Waste Management Plant (RWMP). Solid or encapsulated waste is consigned to the repository. Low- and medium-activity waste produced in Poland is collected, processed, solidified and prepared for disposal at the Swierk facility. The waste is currently stored or disposed of within the fort structures, these have robust concrete walls, that provide both shielding and containment. The project, funded by the European Commission through the Phare Programme, aimed to improve the storage conditions and determine a strategy for closure achieving two key results; Stakeholder agreement to a strategy for the management and closure of the repository, and; Approval by the National Atomic Energy Agency of the safety case for the selected strategy. The strategy was selected using a multi-criteria analysis methodology at workshops that involved experts, regulators and other stakeholders. The selected strategy proposed that the waste in Facilities 3A and 8 should be left in situ and these facilities should continue to operate until the repository is closed. The waste in Rooms K7 to K9 of Facility 1 and in Facilities 2 and 3 should be retrieved, assayed, treated and packaged prior to redisposal. The short-lived waste that is retrieved from Rooms K7 to K9 of Facility 1 and Facilities 2 and 3 should be emplaced in Facility 8 subject to acceptance by the NAEA of the dose of 0.3mSv/y that might occur at long times in the future from a very unlikely scenario. When operations at the repository end, Facilities 3A and 8 should be covered with a multi-layer cap. Following selection of the strategy, assessment work was undertaken to support the production of the suite of safety cases. (author)

  1. Compressed air energy storage with waste heat export: An Alberta case study

    International Nuclear Information System (INIS)

    Safaei, Hossein; Keith, David W.

    2014-01-01

    Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO 2 e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO 2 e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES

  2. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  3. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  4. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  5. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  6. Safety and optimization aspects of radioactive waste long-term storage at the ''Vector'' site

    International Nuclear Information System (INIS)

    Tokarevs'kij, O.V.; Kondrat'jev, S.M.; Aleksjejeva, Z.M.; Ribalka, N.V.

    2015-01-01

    The paper analyzes links between the final disposal option and needs for long-term storage of radioactive waste taking into proposals on possible changes in radwaste classification as regards disposal. It considers the conceptual approach to design facilities for long-term storage of long-lived radioactive waste at the Vector site and approaches to apply requirements of regulatory documents, radiation safety principles and criteria for long-term storage of radwaste and safety assessment.

  7. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  8. Aspects of the storage of radioactive waste

    International Nuclear Information System (INIS)

    Nienhuys, K.

    1978-01-01

    The expansion in the number of nuclear power stations in the netherlands is amongst other things, dependent on an acceptable policy for the storage of the waste from the stations. Consequently the idea has developed for storage in a salt-dome. The sub-committee on radioactive waste substances of the Interdepartmental Committee for Nuclear Energy has therefore given a mandate to initiate further research. For the risk analysis over the definitive storage of nuclear waste the sub-comittee produced a report in 1975, entitled 'Safety analysis for the underground storage of nuclear waste in salt-dome outcrops'. The analysis reveals a number of defective features. This makes especially clear that statements about the definitive storage of nuclear waste in salt domes can only be made with a great deal of uncertainty. There is no guarantee that the nuclear waste generated may be stowed away so that it will never return to the ionosphere. The speed whereby the nuclear waste may return would be dependent on a combination of events which cannot generally be calculated or assessed. The long term consequences of an irreversible radioactive contamination of the biosphere is not acceptable. There is insufficient proof that the storage of radioactive waste in salt domes is feasible. (G.C.)

  9. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  10. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  11. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  12. Survey and assessment of radioactive waste management facilities in the United States. Section 2.5. Air-cooled vault storage facilities

    International Nuclear Information System (INIS)

    1986-01-01

    There are two basic types of air-cooled vaults for the storage of spent nuclear fuel or vitrified HLRW. The two types, differentiated by the method of air cooling used, are the open-vault concept and the closed-vault concept. The following aspects of these air-cooled vault storage facility concepts are discussed: description and operation of facilities; strucutral design considerations and analysis; nuclear design considerations and analyses; vault environmental design considerations; unique design features; and accident analysis

  13. Final safety-analysis report for the Fifth Calcined Solids Storage Facility

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 m 3 of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor. For the DBA, the maximum calculated radiation dose to an exposed individual near the site boundary is less than 1.2 μRem to the bone and lung

  14. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  15. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  16. Treatment and storage of high-level activity RAW and spent fuel from nuclear facilities

    International Nuclear Information System (INIS)

    Tomov, E.

    2010-01-01

    The most acceptable for the development of nuclear energy sector scenario is processing, storage and disposal of all SNF and waste from in the country of origin. Linking the supply of fresh nuclear fuel with subsequent transportation and processing would solve many of the problems related to its storage and accumulation at the site of the operator of the facility. Construction of NPP Belene is a prerequisite for a favorable solution to the management of SNF and HLW. At the stage of feasibility study for the construction of a deep geological repository, the studies of variants of the quantities of HLW from SNF reprocessing allow for a preliminary assessment of the capacity of the storage facility

  17. Immobilized High-Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report - second Generation Implementing Architecture

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document

  18. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  19. Managing the process for storage and disposal of immobilized high- and low-level tank waste at the Hanford Site

    International Nuclear Information System (INIS)

    Murkowski, R.J.

    1998-01-01

    Lockheed Martin Hanford Corporation (LMHC) is one of six subcontractors under Fluor Daniel Hanford, Inc., the Management and Integration contractor for the Project Hanford Management Contract working for the US Department of Energy. One of LMHC's responsibilities is to prepare storage and disposal facilities to receive immobilized high and low-level tank waste by June of 2002. The immobilized materials are to be produced by one or more vendors working under a privatization contract. The immobilized low-activity waste is to be permanently disposed of at the Hanford Site while the immobilized high-level waste is to be stored at the Hanford Site while awaiting shipment to the offsite repository. Figure 1 is an overview of the entire cleanup mission with the disposal portion of the mission. Figure 2 is a representation of major activities required to complete the storage and disposal mission. The challenge for the LNIHC team is to understand and plan for accepting materials that are described in the Request for Proposal. Private companies will submit bids based on the Request for Proposal and other Department of Energy requirements. LMHC, however, must maintain sufficient flexibility to accept modifications that may occur during the privatization bid/award process that is expected to be completed by May 1998. Fundamental to this planning is to minimize the risks of stand-by costs if storage and disposal facilities are not available to receive the immobilized waste. LMHC has followed a rigorous process for the identification of the functions and requirements of the storage/disposal facilities. A set of alternatives to meet these functions and requirements were identified and evaluated. The alternatives selected were (1) to modify four vaults for disposal of immobilized low-activity waste, and (2) to retrofit a portion of the Canister Storage Building for storage of immobilized high-level waste

  20. Emergency preparedness hazards assessment for the Concentrate, Storage and Transfer Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents this facility Emergency Preparedness Hazards Assessment (EPHA) for the Concentrate, Storage and Transfer Facility (CSTF) located on the Department of Energy (DOE) Savannah River Site (SRS). The CSTF encompasses the F-Area and the H-Area Tank Farms including the Replacement High Level Waste Evaporator (RHLWE) (3H evaporator) as a segment of the H-Area Tank Farm. This EPHA is intended to identify and analyze those hazards that are significant enough to warrant consideration in the tank farm operational emergency management programs

  1. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.

    1998-01-01

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed

  2. Environmental impact assessment for a radioactive waste facility: A case study

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1990-01-01

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m 3 of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m 3 , account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs

  3. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  4. National Waste Terminal Storage Program. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Asher, J.M.

    1978-04-01

    The National Waste Terminal Storage Program Report comprises five sections: technical projects, facility projects, planning and analysis, regulatory affairs, and public affairs. Progress made in these areas during the period October 1, 1976, to September 30, 1977, is reported

  5. Design of chemical treatment unit for radioactive liquid wastes in Serpong nuclear facilities

    International Nuclear Information System (INIS)

    Salimin, Z.; Walman, E.; Santoso, P.; Purnomo, S.; Sugito; Suwardiyono; Wintono

    1996-01-01

    The chemical treatment unit for radioactive liquid wastes arising from nuclear fuel fabrication, radioisotopes production and radiometallurgy facility has been designed. The design of chemical processing unit is based on the characteristics of liquid wastes containing fluors from uranium fluoride conversion process to ammonium uranyl carbonate on the fuel fabrication. The chemical treatment has the following process steps: coagulation-precipitation of fluoride ion by calcium hydroxide coagulant, separation of supernatant solution from sludge, coagulation of remaining fluoride on the supernatant solution by alum, separation of supernatant from sludge, and than precipitation of fluors on the supernatant by polymer resin WWS 116. The processing unit is composed of 3 storage tanks for raw liquid wastes (capacity 1 m 3 per tank), 5 storage tanks for chemicals (capacity 0.5 m 3 per tank), 2 mixing reactors (capacity 0.5 m 3 per reactor), 1 storage tank for supernatant solution (capacity 1 m 3 ), and 1 storage tank for sludge (capacity 1 m 3 )

  6. Synthesis long life storage studies surface storage of vitrified wastes

    International Nuclear Information System (INIS)

    Beziat, A.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.; Hollender, F.; Jourdain, F.; Piault, E.; Garnier, J.; Lamare, V.; Duret, B.; Helie, M.; Ferry, C.; Mijuin, D.; Gagnier, E.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It justifies the choices concerning long time surface storage installation of vitrified wastes, called high activity wastes. The long time of the installation would reach 300 years at the maximum. These wastes represent 1 % at the maximum, of radioactive wastes in France but 95 % of the whole radioactivity. Three main objectives were followed: provide a permanent containment of radionuclides; give the possibility of wastes containers retrieval at all the time; minimize the maintenance and the control. The results allow to conclude that the long time surface storage of high activity wastes is feasible. (A.L.B.)

  7. 30 CFR 56.4430 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.4430 Section 56.4430 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for...

  8. Characterization and storage of liquid wastes containing 125Iodine in the laboratory for production of brachytherapy sources - IPEN

    International Nuclear Information System (INIS)

    Carvalho, Vitória S.; Souza, Daiane C.B. de; Barbosa, Nayane K.O.; Rodrigues, Bruna T.; Nogueira, Beatriz R.; Costa, Osvaldo L. da; Zeituni, Carlos A.; Vicente, Roberto; Rostelato, Maria E.C.M.

    2017-01-01

    Radioactive sources of Iodine-125 for medical applications have been developed at the Institute for Energy and Nuclear Research (IPEN) to meet the growing demand for medical applications such as brachytherapy. A dedicated laboratory is already being implemented at IPEN. Part of the processes involved in the production of sealed sources generate radioactive wastes that despite the short half-life (<100 days) have radioactive activity above the levels of exemption established by the Brazilian National Nuclear Energy Commission. Therefore, these wastes should receive appropriate treatment and storage until they reach the levels of release into the environment. This work aims to determine the volumes of the liquid wastes generated during the production stages of the sources, as well as to propose a temporary storage system for such wastes. The applied methodology consisted in determining the volumes of wastes generated in each production cell according to the manufacturing steps. After that, activities and activity concentrations were calculated for each container used for temporary storage inside the production laboratory. The total volume stored for one year in the temporary storage, as well as the rate of entry and exit of the liquid wastes were calculated according to the source production demand and the decay time of the radionuclide, respectively. The main results showed that the time required to reach sanitary sewage disposal values is within the period of operation of the facility. The total volume generated is also within the facility's temporary storage capacity

  9. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  10. Bidding strategy for an energy storage facility

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Zareipour, Hamidreza; Rosehart, William D.

    2016-01-01

    to maximize its profit, while the market operator aims at maximizing the social welfare. In this case, the storage facility adapts its strategic behavior to take advantage of market conditions. To model the imperfectly competitive market, a bi-level optimization model is implemented to present......This paper studies operation decisions of energy storage facilities in perfectly and imperfectly competitive markets. In a perfectly competitive market, the storage facility is operated to maximize the social welfare. However, in a imperfectly competitive market, the storage facility operates...

  11. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    McNair, G.W.; Shay, M.R.; Fletcher, J.F.; Cashwell, J.W.

    1985-02-01

    The WASTES model simulates a user defined system for nuclear waste transportation and storage at both temporary and long-term storage facilities. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation package (Pritsker and Pegden 1979). SLAM (Simulation Language for Alternative Modeling) is utilized in a discrete event mode to model the passage of spent fuel through the system. The system is initiated with individual reactor discharges of spent fuel as described in the reactor discharge data file or as supplied by the user. The reactor discharge file contains deterministic information on the date (year/month) and quantity of spent fuel discharges. From this point, the model is controlled by a combination of source originated and destination originated transfers. Source driven transfers occur when a reactor pool violates the full core reserve (FCR) storage margin or when the reactor is decommissioned. At these times, the source reactor checks destination facilities to see if they can accept material. A dry storage facility is assumed to exist for each reactor and is allowed to grow as necessary to contain spent fuel which cannot be shipped to any other facility. In this way the FCR margin is always maintained. Destination driven transfers occur when the annual capacity of a facility will not be met by full core reserve or decommissioning shipments. An attempt is made at the end of each calendar year to schedule enough shipments of spent fuel from facilities with non-critical storage capacity to fill the annual capacity of each destination facility. Allowable facility types are reprocessing plants, federal interim storage (FIS), monitored retrievable storage (MRS), and repositories. The number, capacities, location and priority for receipt of spent fuel is user specified. This report describes in detail the waste generating model, the waste facilities model, the transportation model and the basic transportation scheme

  12. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  13. Extended storage for radioactive wastes: relevant aspects related to the safety; Almacenamiento prolongado de residuos radiactivos: algunos aspectos de interes a considerar para su seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F., E-mail: gesr@cphr.edu.cu, E-mail: peralta@cphr.edu.cu, E-mail: gema@cphr.edu.cu [Centro de Protección e Higiene de las Radiaciones (CPHR), Agencia de Energía Nuclear y Tecnologías de Avanzada (AENTA), La Habana (Cuba)

    2013-07-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man.

  14. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  15. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  16. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    International Nuclear Information System (INIS)

    1980-01-01

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded

  17. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  18. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  19. 30 CFR 57.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  20. 40 Years of Experience of NIRAS / Belgoprocess on the Interim Storage of Low, Intermediate and High Level Waste

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Ghys, Bart

    2016-01-01

    Conclusion: • ONDRAF/NIRAS and Belgoprocess have gained over time an extended experience on the interim storage of Low-Intermediate and High level waste. • An systematic inspection strategy was developed in order the verify the conformity of the different waste-packages and corrective measures were taken to guarantee safe storage conditions. • From 2022 , ONDRAF/NIRAS will operate a surface disposal facility for LLW

  1. Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Gazso, L.G.

    1997-01-01

    The intent of the workshop organizers was to convene experts in the fields of corrosion and spent nuclear fuels. The major points which evolved from the interaction of microbiologists, material scientists, and fuel storage experts are as follows: Corrosion of basin components as well as fuel containers or cladding is occurring; Water chemistry monitoring, if done in the storage facility does not take into account the microbial component; Microbial influenced corrosion is an area that many have not considered to be an important contributor in the aging of metallurgical materials especially those exposed to a radiation field; Many observations indicate that there is a microbial or biological presence in the storage facilities but these observations have not been correlated with any deterioration or aging phenomena taking place in the storage facility; The sessions on the fundamentals of microbial influenced corrosion and biofilm pointed out that these phenomena are real, occurring on similar materials in other industries and probably are occurring in the wet storage of spent fuel; All agreed that more monitoring, testing, and education in the field of biological mediate processes be performed and financially supported; Loosing the integrity of fuel assemblies can only cause problems, relating to the future disposition of the fuel, safety concerns, and environmental issues; In other rad waste scenarios, biological processes may be playing a role, for instance in the mobility of radionuclides in soil, decomposition of organic materials of the rad waste, gas production, etc. The fundamental scientific presentations discussed the full gamut of microbial processes that relate to biological mediated effects on metallic and non-metallic materials used in the storage and containment of radioactive materials

  2. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  3. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  4. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  5. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  6. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  7. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  8. Meeting the regulatory challenges of mixed waste storage and monitoring: A novel approach

    International Nuclear Information System (INIS)

    Wilkinson, Dennis; Shaw, Mark

    1992-01-01

    This paper describes an original approach to providing safe storage of Remote Handled TRU Mixed Waste that is required to meet the EPA double liner and leachate collection system standards. This system, known as the 'Environmental Vault Liner', also allows a cost effective means of complying with the EPA's inspection requirements per 40 CFR 265.170, Use and Management of Containers. This approach is modular in nature, allowing additional storage capacity to be added on a demand basis, thereby eliminating significant upfront costs associated with large storage facilities built on estimated needs over many years. It reduces the financial and technical risks associated with large storage construction projects, allows modifications to new Liners put into service based on changing regulations and technologies. The Environmental Vault Liner offers additional benefits including easy waste retrieval, a 300 year design life, continuous below ground liquid detection and monitoring, replaceable instrumentation, inert (Nitrogen) atmosphere for container storage, continuous air monitoring, and remote visual container inspections. (author)

  9. Performance assessment for continuing and future operations at solid waste storage area 6

    International Nuclear Information System (INIS)

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility

  10. Performance assessment for continuing and future operations at solid waste storage area 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  11. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs

  12. National Waste Terminal Storage Program information meeting, December 7-8, 1976

    International Nuclear Information System (INIS)

    1976-12-01

    Volume I of the report comprises copies of the slides from the talks presented at the first session of the National Waste Terminal Storage Program information meeting. The agenda for the first day included an overview of the program plus presentations on such subjects as schedules and controls, facility projects, systems studies, regulatory affairs and technical support

  13. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  14. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  15. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  16. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  17. Hanford facility dangerous waste permit application, 242-A evaporator

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the 242-A Evaporator (this document, DOE/RL-90-42)

  18. Performance assessment of the proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Winter, C.

    1986-02-01

    Pacific Northwest laboratory (PNL) has completed a performance evaluation of the proposed monitored retrievable storage (MRS) facility. This study was undertaken as part of the Department of Energy MRS Program at PNL. The objective of the performance evaluation was to determine whether the conceptual MRS facility would be able to process spent fuel at the specified design rate of 3600 metric tons of uranium (MTU) per year. The performance of the proposed facility was assessed using the computer model COMPACT (Computer Optimization of Processing and Cask Transport) to simulate facility operations. The COMPACT model consisted of three application models each of which addressed a different aspect of the facility's operation: MRS/waste transportation interface; cask handling capability; and disassembly/consolidation (hot cell) operations. Our conclusions, based on the assessment of design criteria for the proposed facility, are as follows: Facilities and equipment throughout the facility have capability beyond the 3600 MTU/y design requirement. This added capability provides a reserve to compensate for unexpected perturbations in shipping or handling of the spent fuel. Calculations indicate that the facility's maximum maintainable processing capability is approximately 4800 MTU/y

  19. Centralized treatment facility for low level radioactive waste produced in Belgium. The CILVA project

    International Nuclear Information System (INIS)

    Renard, Cl.; Detilleux, M.; Debieve, P.

    1993-01-01

    Due to rather limited amount of waste produced and the small size of the Belgian territory (30 x 10 3 km 2 ), ONDRAF/NIRAS strategy aims at centralizing treatment conditioning and storage of radioactive waste. ONDRAF/NTRAS has decided to set up a new infrastructure: the CILVA unit. The CILVA facility is focused on the supercompaction and the incineration treatment, so that ONDRAF/NIRAS can safely manage all radioactive wastes produced in Belgium. (2 figs.)

  20. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  1. [Microbiological Aspects of Radioactive Waste Storage].

    Science.gov (United States)

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  2. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  3. Incineration facility for radioactively contaminated polychlorinated biphenyls and other wastes

    International Nuclear Information System (INIS)

    1982-06-01

    The statement assesses the environmental impacts associated with the construction of an incineration facility and related support facilities for the disposal of hazardous organic waste materials (including PCBs) which are contaminated with trace quantities of low-assay enriched uranium. The proposed action includes the incineration facility at Oak Ridge, Tennessee and storage, packaging, and shipping facilities at the Gaseous Diffusion Plants in Paducah, KY, and Portsmouth, OH; hazardous organic wastes from these plants and from the Y-12 Plant and Oak Ridge National Laboratories would be shipped to the proposed incineration facility. Impacts assessed include the effects of the project on air and water quality, on socioeconomic conditions, on public and occupational health and safety, and on ecology. Additionally, the statement presents an assessment of the potential impacts from accidents at the incineration facility or during transportation of the waste materials to the facility. The major impact identified was the potential for short-term occupational exposure to high concentrations of PCBs in smoke during the worst credible accident; mitigation of this impact will be addressed during the final design of the proposed facility. Alternatives which were assessed include no action, chemical destruction processes, and alternative transportation routes; all would have greater adverse impact or would increase the risk of an accident with the potential for adverse impact. The alternatives of commercial disposal, alternative sites, multiple incinerators, and alternative modes were eliminated from detailed analysis either because they are not feasible or because preliminary analysis showed that they would have clearly more adverse impact upon the environment than the proposed action

  4. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Albrecht, E.; Kolditz, H.; Thielemann, K.; Duerr, K.; Klarr, K.; Kuehn, K.; Staupendahl, G.; Uerpmann, E.P.; Bechthold, W.; Diefenbacher, W.

    1974-12-01

    The present report - presented by the Gesellschaft fuer Strahlen- und Umweltforschung mbH, Muenchen in cooperation with the Gesellschaft fuer Kernforschung mbH, Karlsruhe - gives a survey of the 1973 work in the field of final storage of radioactive wastes. The mining and constructional work carried out aboveground and underground in the saline of Asse near Remlingen with a view to repair, maintenance and expansion for future tasks is discussed. Storage of slightly active wastes on the 750 m floor and the tentative storage of medium-activity wastes on the 490 m floor were continued in the time under review. In September, the multiple transport container S 7 V, developped in the GfK for transports of 7 200 l iron-hooped drums containing medium activity wastes, were employed in Asse for the first time. With two transports a week between Karlsruhe Nuclear Research Centre and the Asse mine, 14 drums were stored per week with a total of 233 drums at the end of the year. The report also gives information on the present state of research in the fields of mountain engineering geology and hydrology, and its results. In addition, new storage methods are mentioned which are still in the planning stage. (orig./AK) [de

  5. Decision of the Council of State on the general regulations for the safety of a disposal facility for reactor waste (398/91)

    International Nuclear Information System (INIS)

    1991-01-01

    These Regulations contain provisions for the safe planning, construction and use of final radioactive waste storage facilities. Licensees with a waste management obligation are responsible for ensuring the safety of such facilities. The Regulations entered into force on 1 March 1991. (NEA)

  6. Study on Safety Assessment for TINT- Pre disposal Radioactive Waste Management Facilities by the Application of SAFRAN Software

    International Nuclear Information System (INIS)

    Ya-anant, Nanthavan

    2011-06-01

    Full text: The Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (TINT) provides a centralized radioactive waste management (RWM) service in the country. The pre disposal RWM facilities are composed of low and intermediate level waste treatment and storage facilities. The benefits of this study are (1) to improve the safety of pre disposal RWM facilities (2) to experience with the SAFRAN software tool for the safety assessment of pre disposal RWM facilities, which has been developed following to the methodology from International Atomic Energy Agency (IAEA). The work was performed on collecting all waste management data, the diagram of facilities, buildings, location, procedure, waste classification, waste form, radiological/chemical/physical properties including scenarios in normal and accidental conditions. The result of normal condition is that the effective dose per year of worker and public is less than 20 mSv and 1 mSv respectively. So the TINT-RWM operation is safe, as referred to the regulation

  7. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  8. Treatment and storage of radioactive waste at a nuclear power plant

    International Nuclear Information System (INIS)

    1996-01-01

    The guide gives the general principles that shall be followed when planning and implementing the treatment, storing, transfer, activity monitoring and record keeping of radioactive wastes. The guide does not include provisions for spent fuel or for treatment and discharges of liquids or gases containing radioactive substances. Neither does the guide include any detailed design criteria for treatment facilities or storages. (4 refs.)

  9. Large diameter boreholes (LDB) for low and intermediate radioactive waste storage/disposal in clay deposits

    International Nuclear Information System (INIS)

    Tkachenko, A.V.; Litinsky, Y.V.; Guskov, A.V.

    2012-01-01

    Document available in extended abstract form only. The State Unitary Enterprise of Moscow MosSIA 'RADON' has been carrying out collecting, treatment, conditioning and storage/disposal of low and intermediate level radioactive wastes (LILW) produced by research, medical and industry enterprises in the Central Region of Russia since 1961. Typical near surface facilities were and still are widely used for long-term storage of conditioned low and intermediate level radioactive wastes (LILW). They are the vault type constructions made of monolithic reinforced concrete or from concrete blocks placed mostly below the ground level in previously excavated trenches in clayey rocks. The depth of trenches is usually from 3 to 6 m and the volume of such repositories varies from 200 up to 20 thousand m3. Operation practice and monitoring results has revealed their common disadvantage typical for 'RADON'-type facilities on the territory of the Russian Federation and some other countries. As a result of continental climate conditions with cyclic seasonal freezing and thawing of host rock and underground constructions, the permeability of grouting cement and engineering barriers is increasing in time more quickly then was supposed when designing and constructing such facilities due to cracks and cement destruction caused by these cycles. This leads to water infiltration and accumulation inside the vault, leaching of radionuclides and their migration out of the repository. In some cases radionuclide migration into the near field and radioactive contamination of the ground around the storage facility was detected. Decontamination of such ground results in generation of secondary wastes that requires additional space in existing repositories for its storage or disposal and corresponding growth of final costs of RAW isolation. Construction of new near surface repositories for the same purpose at the operating sites within the boundaries of lease area is problematic because of the

  10. Waste Encapsulation and Storage Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In 1972, two chemical elements which generate a lot of heat were removed from the high level waste tanks at Hanford. Called cesium and strontium, these elements had...

  11. Preliminary technical data summary for the Defense Waste Processing Facility, Stage 1

    International Nuclear Information System (INIS)

    1980-09-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 1 of the Staged Defense Waste Processing Facility (DWPF), a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material, and curie balances, material and curie balance bases, and other technical data for design of the Stage 1 DWPF

  12. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  13. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  14. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-01-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  15. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-01-01

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management

  16. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  17. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    Energy Technology Data Exchange (ETDEWEB)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  18. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    International Nuclear Information System (INIS)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs

  19. National waste terminal storage program. Supplementary quality-assurance requirements

    International Nuclear Information System (INIS)

    Garland, D.L.

    1980-01-01

    The basic Quality Assurance Program Requirements standard for the National Waste Terminal Storage Program has been developed primarily for nuclear reactors and other fairly well established nuclear facilities. In the case of waste isolation, however, there are many ongoing investigations for which quality assurance practices and requirements have not been well defined. This paper points out these problems which require supplementary requirements. Briefly these are: (1) the language barrier, that is geologists and scientists are not familiar with quality assurance (QA) terminology; (2) earth sciences deal with materials that cannot be characterized as easily as metals or other materials that are reasonably homogeneous; (3) development and control of mathematical models and associated computer programs; (4) research and development

  20. Properties of the cements and their use in the storage systems of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Almazan T, M. G.

    2011-11-01

    The use of materials containing cement has generalized in the facilities of definitive storage of radioactive wastes due to their easy handling and availability. Besides conforming the buildings and structures, these materials are part of the barriers system that will maintain the isolated radioactive wastes of the biosphere until their activity has decayed at innocuous levels. However, to fulfill this function, the effectiveness and durability of these materials should be demonstrated fully. In Mexico the intention exists of building a definitive storehouse for the low-level radioactive wastes, however are few the studies on the behavior of the materials containing cement used in this type of facilities. With the purpose of to guide and promoting the study of the national cements, in this work is made a revision of the characteristics and properties of the cements with relationship to its use in the systems of definitive storage of low-level radioactive wastes, as well as of some studies that are realized to evaluate its acting as engineering barriers. (Author)